Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization

Soil fauna consumes substantial amounts of litter and can even consume the entire annual litterfall in some ecosystems. The assimilation efficiency of fauna may reach 50% but is usually much smaller. Soil fauna may affect soil organic matter (SOM) dynamics not only by assimilating litter but also by...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 332; pp. 161 - 172
Main Author Frouz, Jan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil fauna consumes substantial amounts of litter and can even consume the entire annual litterfall in some ecosystems. The assimilation efficiency of fauna may reach 50% but is usually much smaller. Soil fauna may affect soil organic matter (SOM) dynamics not only by assimilating litter but also by modifying the soil environment at many spatiotemporal scales. Litter processing by fauna usually results in a short-term increase in microbial activity in feces; this activity than decreases such that feces over the long term may decompose more slowly than the original litter. During passage through the guts of litter-feeding fauna, litter modifications include fragmentation, consumption of associated microorganisms, pH and redox changes, removal of easily decomposed polysaccharides, increase in the proportion of lignin, and decrease in soluble polyphenols and carbon:nitrogen (C:N) ratios. The coating of litter with clay during passage through earthworms reduces microbial access to the litter as well as conditions for microbial activity by reducing the diffusion of nutrients and oxygen. At a larger scale, soil fauna affects leaching and the release of particulate organic matter (POM), which in turn affect microbial activity in soil. Fauna also affects the distribution of organic matter in the soil profile and determine whether litter decomposes on the soil surface or as POM bound to soil particles, which substantially affects the microbial community and the rate of decomposition. Fauna affects the amount of organic matter entering different SOM pools, and this effect depends on litter quality and the degree of soil C saturation. At an even larger scale, fauna can change the soil profile, soil properties, and the plant community, which may in turn affect microbial activity and the decomposition rate. The effect of soil fauna on litter decomposition and soil C storage can be positive or negative. Faunal effects tend to be greatest in ecosystems under transition, e.g. ecosystem developing after some disturbance during primary or secondary succession. •Soil fauna consume substantial amounts of litter•Fauna affect the amount of organic matter entering different SOM pools•The effect of soil fauna on litter decomposition and soil C storage can be positive or negative.•Faunal effects tend to be greatest in ecosystems under transition.
AbstractList Soil fauna consumes substantial amounts of litter and can even consume the entire annual litterfall in some ecosystems. The assimilation efficiency of fauna may reach 50% but is usually much smaller. Soil fauna may affect soil organic matter (SOM) dynamics not only by assimilating litter but also by modifying the soil environment at many spatiotemporal scales. Litter processing by fauna usually results in a short-term increase in microbial activity in feces; this activity than decreases such that feces over the long term may decompose more slowly than the original litter. During passage through the guts of litter-feeding fauna, litter modifications include fragmentation, consumption of associated microorganisms, pH and redox changes, removal of easily decomposed polysaccharides, increase in the proportion of lignin, and decrease in soluble polyphenols and carbon:nitrogen (C:N) ratios. The coating of litter with clay during passage through earthworms reduces microbial access to the litter as well as conditions for microbial activity by reducing the diffusion of nutrients and oxygen. At a larger scale, soil fauna affects leaching and the release of particulate organic matter (POM), which in turn affect microbial activity in soil. Fauna also affects the distribution of organic matter in the soil profile and determine whether litter decomposes on the soil surface or as POM bound to soil particles, which substantially affects the microbial community and the rate of decomposition. Fauna affects the amount of organic matter entering different SOM pools, and this effect depends on litter quality and the degree of soil C saturation. At an even larger scale, fauna can change the soil profile, soil properties, and the plant community, which may in turn affect microbial activity and the decomposition rate. The effect of soil fauna on litter decomposition and soil C storage can be positive or negative. Faunal effects tend to be greatest in ecosystems under transition, e.g. ecosystem developing after some disturbance during primary or secondary succession. •Soil fauna consume substantial amounts of litter•Fauna affect the amount of organic matter entering different SOM pools•The effect of soil fauna on litter decomposition and soil C storage can be positive or negative.•Faunal effects tend to be greatest in ecosystems under transition.
Soil fauna consumes substantial amounts of litter and can even consume the entire annual litterfall in some ecosystems. The assimilation efficiency of fauna may reach 50% but is usually much smaller. Soil fauna may affect soil organic matter (SOM) dynamics not only by assimilating litter but also by modifying the soil environment at many spatiotemporal scales. Litter processing by fauna usually results in a short-term increase in microbial activity in feces; this activity than decreases such that feces over the long term may decompose more slowly than the original litter. During passage through the guts of litter-feeding fauna, litter modifications include fragmentation, consumption of associated microorganisms, pH and redox changes, removal of easily decomposed polysaccharides, increase in the proportion of lignin, and decrease in soluble polyphenols and carbon:nitrogen (C:N) ratios. The coating of litter with clay during passage through earthworms reduces microbial access to the litter as well as conditions for microbial activity by reducing the diffusion of nutrients and oxygen. At a larger scale, soil fauna affects leaching and the release of particulate organic matter (POM), which in turn affect microbial activity in soil. Fauna also affects the distribution of organic matter in the soil profile and determine whether litter decomposes on the soil surface or as POM bound to soil particles, which substantially affects the microbial community and the rate of decomposition. Fauna affects the amount of organic matter entering different SOM pools, and this effect depends on litter quality and the degree of soil C saturation. At an even larger scale, fauna can change the soil profile, soil properties, and the plant community, which may in turn affect microbial activity and the decomposition rate. The effect of soil fauna on litter decomposition and soil C storage can be positive or negative. Faunal effects tend to be greatest in ecosystems under transition, e.g. ecosystem developing after some disturbance during primary or secondary succession.
Author Frouz, Jan
Author_xml – sequence: 1
  givenname: Jan
  surname: Frouz
  fullname: Frouz, Jan
  email: frouz@natur.cuni.cz
  organization: Institute of Soil Biology & SoWa RI Biology Centre, Czech Academy of Sciences, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic
BookMark eNqFkU1LAzEQhoNUsK3-Bdmjl10n2W52FzwopX5AwYueQ5pMSsrupiapoL_etNWLl56GDM8zzLyZkNHgBiTkmkJBgfLbTbFGp9H3smBA6wKaAsr2jIxpU7Ocs6odkTEkMq-B0wsyCWGTnjUwGJPVwhhUMWTOZMHZLuul8i7P5KCzHoMzcjfIzA1ZZ2NEn2lUrt-6YKNNzT11sJxfy8GqZB-oEOXKdvZb7qlLcm5kF_Dqt07J--Pibf6cL1-fXuYPy1zNKI0547DSSA3VJW0Y12BWDWczZC0amaouKz3jEpgqOW05QgWyrUswJZVV09TllNwc5269-9hhiKK3QWHXyQHdLggGAFVFaVUm9O6IpltD8GiEsvGwbPTSdoKC2EcrNuIvWrGPVkAjUrRJ5__0rbe99F-nxfujiCmHT4teBGVxUKitT78gtLOnRvwA96mapA
CitedBy_id crossref_primary_10_1088_1755_1315_1421_1_012017
crossref_primary_10_1111_aab_12932
crossref_primary_10_5194_bg_20_1979_2023
crossref_primary_10_1007_s00468_020_02025_3
crossref_primary_10_1371_journal_pone_0247793
crossref_primary_10_1016_j_apsoil_2021_104309
crossref_primary_10_1002_fee_2724
crossref_primary_10_1016_j_apsoil_2020_103611
crossref_primary_10_3389_fenvs_2021_582409
crossref_primary_10_1016_j_gecco_2024_e02979
crossref_primary_10_1016_j_scitotenv_2022_157820
crossref_primary_10_1016_j_envres_2024_118518
crossref_primary_10_1111_1365_2435_14733
crossref_primary_10_1002_ps_7264
crossref_primary_10_1016_j_gecco_2020_e01413
crossref_primary_10_1016_j_ufug_2024_128628
crossref_primary_10_1016_j_orggeochem_2024_104877
crossref_primary_10_1038_s42003_020_01392_4
crossref_primary_10_1007_s41742_024_00610_9
crossref_primary_10_1016_j_scitotenv_2021_147982
crossref_primary_10_1016_j_jenvman_2021_113341
crossref_primary_10_1016_j_scitotenv_2023_164978
crossref_primary_10_1002_jpln_202300055
crossref_primary_10_1111_btp_12682
crossref_primary_10_1016_j_ecoleng_2021_106443
crossref_primary_10_1016_j_geoderma_2020_114620
crossref_primary_10_1016_j_catena_2023_107384
crossref_primary_10_3390_insects10120414
crossref_primary_10_1007_s11104_023_05902_1
crossref_primary_10_1111_ejss_13556
crossref_primary_10_7717_peerj_12747
crossref_primary_10_1016_j_foreco_2024_121741
crossref_primary_10_1016_j_soilbio_2023_109191
crossref_primary_10_1134_S1064229319110103
crossref_primary_10_1371_journal_pone_0289859
crossref_primary_10_1016_j_agee_2023_108827
crossref_primary_10_1002_ecs2_3638
crossref_primary_10_1016_j_apsoil_2024_105463
crossref_primary_10_1016_j_soilbio_2022_108918
crossref_primary_10_3832_ifor3583_014
crossref_primary_10_1016_j_apsoil_2024_105461
crossref_primary_10_1016_j_sjbs_2021_02_070
crossref_primary_10_1007_s11104_024_06683_x
crossref_primary_10_1016_j_apsoil_2021_103919
crossref_primary_10_1016_j_ejsobi_2023_103493
crossref_primary_10_1016_j_geoderma_2020_114393
crossref_primary_10_7554_eLife_93656_3
crossref_primary_10_1007_s42729_024_02138_5
crossref_primary_10_1016_j_geoderma_2022_115849
crossref_primary_10_7554_eLife_93656
crossref_primary_10_1016_j_pedobi_2020_150645
crossref_primary_10_1016_j_soilbio_2023_108990
crossref_primary_10_1016_j_apsoil_2020_103870
crossref_primary_10_1016_j_soilbio_2023_109289
crossref_primary_10_3389_fmicb_2024_1353629
crossref_primary_10_1016_j_geoderma_2022_116019
crossref_primary_10_3390_f13101596
crossref_primary_10_3390_su14105934
crossref_primary_10_1016_j_ecolind_2024_112640
crossref_primary_10_1186_s13717_023_00459_4
crossref_primary_10_1016_j_soilbio_2020_107730
crossref_primary_10_1016_j_soilbio_2020_107972
crossref_primary_10_1007_s11104_023_05892_0
crossref_primary_10_1016_j_scitotenv_2022_155163
crossref_primary_10_3389_fevo_2023_1305115
crossref_primary_10_3390_f14061112
crossref_primary_10_3390_insects12080726
crossref_primary_10_1016_j_geoderma_2020_114720
crossref_primary_10_3389_fmicb_2021_660603
crossref_primary_10_3390_plants13010056
crossref_primary_10_1016_j_scitotenv_2020_144633
crossref_primary_10_3389_fmicb_2020_556118
crossref_primary_10_1007_s00374_022_01639_8
crossref_primary_10_1007_s10457_023_00869_5
crossref_primary_10_3390_agronomy12020312
crossref_primary_10_1093_ee_nvz035
crossref_primary_10_1016_j_apsoil_2024_105846
crossref_primary_10_1016_j_fecs_2025_100294
crossref_primary_10_1002_tqem_22314
crossref_primary_10_1007_s10530_020_02315_4
crossref_primary_10_1002_ldr_5431
crossref_primary_10_1186_s12302_020_00400_y
crossref_primary_10_3390_agronomy12020263
crossref_primary_10_1016_j_soilbio_2024_109543
crossref_primary_10_3389_fpls_2021_735495
crossref_primary_10_3390_f15101827
crossref_primary_10_1007_s10021_020_00512_9
crossref_primary_10_1007_s11273_024_09992_1
crossref_primary_10_1016_j_apsoil_2024_105297
crossref_primary_10_1007_s11104_025_07221_z
crossref_primary_10_1016_j_geoderma_2020_114262
crossref_primary_10_1016_j_envc_2023_100803
crossref_primary_10_1016_j_soilbio_2020_107998
crossref_primary_10_1016_j_soilbio_2021_108340
crossref_primary_10_1016_j_foreco_2021_119522
crossref_primary_10_1016_j_foreco_2024_121827
crossref_primary_10_1016_j_soilbio_2022_108561
crossref_primary_10_1016_j_pedobi_2021_150774
crossref_primary_10_1007_s11104_024_06531_y
crossref_primary_10_1016_j_jenvman_2021_112169
crossref_primary_10_1016_j_scitotenv_2023_166962
crossref_primary_10_1016_j_catena_2025_108838
crossref_primary_10_3390_su12031005
crossref_primary_10_20935_AcadBiol6264
crossref_primary_10_1038_s43247_023_00875_6
crossref_primary_10_1007_s11104_023_06300_3
crossref_primary_10_1007_s11368_024_03953_0
crossref_primary_10_1016_j_fecs_2024_100194
crossref_primary_10_1111_aab_12833
crossref_primary_10_3390_f15122193
crossref_primary_10_1016_j_ecoleng_2025_107578
crossref_primary_10_1016_j_apsoil_2025_105903
crossref_primary_10_1016_j_catena_2023_107390
crossref_primary_10_1016_j_pedobi_2024_150974
crossref_primary_10_1016_j_pedobi_2024_150975
crossref_primary_10_1016_j_soilbio_2020_107786
crossref_primary_10_1016_j_pedobi_2023_150896
crossref_primary_10_1007_s11368_021_03006_w
crossref_primary_10_1016_j_geoderma_2022_115804
crossref_primary_10_1071_SR23160
crossref_primary_10_1111_1365_2745_13960
crossref_primary_10_1007_s11356_022_23699_x
crossref_primary_10_1016_j_geoderma_2021_115525
crossref_primary_10_1016_j_soilbio_2023_109245
crossref_primary_10_3390_f15030492
crossref_primary_10_1007_s10021_020_00573_w
crossref_primary_10_1007_s12649_020_01137_8
crossref_primary_10_1111_gcb_16122
crossref_primary_10_1007_s11104_020_04651_9
crossref_primary_10_1007_s42974_022_00103_9
crossref_primary_10_3389_ffgc_2022_826186
crossref_primary_10_1134_S1064229319120032
crossref_primary_10_1111_1365_2745_13711
crossref_primary_10_1111_btp_12980
crossref_primary_10_1016_j_ejsobi_2021_103383
crossref_primary_10_1016_j_soilbio_2022_108783
crossref_primary_10_1002_ps_5507
crossref_primary_10_1002_ldr_3466
crossref_primary_10_1007_s10493_021_00646_y
crossref_primary_10_1016_j_foreco_2022_120396
crossref_primary_10_1016_j_gecco_2021_e01456
crossref_primary_10_1007_s00442_023_05494_8
crossref_primary_10_3390_soilsystems7010006
crossref_primary_10_1111_1365_2435_14720
crossref_primary_10_3390_f15020389
crossref_primary_10_1007_s10533_024_01182_8
crossref_primary_10_1007_s11356_020_09842_6
crossref_primary_10_1007_s10342_023_01628_y
crossref_primary_10_1016_j_jenvman_2025_124768
crossref_primary_10_1016_j_geoderma_2024_117042
crossref_primary_10_3390_f12111444
crossref_primary_10_3390_land13040505
crossref_primary_10_5194_bg_16_1225_2019
crossref_primary_10_1007_s10973_020_09961_9
crossref_primary_10_3897_natureconservation_53_106260
crossref_primary_10_1111_1365_2435_14229
crossref_primary_10_1134_S1064229320010135
crossref_primary_10_59717_j_xinn_geo_2024_100117
crossref_primary_10_1007_s11676_019_00915_y
crossref_primary_10_1038_s41598_019_46394_3
crossref_primary_10_3390_f14081557
crossref_primary_10_3390_en15114157
crossref_primary_10_1016_j_geoderma_2021_115372
crossref_primary_10_1111_ele_14333
crossref_primary_10_3390_plants13010104
crossref_primary_10_3390_app15020639
crossref_primary_10_3390_f11121280
crossref_primary_10_1016_j_gecco_2022_e02344
crossref_primary_10_1007_s00374_024_01802_3
crossref_primary_10_1016_j_scitotenv_2023_163257
crossref_primary_10_48077_scihor2_2024_65
crossref_primary_10_1016_j_geoderma_2021_114963
crossref_primary_10_1016_j_catena_2025_108872
crossref_primary_10_1016_j_apsoil_2019_07_002
crossref_primary_10_1111_1365_2435_14589
crossref_primary_10_1111_mec_15299
crossref_primary_10_1002_ldr_4409
crossref_primary_10_1016_j_soilbio_2021_108394
crossref_primary_10_1139_cjfr_2021_0169
crossref_primary_10_3390_app13095794
crossref_primary_10_1016_j_jenvman_2025_124673
crossref_primary_10_1111_1365_2745_14174
crossref_primary_10_36783_18069657rbcs20220130
crossref_primary_10_3390_f10110939
crossref_primary_10_3389_fenvs_2022_975904
crossref_primary_10_1007_s11368_024_03896_6
crossref_primary_10_1016_j_fmre_2022_01_029
crossref_primary_10_7717_peerj_18796
crossref_primary_10_1017_S0266467424000026
crossref_primary_10_1016_j_foreco_2020_118510
crossref_primary_10_1016_j_scitotenv_2023_166742
crossref_primary_10_1016_j_apsoil_2020_103585
crossref_primary_10_1016_j_catena_2022_106134
crossref_primary_10_1016_j_catena_2021_105269
crossref_primary_10_1071_WF21112
crossref_primary_10_1016_j_geoderma_2022_116151
crossref_primary_10_1080_01904167_2024_2443120
crossref_primary_10_1007_s10705_021_10160_7
crossref_primary_10_1007_s40333_023_0009_4
crossref_primary_10_3389_feart_2022_1047079
crossref_primary_10_5902_1980509870837
crossref_primary_10_1016_j_apsoil_2022_104633
crossref_primary_10_1007_s10668_022_02885_4
crossref_primary_10_1002_agj2_21642
crossref_primary_10_1016_j_geoderma_2023_116395
crossref_primary_10_1016_j_pedobi_2020_150703
crossref_primary_10_18470_1992_1098_2023_2_127_139
crossref_primary_10_1002_ldr_4068
crossref_primary_10_1016_j_agsy_2021_103251
crossref_primary_10_1111_1749_4877_12503
crossref_primary_10_1016_j_catena_2021_105673
crossref_primary_10_1016_j_jenvman_2024_123881
crossref_primary_10_36783_18069657rbcs20230006
crossref_primary_10_3390_agronomy12010070
crossref_primary_10_1016_j_apsoil_2024_105450
crossref_primary_10_3390_su16156534
crossref_primary_10_3390_microorganisms10020311
crossref_primary_10_1007_s00300_023_03131_x
crossref_primary_10_3390_ijerph19063210
crossref_primary_10_1016_j_envres_2025_121459
crossref_primary_10_1016_j_still_2020_104763
crossref_primary_10_1007_s40093_019_00314_7
crossref_primary_10_1016_j_eng_2024_09_012
crossref_primary_10_1134_S1064229321130019
crossref_primary_10_7717_peerj_9750
crossref_primary_10_1016_j_soilbio_2021_108189
crossref_primary_10_1002_ldr_5260
crossref_primary_10_1016_j_apsoil_2021_104231
crossref_primary_10_1093_femsec_fiad131
crossref_primary_10_3390_f15071270
crossref_primary_10_1038_s41598_022_21563_z
crossref_primary_10_1111_1365_2435_13217
crossref_primary_10_1111_ejss_13073
crossref_primary_10_1016_j_geoderma_2024_116775
crossref_primary_10_1016_j_soilbio_2020_108115
crossref_primary_10_1038_s41598_019_43026_8
crossref_primary_10_1007_s11104_022_05844_0
crossref_primary_10_1038_s41598_022_20738_y
crossref_primary_10_1111_ele_14068
crossref_primary_10_1016_j_ejsobi_2023_103568
crossref_primary_10_1016_j_apsoil_2020_103673
crossref_primary_10_1002_saj2_20136
crossref_primary_10_1016_j_pedobi_2025_151033
crossref_primary_10_1016_j_geoderma_2019_113910
crossref_primary_10_1111_1365_2745_13319
crossref_primary_10_3390_agriculture14030445
crossref_primary_10_1016_j_soilbio_2020_107933
crossref_primary_10_1016_j_apsoil_2021_103968
crossref_primary_10_1002_ldr_5125
crossref_primary_10_1038_s41598_019_47072_0
crossref_primary_10_21697_seb_2023_32
crossref_primary_10_3390_en16207083
crossref_primary_10_1016_j_soilbio_2021_108522
crossref_primary_10_1016_j_scitotenv_2020_137227
crossref_primary_10_1016_j_apsoil_2019_103463
crossref_primary_10_3389_fenvs_2020_00014
crossref_primary_10_1016_j_apsoil_2019_103460
crossref_primary_10_1016_j_catena_2023_107203
Cites_doi 10.1016/0038-0717(88)90096-X
10.2307/2425341
10.1016/S0038-0717(01)00138-9
10.1016/j.apsoil.2013.05.011
10.1016/j.soilbio.2013.01.017
10.1016/j.ejsobi.2014.09.004
10.1111/j.1365-2389.2010.01314.x
10.1016/0038-0717(89)90093-X
10.1016/j.ejsobi.2015.10.002
10.1139/x06-016
10.1007/s10021-016-9990-1
10.1007/s10533-009-9313-0
10.1371/journal.pone.0079694
10.1017/S1464793105006846
10.1139/x00-014
10.1098/rsbl.2012.0537
10.1016/j.apsoil.2014.04.012
10.1016/0038-0717(83)90012-3
10.1016/j.foreco.2013.02.013
10.1016/j.still.2004.03.008
10.1007/BF00378988
10.1038/nature10386
10.1023/A:1008313309557
10.1073/pnas.0404977102
10.1016/S0038-0717(97)00252-6
10.1016/S0022-1910(99)00196-1
10.1007/BF00336131
10.1016/j.soilbio.2012.07.020
10.1111/gcb.12113
10.1007/s11284-012-1022-9
10.1016/j.pedobi.2011.07.002
10.1016/0038-0717(82)90010-4
10.1016/S0016-7061(96)00092-4
10.1016/j.soilbio.2012.07.019
10.1093/jisesa/iev004
10.1007/s10533-011-9658-z
10.1016/S0929-1393(98)00068-7
10.2136/sssaj2002.1981
10.1007/BF02931337
10.1016/S0038-0717(01)00216-4
10.2307/3545406
10.1016/j.geoderma.2007.10.001
10.1016/S1164-5563(01)01123-2
10.1016/j.soilbio.2013.08.025
10.5194/soil-2-565-2016
10.1016/S0038-0717(99)00165-0
10.1016/j.soilbio.2009.03.023
10.1016/S0031-4056(24)00506-7
10.1016/S0929-1393(98)00126-7
10.1016/S0031-4056(23)00618-2
10.2307/3565203
10.1016/S0031-4056(24)00288-9
10.1078/0031-4056-00090
10.1016/j.foreco.2005.08.005
10.1016/j.ecolecon.2010.05.002
10.1016/j.soilbio.2005.01.026
10.1111/nph.13385
10.1016/S0031-4056(23)06896-8
10.1016/j.foreco.2009.11.014
10.1007/s12223-011-0011-7
10.1111/j.1365-2389.2006.00809.x
10.1016/S0031-4056(23)00380-3
10.1016/S0031-4056(23)00320-7
10.1002/(SICI)1520-6327(1996)32:1<85::AID-ARCH6>3.0.CO;2-W
10.1016/S0929-1393(99)00035-9
10.1016/j.jinsphys.2014.06.007
10.1016/j.ejsobi.2007.09.002
10.1016/j.orggeochem.2009.06.008
10.1016/S0929-1393(98)00070-5
10.1007/BF00318544
10.1016/S0038-0717(02)00065-2
10.2307/2388776
10.1128/AEM.00683-12
10.1016/j.ejsobi.2007.08.033
10.1016/S0038-0717(03)00149-4
10.1023/A:1016125726789
10.1016/j.soilbio.2014.07.011
10.1016/j.ejsobi.2008.09.012
10.1016/j.soilbio.2014.05.009
10.1111/j.1365-2486.2008.01672.x
10.1038/ncomms8869
10.1016/j.soilbio.2014.01.011
10.1016/S0038-0717(00)00046-8
10.1007/BF00389017
10.1007/s003740050618
10.1890/1540-9295(2004)002[0427:NIEAAO]2.0.CO;2
10.1016/j.apsoil.2011.12.009
10.1016/j.foreco.2013.05.010
10.1007/BF00000091
10.1016/j.soilbio.2015.03.002
10.1002/ldr.2580
10.1078/S0031-4056(04)70080-3
10.1128/AEM.69.11.6650-6658.2003
10.1126/science.1094875
10.1016/0038-0717(92)90138-N
10.1016/j.soilbio.2009.09.022
10.1371/journal.pone.0139099
10.1016/S0378-1127(98)00505-2
10.1890/06-1357.1
10.1080/02757549308035309
10.1111/j.1469-8137.2007.01984.x
10.1007/BF00260820
10.2307/3544689
10.1007/s00374-009-0391-x
10.1111/j.1469-185X.2009.00078.x
10.1111/ele.12137
10.1016/S0006-3207(02)00355-5
10.1016/S1360-1385(00)01656-3
10.1016/j.soilbio.2010.04.003
10.1016/j.geoderma.2004.12.033
10.1016/S0268-005X(03)00045-6
10.1016/j.apsoil.2005.11.001
10.1073/pnas.0805600105
10.1007/s11104-016-2798-0
10.1016/S0038-0717(00)00097-3
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2017.08.039
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 172
ExternalDocumentID 10_1016_j_geoderma_2017_08_039
S0016706116306668
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c411t-260bde1f1d31826d0fb8624e29efa24ed35d46a02c36196e050a9730f31a58873
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 05:46:08 EDT 2025
Tue Jul 01 04:04:44 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
Fri Feb 23 02:30:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil organic matter
Mineralization
Carbon
Sequestration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-260bde1f1d31826d0fb8624e29efa24ed35d46a02c36196e050a9730f31a58873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000551153
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2000551153
crossref_citationtrail_10_1016_j_geoderma_2017_08_039
crossref_primary_10_1016_j_geoderma_2017_08_039
elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_08_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-15
PublicationDateYYYYMMDD 2018-12-15
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Byzov (10.1016/j.geoderma.2017.08.039_bb0045) 1998; 9
Tiunov (10.1016/j.geoderma.2017.08.039_bb0595) 2000; 32
Frouz (10.1016/j.geoderma.2017.08.039_bb0165) 2005; 129
Irmler (10.1016/j.geoderma.2017.08.039_bb0320) 1995
Kaneda (10.1016/j.geoderma.2017.08.039_bb0355) 2013; 72
Setälä (10.1016/j.geoderma.2017.08.039_bb0540) 1990; 10
Huhta (10.1016/j.geoderma.2017.08.039_bb0315) 1998; 10
Coûteaux (10.1016/j.geoderma.2017.08.039_bb0080) 1991; 61
Frouz (10.1016/j.geoderma.2017.08.039_bb0200) 2007; 43
Frouz (10.1016/j.geoderma.2017.08.039_bb0155) 2006; 25
Lavelle (10.1016/j.geoderma.2017.08.039_bb0400) 1997; 33
Anderson (10.1016/j.geoderma.2017.08.039_bb0010) 1983; 15
Lavelle (10.1016/j.geoderma.2017.08.039_bb0395) 1992; 24
Osler (10.1016/j.geoderma.2017.08.039_bb0475) 2007; 88
Liao (10.1016/j.geoderma.2017.08.039_bb0415) 2015; 10
Ponge (10.1016/j.geoderma.2017.08.039_bb0495) 2013; 57
Wardle (10.1016/j.geoderma.2017.08.039_bb0620) 2004; 304
Piccolo (10.1016/j.geoderma.2017.08.039_bb0485) 1997; 75
Marín-Spiotta (10.1016/j.geoderma.2017.08.039_bb0435) 2008; 143
David (10.1016/j.geoderma.2017.08.039_bb0100) 1987; 30
Filser (10.1016/j.geoderma.2017.08.039_bb0140) 2016; 2
Hartenstein (10.1016/j.geoderma.2017.08.039_bb0270) 1982; 14
Huhta (10.1016/j.geoderma.2017.08.039_bb0310) 1988; 20
Hassall (10.1016/j.geoderma.2017.08.039_bb0280) 1986; 29
Prescott (10.1016/j.geoderma.2017.08.039_bb0500) 2005; 220
Anderson (10.1016/j.geoderma.2017.08.039_bb0005) 1984
Schmidt (10.1016/j.geoderma.2017.08.039_bb0530) 2011; 478
Šustr (10.1016/j.geoderma.2017.08.039_bb0580) 2014; 67
Hopkins (10.1016/j.geoderma.2017.08.039_bb0305) 1998; 9
Hobbie (10.1016/j.geoderma.2017.08.039_bb0295) 2007; 173
Köhler (10.1016/j.geoderma.2017.08.039_bb0380) 2012; 78
Frouz (10.1016/j.geoderma.2017.08.039_bb0235) 2015; 71
Karpachevsky (10.1016/j.geoderma.2017.08.039_bb0365) 1968; 8
Snyder (10.1016/j.geoderma.2017.08.039_bb0560) 2009; 71
Frouz (10.1016/j.geoderma.2017.08.039_bb0175) 1996; 3
Cárcamo (10.1016/j.geoderma.2017.08.039_bb0050) 2000; 30
Nielsen (10.1016/j.geoderma.2017.08.039_bb0470) 2011; 62
Coulis (10.1016/j.geoderma.2017.08.039_bb0070) 2009; 41
Miltner (10.1016/j.geoderma.2017.08.039_bb0460) 2009; 40
Brady (10.1016/j.geoderma.2017.08.039_bb0040) 2008
van der Drift (10.1016/j.geoderma.2017.08.039_bb0125) 1977; Vol. 25
Frouz (10.1016/j.geoderma.2017.08.039_bb0230) 2013; 8
Špaldoňová (10.1016/j.geoderma.2017.08.039_bb0565) 2014; 83
David (10.1016/j.geoderma.2017.08.039_bb0105) 2014; 76
Williams (10.1016/j.geoderma.2017.08.039_bb0635) 1989; 21
Gunina (10.1016/j.geoderma.2017.08.039_bb0260) 2014; 71
Six (10.1016/j.geoderma.2017.08.039_bb0545) 2002; 66
Frouz (10.1016/j.geoderma.2017.08.039_bb0195) 2006; 33
Whalen (10.1016/j.geoderma.2017.08.039_bb0625) 1999; 31
Six (10.1016/j.geoderma.2017.08.039_bb0550) 2002; 241
Gleixner (10.1016/j.geoderma.2017.08.039_bb0250) 2013; 28
Lemke (10.1016/j.geoderma.2017.08.039_bb0410) 2003; 69
Lawrence (10.1016/j.geoderma.2017.08.039_bb0405) 2003; 113
Bohlen (10.1016/j.geoderma.2017.08.039_bb0025) 2004; 2
Kadamannaya (10.1016/j.geoderma.2017.08.039_bb0345) 2009; 45
Dominati (10.1016/j.geoderma.2017.08.039_bb0120) 2010; 69
Wolters (10.1016/j.geoderma.2017.08.039_bb0645) 2000; 31
Crowther (10.1016/j.geoderma.2017.08.039_bb0090) 2015; 85
Frouz (10.1016/j.geoderma.2017.08.039_bb0180) 1999; 43
Carrera (10.1016/j.geoderma.2017.08.039_bb0055) 2011; 54
Bonkowski (10.1016/j.geoderma.2017.08.039_bb0030) 1998; 9
Liebeke (10.1016/j.geoderma.2017.08.039_bb0420) 2015; 6
von Lützow (10.1016/j.geoderma.2017.08.039_bb0430) 2006; 57
Hassall (10.1016/j.geoderma.2017.08.039_bb0285) 1987; 72
Liiri (10.1016/j.geoderma.2017.08.039_bb0425) 2012; 55
Saito (10.1016/j.geoderma.2017.08.039_bb0515) 1966; 16
Wang (10.1016/j.geoderma.2017.08.039_bb0615) 2015; 206
García-Palacios (10.1016/j.geoderma.2017.08.039_bb0240) 2013; 16
Griffiths (10.1016/j.geoderma.2017.08.039_bb0255) 1989; 33
Miltner (10.1016/j.geoderma.2017.08.039_bb0465) 2012; 111
Gere (10.1016/j.geoderma.2017.08.039_bb0245) 1962; 8
Frouz (10.1016/j.geoderma.2017.08.039_bb0160) 2001; 45
Ponge (10.1016/j.geoderma.2017.08.039_bb0490) 2003; 35
Schwarz (10.1016/j.geoderma.2017.08.039_bb0535) 2016; 403
Kappler (10.1016/j.geoderma.2017.08.039_bb0360) 1999; 13
Wachendorf (10.1016/j.geoderma.2017.08.039_bb0605) 1997
Bocock (10.1016/j.geoderma.2017.08.039_bb0020) 1963
Gunnarsson (10.1016/j.geoderma.2017.08.039_bb0265) 1988; 52
Cole (10.1016/j.geoderma.2017.08.039_bb0060) 2002; 34
Frouz (10.1016/j.geoderma.2017.08.039_bb0190) 2003; 48
McCay (10.1016/j.geoderma.2017.08.039_bb0440) 2013; 304
Williams (10.1016/j.geoderma.2017.08.039_bb0630) 1993; 8
Toyota (10.1016/j.geoderma.2017.08.039_bb0600) 2013; 60
Cragg (10.1016/j.geoderma.2017.08.039_bb0085) 2001; 33
Meier (10.1016/j.geoderma.2017.08.039_bb0450) 2008; 105
Frouz (10.1016/j.geoderma.2017.08.039_bb0185) 2002; 38
Johnson (10.1016/j.geoderma.2017.08.039_bb0335) 2000; 46
Petersen (10.1016/j.geoderma.2017.08.039_bb0480) 1982; 39
Szabó (10.1016/j.geoderma.2017.08.039_bb0590) 1974
Frouz (10.1016/j.geoderma.2017.08.039_bb0150) 2016; 28
Frouz (10.1016/j.geoderma.2017.08.039_bb0225) 2013; 309
Strauss (10.1016/j.geoderma.2017.08.039_bb0570) 2004; 18
Roubíčková (10.1016/j.geoderma.2017.08.039_bb0505) 2014; 65
Schaefer (10.1016/j.geoderma.2017.08.039_bb0525) 1990; 82
Ji (10.1016/j.geoderma.2017.08.039_bb0330) 2000; 32
Bonkowski (10.1016/j.geoderma.2017.08.039_bb0035) 2000; 44
Deleporte (10.1016/j.geoderma.2017.08.039_bb0115) 1999; 118
Fabiel (10.1016/j.geoderma.2017.08.039_bb0135) 1991; 226
Frouz (10.1016/j.geoderma.2017.08.039_bb0215) 2011; 56
Cotrufo (10.1016/j.geoderma.2017.08.039_bb0065) 2013; 19
Rusek (10.1016/j.geoderma.2017.08.039_bb0510) 1978; 18
Knollenberg (10.1016/j.geoderma.2017.08.039_bb0375) 1985; 113
Kautz (10.1016/j.geoderma.2017.08.039_bb0370) 2002; 34
Frouz (10.1016/j.geoderma.2017.08.039_bb9815) 2014; 78
Frouz (10.1016/j.geoderma.2017.08.039_bb0220) 2013; 67
McInerney (10.1016/j.geoderma.2017.08.039_bb0445) 2000; 32
Deleporte (10.1016/j.geoderma.2017.08.039_bb0110) 1988; 9
Wall (10.1016/j.geoderma.2017.08.039_bb0610) 2008; 14
Kampichler (10.1016/j.geoderma.2017.08.039_bb0350) 2009; 84
Frouz (10.1016/j.geoderma.2017.08.039_bb0205) 2008; 44
Suzuki (10.1016/j.geoderma.2017.08.039_bb0585) 2013; 57
Frouz (10.1016/j.geoderma.2017.08.039_bb0170) 2009; 45
Six (10.1016/j.geoderma.2017.08.039_bb0555) 2004; 79
Frouz (10.1016/j.geoderma.2017.08.039_bb0210) 2009; 94
Melody (10.1016/j.geoderma.2017.08.039_bb0455) 2012; 8
Sun (10.1016/j.geoderma.2017.08.039_bb0575) 2015; 15
Coulis (10.1016/j.geoderma.2017.08.039_bb0075) 2016; 19
Dangerfield (10.1016/j.geoderma.2017.08.039_bb0095) 1996; 28
Hättenschwiler (10.1016/j.geoderma.2017.08.039_bb0290) 2005; 102
Dunger (10.1016/j.geoderma.2017.08.039_bb0130) 1991; 118
Aubert (10.1016/j.geoderma.2017.08.039_bb0015) 2010; 259
Francis (10.1016/j.geoderma.2017.08.039_bb0145) 1994; 159
Johnson (10.1016/j.geoderma.2017.08.039_bb0340) 1996; 32
Lavelle (10.1016/j.geoderma.2017.08.039_bb0390) 1988; 6
Hodge (10.1016/j.geoderma.2017.08.039_bb0300) 2000; 5
Sayer (10.1016/j.geoderma.2017.08.039_bb0520) 2005; 80
Wironen (10.1016/j.geoderma.2017.08.039_bb0640) 2006; 36
Ji (10.1016/j.geoderma.2017.08.039_bb0325) 2005; 3
Hassall (10.1016/j.geoderma.2017.08.039_bb0275) 1982; 53
Kuzyakov (10.1016/j.geoderma.2017.08.039_bb0385) 2010; 42
References_xml – volume: 20
  start-page: 875
  year: 1988
  ident: 10.1016/j.geoderma.2017.08.039_bb0310
  article-title: Leaching of N and C from birch leaf litter and raw humus with special emphasis on the influence of soil fauna
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(88)90096-X
– volume: 113
  start-page: 1
  year: 1985
  ident: 10.1016/j.geoderma.2017.08.039_bb0375
  article-title: Consumption of leaf litter by Lumbricus terrestris (Oligochaeta) on a Michigan woodland floodplain
  publication-title: Am. Midl. Nat.
  doi: 10.2307/2425341
– volume: 33
  start-page: 2073
  year: 2001
  ident: 10.1016/j.geoderma.2017.08.039_bb0085
  article-title: How changes in species group diversity and composition within a trophic group influence decomposition process
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00138-9
– volume: 72
  start-page: 7
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0355
  article-title: Does the addition of leaf litter affect soil respiration in the same way as addition of macrofauna excrements (of Bibio marci Diptera larvae) produced from the same litter?
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2013.05.011
– volume: 60
  start-page: 105
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0600
  article-title: Soil fauna increase nitrogen loss in tilled soil with legume but reduce nitrogen loss in non-tilled soil without legume
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.01.017
– volume: 65
  start-page: 57
  year: 2014
  ident: 10.1016/j.geoderma.2017.08.039_bb0505
  article-title: Performance of the earthworm Aporrectodea caliginosa on unreclaimed spoil heaps at different successional stages
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2014.09.004
– volume: 62
  start-page: 105
  year: 2011
  ident: 10.1016/j.geoderma.2017.08.039_bb0470
  article-title: Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2010.01314.x
– volume: 21
  start-page: 183
  year: 1989
  ident: 10.1016/j.geoderma.2017.08.039_bb0635
  article-title: Enhanced nutrient mineralization and leaching from decomposing sitka spruce litter by enchytraeid worms
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(89)90093-X
– volume: 71
  start-page: 21
  year: 2015
  ident: 10.1016/j.geoderma.2017.08.039_bb0235
  article-title: The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2015.10.002
– volume: 36
  start-page: 845
  year: 2006
  ident: 10.1016/j.geoderma.2017.08.039_bb0640
  article-title: Exotic earthworm invasion increases soil carbon and nitrogen in an old-growth forest in southern Quebec
  publication-title: Can. J. For. Res.
  doi: 10.1139/x06-016
– volume: 118
  start-page: 423
  year: 1991
  ident: 10.1016/j.geoderma.2017.08.039_bb0130
  article-title: Zur Primärsukzession humiphager Tiergruppen auf Bergbauflächen
  publication-title: Zool. Jahrb. Syst.
– volume: 19
  start-page: 1104
  year: 2016
  ident: 10.1016/j.geoderma.2017.08.039_bb0075
  article-title: Leaf litter consumption by macroarthropods and burial of their faeces enhance decomposition in a Mediterranean ecosystem
  publication-title: Ecosystems
  doi: 10.1007/s10021-016-9990-1
– volume: 94
  start-page: 111
  year: 2009
  ident: 10.1016/j.geoderma.2017.08.039_bb0210
  article-title: Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-009-9313-0
– volume: 9
  start-page: 13
  year: 1988
  ident: 10.1016/j.geoderma.2017.08.039_bb0110
  article-title: Etude expérimentale de l'ajustement entre le cycle de Bradysia confinis (Diptera: Sciaridae) et l'évolution du substrat trophique (litière de feuillus): importance des microorganismes
  publication-title: Acta Oecol. Oecol. Gen.
– volume: 8
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0230
  article-title: Soil food web changes during spontaneous succession at post mining sites: a possible ecosystem engineering effect on food web organization?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0079694
– volume: 80
  start-page: 1
  year: 2005
  ident: 10.1016/j.geoderma.2017.08.039_bb0520
  article-title: Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems
  publication-title: Biol. Rev.
  doi: 10.1017/S1464793105006846
– volume: 30
  start-page: 817
  year: 2000
  ident: 10.1016/j.geoderma.2017.08.039_bb0050
  article-title: Influence of millipedes on litter decomposition, N mineralization, and microbial communities in a coastal forest in British Columbia, Canada
  publication-title: Can. J. For. Res.
  doi: 10.1139/x00-014
– year: 2008
  ident: 10.1016/j.geoderma.2017.08.039_bb0040
– volume: 8
  start-page: 956
  year: 2012
  ident: 10.1016/j.geoderma.2017.08.039_bb0455
  article-title: Northward range extension of an endemic soil decomposer with a distinct trophic position
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2012.0537
– volume: 83
  start-page: 186
  year: 2014
  ident: 10.1016/j.geoderma.2017.08.039_bb0565
  article-title: The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2014.04.012
– volume: 15
  start-page: 463
  year: 1983
  ident: 10.1016/j.geoderma.2017.08.039_bb0010
  article-title: Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic matter from deciduous woodlands
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(83)90012-3
– volume: 309
  start-page: 87
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0225
  article-title: Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites
  publication-title: Forest Ecol. Manag.
  doi: 10.1016/j.foreco.2013.02.013
– volume: 79
  start-page: 7
  year: 2004
  ident: 10.1016/j.geoderma.2017.08.039_bb0555
  article-title: A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.03.008
– volume: 72
  start-page: 597
  year: 1987
  ident: 10.1016/j.geoderma.2017.08.039_bb0285
  article-title: Effect of terrestrial isopods on the decomposition of woodland leaf litter
  publication-title: Oecologia
  doi: 10.1007/BF00378988
– volume: 478
  start-page: 49
  year: 2011
  ident: 10.1016/j.geoderma.2017.08.039_bb0530
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
  doi: 10.1038/nature10386
– volume: Vol. 25
  start-page: 203
  year: 1977
  ident: 10.1016/j.geoderma.2017.08.039_bb0125
  article-title: Grazing of springtails on hyphal mats and its influence on fungal growth and respiration
– volume: 9
  start-page: 423
  year: 1998
  ident: 10.1016/j.geoderma.2017.08.039_bb0305
  article-title: Application of 13C NMR to investigate the transformations and biodegradation of organic materials by some soil and litter-dwelling insects
  publication-title: Biodegradation
  doi: 10.1023/A:1008313309557
– volume: 102
  start-page: 1519
  issue: 5
  year: 2005
  ident: 10.1016/j.geoderma.2017.08.039_bb0290
  article-title: Soil animals alter plant litter diversity effects on decomposition
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0404977102
– volume: 31
  start-page: 487
  year: 1999
  ident: 10.1016/j.geoderma.2017.08.039_bb0625
  article-title: Movement of N from decomposing earthworm tissue to soil, microbial and plant N pools
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(97)00252-6
– volume: 46
  start-page: 897
  year: 2000
  ident: 10.1016/j.geoderma.2017.08.039_bb0335
  article-title: Oxygen levels in the gut lumens of herbivorous insects
  publication-title: J. Insect Physiol.
  doi: 10.1016/S0022-1910(99)00196-1
– start-page: 85
  year: 1963
  ident: 10.1016/j.geoderma.2017.08.039_bb0020
  article-title: The digestion of food by Glomeris
– volume: 25
  start-page: 388
  year: 2006
  ident: 10.1016/j.geoderma.2017.08.039_bb0155
  article-title: Accumulation of soil organic carbon in relation to other soil characteristic during spontaneous succession in non reclaimed colliery spoil heaps after brown coal mining near Sokolov (the Czech Republic)
  publication-title: Ekologia
– volume: 10
  start-page: 170
  year: 1990
  ident: 10.1016/j.geoderma.2017.08.039_bb0540
  article-title: Effects of soil fauna on leaching of nitrogen and phosphorous from experimental systems simulating coniferous forest floor
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00336131
– volume: 57
  start-page: 116
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0585
  article-title: Effects of leaf litter consumption by millipedes (Harpaphe haydeniana) on subsequent decomposition depends on litter type
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.07.020
– volume: 33
  start-page: 159
  year: 1997
  ident: 10.1016/j.geoderma.2017.08.039_bb0400
  article-title: Soil function in a changing world: the role of invertebrate ecosystem engineers
  publication-title: Eur. J. Soil Biol.
– volume: 19
  start-page: 988
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0065
  article-title: The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12113
– volume: 28
  start-page: 683
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0250
  article-title: Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-012-1022-9
– volume: 54
  start-page: 291
  year: 2011
  ident: 10.1016/j.geoderma.2017.08.039_bb0055
  article-title: Interactive effects of temperature, soil moisture and enchytraeid activities on C losses from a peatland soil
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2011.07.002
– volume: 14
  start-page: 387
  year: 1982
  ident: 10.1016/j.geoderma.2017.08.039_bb0270
  article-title: Soil macroinvertebrates, aldehyde oxidase, catalase, cellulase and peroxidase
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(82)90010-4
– volume: 75
  start-page: 267
  year: 1997
  ident: 10.1016/j.geoderma.2017.08.039_bb0485
  article-title: Use of humic substances as soil conditioners to increase aggregate stability
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(96)00092-4
– volume: 57
  start-page: 1048
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0495
  article-title: Plant–soil feedbacks mediated by humus forms: a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.07.019
– volume: 15
  start-page: 25
  year: 2015
  ident: 10.1016/j.geoderma.2017.08.039_bb0575
  article-title: Variation in C:N:S stoichiometry and nutrient storage related to body size in a holometabolous insect (Curculio davidi) (Coleoptera: Curculionidae) larva
  publication-title: J. Insect Sci.
  doi: 10.1093/jisesa/iev004
– volume: 111
  start-page: 41
  year: 2012
  ident: 10.1016/j.geoderma.2017.08.039_bb0465
  article-title: SOM genesis: microbial biomass as a significant source
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9658-z
– year: 1974
  ident: 10.1016/j.geoderma.2017.08.039_bb0590
– volume: 9
  start-page: 145
  year: 1998
  ident: 10.1016/j.geoderma.2017.08.039_bb0045
  article-title: Principles of the digestion of microorganisms in the gut of soil millipedes: specify and possible mechanisms
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/S0929-1393(98)00068-7
– volume: 66
  start-page: 1981
  year: 2002
  ident: 10.1016/j.geoderma.2017.08.039_bb0545
  article-title: Measuring and understanding carbon storage in afforested soils by physical fractionation
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.1981
– volume: 48
  start-page: 535
  year: 2003
  ident: 10.1016/j.geoderma.2017.08.039_bb0190
  article-title: Changes in amount of bacteria during gut passage of leaf litter and during coprophagy in three species of Bibionidae (Diptera) larvae
  publication-title: Folia Microbiol.
  doi: 10.1007/BF02931337
– volume: 34
  start-page: 599
  year: 2002
  ident: 10.1016/j.geoderma.2017.08.039_bb0060
  article-title: Relationships between enchytraeid worm (Oligochaeta) climate change, and the release of dissolved organic carbon from blanked peat from blanked peat in northern England
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00216-4
– volume: 61
  start-page: 54
  year: 1991
  ident: 10.1016/j.geoderma.2017.08.039_bb0080
  article-title: Increasing atmospheric carbon dioxide and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities
  publication-title: Oikos
  doi: 10.2307/3545406
– volume: 143
  start-page: 49
  year: 2008
  ident: 10.1016/j.geoderma.2017.08.039_bb0435
  article-title: Chemical and mineral control of soil carbon turnover in abandoned tropical pastures
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.10.001
– volume: 38
  start-page: 47
  year: 2002
  ident: 10.1016/j.geoderma.2017.08.039_bb0185
  article-title: Preliminary data about compartmentalization of the gut of the saprophagous dipteran larvae Penthetria holosericea (Bibionidae)
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/S1164-5563(01)01123-2
– volume: 67
  start-page: 212
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0220
  article-title: Soil biota in post-mining sites along a climatic gradient in the USA: simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.08.025
– volume: 2
  start-page: 565
  year: 2016
  ident: 10.1016/j.geoderma.2017.08.039_bb0140
  article-title: Soil fauna: key to new carbon models
  publication-title: Soil
  doi: 10.5194/soil-2-565-2016
– volume: 32
  start-page: 265
  year: 2000
  ident: 10.1016/j.geoderma.2017.08.039_bb0595
  article-title: Microbial biomass, biovolume and respiration in Lumbricus terrestris L. cast material of different age
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00165-0
– volume: 71
  start-page: 1442
  year: 2009
  ident: 10.1016/j.geoderma.2017.08.039_bb0560
  article-title: Competition between invasive earthworms (Amynthas corticis, Megascolecidae) and native North American millipedes (Pseudopolydesmus erasus, Polydesmidae): effects on carbon cycling and soil structure
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.03.023
– start-page: 135
  year: 1997
  ident: 10.1016/j.geoderma.2017.08.039_bb0605
  article-title: Relationships between litter fauna and chemical changes of litter during decomposition under different moisture conditions
– volume: 43
  start-page: 221
  year: 1999
  ident: 10.1016/j.geoderma.2017.08.039_bb0180
  article-title: The effect of bibionid larvae feeding on the microbial community of litter and reconsumed excrements
  publication-title: Pedobiologia
  doi: 10.1016/S0031-4056(24)00506-7
– volume: 226
  start-page: 97
  year: 1991
  ident: 10.1016/j.geoderma.2017.08.039_bb0135
  article-title: Effect of food on growth and bioenergetics of the woodlouse Hemilepistus reaumuri (Audouin de Savigny, 1826) (Isopoda, Oniscoidea) in Benghazi, Libya
  publication-title: Zool. Anz.
– volume: 10
  start-page: 277
  year: 1998
  ident: 10.1016/j.geoderma.2017.08.039_bb0315
  article-title: Functional implications of soil fauna diversity in boreal forests
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/S0929-1393(98)00126-7
– volume: 18
  start-page: 426
  year: 1978
  ident: 10.1016/j.geoderma.2017.08.039_bb0510
  article-title: Pedozootische sukzession während der entwicklung von ökosystemen
  publication-title: Pedobiologia
  doi: 10.1016/S0031-4056(23)00618-2
– volume: 52
  start-page: 303
  year: 1988
  ident: 10.1016/j.geoderma.2017.08.039_bb0265
  article-title: Importance of leaf litter fragmentation for bacterial growth
  publication-title: Oikos
  doi: 10.2307/3565203
– volume: 33
  start-page: 355
  year: 1989
  ident: 10.1016/j.geoderma.2017.08.039_bb0255
  article-title: Mineralisation of 14C labelled plant material by Porcellio scaber (Crustacea: Isopoda)
  publication-title: Pedobiologia
  doi: 10.1016/S0031-4056(24)00288-9
– volume: 45
  start-page: 329
  year: 2001
  ident: 10.1016/j.geoderma.2017.08.039_bb0160
  article-title: A new method for rearing the sciarid fly, Lycoriella ingenua (Diptera: Sciaridae) in the laboratory: possible implications for the study of fly – fungal interactions
  publication-title: Pedobiologia
  doi: 10.1078/0031-4056-00090
– volume: 220
  start-page: 66
  year: 2005
  ident: 10.1016/j.geoderma.2017.08.039_bb0500
  article-title: Do rates of litter decomposition tell us anything we really need to know?
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2005.08.005
– volume: 69
  start-page: 1858
  year: 2010
  ident: 10.1016/j.geoderma.2017.08.039_bb0120
  article-title: A framework for classifying and quantifying the natural capital and ecosystem services of soils
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2010.05.002
– start-page: 1
  issue: Supplement 18
  year: 1995
  ident: 10.1016/j.geoderma.2017.08.039_bb0320
  article-title: Die Stellung der Bodenfauna im Stoffhaushalt schleswig-holsteinischer Wälder. Faunistisch-Ökologische Mitteilungen
  publication-title: Kiel
– volume: 3
  start-page: 1648
  year: 2005
  ident: 10.1016/j.geoderma.2017.08.039_bb0325
  article-title: Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.01.026
– volume: 206
  start-page: 1261
  year: 2015
  ident: 10.1016/j.geoderma.2017.08.039_bb0615
  article-title: Phenolic profile within the fine-root branching orders of an evergreen species highlights a disconnect in root tissue quality predicted by elemental- and molecular-level carbon composition
  publication-title: New Phytol.
  doi: 10.1111/nph.13385
– volume: 29
  start-page: 219
  year: 1986
  ident: 10.1016/j.geoderma.2017.08.039_bb0280
  article-title: Effects of the collembolan Onychiurus subtenuis on decomposition of Populus tremuloides leaf litter
  publication-title: Pedobiologia
  doi: 10.1016/S0031-4056(23)06896-8
– volume: 259
  start-page: 563
  year: 2010
  ident: 10.1016/j.geoderma.2017.08.039_bb0015
  article-title: Aboveground–belowground relationships in temperate forests: plant litter composes and microbiota orchestrates
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2009.11.014
– volume: 56
  start-page: 36
  year: 2011
  ident: 10.1016/j.geoderma.2017.08.039_bb0215
  article-title: Microbial properties of soil aggregates created by earthworms and other factors: spherical and prismatic soil aggregates from unreclaimed post-mining sites
  publication-title: Folia Microbiol.
  doi: 10.1007/s12223-011-0011-7
– volume: 57
  start-page: 426
  year: 2006
  ident: 10.1016/j.geoderma.2017.08.039_bb0430
  article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions a review
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00809.x
– volume: 30
  start-page: 299
  year: 1987
  ident: 10.1016/j.geoderma.2017.08.039_bb0100
  article-title: Consommation annuelle d’ une litiere de chene par une population adulte de Diplopode Cylindroiulus nittidus
  publication-title: Pedobiologia
  doi: 10.1016/S0031-4056(23)00380-3
– volume: 8
  start-page: 385
  year: 1962
  ident: 10.1016/j.geoderma.2017.08.039_bb0245
  article-title: Natuhrungsverbrauch der Diplopoden und Isopoden in Freulanduntersuchungen
  publication-title: Acta Zool. Acad. Sci. Hung.
– volume: 8
  start-page: 146
  year: 1968
  ident: 10.1016/j.geoderma.2017.08.039_bb0365
  article-title: The role of bibionid larvae in decomposition of forest floor litter
  publication-title: Pedobiologia
  doi: 10.1016/S0031-4056(23)00320-7
– volume: 32
  start-page: 85
  year: 1996
  ident: 10.1016/j.geoderma.2017.08.039_bb0340
  article-title: Potential influence of midgut pH and redox potential on protein utilization in insect herbivores
  publication-title: Arch. Insect Biochem. Physiol.
  doi: 10.1002/(SICI)1520-6327(1996)32:1<85::AID-ARCH6>3.0.CO;2-W
– volume: 13
  start-page: 219
  year: 1999
  ident: 10.1016/j.geoderma.2017.08.039_bb0360
  article-title: Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/S0929-1393(99)00035-9
– volume: 67
  start-page: 64
  year: 2014
  ident: 10.1016/j.geoderma.2017.08.039_bb0580
  article-title: Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae)
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2014.06.007
– volume: 44
  start-page: 109
  year: 2008
  ident: 10.1016/j.geoderma.2017.08.039_bb0205
  article-title: Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2007.09.002
– volume: 40
  start-page: 978
  year: 2009
  ident: 10.1016/j.geoderma.2017.08.039_bb0460
  article-title: Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2009.06.008
– volume: 9
  start-page: 161
  year: 1998
  ident: 10.1016/j.geoderma.2017.08.039_bb0030
  article-title: Interactions of earthworms (Octolasion lacteum), millipedes (Glomeris marginata) and plants (Hordelymus europaeus) in a beechwood on a basalt hill: implications for litter decomposition and soil formation
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/S0929-1393(98)00070-5
– volume: 82
  start-page: 128
  year: 1990
  ident: 10.1016/j.geoderma.2017.08.039_bb0525
  article-title: The soil fauna of a beech forest on limestone: trophic structure and energy budget
  publication-title: Oecologia
  doi: 10.1007/BF00318544
– volume: 34
  start-page: 1253
  year: 2002
  ident: 10.1016/j.geoderma.2017.08.039_bb0370
  article-title: Does Porcellio scaber (Isopoda: Oniscidea) gain from coprophagy?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00065-2
– volume: 28
  start-page: 113
  year: 1996
  ident: 10.1016/j.geoderma.2017.08.039_bb0095
  article-title: Millipede fecal pellet production in selected natural and managed habitats of southern Africa: implications for litter dynamics
  publication-title: Biotropica
  doi: 10.2307/2388776
– volume: 78
  start-page: 4691
  year: 2012
  ident: 10.1016/j.geoderma.2017.08.039_bb0380
  article-title: High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.)
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00683-12
– volume: 16
  start-page: 245
  year: 1966
  ident: 10.1016/j.geoderma.2017.08.039_bb0515
  article-title: Sequential pattern of decomposition of beech litter with special reference to microbial succession
  publication-title: Ecol. Rev.
– volume: 43
  start-page: 184
  year: 2007
  ident: 10.1016/j.geoderma.2017.08.039_bb0200
  article-title: The effect of earthworms and other saprophagous macrofauna on soil microstructure in reclaimed and un-reclaimed post-mining sites in Central Europe
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2007.08.033
– volume: 35
  start-page: 935
  year: 2003
  ident: 10.1016/j.geoderma.2017.08.039_bb0490
  article-title: Humus form in terrestrial ecosystem: a framework to biodiversity
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00149-4
– volume: 241
  start-page: 155
  year: 2002
  ident: 10.1016/j.geoderma.2017.08.039_bb0550
  article-title: Stabilization mechanism of soil organic matter: implication for C saturation of soil
  publication-title: Plant Soil
  doi: 10.1023/A:1016125726789
– volume: 78
  start-page: 58
  year: 2014
  ident: 10.1016/j.geoderma.2017.08.039_bb9815
  article-title: The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.07.011
– volume: 45
  start-page: 192
  year: 2009
  ident: 10.1016/j.geoderma.2017.08.039_bb0170
  article-title: Short term and long term effects of bibionid (Diptera: Bibionidae) larvae feeding on microbial respiration and alder litter decomposition
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2008.09.012
– volume: 76
  start-page: 109
  year: 2014
  ident: 10.1016/j.geoderma.2017.08.039_bb0105
  article-title: The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.05.009
– volume: 14
  start-page: 2661
  year: 2008
  ident: 10.1016/j.geoderma.2017.08.039_bb0610
  article-title: Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2008.01672.x
– volume: 6
  start-page: 7869
  year: 2015
  ident: 10.1016/j.geoderma.2017.08.039_bb0420
  article-title: Unique metabolites protect earthworms against plant polyphenols
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8869
– volume: 71
  start-page: 95
  year: 2014
  ident: 10.1016/j.geoderma.2017.08.039_bb0260
  article-title: Pathways of litter C by formation of aggregates and SOM density fractions: implications from 13C natural abundance
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.01.011
– volume: 32
  start-page: 1281
  year: 2000
  ident: 10.1016/j.geoderma.2017.08.039_bb0330
  article-title: Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00046-8
– volume: 53
  start-page: 374
  year: 1982
  ident: 10.1016/j.geoderma.2017.08.039_bb0275
  article-title: The role of coprophagy in the feeding strategies of terrestrial isopods
  publication-title: Oecologia
  doi: 10.1007/BF00389017
– volume: 31
  start-page: 1
  year: 2000
  ident: 10.1016/j.geoderma.2017.08.039_bb0645
  article-title: Invertebrate control of soil organic matter stability
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740050618
– volume: 2
  start-page: 427
  year: 2004
  ident: 10.1016/j.geoderma.2017.08.039_bb0025
  article-title: Non-native invasive earthworms as agents of change in northern temperate forests
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2004)002[0427:NIEAAO]2.0.CO;2
– volume: 55
  start-page: 53
  year: 2012
  ident: 10.1016/j.geoderma.2017.08.039_bb0425
  article-title: History of land-use intensity can modify the relationship between functional complexity of the soil fauna and soil ecosystem services: a microcosm study
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2011.12.009
– volume: 304
  start-page: 254
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0440
  article-title: Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack Mountains, USA
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2013.05.010
– volume: 159
  start-page: 11
  year: 1994
  ident: 10.1016/j.geoderma.2017.08.039_bb0145
  article-title: The contributions of mycorrhizal fungi to the determination of plant community structure
  publication-title: Plant Soil
  doi: 10.1007/BF00000091
– volume: 85
  start-page: 153
  year: 2015
  ident: 10.1016/j.geoderma.2017.08.039_bb0090
  article-title: Environmental stress response limits microbial necromass contributions to soil organic carbon
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.03.002
– volume: 28
  start-page: 664
  year: 2016
  ident: 10.1016/j.geoderma.2017.08.039_bb0150
  article-title: Effects of soil development time and litter quality on soil carbon sequestration: assessing soil carbon saturation with a field transplant experiment along a post-mining chronosequence
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2580
– volume: 44
  start-page: 666
  year: 2000
  ident: 10.1016/j.geoderma.2017.08.039_bb0035
  article-title: Food preferences of earthworms for soil fungi
  publication-title: Pedobiologia
  doi: 10.1078/S0031-4056(04)70080-3
– volume: 3
  start-page: 101
  year: 1996
  ident: 10.1016/j.geoderma.2017.08.039_bb0175
  article-title: The impact of drying and rewetting of leaf litter on feeding activity of Bibio pomonae (Diptera: Bibionidae) larvae
  publication-title: Stud. Dipterol.
– volume: 69
  start-page: 6650
  year: 2003
  ident: 10.1016/j.geoderma.2017.08.039_bb0410
  article-title: Physicochemical conditions and microbial activities in the highly alkaline gut of the humus feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae)
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.11.6650-6658.2003
– volume: 304
  start-page: 1629
  year: 2004
  ident: 10.1016/j.geoderma.2017.08.039_bb0620
  article-title: Ecological linkages between aboveground and belowground biota
  publication-title: Science
  doi: 10.1126/science.1094875
– volume: 24
  start-page: 1491
  year: 1992
  ident: 10.1016/j.geoderma.2017.08.039_bb0395
  article-title: Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(92)90138-N
– volume: 41
  start-page: 2573
  year: 2009
  ident: 10.1016/j.geoderma.2017.08.039_bb0070
  article-title: The fate of condensed tannins during litter consumption by soil animals
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.09.022
– volume: 10
  year: 2015
  ident: 10.1016/j.geoderma.2017.08.039_bb0415
  article-title: Soil fauna affects dissolved carbon and nitrogen in foliar litter in alpine forest and alpine meadow
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0139099
– volume: 118
  start-page: 245
  year: 1999
  ident: 10.1016/j.geoderma.2017.08.039_bb0115
  article-title: Long-term effects of mineral amendments on soil fauna and humus in an acid beech forest floor
  publication-title: Forest Ecol. Manag.
  doi: 10.1016/S0378-1127(98)00505-2
– volume: 88
  start-page: 1611
  year: 2007
  ident: 10.1016/j.geoderma.2017.08.039_bb0475
  article-title: Toward a complete soil C and N cycle: incorporating the soil fauna
  publication-title: Ecology
  doi: 10.1890/06-1357.1
– volume: 8
  start-page: 203
  year: 1993
  ident: 10.1016/j.geoderma.2017.08.039_bb0630
  article-title: Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soils
  publication-title: Chem. Ecol.
  doi: 10.1080/02757549308035309
– volume: 173
  start-page: 447
  year: 2007
  ident: 10.1016/j.geoderma.2017.08.039_bb0295
  article-title: Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.01984.x
– volume: 6
  start-page: 237
  year: 1988
  ident: 10.1016/j.geoderma.2017.08.039_bb0390
  article-title: Earthworm activities and the soil system
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00260820
– volume: 39
  start-page: 288
  year: 1982
  ident: 10.1016/j.geoderma.2017.08.039_bb0480
  article-title: A comparative analysis of soil fauna populations and their role in decomposition processes
  publication-title: Oikos
  doi: 10.2307/3544689
– volume: 45
  start-page: 761
  year: 2009
  ident: 10.1016/j.geoderma.2017.08.039_bb0345
  article-title: Leaf litter ingestion and assimilation by two endemic pill millipedes (Arthrosphaera)
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-009-0391-x
– volume: 84
  start-page: 375
  year: 2009
  ident: 10.1016/j.geoderma.2017.08.039_bb0350
  article-title: The role of microarthropods in terrestrial decomposition: a meta-analysis of 40years of litterbag studies
  publication-title: Biol. Rev. Camb. Philos. Soc.
  doi: 10.1111/j.1469-185X.2009.00078.x
– volume: 16
  start-page: 1045
  year: 2013
  ident: 10.1016/j.geoderma.2017.08.039_bb0240
  article-title: Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12137
– start-page: 59
  year: 1984
  ident: 10.1016/j.geoderma.2017.08.039_bb0005
  article-title: Interaction between microorganisms and soil invertebrates in nutrient flux pathways of forest ecosystems
– volume: 113
  start-page: 125
  year: 2003
  ident: 10.1016/j.geoderma.2017.08.039_bb0405
  article-title: Litter breakdown by the Seychelles giant millipede and the conservation of soil processes on Cousine Island, Seychelles
  publication-title: Biol. Conserv.
  doi: 10.1016/S0006-3207(02)00355-5
– volume: 5
  start-page: 304
  year: 2000
  ident: 10.1016/j.geoderma.2017.08.039_bb0300
  article-title: Are microorganisms more effective than plants at competing for nitrogen?
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(00)01656-3
– volume: 42
  start-page: 1363
  year: 2010
  ident: 10.1016/j.geoderma.2017.08.039_bb0385
  article-title: Priming effects: interactions between living and dead organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.04.003
– volume: 129
  start-page: 54
  year: 2005
  ident: 10.1016/j.geoderma.2017.08.039_bb0165
  article-title: Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.12.033
– volume: 18
  start-page: 81
  year: 2004
  ident: 10.1016/j.geoderma.2017.08.039_bb0570
  article-title: Plant phenolics as cross-linkers of gelatin gels and gelatin based coacervates for use as food ingredients
  publication-title: Food Hydrocoll.
  doi: 10.1016/S0268-005X(03)00045-6
– volume: 33
  start-page: 308
  year: 2006
  ident: 10.1016/j.geoderma.2017.08.039_bb0195
  article-title: Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: results of a field microcosm experiment
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2005.11.001
– volume: 105
  start-page: 19780
  year: 2008
  ident: 10.1016/j.geoderma.2017.08.039_bb0450
  article-title: Links between plant litter chemistry, species diversity, and below-ground ecosystem function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0805600105
– volume: 403
  start-page: 343
  year: 2016
  ident: 10.1016/j.geoderma.2017.08.039_bb0535
  article-title: Drivers of nitrogen leaching from organic layers in Central European beech forests
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2798-0
– volume: 32
  start-page: 1989
  year: 2000
  ident: 10.1016/j.geoderma.2017.08.039_bb0445
  article-title: Decomposition of Quercus petraea litter: influence of burial, comminution and earthworms
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00097-3
SSID ssj0017020
Score 2.6474743
Snippet Soil fauna consumes substantial amounts of litter and can even consume the entire annual litterfall in some ecosystems. The assimilation efficiency of fauna...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 161
SubjectTerms Carbon
carbon sequestration
clay
coatings
earthworms
ecosystems
edaphic factors
feces
leaching
lignin
microbial activity
microbial communities
microorganisms
Mineralization
nutrients
oxygen
particulate organic matter
plant communities
polyphenols
polysaccharides
secondary succession
Sequestration
Soil organic matter
soil profiles
soil properties
Title Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization
URI https://dx.doi.org/10.1016/j.geoderma.2017.08.039
https://www.proquest.com/docview/2000551153
Volume 332
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EXtpD6ZPah2yh19Rdd5OYo0jFttRTBW9hk-wWRRMxeu1v78xmI20peOgpJMwkYWZ35ptkHoQ8pDxKFeAAD8If48mU98AOgkKAnDMB8Ri3ny7exsFoIl-m_rRBBnUtDKZVOttf2XRrrd2VjpNmZzWbYY0vD0JwR4AoEIRjwa-UIa7yx89dmgcPmWvNyAMPqb9VCc9BRzhwzPYf4qFt5YlDw_92UL9MtfU_wxNy7IAj7VfvdkoaOj8jR_2PtWueoc9JUrUiLmlhaFnMFnSp4BkeVXlGl7osjNrmihY5BegN4qSZxoRyl7VlqSxXNegpBW5LBfARE2ircs0LMhk-vQ9Gnpuh4KWS840H4UqSaW54JjCSyJhJsCREdyNtFBwz4WcyUKybCgilAs18piLY9UZw5YMBEpekmRe5viIU--SA-5eaS4RxLOFhKnvMgMlkJhDdFvFrwcWpazCOcy4WcZ1JNo9rgcco8BgHYIqoRTo7vlXVYmMvR1TrJf6xWGLwA3t572tFxrCT8PeIynWxLXEgJwP8CC7g-h_3vyGHcNbDjBfu35LmZr3Vd4BbNknbLsw2Oeg_v47GXxjE7GE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MS3EfRYN-lrtwcP4oP1eVLwFtM2kV20FbuLePFP-QedSVNRETyIp0KbactMZuabdh4A25lIMoU4wMPwx3hhJjpoB1EguFzwAOMxYT9dXFzG3evw9Ca6GYG3phaG0iqd7a9turXW7kzLcbP12OtRja-I2-iOEFEQCO-4zMoz_fKMcVu1d3KIQt7x_eOjq4Ou50YLeFkoxMBDFJ_mWhiRBwSwc25SqpTQfqKNwmMeRHkYK-5nAUYYseYRVwkqgwmEilAvA7zvKIyHaC5obMLu60deiWhz1wtSxB693qey5D5uCppwZhseibbtHUpTyn_2iN98g3V4xzMw7ZAq26-ZMQsjupiDqf27J9etQ89DWvc-rlhpWFX27tmDwmd4TBU5e9BVadSwUKwsGGJ9lB_LNWWwuzQxu8pS1ZOlMqS2qxCvUsZuXR-6ANf_wtlFGCvKQi8Bo8Y8iDdCLULCjTwV7SzscINM5yYO_GWIGsbJzHU0p8Ea97JJXevLhuGSGC5p4maQLEPrg-6x7unxK0XSyEV-2Z0SHc-vtFuNICWqLv2PUYUuhxVNAOUIWNHnrPzh_psw0b26OJfnJ5dnqzCJVzqUbiOiNRgbPA31OoKmQbphNymD2__WincTGyaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+soil+macro-+and+mesofauna+on+litter+decomposition+and+soil+organic+matter+stabilization&rft.jtitle=Geoderma&rft.au=Frouz%2C+Jan&rft.date=2018-12-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=332&rft.spage=161&rft.epage=172&rft_id=info:doi/10.1016%2Fj.geoderma.2017.08.039&rft.externalDocID=S0016706116306668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon