Research progress in ZnO single-crystal: growth, scientific understanding, and device applications
Zinc oxide, a wide band-gap semiconductor, has shown extensive potential applications in high-efficiency semiconductor photoelectronic devices, semiconductor photocatalysis, and diluted magnetic semiconductors. Due to the undisputed lattice integrity, ZnO single crystals are essential for the fabric...
Saved in:
Published in | Chinese science bulletin Vol. 59; no. 12; pp. 1235 - 1250 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer-Verlag
01.04.2014
Science China Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zinc oxide, a wide band-gap semiconductor, has shown extensive potential applications in high-efficiency semiconductor photoelectronic devices, semiconductor photocatalysis, and diluted magnetic semiconductors. Due to the undisputed lattice integrity, ZnO single crystals are essential for the fabrication of high-quality ZnO-based photoelectronic devices, and also believed to be ideal research subjects for understanding the underlying mechanisms of semiconductor photocatalysis and diluted magnetic semiconductors. This review, which is organized in two main parts, introduces the recent progress in growth, basic characterization, and device development of ZnO single crystals, and some related works in our group. The first part begins from the growth of ZnO single crystal, and summarizes the fundamental and applied investigations based on ZnO single crystals. These works are composed of the fabrication of homoepitaxial ZnO-based photoelectronic devices, the research on the photocatalysis mechanism, and dilute magnetic mechanism. The second part describes the fabrication of highly thermostable n-type ZnO with high mobility and high electron concentration through intentional doping. More importantly, in this part, a conceptual approach for fabricating highly thermostable p-type ZnO materials with high mobility through an integrated three-step treatment is proposed on the basis of the preliminary research. |
---|---|
AbstractList | Zinc oxide, a wide band-gap semiconductor, has shown extensive potential applications in high-efficiency semiconductor photoelectronic devices, semiconductor photocatalysis, and diluted magnetic semiconductors. Due to the undisputed lattice integrity, ZnO single crystals are essential for the fabrication of high-quality ZnO-based photoelectronic devices, and also believed to be ideal research subjects for understanding the underlying mechanisms of semiconductor photocatalysis and diluted magnetic semiconductors. This review, which is organized in two main parts, introduces the recent progress in growth, basic characterization, and device development of ZnO single crystals, and some related works in our group. The first part begins from the growth of ZnO single crystal, and summarizes the fundamental and applied investigations based on ZnO single crystals. These works are composed of the fabrication of homoepitaxial ZnO-based photoelectronic devices, the research on the photocatalysis mechanism, and dilute magnetic mechanism. The second part describes the fabrication of highly thermostable n-type ZnO with high mobility and high electron concentration through intentional doping. More importantly, in this part, a conceptual approach for fabricating highly thermostable p-type ZnO materials with high mobility through an integrated three-step treatment is proposed on the basis of the preliminary research. |
Author | Zheng, Qinghong Yan, Fengbo Zhang, Jiye Lv, Peiwen Wang, Yonghao Huang, Feng Ding, Kai Lin, Zhang Zhan, Zhibing Chen, Dagui Lin, Wenwen Wang, Xian |
Author_xml | – sequence: 1 fullname: Huang, Feng – sequence: 2 fullname: Lin, Zhang – sequence: 3 fullname: Lin, Wenwen – sequence: 4 fullname: Zhang, Jiye – sequence: 5 fullname: Ding, Kai – sequence: 6 fullname: Wang, Yonghao – sequence: 7 fullname: Zheng, Qinghong – sequence: 8 fullname: Zhan, Zhibing – sequence: 9 fullname: Yan, Fengbo – sequence: 10 fullname: Chen, Dagui – sequence: 11 fullname: Lv, Peiwen – sequence: 12 fullname: Wang, Xian |
BookMark | eNqFkjtPHTEQhS1EJJ4_gAqXKVji111700UohEhISAQaGsuP2cVo8d549gbx7-ObpUoBhTW2_J2x5hwfkN08ZSDkhLNzzpj-gpwrqRrGt2ulGrVD9rlpedOtFN-te8Z4066k2SMHiE_1JLkW-8TfAoIr4ZGuyzQUQKQp04d8QzHlYYQmlFec3fiVDmV6mR_PKIYEeU59CnSTI5R6m2Nlz2itNMKfFIC69XpMwc1pynhEPvVuRDh-q4fk_vL73cVVc33z4-fFt-smKM7nRoTOaBGdZ05FHxwTygtjYu-9hqhVG1ovo3YqGK99B30AI1gPbWyFFMzLQ_J56Vsn-b0BnO1zwgDj6DJMG7Rcs053Uhn9Mdq2cqUF79THaPVXSamNrKhe0FAmxAK9DWn-58FcXBotZ3ablV2ysjUru83Kbh_h_ynXJT278vquRiwarGweoNinaVNydfhd0eki6t1k3VAS2vtfogL1Q9Qp6hB_AXRCsmw |
CitedBy_id | crossref_primary_10_1016_j_mtphys_2020_100244 crossref_primary_10_3390_app10051836 crossref_primary_10_1016_j_apsusc_2017_09_133 crossref_primary_10_1063_1_5052407 crossref_primary_10_3390_mi14020404 crossref_primary_10_1016_j_optmat_2022_113297 crossref_primary_10_1007_s11270_025_07737_1 crossref_primary_10_1134_S1063774520050144 crossref_primary_10_1016_j_ssc_2023_115130 crossref_primary_10_1021_acs_jpclett_0c02698 crossref_primary_10_1002_aelm_201600320 crossref_primary_10_1016_j_ceramint_2019_09_019 crossref_primary_10_1016_j_jallcom_2016_11_183 crossref_primary_10_1016_j_jallcom_2017_01_167 crossref_primary_10_1021_acs_jpclett_0c00509 crossref_primary_10_1039_C8CE01886C crossref_primary_10_1134_S0030400X19120282 crossref_primary_10_1016_j_spmi_2021_107140 crossref_primary_10_1007_s10853_021_06275_5 crossref_primary_10_1021_acs_cgd_4c00903 crossref_primary_10_1007_s10854_022_07704_0 crossref_primary_10_1007_s11434_014_0220_y crossref_primary_10_1016_j_jcrysgro_2018_02_001 crossref_primary_10_1134_S1063785020070214 crossref_primary_10_3390_sym11101246 crossref_primary_10_1016_j_optmat_2024_114955 crossref_primary_10_1002_smtd_202000501 crossref_primary_10_1016_j_matt_2020_03_002 crossref_primary_10_1021_acsomega_4c07627 crossref_primary_10_1016_j_colsurfa_2023_131897 crossref_primary_10_1002_smll_201402334 crossref_primary_10_1007_s12034_020_02241_0 crossref_primary_10_1016_j_ceramint_2020_12_231 crossref_primary_10_1016_j_mssp_2022_107040 crossref_primary_10_1140_epjb_e2019_100087_0 crossref_primary_10_1016_j_ceramint_2020_06_088 crossref_primary_10_1016_j_optmat_2023_114290 crossref_primary_10_3390_ma15041487 crossref_primary_10_1016_j_chemphys_2023_111906 crossref_primary_10_1016_j_cattod_2019_02_028 crossref_primary_10_1134_S0021364020160092 crossref_primary_10_1016_j_optmat_2021_111683 crossref_primary_10_1016_j_jmmm_2019_165966 crossref_primary_10_1134_S0030400X20110272 crossref_primary_10_1155_2018_2602596 crossref_primary_10_1016_j_jechem_2021_06_004 crossref_primary_10_1007_s11595_022_2569_0 crossref_primary_10_1021_acs_chemmater_6b02639 crossref_primary_10_1021_acs_cgd_8b00817 |
Cites_doi | 10.1039/b912137d 10.1103/PhysRevLett.84.5628 10.1103/PhysRevB.61.15019 10.1063/1.118824 10.1016/S1386-9477(00)00193-4 10.1063/1.3596479 10.1103/PhysRevLett.98.045501 10.1063/1.1398070 10.1016/j.jallcom.2009.01.026 10.3938/jkps.57.1081 10.1063/1.2838330 10.1007/s00339-011-6547-1 10.1111/j.1151-2916.1964.tb14632.x 10.1143/JJAP.24.L781 10.1016/0038-1101(66)90134-1 10.1016/S0921-5107(00)00372-X 10.1016/j.jcrysgro.2007.11.215 10.1063/1.1695440 10.1143/JJAP.40.L177 10.1103/PhysRevLett.86.2601 10.1039/c1ce05122a 10.1016/S0038-1098(97)10145-4 10.1002/adma.200400456 10.1063/1.126599 10.1063/1.1623923 10.1016/j.pcrysgrow.2006.09.002 10.1063/1.2798868 10.1103/PhysRevLett.62.1800 10.1016/0022-0248(85)90048-X 10.1016/0022-0248(90)90894-Q 10.1039/c0cp01228a 10.1002/crat.19660010209 10.1016/0022-0248(90)90752-7 10.1021/j100840a503 10.1109/JSTQE.2004.831681 10.1103/PhysRevLett.84.1232 10.1134/1.1529962 10.1021/j100834a511 10.1021/cg900339u 10.1557/PROC-512-41 10.1063/1.365556 10.1063/1.3449122 10.1002/adma.200601455 10.1063/1.3570691 10.1103/PhysRevB.55.R3347 10.1143/APEX.1.051201 10.1002/pssb.200301962 10.1063/1.3453658 10.1103/PhysRevLett.85.1012 10.1039/c1cc10888c 10.1103/PhysRevB.64.085120 10.1002/adma.201002608 10.1088/0268-1242/20/4/007 10.1063/1.3518059 10.1063/1.2186508 10.1021/ja302479f 10.1021/cm900608d 10.1063/1.3598136 10.1016/0022-0248(70)90123-5 10.1063/1.121384 10.1016/S0022-0248(01)01467-1 10.1143/APEX.4.091105 10.1063/1.109681 10.1103/PhysRevLett.72.534 10.1016/0025-5408(67)90138-9 10.1063/1.367120 10.1143/JJAP.36.L1078 10.1063/1.1691186 10.1063/1.2802554 10.1088/0256-307X/26/11/116102 10.1021/cg101216z 10.1038/nmat1284 10.1063/1.121620 10.1103/PhysRevLett.99.127201 10.1016/0022-0248(71)90172-2 10.1002/anie.201006057 10.1016/j.jcrysgro.2007.11.145 10.1103/PhysRevB.66.073202 10.1038/nmat1310 10.1103/PhysRevB.79.195105 10.1063/1.2838292 10.1063/1.3247890 10.1021/cr00033a004 10.1063/1.3603038 10.1016/0022-0248(72)90296-5 10.1109/LED.2012.2196675 10.1088/0022-3727/41/16/165104 10.1143/JJAP.49.04DG14 10.1063/1.1940736 10.1021/cm025747y 10.1088/0268-1242/20/4/005 10.1088/0268-1242/17/4/309 10.1016/S0921-4526(01)00830-4 10.1063/1.2352726 10.1063/1.1992666 10.1111/j.1151-2916.1967.tb15119.x 10.1063/1.3631677 10.1039/c1cc14360c 10.1143/JJAP.41.3643 10.1016/j.apsusc.2008.04.004 10.1063/1.2369544 10.1063/1.3459139 10.1063/1.1394173 10.1016/j.ssc.2005.11.030 10.1038/nmat2898 10.1103/PhysRevLett.88.247202 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2014 |
DBID | FBQ AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
DOI | 10.1007/s11434-014-0154-4 |
DatabaseName | AGRIS CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA Materials Research Database |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering Physics |
EISSN | 1861-9541 |
EndPage | 1250 |
ExternalDocumentID | 10_1007_s11434_014_0154_4 US201400143383 |
GroupedDBID | -Y2 -~X .86 0R~ 1N0 29B 2VQ 4.4 40D 40G 5GY 67Z 6J9 6NX 8UJ 92E 92I AAHBH AARTL ABJNI ABJOX ABMNI ABTMW ACCUX ACGFO ACGFS ACOMO ADHIR AEGNC AEOHA AFGCZ AGQMX ALMA_UNASSIGNED_HOLDINGS AMKLP BA0 BGNMA CAG CJPJV COF CS3 CW9 DU5 EBS EJD ESBYG F5P FBQ GX1 H13 HF~ HZ~ IHE I~X I~Z KOV KQ8 M4Y NB0 NU0 O9- OK1 RNS RPX RSV S1Z S27 SCL SDH SHS SOJ T13 TN5 U2A UG4 W48 WK8 ~02 2B. 2C. 92Q 93N M~E TCJ AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c411t-2c9872dab0a4dbca024b288dfbb7ed746c6b3d7a4c8b7b9efce820fe6d62320b3 |
IEDL.DBID | 40G |
ISSN | 1001-6538 |
IngestDate | Thu Jul 10 18:45:05 EDT 2025 Thu Jul 10 18:33:42 EDT 2025 Fri Jul 11 05:12:01 EDT 2025 Tue Jul 01 00:48:26 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Fri Feb 21 02:34:25 EST 2025 Thu Apr 03 09:43:32 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 12 |
Keywords | Diluted magnetic semiconductor ZnO single crystal ZnO ZnO-based photoelectronic devices Photocatalysis |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-2c9872dab0a4dbca024b288dfbb7ed746c6b3d7a4c8b7b9efce820fe6d62320b3 |
Notes | http://dx.doi.org/10.1007/s11434-014-0154-4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1541433783 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1709793487 proquest_miscellaneous_1663572194 proquest_miscellaneous_1541433783 crossref_citationtrail_10_1007_s11434_014_0154_4 crossref_primary_10_1007_s11434_014_0154_4 springer_journals_10_1007_s11434_014_0154_4 fao_agris_US201400143383 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Chinese science bulletin |
PublicationTitleAbbrev | Chin. Sci. Bull |
PublicationYear | 2014 |
Publisher | Springer-Verlag Science China Press |
Publisher_xml | – name: Springer-Verlag – name: Science China Press |
References | Dietl, Ohno (CR60) 2001; 9 Sanmyo, Tomita, Kobayashi (CR103) 2003; 15 Venkatesh, Rao (CR100) 2010; 96 Zhang, Yao, Li (CR99) 2010; 97 Coey, Venkatesan, Fitzgerald (CR66) 2005; 4 Chu, Zhao, Zuo (CR106) 2011; 109 Zhang, Zhou, Hang (CR30) 2008; 310 Zhang, Zhang, Ye (CR101) 2012; 106 Look (CR2) 2005; 20 Pan, Yi, Shen (CR59) 2007; 99 Xu, Hu, Pelligra (CR53) 2009; 21 Kohan, Ceder, Morgan (CR76) 2000; 61 Tang, Wong, Yu (CR4) 1998; 72 Oka, Shibata, Kashiwaya (CR23) 2002; 509–513 Guo, Choi, Tabata (CR44) 2001; 40 Pan, liu, Lu (CR55) 2011; 50 Van de Walle (CR77) 2001; 308–310 Lin, Fu, Jia (CR94) 2001; 79 Piekarczyk, Gazda, Niemyski (CR13) 1972; 12 Matsumoto, Konemura, Shimaoka (CR14) 1985; 71 Wanklyn (CR22) 1970; 7 Strzhemechny, Mosbacker, Look (CR79) 2004; 84 Takeuchi, Yang, Chang (CR40) 2003; 94 Kaminski, Das Sarma (CR65) 2002; 88 Özgür, Alivov, Liu (CR1) 2005; 98 Laudise, Kolb, Caporaso (CR27) 1964; 47 Kim, Park, Ma (CR92) 1997; 81 Kang, Kim, Lee (CR88) 2010; 57 Zeng, Ye, Lu (CR46) 2008; 41 Chase, Osmer (CR21) 1967; 50 Asahara, Takamizu, Inokuchi (CR47) 2010; 49 König, Lin, MacDonald (CR63) 2000; 84 Lee, Kim, Jin (CR98) 2001; 64 Nielsen, Dearborn (CR19) 1960; 64 Friedrich, Sieber, Klimm (CR107) 2011; 98 Jang, Won, Hwang (CR56) 2006; 18 Hoffmann, Martin, Choi (CR50) 1995; 95 Ehrentraut, Sato, Kagamitani (CR24) 2006; 52 Kim, Du Ahn, Lee (CR87) 2006; 100 Zhang, Wei, Zunger (CR74) 1998; 83 Pei, Sun, Tan (CR96) 2001; 90 Look, Reynolds, Sizelove (CR17) 1998; 105 Chiou, Su, Chang (CR33) 2002; 41 Chadi (CR71) 1994; 72 Shiloh, Gutman (CR12) 1971; 11 Zhao, Dong, Wei (CR18) 2006; 27 Lin, Chen, Zhang (CR31) 2009; 9 Lany, Zunger (CR93) 2007; 98 Reynolds, Litton, Look (CR10) 2004; 95 Cox, Davis, Cottrell (CR78) 2001; 86 Kleber, Mlodoch (CR20) 1966; 1 Tang, Gu, Wu (CR102) 2010; 96 Laks, Van de Walle, Neumark (CR75) 1993; 63 Kumar, Lee (CR85) 2008; 254 Laudise, Ballman (CR26) 1960; 64 Tsukazaki, Ohtomo, Onuma (CR6) 2005; 4 Nakahara, Akasaka, Yuji (CR48) 2010; 97 Neumark (CR70) 1998; 62 Nause, Nemeth (CR11) 2005; 20 Janotti, Snow, Van de Walle (CR105) 2009; 95 Chen, Hung, Chang (CR34) 2009; 479 Bagnall, Chen, Zhu (CR5) 1997; 70 Liu, Chua, Hu (CR91) 2007; 102 Sans, Martinez-Criado, Pellicer-Porres (CR84) 2007; 91 CR7 Ohtomo, Kawasaki, Koida (CR39) 1998; 72 Lu, Zou, Xu (CR86) 2009; 26 Hwang, Kang, Lim (CR3) 2005; 86 Xiao, Liu, Mu (CR108) 2008; 92 Jiang, Xie, Zhang (CR54) 2010; 12 He, Zhang, Lu (CR51) 2011; 47 Matsumoto, Noda (CR16) 1990; 102 Dem’yanets, Lyutin (CR29) 2008; 310 Zhan, Wang, Lin (CR58) 2011; 47 Agarwal, Nause, Hill (CR9) 1998; 512 Aoki, Hatanaka, Look (CR43) 2000; 76 Sandvik, Mi, Shahedipour (CR35) 2001; 231 Chen, Zhang, Yao (CR109) 2011; 99 Sato, Katayama-Yoshida (CR64) 2002; 17 Minami, Sato, Nanto (CR73) 1995; 24 Wang, Kang, Chen (CR45) 2006; 80 Li, Lee, Yan (CR38) 2010; 22 Zheng, Huang, Ding (CR42) 2011; 98 Liu, Shi, Chen (CR67) 2008; 92 Lehmann (CR81) 1966; 9 Chen, Bagnall, Yao (CR32) 2000; 75 Sans, Sanchez-Royo, Segura (CR82) 2009; 79 Mohanta, Nakamura, Temmyo (CR104) 2011; 110 Kolb, Coriell, Laudise (CR28) 1967; 2 Endo, Kikuchi, Ashioi (CR41) 2008; 1 Wang, Huang, Pan (CR57) 2009; 44 Dietl (CR61) 2010; 9 Myong, Baik, Lee (CR83) 1997; 36 Schwartz, Gamelin (CR95) 2004; 16 Zhang, Shi, Chen (CR68) 2006; 137 Dem’yanets, Kostomarov, Kuz’mina (CR25) 2002; 47 Ohno, Bai, Hisatomi (CR52) 2012; 134 Dietl, Haury, d’Aubigné (CR62) 1997; 55 Matsumoto, Shimaoka (CR15) 1988; 86 Park, Zhang, Wei (CR97) 2002; 66 Zheng, Huang, Huang (CR36) 2012; 33 Ozbay, Biyikli, Kimukin (CR37) 2004; 10 Kato, Yamamuro, Ogawa (CR49) 2011; 4 Li, Kang, Lin (CR69) 2006; 89 Zhan, Zhang, Zheng (CR90) 2011; 11 Zhang, Wei, Zunger (CR72) 2000; 84 Lin, Ding, Lin (CR89) 2010; 13 Van de Walle (CR80) 2000; 85 Meyer, Alver, Hofmann (CR8) 2004; 241 RA Laudise (154_CR27) 1964; 47 ZB Zhan (154_CR58) 2011; 47 JA Sans (154_CR84) 2007; 91 JMD Coey (154_CR66) 2005; 4 E Ozbay (154_CR37) 2004; 10 DJ Chadi (154_CR71) 1994; 72 JA Sans (154_CR82) 2009; 79 DC Look (154_CR17) 1998; 105 ZK Tang (154_CR4) 1998; 72 X Guo (154_CR44) 2001; 40 H Kato (154_CR49) 2011; 4 TF Jiang (154_CR54) 2010; 12 SY Myong (154_CR83) 1997; 36 T Dietl (154_CR61) 2010; 9 A Kaminski (154_CR65) 2002; 88 A Tsukazaki (154_CR6) 2005; 4 BX Lin (154_CR94) 2001; 79 LQ Zhang (154_CR101) 2012; 106 LP Xu (154_CR53) 2009; 21 H Endo (154_CR41) 2008; 1 HW Zhang (154_CR68) 2006; 137 YH Wang (154_CR57) 2009; 44 DA Schwartz (154_CR95) 2004; 16 CG Walle Van de (154_CR80) 2000; 85 ED Kolb (154_CR28) 1967; 2 ZL Pei (154_CR96) 2001; 90 H Pan (154_CR59) 2007; 99 CH Park (154_CR97) 2002; 66 J König (154_CR63) 2000; 84 T Dietl (154_CR60) 2001; 9 F Friedrich (154_CR107) 2011; 98 SB Zhang (154_CR74) 1998; 83 AF Kohan (154_CR76) 2000; 61 JH Kim (154_CR87) 2006; 100 A Janotti (154_CR105) 2009; 95 XY Chen (154_CR109) 2011; 99 DB Laks (154_CR75) 1993; 63 GF Neumark (154_CR70) 1998; 62 QH Zheng (154_CR42) 2011; 98 KJ Chen (154_CR34) 2009; 479 YJ Zeng (154_CR46) 2008; 41 HF Liu (154_CR91) 2007; 102 P Sandvik (154_CR35) 2001; 231 KH Kim (154_CR92) 1997; 81 YZ Chiou (154_CR33) 2002; 41 ES Jang (154_CR56) 2006; 18 S Venkatesh (154_CR100) 2010; 96 DC Look (154_CR2) 2005; 20 K Matsumoto (154_CR14) 1985; 71 EC Lee (154_CR98) 2001; 64 D Ehrentraut (154_CR24) 2006; 52 JW Nielsen (154_CR19) 1960; 64 W Li (154_CR69) 2006; 89 XC Liu (154_CR67) 2008; 92 BY Zhang (154_CR99) 2010; 97 T Dietl (154_CR62) 1997; 55 ZL Lu (154_CR86) 2009; 26 H Wang (154_CR45) 2006; 80 T Ohno (154_CR52) 2012; 134 DC Reynolds (154_CR10) 2004; 95 I Takeuchi (154_CR40) 2003; 94 SB Zhang (154_CR72) 2000; 84 K Tang (154_CR102) 2010; 96 CL Zhang (154_CR30) 2008; 310 M Sanmyo (154_CR103) 2003; 15 ZY Xiao (154_CR108) 2008; 92 L Li (154_CR38) 2010; 22 YW Zhao (154_CR18) 2006; 27 WW Lin (154_CR31) 2009; 9 ZB Zhan (154_CR90) 2011; 11 M Kumar (154_CR85) 2008; 254 YF Chen (154_CR32) 2000; 75 LN Dem’yanets (154_CR29) 2008; 310 AB Chase (154_CR21) 1967; 50 T Minami (154_CR73) 1995; 24 SK Mohanta (154_CR104) 2011; 110 K Nakahara (154_CR48) 2010; 97 K Oka (154_CR23) 2002; 509–513 LN Dem’yanets (154_CR25) 2002; 47 Ü Özgür (154_CR1) 2005; 98 MR Hoffmann (154_CR50) 1995; 95 S Chu (154_CR106) 2011; 109 S He (154_CR51) 2011; 47 RA Laudise (154_CR26) 1960; 64 W Lehmann (154_CR81) 1966; 9 G Agarwal (154_CR9) 1998; 512 H Asahara (154_CR47) 2010; 49 M Shiloh (154_CR12) 1971; 11 K Matsumoto (154_CR15) 1988; 86 S Lany (154_CR93) 2007; 98 DK Hwang (154_CR3) 2005; 86 BK Meyer (154_CR8) 2004; 241 SFJ Cox (154_CR78) 2001; 86 W Piekarczyk (154_CR13) 1972; 12 QH Zheng (154_CR36) 2012; 33 T Aoki (154_CR43) 2000; 76 JH Kang (154_CR88) 2010; 57 DM Bagnall (154_CR5) 1997; 70 CG Walle Van de (154_CR77) 2001; 308–310 J Nause (154_CR11) 2005; 20 A Ohtomo (154_CR39) 1998; 72 W Kleber (154_CR20) 1966; 1 J Pan (154_CR55) 2011; 50 WW Lin (154_CR89) 2010; 13 154_CR7 K Sato (154_CR64) 2002; 17 BM Wanklyn (154_CR22) 1970; 7 YM Strzhemechny (154_CR79) 2004; 84 K Matsumoto (154_CR16) 1990; 102 |
References_xml | – volume: 4 start-page: 42 year: 2005 end-page: 46 ident: CR6 article-title: Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO publication-title: Nat Mater – volume: 9 start-page: 185 year: 2001 end-page: 193 ident: CR60 article-title: Ferromagnetism in III–V and II–VI semiconductor structures publication-title: Physica E – volume: 40 start-page: L177 year: 2001 end-page: L180 ident: CR44 article-title: Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode publication-title: Jpn J Appl Phys – volume: 62 start-page: 1800 year: 1998 end-page: 1803 ident: CR70 article-title: Achievement of well conducting wide band-gap semiconductors: role of solubility and of nonequilibrium impurity incorporation publication-title: Phys Rev Lett – volume: 84 start-page: 1232 year: 2000 end-page: 1235 ident: CR72 article-title: Microscopic origin of the phenomenological equilibrium “doping limit rule” in n-type III–V semiconductors publication-title: Phys Rev Lett – volume: 22 start-page: 5145 year: 2010 end-page: 5149 ident: CR38 article-title: Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In Ge O nanobelts publication-title: Adv Mater – volume: 80 start-page: 102107 year: 2006 ident: CR45 article-title: Band-edge electroluminescence from N -implanted bulk ZnO publication-title: Appl Phys Lett – volume: 47 start-page: 10797 year: 2011 end-page: 10799 ident: CR51 article-title: Enhancement of visible light photocatalysis by grafting ZnO nanoplatelets with exposed (0001) facets onto a hierarchical substrate publication-title: Chem Commun – volume: 63 start-page: 1375 year: 1993 end-page: 1377 ident: CR75 article-title: Acceptor doping in ZnSe versus ZnTe publication-title: Appl Phys Lett – volume: 241 start-page: 231 year: 2004 end-page: 260 ident: CR8 article-title: Bound exciton and donor–acceptor pair recombinations in ZnO publication-title: Phys Status Solidi B – volume: 44 start-page: 6783 year: 2009 end-page: 6785 ident: CR57 article-title: Ultraviolet-light-induced bactericidal mechanism on ZnO single crystals publication-title: Chem Commun – volume: 94 start-page: 7336 year: 2003 end-page: 7340 ident: CR40 article-title: Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in Mg Zn O composition spreads publication-title: J Appl Phys – volume: 84 start-page: 5628 year: 2000 end-page: 5631 ident: CR63 article-title: Theory of diluted magnetic semiconductor ferromagnetism publication-title: Phys Rev Lett – volume: 13 start-page: 3338 year: 2010 end-page: 3341 ident: CR89 article-title: The growth and investigation on Ga-doped ZnO single crystals with high thermal stability and high carrier mobility publication-title: Cryst Eng Comm – volume: 21 start-page: 2875 year: 2009 end-page: 2885 ident: CR53 article-title: ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity publication-title: Chem Mater – volume: 20 start-page: S55 year: 2005 end-page: S61 ident: CR2 article-title: Electrical and optical properties of p-type ZnO publication-title: Semicond Sci Technol – volume: 134 start-page: 8254 year: 2012 end-page: 8259 ident: CR52 article-title: Photocatalytic water splitting using modified GaN: ZnO solid solution under visible light: long-time operation and regeneration of activity publication-title: J Am Chem Soc – volume: 98 start-page: 131902 year: 2011 ident: CR107 article-title: Sb-doping of ZnO: phase segregation and its impact on p-type doping publication-title: Appl Phys Lett – volume: 254 start-page: 6446 year: 2008 end-page: 6449 ident: CR85 article-title: Improvement of electrical and optical properties of Ga and N co-doped p-type ZnO thin films with thermal treatment publication-title: Appl Surf Sci – volume: 96 start-page: 242101 year: 2010 ident: CR102 article-title: Tellurium assisted realization of p-type N-doped ZnO publication-title: Appl Phys Lett – volume: 76 start-page: 3257 year: 2000 end-page: 3258 ident: CR43 article-title: ZnO diode fabricated by excimer-laser doping publication-title: Appl Phys Lett – volume: 52 start-page: 280 year: 2006 end-page: 335 ident: CR24 article-title: Solvothermal growth of ZnO publication-title: Prog Cryst Growth Charact Mater – volume: 17 start-page: 367 year: 2002 end-page: 376 ident: CR64 article-title: First principles materials design for semiconductor spintronics publication-title: Semicond Sci Technol – volume: 72 start-page: 534 year: 1994 end-page: 537 ident: CR71 article-title: Doping in ZnSe, ZnTe, MgSe, and MgTe wide-band-gap semiconductors publication-title: Phys Rev Lett – volume: 89 start-page: 112507 year: 2006 ident: CR69 article-title: Paramagnetic anisotropy of Co-doped ZnO single crystal publication-title: Appl Phys Lett – volume: 512 start-page: 41 year: 1998 end-page: 46 ident: CR9 article-title: The scope of the ZnO growth publication-title: Mater Res Soc Symp Proc – volume: 9 start-page: 965 year: 2010 end-page: 974 ident: CR61 article-title: A 10-year perspective on dilute magnetic semiconductors and oxides publication-title: Nat Mater – volume: 9 start-page: 1107 year: 1966 end-page: 1110 ident: CR81 article-title: Edge emission of n-type conducting ZnO and CdS publication-title: Solid-State Electron – volume: 92 start-page: 052106 year: 2008 ident: CR108 article-title: Stability of p-type conductivity in nitrogen-doped ZnO thin film publication-title: Appl Phys Lett – volume: 18 start-page: 3309 year: 2006 end-page: 3312 ident: CR56 article-title: Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity publication-title: Adv Mater – volume: 88 start-page: 247202 year: 2002 ident: CR65 article-title: Microstructural and magnetic properties of ZnO: TM (TM = Co, Mn) diluted magnetic semiconducting nanoparticles publication-title: Phys Rev Lett – volume: 90 start-page: 3432 year: 2001 end-page: 3436 ident: CR96 article-title: Optical and electrical properties of direct-current magnetron sputtered ZnO:Al films publication-title: J Appl Phys – volume: 47 start-page: S86 year: 2002 end-page: S98 ident: CR25 article-title: Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions publication-title: Crystallogr Rep – volume: 105 start-page: 399 year: 1998 end-page: 401 ident: CR17 article-title: Electrical properties of bulk ZnO publication-title: Solid State Comm – volume: 79 start-page: 943 year: 2001 end-page: 945 ident: CR94 article-title: Green luminescent center in undoped zinc oxide films deposited on silicon substrates publication-title: Appl Phys Lett – volume: 99 start-page: 091908 year: 2011 ident: CR109 article-title: Effect of compressive stress on stability of N-doped p-type ZnO publication-title: Appl Phys Lett – volume: 79 start-page: 195105 year: 2009 ident: CR82 article-title: Chemical effects on the optical band-gap of heavily doped ZnO: III ( = Al, Ga, In): an investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure calculations publication-title: Phys Rev B – volume: 99 start-page: 127201 year: 2007 ident: CR59 article-title: Room-temperature ferromagnetism in carbon-doped ZnO publication-title: Phys Rev Lett – volume: 57 start-page: 1081 year: 2010 end-page: 1085 ident: CR88 article-title: Damp heat stability of ZnO: Ga thin films on glass substrate publication-title: J Korean Phys Soc – volume: 479 start-page: 674 year: 2009 end-page: 677 ident: CR34 article-title: Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films publication-title: J Alloys Compd – volume: 86 start-page: 2601 year: 2001 end-page: 2604 ident: CR78 article-title: Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide publication-title: Phys Rev Lett – volume: 95 start-page: 4802 year: 2004 end-page: 4805 ident: CR10 article-title: High-quality, melt-grown ZnO single crystals publication-title: J Appl Phys – volume: 97 start-page: 222101 year: 2010 ident: CR99 article-title: Investigation on the formation mechanism of p-type Li–N dual-doped ZnO publication-title: Appl Phys Lett – volume: 9 start-page: 4378 year: 2009 end-page: 4383 ident: CR31 article-title: Hydrothermal growth of ZnO single crystals with high carrier mobility publication-title: Cryst Growth Des – volume: 1 start-page: 051201 year: 2008 ident: CR41 article-title: High-sensitivity mid-ultraviolet Pt/Mg Zn O Schottky photodiode on a ZnO single Crystal substrate publication-title: Appl Phys Express – volume: 47 start-page: 9 year: 1964 end-page: 12 ident: CR27 article-title: Hydrothermal growth of large sound crystals of zinc oxide publication-title: J Am Ceram Soc – volume: 308–310 start-page: 899 year: 2001 end-page: 903 ident: CR77 article-title: Defect analysis and engineering in ZnO publication-title: Phys B – volume: 86 start-page: 222101 year: 2005 ident: CR3 article-title: P-ZnO/n-GaN heterostructure ZnO light-emitting diodes publication-title: Appl Phys Lett – volume: 49 start-page: 04DG14 year: 2010 ident: CR47 article-title: Light-emitting diode based on ZnO by plasma-enhanced metal–organic chemical vapor deposition employing microwave excited plasma publication-title: Jpn J Appl Phys – volume: 92 start-page: 042502 year: 2008 ident: CR67 article-title: Effect of donor localization on the magnetic properties of Zn–Co–O system publication-title: Appl Phys Lett – volume: 102 start-page: 083529 year: 2007 ident: CR91 article-title: Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering publication-title: J Appl Phys – volume: 509–513 start-page: 237 year: 2002 end-page: 239 ident: CR23 article-title: Crystal growth of ZnO publication-title: J Cryst Growth – volume: 98 start-page: 221112 year: 2011 ident: CR42 article-title: MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates publication-title: Appl Phys Lett – volume: 24 start-page: L781 year: 1995 end-page: L784 ident: CR73 article-title: Group III impurity doped zinc oxide thin films prepared by rf magnetron sputtering publication-title: Jpn J Appl Phys – volume: 83 start-page: 3192 year: 1998 end-page: 3196 ident: CR74 article-title: A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds publication-title: J Appl Phys – volume: 137 start-page: 272 year: 2006 end-page: 274 ident: CR68 article-title: Magnetism in Zn Mn O crystal prepared by hydrothermal method publication-title: Solid State Commu – volume: 91 start-page: 221904 year: 2007 ident: CR84 article-title: Thermal instability of electrically active centers in heavily Ga-doped ZnO thin films: X-ray absorption study of the Ga-site configuration publication-title: Appl Phys Lett – volume: 50 start-page: 325 year: 1967 end-page: 328 ident: CR21 article-title: Localized cooling in flux crystal growth publication-title: J Am Ceram Soc – volume: 26 start-page: 116102 year: 2009 ident: CR86 article-title: Structural and electrical properties of single crystalline a-doped ZnO thin films grown by molecular beam epitaxy publication-title: Chin Phys Lett – volume: 95 start-page: 172109 year: 2009 ident: CR105 article-title: A pathway to p-type wide-band-gap semiconductors publication-title: Appl Phys Lett – volume: 72 start-page: 2466 year: 1998 end-page: 2468 ident: CR39 article-title: Mg Zn O as a II–VI widegap semiconductor alloy publication-title: Appl Phys Lett – volume: 81 start-page: 7764 year: 1997 end-page: 7772 ident: CR92 article-title: Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering publication-title: J Appl Phys – volume: 86 start-page: 410 year: 1988 end-page: 414 ident: CR15 article-title: Crystal growth of ZnO by chemical transport publication-title: J Cryst Growth – volume: 41 start-page: 165104 year: 2008 ident: CR46 article-title: Plasma-free nitrogen doping and homojunction light-emitting diodes based on ZnO publication-title: J Phys D Appl Phys – volume: 231 start-page: 366 year: 2001 end-page: 370 ident: CR35 article-title: Al Ga N for solar-blind UV detectors publication-title: J Cryst Growth – volume: 50 start-page: 2133 year: 2011 end-page: 2137 ident: CR55 article-title: On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO crystals publication-title: Angew Chem Int Ed – volume: 85 start-page: 1012 year: 2000 end-page: 1015 ident: CR80 article-title: Hydrogen as a cause of doping in zinc oxide publication-title: Phys Rev Lett – volume: 15 start-page: 819 year: 2003 end-page: 821 ident: CR103 article-title: Preparation of p-type ZnO films by doping of Be–N bonds publication-title: Chem Mater – volume: 36 start-page: L1078 year: 1997 end-page: L1081 ident: CR83 article-title: Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl (6H O) as new doping material publication-title: Jpn J Appl Phys – volume: 98 start-page: 045501 year: 2007 ident: CR93 article-title: Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides publication-title: Phys Rev Lett – volume: 20 start-page: S45 year: 2005 end-page: S48 ident: CR11 article-title: Pressurized melt growth of ZnO boules publication-title: Semicond Sci Technol – volume: 310 start-page: 1819 year: 2008 end-page: 1822 ident: CR30 article-title: Hydrothermal growth and characterization of ZnO crystals publication-title: J Cryst Growth – volume: 110 start-page: 013524 year: 2011 ident: CR104 article-title: Nitrogen and copper doping in Mg Zn O films and their impact on p-type conductivity publication-title: J Appl Phys – volume: 72 start-page: 3270 year: 1998 end-page: 3272 ident: CR4 article-title: Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin film publication-title: Appl Phys Lett – volume: 97 start-page: 013501 year: 2010 ident: CR48 article-title: Nitrogen doped Mg Zn O/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates publication-title: Appl Phys Lett – volume: 55 start-page: R3347 year: 1997 end-page: R3350 ident: CR62 article-title: Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors publication-title: Phys Rev B – volume: 96 start-page: 232504 year: 2010 ident: CR100 article-title: Oxygen vacancy controlled tunable magnetic and electrical transport properties of (Li, Ni)-codoped ZnO thin films publication-title: Appl Phys Lett – volume: 64 start-page: 085120 year: 2001 ident: CR98 article-title: Compensation mechanism for N acceptors in ZnO publication-title: Phys Rev B – volume: 41 start-page: 3643 year: 2002 end-page: 3645 ident: CR33 article-title: Transparent tin electrodes in gan metal–semiconductor–metal ultraviolet photodetectors publication-title: Jpn J Appl Phys – volume: 33 start-page: 1033 year: 2012 end-page: 1035 ident: CR36 article-title: High-responsivity solar-blind photodetector based on Mg Zn O thin film publication-title: IEEE Electr Device L – volume: 95 start-page: 69 year: 1995 end-page: 96 ident: CR50 article-title: Environmental applications of semiconductor photocatalysis publication-title: Chem Rev – volume: 4 start-page: 091105 year: 2011 ident: CR49 article-title: Impact of mixture gas plasma of N and O as the N source on ZnO-based ultraviolet light-emitting diodes fabricated by molecular beam epitaxy publication-title: Appl Phys Express – volume: 12 start-page: 272 year: 1972 end-page: 276 ident: CR13 article-title: The growth of zinc oxide cryst als by chemical transport publication-title: J Cryst Growth – volume: 7 start-page: 107 year: 1970 end-page: 108 ident: CR22 article-title: The growth of ZnO crystals from phosphate and vanadate fluxes publication-title: J Cryst Growth – volume: 10 start-page: 742 year: 2004 end-page: 751 ident: CR37 article-title: High-performance solar-blind photodetectors based on Al Ga N heterostructures publication-title: IEEE J Sel Topics Quantum Electron – volume: 61 start-page: 15019 year: 2000 end-page: 15024 ident: CR76 article-title: First-principles study of native point defects in ZnO publication-title: Phys Rev B – volume: 66 start-page: 073202 year: 2002 ident: CR97 article-title: Origin of p-type doping difficulty in ZnO publication-title: Phys Rev B – volume: 64 start-page: 688 year: 1960 end-page: 691 ident: CR26 article-title: Hydrothermal synthesis of zinc oxide and zinc sulfide publication-title: J Phys Chem – volume: 84 start-page: 2545 year: 2004 end-page: 2547 ident: CR79 article-title: Remote hydrogen plasma doping of single crystal ZnO publication-title: Appl Phys Lett – volume: 70 start-page: 2230 year: 1997 end-page: 2232 ident: CR5 article-title: Optically pumped lasing of ZnO at room temperature publication-title: Appl Phys Lett – volume: 71 start-page: 99 year: 1985 end-page: 103 ident: CR14 article-title: Crystal growth of ZnO by vapor transport in a closed tube using Zn and ZnCl as transport agents publication-title: J Cryst Growth – volume: 27 start-page: 336 year: 2006 end-page: 339 ident: CR18 article-title: Defects and their influence on properties of bulk ZnO single crystal publication-title: Chin J Semi – volume: 100 start-page: 113515 year: 2006 ident: CR87 article-title: Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature publication-title: J Appl Phys – volume: 109 start-page: 123110 year: 2011 ident: CR106 article-title: Enhanced output power using MgZnO/ZnO/MgZnO double heterostructure in ZnO homojunction light emitting diode publication-title: J Appl Phys – volume: 310 start-page: 993 year: 2008 end-page: 999 ident: CR29 article-title: Status of hydrothermal growth of bulk ZnO: latest issues and advantages publication-title: J Cryst Growth – volume: 47 start-page: 4517 year: 2011 end-page: 4519 ident: CR58 article-title: Study of interface electric field affecting the photocatalysis of ZnO publication-title: Chem Commun – volume: 4 start-page: 173 year: 2005 end-page: 179 ident: CR66 article-title: Donor impurity band exchange in dilute ferromagnetic oxides publication-title: Nat Mater – volume: 11 start-page: 21 year: 2011 end-page: 25 ident: CR90 article-title: Strategy for preparing Al-doped ZnO Thin film with high mobility and high stability publication-title: Cryst Growth Des – volume: 64 start-page: 1762 year: 1960 end-page: 1763 ident: CR19 article-title: The growth of large single crystals of zinc oxide publication-title: J Phys Chem – volume: 75 start-page: 190 year: 2000 end-page: 198 ident: CR32 article-title: ZnO as a novel photonic material for the UV region publication-title: Mat Sci Eng B Solid – volume: 16 start-page: 2115 year: 2004 end-page: 2119 ident: CR95 article-title: Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor publication-title: Adv Mater – volume: 1 start-page: 249 year: 1966 end-page: 259 ident: CR20 article-title: Über die Synthese von Zinkit-Einkristallen publication-title: Kristall Techn – volume: 106 start-page: 191 year: 2012 end-page: 196 ident: CR101 article-title: The fabrication of Na doped p-type Zn Mg O films by pulsed laser deposition publication-title: Appl Phys A – volume: 102 start-page: 137 year: 1990 end-page: 140 ident: CR16 article-title: Crystal growth of ZnO by chemical transport using HgCl as a transport agent publication-title: J Cryst Growth – volume: 98 start-page: 041301 year: 2005 ident: CR1 article-title: A comprehensive review of ZnO materials and devices publication-title: J Appl Phys – volume: 12 start-page: 15476 year: 2010 end-page: 15481 ident: CR54 article-title: Photoinduced charge transfer in ZnO/Cu O heterostructure films studied by surface photovoltage technique publication-title: Phys Chem Chem Phys – ident: CR7 – volume: 11 start-page: 105 year: 1971 end-page: 184 ident: CR12 article-title: Growth of ZnO single crystals by chemical vapour transport publication-title: J Cryst Growth – volume: 2 start-page: 1099 year: 1967 end-page: 1106 ident: CR28 article-title: The hydrothermal growth of low carrier concentration ZnO at high water and hydrogen pressures publication-title: Mater Res Bull – volume: 44 start-page: 6783 year: 2009 ident: 154_CR57 publication-title: Chem Commun doi: 10.1039/b912137d – volume: 84 start-page: 5628 year: 2000 ident: 154_CR63 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.84.5628 – volume: 61 start-page: 15019 year: 2000 ident: 154_CR76 publication-title: Phys Rev B doi: 10.1103/PhysRevB.61.15019 – volume: 70 start-page: 2230 year: 1997 ident: 154_CR5 publication-title: Appl Phys Lett doi: 10.1063/1.118824 – volume: 9 start-page: 185 year: 2001 ident: 154_CR60 publication-title: Physica E doi: 10.1016/S1386-9477(00)00193-4 – volume: 98 start-page: 221112 year: 2011 ident: 154_CR42 publication-title: Appl Phys Lett doi: 10.1063/1.3596479 – volume: 98 start-page: 045501 year: 2007 ident: 154_CR93 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.98.045501 – volume: 90 start-page: 3432 year: 2001 ident: 154_CR96 publication-title: J Appl Phys doi: 10.1063/1.1398070 – volume: 479 start-page: 674 year: 2009 ident: 154_CR34 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2009.01.026 – volume: 57 start-page: 1081 year: 2010 ident: 154_CR88 publication-title: J Korean Phys Soc doi: 10.3938/jkps.57.1081 – volume: 92 start-page: 052106 year: 2008 ident: 154_CR108 publication-title: Appl Phys Lett doi: 10.1063/1.2838330 – volume: 106 start-page: 191 year: 2012 ident: 154_CR101 publication-title: Appl Phys A doi: 10.1007/s00339-011-6547-1 – volume: 47 start-page: 9 year: 1964 ident: 154_CR27 publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1964.tb14632.x – volume: 24 start-page: L781 year: 1995 ident: 154_CR73 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.24.L781 – volume: 9 start-page: 1107 year: 1966 ident: 154_CR81 publication-title: Solid-State Electron doi: 10.1016/0038-1101(66)90134-1 – volume: 75 start-page: 190 year: 2000 ident: 154_CR32 publication-title: Mat Sci Eng B Solid doi: 10.1016/S0921-5107(00)00372-X – volume: 310 start-page: 1819 year: 2008 ident: 154_CR30 publication-title: J Cryst Growth doi: 10.1016/j.jcrysgro.2007.11.215 – volume: 84 start-page: 2545 year: 2004 ident: 154_CR79 publication-title: Appl Phys Lett doi: 10.1063/1.1695440 – volume: 40 start-page: L177 year: 2001 ident: 154_CR44 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.40.L177 – volume: 86 start-page: 2601 year: 2001 ident: 154_CR78 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.2601 – volume: 13 start-page: 3338 year: 2010 ident: 154_CR89 publication-title: Cryst Eng Comm doi: 10.1039/c1ce05122a – volume: 27 start-page: 336 year: 2006 ident: 154_CR18 publication-title: Chin J Semi – volume: 105 start-page: 399 year: 1998 ident: 154_CR17 publication-title: Solid State Comm doi: 10.1016/S0038-1098(97)10145-4 – volume: 16 start-page: 2115 year: 2004 ident: 154_CR95 publication-title: Adv Mater doi: 10.1002/adma.200400456 – volume: 76 start-page: 3257 year: 2000 ident: 154_CR43 publication-title: Appl Phys Lett doi: 10.1063/1.126599 – volume: 94 start-page: 7336 year: 2003 ident: 154_CR40 publication-title: J Appl Phys doi: 10.1063/1.1623923 – volume: 52 start-page: 280 year: 2006 ident: 154_CR24 publication-title: Prog Cryst Growth Charact Mater doi: 10.1016/j.pcrysgrow.2006.09.002 – volume: 102 start-page: 083529 year: 2007 ident: 154_CR91 publication-title: J Appl Phys doi: 10.1063/1.2798868 – volume: 62 start-page: 1800 year: 1998 ident: 154_CR70 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.62.1800 – volume: 71 start-page: 99 year: 1985 ident: 154_CR14 publication-title: J Cryst Growth doi: 10.1016/0022-0248(85)90048-X – volume: 102 start-page: 137 year: 1990 ident: 154_CR16 publication-title: J Cryst Growth doi: 10.1016/0022-0248(90)90894-Q – volume: 12 start-page: 15476 year: 2010 ident: 154_CR54 publication-title: Phys Chem Chem Phys doi: 10.1039/c0cp01228a – volume: 1 start-page: 249 year: 1966 ident: 154_CR20 publication-title: Kristall Techn doi: 10.1002/crat.19660010209 – volume: 86 start-page: 410 year: 1988 ident: 154_CR15 publication-title: J Cryst Growth doi: 10.1016/0022-0248(90)90752-7 – volume: 64 start-page: 1762 year: 1960 ident: 154_CR19 publication-title: J Phys Chem doi: 10.1021/j100840a503 – volume: 10 start-page: 742 year: 2004 ident: 154_CR37 publication-title: IEEE J Sel Topics Quantum Electron doi: 10.1109/JSTQE.2004.831681 – volume: 84 start-page: 1232 year: 2000 ident: 154_CR72 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.84.1232 – volume: 47 start-page: S86 year: 2002 ident: 154_CR25 publication-title: Crystallogr Rep doi: 10.1134/1.1529962 – volume: 64 start-page: 688 year: 1960 ident: 154_CR26 publication-title: J Phys Chem doi: 10.1021/j100834a511 – volume: 509–513 start-page: 237 year: 2002 ident: 154_CR23 publication-title: J Cryst Growth – volume: 9 start-page: 4378 year: 2009 ident: 154_CR31 publication-title: Cryst Growth Des doi: 10.1021/cg900339u – volume: 512 start-page: 41 year: 1998 ident: 154_CR9 publication-title: Mater Res Soc Symp Proc doi: 10.1557/PROC-512-41 – ident: 154_CR7 – volume: 81 start-page: 7764 year: 1997 ident: 154_CR92 publication-title: J Appl Phys doi: 10.1063/1.365556 – volume: 96 start-page: 232504 year: 2010 ident: 154_CR100 publication-title: Appl Phys Lett doi: 10.1063/1.3449122 – volume: 18 start-page: 3309 year: 2006 ident: 154_CR56 publication-title: Adv Mater doi: 10.1002/adma.200601455 – volume: 98 start-page: 131902 year: 2011 ident: 154_CR107 publication-title: Appl Phys Lett doi: 10.1063/1.3570691 – volume: 55 start-page: R3347 year: 1997 ident: 154_CR62 publication-title: Phys Rev B doi: 10.1103/PhysRevB.55.R3347 – volume: 1 start-page: 051201 year: 2008 ident: 154_CR41 publication-title: Appl Phys Express doi: 10.1143/APEX.1.051201 – volume: 241 start-page: 231 year: 2004 ident: 154_CR8 publication-title: Phys Status Solidi B doi: 10.1002/pssb.200301962 – volume: 96 start-page: 242101 year: 2010 ident: 154_CR102 publication-title: Appl Phys Lett doi: 10.1063/1.3453658 – volume: 85 start-page: 1012 year: 2000 ident: 154_CR80 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.85.1012 – volume: 47 start-page: 4517 year: 2011 ident: 154_CR58 publication-title: Chem Commun doi: 10.1039/c1cc10888c – volume: 64 start-page: 085120 year: 2001 ident: 154_CR98 publication-title: Phys Rev B doi: 10.1103/PhysRevB.64.085120 – volume: 22 start-page: 5145 year: 2010 ident: 154_CR38 publication-title: Adv Mater doi: 10.1002/adma.201002608 – volume: 20 start-page: S55 year: 2005 ident: 154_CR2 publication-title: Semicond Sci Technol doi: 10.1088/0268-1242/20/4/007 – volume: 97 start-page: 222101 year: 2010 ident: 154_CR99 publication-title: Appl Phys Lett doi: 10.1063/1.3518059 – volume: 80 start-page: 102107 year: 2006 ident: 154_CR45 publication-title: Appl Phys Lett doi: 10.1063/1.2186508 – volume: 134 start-page: 8254 year: 2012 ident: 154_CR52 publication-title: J Am Chem Soc doi: 10.1021/ja302479f – volume: 21 start-page: 2875 year: 2009 ident: 154_CR53 publication-title: Chem Mater doi: 10.1021/cm900608d – volume: 109 start-page: 123110 year: 2011 ident: 154_CR106 publication-title: J Appl Phys doi: 10.1063/1.3598136 – volume: 7 start-page: 107 year: 1970 ident: 154_CR22 publication-title: J Cryst Growth doi: 10.1016/0022-0248(70)90123-5 – volume: 72 start-page: 2466 year: 1998 ident: 154_CR39 publication-title: Appl Phys Lett doi: 10.1063/1.121384 – volume: 231 start-page: 366 year: 2001 ident: 154_CR35 publication-title: J Cryst Growth doi: 10.1016/S0022-0248(01)01467-1 – volume: 4 start-page: 091105 year: 2011 ident: 154_CR49 publication-title: Appl Phys Express doi: 10.1143/APEX.4.091105 – volume: 63 start-page: 1375 year: 1993 ident: 154_CR75 publication-title: Appl Phys Lett doi: 10.1063/1.109681 – volume: 72 start-page: 534 year: 1994 ident: 154_CR71 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.72.534 – volume: 2 start-page: 1099 year: 1967 ident: 154_CR28 publication-title: Mater Res Bull doi: 10.1016/0025-5408(67)90138-9 – volume: 83 start-page: 3192 year: 1998 ident: 154_CR74 publication-title: J Appl Phys doi: 10.1063/1.367120 – volume: 36 start-page: L1078 year: 1997 ident: 154_CR83 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.36.L1078 – volume: 95 start-page: 4802 year: 2004 ident: 154_CR10 publication-title: J Appl Phys doi: 10.1063/1.1691186 – volume: 91 start-page: 221904 year: 2007 ident: 154_CR84 publication-title: Appl Phys Lett doi: 10.1063/1.2802554 – volume: 26 start-page: 116102 year: 2009 ident: 154_CR86 publication-title: Chin Phys Lett doi: 10.1088/0256-307X/26/11/116102 – volume: 11 start-page: 21 year: 2011 ident: 154_CR90 publication-title: Cryst Growth Des doi: 10.1021/cg101216z – volume: 4 start-page: 42 year: 2005 ident: 154_CR6 publication-title: Nat Mater doi: 10.1038/nmat1284 – volume: 72 start-page: 3270 year: 1998 ident: 154_CR4 publication-title: Appl Phys Lett doi: 10.1063/1.121620 – volume: 99 start-page: 127201 year: 2007 ident: 154_CR59 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.99.127201 – volume: 11 start-page: 105 year: 1971 ident: 154_CR12 publication-title: J Cryst Growth doi: 10.1016/0022-0248(71)90172-2 – volume: 50 start-page: 2133 year: 2011 ident: 154_CR55 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201006057 – volume: 310 start-page: 993 year: 2008 ident: 154_CR29 publication-title: J Cryst Growth doi: 10.1016/j.jcrysgro.2007.11.145 – volume: 66 start-page: 073202 year: 2002 ident: 154_CR97 publication-title: Phys Rev B doi: 10.1103/PhysRevB.66.073202 – volume: 4 start-page: 173 year: 2005 ident: 154_CR66 publication-title: Nat Mater doi: 10.1038/nmat1310 – volume: 79 start-page: 195105 year: 2009 ident: 154_CR82 publication-title: Phys Rev B doi: 10.1103/PhysRevB.79.195105 – volume: 92 start-page: 042502 year: 2008 ident: 154_CR67 publication-title: Appl Phys Lett doi: 10.1063/1.2838292 – volume: 95 start-page: 172109 year: 2009 ident: 154_CR105 publication-title: Appl Phys Lett doi: 10.1063/1.3247890 – volume: 95 start-page: 69 year: 1995 ident: 154_CR50 publication-title: Chem Rev doi: 10.1021/cr00033a004 – volume: 110 start-page: 013524 year: 2011 ident: 154_CR104 publication-title: J Appl Phys doi: 10.1063/1.3603038 – volume: 12 start-page: 272 year: 1972 ident: 154_CR13 publication-title: J Cryst Growth doi: 10.1016/0022-0248(72)90296-5 – volume: 33 start-page: 1033 year: 2012 ident: 154_CR36 publication-title: IEEE Electr Device L doi: 10.1109/LED.2012.2196675 – volume: 41 start-page: 165104 year: 2008 ident: 154_CR46 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/41/16/165104 – volume: 49 start-page: 04DG14 year: 2010 ident: 154_CR47 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.49.04DG14 – volume: 86 start-page: 222101 year: 2005 ident: 154_CR3 publication-title: Appl Phys Lett doi: 10.1063/1.1940736 – volume: 15 start-page: 819 year: 2003 ident: 154_CR103 publication-title: Chem Mater doi: 10.1021/cm025747y – volume: 20 start-page: S45 year: 2005 ident: 154_CR11 publication-title: Semicond Sci Technol doi: 10.1088/0268-1242/20/4/005 – volume: 17 start-page: 367 year: 2002 ident: 154_CR64 publication-title: Semicond Sci Technol doi: 10.1088/0268-1242/17/4/309 – volume: 308–310 start-page: 899 year: 2001 ident: 154_CR77 publication-title: Phys B doi: 10.1016/S0921-4526(01)00830-4 – volume: 89 start-page: 112507 year: 2006 ident: 154_CR69 publication-title: Appl Phys Lett doi: 10.1063/1.2352726 – volume: 98 start-page: 041301 year: 2005 ident: 154_CR1 publication-title: J Appl Phys doi: 10.1063/1.1992666 – volume: 50 start-page: 325 year: 1967 ident: 154_CR21 publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1967.tb15119.x – volume: 99 start-page: 091908 year: 2011 ident: 154_CR109 publication-title: Appl Phys Lett doi: 10.1063/1.3631677 – volume: 47 start-page: 10797 year: 2011 ident: 154_CR51 publication-title: Chem Commun doi: 10.1039/c1cc14360c – volume: 41 start-page: 3643 year: 2002 ident: 154_CR33 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.41.3643 – volume: 254 start-page: 6446 year: 2008 ident: 154_CR85 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2008.04.004 – volume: 100 start-page: 113515 year: 2006 ident: 154_CR87 publication-title: J Appl Phys doi: 10.1063/1.2369544 – volume: 97 start-page: 013501 year: 2010 ident: 154_CR48 publication-title: Appl Phys Lett doi: 10.1063/1.3459139 – volume: 79 start-page: 943 year: 2001 ident: 154_CR94 publication-title: Appl Phys Lett doi: 10.1063/1.1394173 – volume: 137 start-page: 272 year: 2006 ident: 154_CR68 publication-title: Solid State Commu doi: 10.1016/j.ssc.2005.11.030 – volume: 9 start-page: 965 year: 2010 ident: 154_CR61 publication-title: Nat Mater doi: 10.1038/nmat2898 – volume: 88 start-page: 247202 year: 2002 ident: 154_CR65 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.88.247202 |
SSID | ssj0013172 |
Score | 1.789887 |
SecondaryResourceType | review_article |
Snippet | Zinc oxide, a wide band-gap semiconductor, has shown extensive potential applications in high-efficiency semiconductor photoelectronic devices, semiconductor... |
SourceID | proquest crossref springer fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1235 |
SubjectTerms | Chemistry/Food Science crystals Devices Dilution Earth Sciences Engineering Humanities and Social Sciences Integrity Life Sciences Magnetic semiconductors multidisciplinary Photocatalysis Physics Review Science Science (multidisciplinary) Semiconductors Single crystals thermal stability Zinc oxide |
Title | Research progress in ZnO single-crystal: growth, scientific understanding, and device applications |
URI | https://link.springer.com/article/10.1007/s11434-014-0154-4 https://www.proquest.com/docview/1541433783 https://www.proquest.com/docview/1663572194 https://www.proquest.com/docview/1709793487 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_0pGAfRE_Fs1pW8EGrC8lmk036JqIeikppD6Qvy36qcOSKuXvwv-9sLumdpT3wIZuXSUgyszO_yXwBHHomELOZlKLuyyni24gWEXPUa59apROh6vFtt3dZf8CvH9KHpo67arPd25BkralnxW5o2kPGRDhSTvkyrIRuYkGUeXQ1Cx3EYhriRD85w-3chjL_dYs3xmjZq9EbnPlXaLS2OJfrsNZARXI25e0GLLmyCx_nGgh24UOdwGmqLmw0m7QiR00n6eNN0G1eHanTsFCpkeeS_CzvSfhDMHTUvLwiOhx-JY_ojY-fTsm0PjKkD5HJfNnLKcEzsS7oFTIf9N6CweXFj_M-bYYqUMPjeEyZKXLBkA2R4lYbhTZaI5us11o4K3hmMp1YobjJtdCF88YhSPAuswiUWKSTbeiUo9LtAIkzBDfokKFJy7lNrLLMo0PJfWpiIbTrQdR-XWmajuNh8MVQznolB4ZIZIgMDJG8B1_-XPJr2m5jEfEOskyqR1SHcvCdBWcxtCtEp7sHBy0fJe6XEARRpRtNKhmHuedJIhbSBBiGb1LwBTQiKlC3ob_Xg5NWUGSjAKr_P_Tuu6g_wSqrxTVI7B50xi8Tt48oaKw_11KP6823HNcBO_sNxY_8yA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4BVQUcqpKCEiiwlXqAlpX8WHtjbggBgUJ6IJFQL6t9AlLkoDg58O-ZdewmoDYSB8uXtWV7dma-z_MC-O4ijphNJxRtX5sivg1oFkSWOuUSI1XMZTm-7aabdvrs6i65q-q4izrbvQ5JlpZ6VuyGrt1nTPgjYZQtwwcW8tQzLhZczEIHIZ-GOJEnp6jOdSjzX7d45YyWnRy-wplvQqOlxzn_DJ8qqEhOprLdgCWbN2B9roFgAz6WCZy6aMBGpaQFOag6SR9-AVXn1ZEyDQuNGnnMyZ_8N_F_CAaW6tEzosPBMblHNj5-OCLT-kifPkQm82UvRwTPxFhvV8h80HsT-udnvdMOrYYqUM3CcEwjnbV5hGIIJDNKS_TRCsVknFLcGs5SnarYcMl0W3GVWactggRnU4NAKQpUvAUr-TC3TSBhiuAGCRm6tDYzsZEmckgomUt0yLmyLQjqryt01XHcD74YiFmvZC8QgQIRXiCCteDH30uepu02Fi1uosiEvEdzKPq3kSeLvl0hku4WfKvlKFBffBBE5nY4KUTo557HMV-4xsMwfJOMLVjDgwxtG_K9FvysN4qoDEDx_4feftfqfVjt9G6uxfVl99cOrEXl1vW79yusjEcTu4uIaKz2Sg14AcwC_c4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD5US4s-SN22uF5H6EMvDiaTSWbjm9gualtbaBekL8NcVViyYrIP_nvP5NJdS7vQh5CXk5Dk3L6TcwN445lAzGZSirZvQBHfRjSPmKNe-9QqnQhVr2_7epGdjvj5ZXrZ7jktu2r3LiXZ9DSEKU1FdXhr_eGs8Q3dfKieCEfKKV-Cpzw0A6NAj9jxLI0QiybdiTFzhqrdpTX_dotHjmnJq8kjzPlHmrT2PsMXsNbCRnLc8HkdnriiB6tzwwR78Kwu5jRlD9ZbhS3J23aq9LuXoLsaO1KXZKGBIzcF-VV8I-FvwdhRc3ePSHF8RK4wMq-uD0jTKxlKich0vgXmgOCZWBdsDJlPgL-C0fDTz5NT2i5YoIbHcUWZyQeCIUsixa02Cv21RpZZr7VwVvDMZDqxQnEz0ELnzhuHgMG7zCJoYpFOXsNyMSncBpA4Q6CDwRm6twG3iVWWeQwuuU9NLIR2fYi6rytNO308LMEYy9nc5MAQiQyRgSGS9-H970tum9Ebi4g3kGVSXaFplKMfLASOYXQhBuB92O_4KFF3QkJEFW4yLWUcdqAniVhIEyAZvknOF9CIKEc7h7FfHz50giJbY1D--6E3_4t6D55__ziUX84uPm_BCqslNwjvNixXd1O3g-Co0ru1AjwAsukCSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+progress+in+ZnO+single-crystal%3A+growth%2C+scientific+understanding%2C+and+device+applications&rft.jtitle=Chinese+science+bulletin&rft.au=Huang%2C+Feng&rft.au=Lin%2C+Zhang&rft.au=Lin%2C+Wenwen&rft.au=Zhang%2C+Jiye&rft.date=2014-04-01&rft.pub=Springer-Verlag&rft.issn=1001-6538&rft.volume=59&rft.issue=12&rft.spage=1235&rft.epage=1250&rft_id=info:doi/10.1007%2Fs11434-014-0154-4&rft.externalDocID=US201400143383 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-6538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-6538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-6538&client=summon |