Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization
Soil fauna consumes substantial amounts of litter and can even consume the entire annual litterfall in some ecosystems. The assimilation efficiency of fauna may reach 50% but is usually much smaller. Soil fauna may affect soil organic matter (SOM) dynamics not only by assimilating litter but also by...
Saved in:
Published in | Geoderma Vol. 332; pp. 161 - 172 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil fauna consumes substantial amounts of litter and can even consume the entire annual litterfall in some ecosystems. The assimilation efficiency of fauna may reach 50% but is usually much smaller. Soil fauna may affect soil organic matter (SOM) dynamics not only by assimilating litter but also by modifying the soil environment at many spatiotemporal scales. Litter processing by fauna usually results in a short-term increase in microbial activity in feces; this activity than decreases such that feces over the long term may decompose more slowly than the original litter. During passage through the guts of litter-feeding fauna, litter modifications include fragmentation, consumption of associated microorganisms, pH and redox changes, removal of easily decomposed polysaccharides, increase in the proportion of lignin, and decrease in soluble polyphenols and carbon:nitrogen (C:N) ratios. The coating of litter with clay during passage through earthworms reduces microbial access to the litter as well as conditions for microbial activity by reducing the diffusion of nutrients and oxygen. At a larger scale, soil fauna affects leaching and the release of particulate organic matter (POM), which in turn affect microbial activity in soil. Fauna also affects the distribution of organic matter in the soil profile and determine whether litter decomposes on the soil surface or as POM bound to soil particles, which substantially affects the microbial community and the rate of decomposition. Fauna affects the amount of organic matter entering different SOM pools, and this effect depends on litter quality and the degree of soil C saturation. At an even larger scale, fauna can change the soil profile, soil properties, and the plant community, which may in turn affect microbial activity and the decomposition rate. The effect of soil fauna on litter decomposition and soil C storage can be positive or negative. Faunal effects tend to be greatest in ecosystems under transition, e.g. ecosystem developing after some disturbance during primary or secondary succession.
•Soil fauna consume substantial amounts of litter•Fauna affect the amount of organic matter entering different SOM pools•The effect of soil fauna on litter decomposition and soil C storage can be positive or negative.•Faunal effects tend to be greatest in ecosystems under transition. |
---|---|
AbstractList | Soil fauna consumes substantial amounts of litter and can even consume the entire annual litterfall in some ecosystems. The assimilation efficiency of fauna may reach 50% but is usually much smaller. Soil fauna may affect soil organic matter (SOM) dynamics not only by assimilating litter but also by modifying the soil environment at many spatiotemporal scales. Litter processing by fauna usually results in a short-term increase in microbial activity in feces; this activity than decreases such that feces over the long term may decompose more slowly than the original litter. During passage through the guts of litter-feeding fauna, litter modifications include fragmentation, consumption of associated microorganisms, pH and redox changes, removal of easily decomposed polysaccharides, increase in the proportion of lignin, and decrease in soluble polyphenols and carbon:nitrogen (C:N) ratios. The coating of litter with clay during passage through earthworms reduces microbial access to the litter as well as conditions for microbial activity by reducing the diffusion of nutrients and oxygen. At a larger scale, soil fauna affects leaching and the release of particulate organic matter (POM), which in turn affect microbial activity in soil. Fauna also affects the distribution of organic matter in the soil profile and determine whether litter decomposes on the soil surface or as POM bound to soil particles, which substantially affects the microbial community and the rate of decomposition. Fauna affects the amount of organic matter entering different SOM pools, and this effect depends on litter quality and the degree of soil C saturation. At an even larger scale, fauna can change the soil profile, soil properties, and the plant community, which may in turn affect microbial activity and the decomposition rate. The effect of soil fauna on litter decomposition and soil C storage can be positive or negative. Faunal effects tend to be greatest in ecosystems under transition, e.g. ecosystem developing after some disturbance during primary or secondary succession.
•Soil fauna consume substantial amounts of litter•Fauna affect the amount of organic matter entering different SOM pools•The effect of soil fauna on litter decomposition and soil C storage can be positive or negative.•Faunal effects tend to be greatest in ecosystems under transition. Soil fauna consumes substantial amounts of litter and can even consume the entire annual litterfall in some ecosystems. The assimilation efficiency of fauna may reach 50% but is usually much smaller. Soil fauna may affect soil organic matter (SOM) dynamics not only by assimilating litter but also by modifying the soil environment at many spatiotemporal scales. Litter processing by fauna usually results in a short-term increase in microbial activity in feces; this activity than decreases such that feces over the long term may decompose more slowly than the original litter. During passage through the guts of litter-feeding fauna, litter modifications include fragmentation, consumption of associated microorganisms, pH and redox changes, removal of easily decomposed polysaccharides, increase in the proportion of lignin, and decrease in soluble polyphenols and carbon:nitrogen (C:N) ratios. The coating of litter with clay during passage through earthworms reduces microbial access to the litter as well as conditions for microbial activity by reducing the diffusion of nutrients and oxygen. At a larger scale, soil fauna affects leaching and the release of particulate organic matter (POM), which in turn affect microbial activity in soil. Fauna also affects the distribution of organic matter in the soil profile and determine whether litter decomposes on the soil surface or as POM bound to soil particles, which substantially affects the microbial community and the rate of decomposition. Fauna affects the amount of organic matter entering different SOM pools, and this effect depends on litter quality and the degree of soil C saturation. At an even larger scale, fauna can change the soil profile, soil properties, and the plant community, which may in turn affect microbial activity and the decomposition rate. The effect of soil fauna on litter decomposition and soil C storage can be positive or negative. Faunal effects tend to be greatest in ecosystems under transition, e.g. ecosystem developing after some disturbance during primary or secondary succession. |
Author | Frouz, Jan |
Author_xml | – sequence: 1 givenname: Jan surname: Frouz fullname: Frouz, Jan email: frouz@natur.cuni.cz organization: Institute of Soil Biology & SoWa RI Biology Centre, Czech Academy of Sciences, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic |
BookMark | eNqFkU1LAzEQhoNUsK3-Bdmjl10n2W52FzwopX5AwYueQ5pMSsrupiapoL_etNWLl56GDM8zzLyZkNHgBiTkmkJBgfLbTbFGp9H3smBA6wKaAsr2jIxpU7Ocs6odkTEkMq-B0wsyCWGTnjUwGJPVwhhUMWTOZMHZLuul8i7P5KCzHoMzcjfIzA1ZZ2NEn2lUrt-6YKNNzT11sJxfy8GqZB-oEOXKdvZb7qlLcm5kF_Dqt07J--Pibf6cL1-fXuYPy1zNKI0547DSSA3VJW0Y12BWDWczZC0amaouKz3jEpgqOW05QgWyrUswJZVV09TllNwc5269-9hhiKK3QWHXyQHdLggGAFVFaVUm9O6IpltD8GiEsvGwbPTSdoKC2EcrNuIvWrGPVkAjUrRJ5__0rbe99F-nxfujiCmHT4teBGVxUKitT78gtLOnRvwA96mapA |
CitedBy_id | crossref_primary_10_1088_1755_1315_1421_1_012017 crossref_primary_10_1111_aab_12932 crossref_primary_10_5194_bg_20_1979_2023 crossref_primary_10_1007_s00468_020_02025_3 crossref_primary_10_1371_journal_pone_0247793 crossref_primary_10_1016_j_apsoil_2021_104309 crossref_primary_10_1002_fee_2724 crossref_primary_10_1016_j_apsoil_2020_103611 crossref_primary_10_3389_fenvs_2021_582409 crossref_primary_10_1016_j_gecco_2024_e02979 crossref_primary_10_1016_j_scitotenv_2022_157820 crossref_primary_10_1016_j_envres_2024_118518 crossref_primary_10_1111_1365_2435_14733 crossref_primary_10_1002_ps_7264 crossref_primary_10_1016_j_gecco_2020_e01413 crossref_primary_10_1016_j_ufug_2024_128628 crossref_primary_10_1016_j_orggeochem_2024_104877 crossref_primary_10_1038_s42003_020_01392_4 crossref_primary_10_1007_s41742_024_00610_9 crossref_primary_10_1016_j_scitotenv_2021_147982 crossref_primary_10_1016_j_jenvman_2021_113341 crossref_primary_10_1016_j_scitotenv_2023_164978 crossref_primary_10_1002_jpln_202300055 crossref_primary_10_1111_btp_12682 crossref_primary_10_1016_j_ecoleng_2021_106443 crossref_primary_10_1016_j_geoderma_2020_114620 crossref_primary_10_1016_j_catena_2023_107384 crossref_primary_10_3390_insects10120414 crossref_primary_10_1007_s11104_023_05902_1 crossref_primary_10_1111_ejss_13556 crossref_primary_10_7717_peerj_12747 crossref_primary_10_1016_j_foreco_2024_121741 crossref_primary_10_1016_j_soilbio_2023_109191 crossref_primary_10_1134_S1064229319110103 crossref_primary_10_1371_journal_pone_0289859 crossref_primary_10_1016_j_agee_2023_108827 crossref_primary_10_1002_ecs2_3638 crossref_primary_10_1016_j_apsoil_2024_105463 crossref_primary_10_1016_j_soilbio_2022_108918 crossref_primary_10_3832_ifor3583_014 crossref_primary_10_1016_j_apsoil_2024_105461 crossref_primary_10_1016_j_sjbs_2021_02_070 crossref_primary_10_1007_s11104_024_06683_x crossref_primary_10_1016_j_apsoil_2021_103919 crossref_primary_10_1016_j_ejsobi_2023_103493 crossref_primary_10_1016_j_geoderma_2020_114393 crossref_primary_10_7554_eLife_93656_3 crossref_primary_10_1007_s42729_024_02138_5 crossref_primary_10_1016_j_geoderma_2022_115849 crossref_primary_10_7554_eLife_93656 crossref_primary_10_1016_j_pedobi_2020_150645 crossref_primary_10_1016_j_soilbio_2023_108990 crossref_primary_10_1016_j_apsoil_2020_103870 crossref_primary_10_1016_j_soilbio_2023_109289 crossref_primary_10_3389_fmicb_2024_1353629 crossref_primary_10_1016_j_geoderma_2022_116019 crossref_primary_10_3390_f13101596 crossref_primary_10_3390_su14105934 crossref_primary_10_1016_j_ecolind_2024_112640 crossref_primary_10_1186_s13717_023_00459_4 crossref_primary_10_1016_j_soilbio_2020_107730 crossref_primary_10_1016_j_soilbio_2020_107972 crossref_primary_10_1007_s11104_023_05892_0 crossref_primary_10_1016_j_scitotenv_2022_155163 crossref_primary_10_3389_fevo_2023_1305115 crossref_primary_10_3390_f14061112 crossref_primary_10_3390_insects12080726 crossref_primary_10_1016_j_geoderma_2020_114720 crossref_primary_10_3389_fmicb_2021_660603 crossref_primary_10_3390_plants13010056 crossref_primary_10_1016_j_scitotenv_2020_144633 crossref_primary_10_3389_fmicb_2020_556118 crossref_primary_10_1007_s00374_022_01639_8 crossref_primary_10_1007_s10457_023_00869_5 crossref_primary_10_3390_agronomy12020312 crossref_primary_10_1093_ee_nvz035 crossref_primary_10_1016_j_apsoil_2024_105846 crossref_primary_10_1016_j_fecs_2025_100294 crossref_primary_10_1002_tqem_22314 crossref_primary_10_1007_s10530_020_02315_4 crossref_primary_10_1002_ldr_5431 crossref_primary_10_1186_s12302_020_00400_y crossref_primary_10_3390_agronomy12020263 crossref_primary_10_1016_j_soilbio_2024_109543 crossref_primary_10_3389_fpls_2021_735495 crossref_primary_10_3390_f15101827 crossref_primary_10_1007_s10021_020_00512_9 crossref_primary_10_1007_s11273_024_09992_1 crossref_primary_10_1016_j_apsoil_2024_105297 crossref_primary_10_1007_s11104_025_07221_z crossref_primary_10_1016_j_geoderma_2020_114262 crossref_primary_10_1016_j_envc_2023_100803 crossref_primary_10_1016_j_soilbio_2020_107998 crossref_primary_10_1016_j_soilbio_2021_108340 crossref_primary_10_1016_j_foreco_2021_119522 crossref_primary_10_1016_j_foreco_2024_121827 crossref_primary_10_1016_j_soilbio_2022_108561 crossref_primary_10_1016_j_pedobi_2021_150774 crossref_primary_10_1007_s11104_024_06531_y crossref_primary_10_1016_j_jenvman_2021_112169 crossref_primary_10_1016_j_scitotenv_2023_166962 crossref_primary_10_1016_j_catena_2025_108838 crossref_primary_10_3390_su12031005 crossref_primary_10_20935_AcadBiol6264 crossref_primary_10_1038_s43247_023_00875_6 crossref_primary_10_1007_s11104_023_06300_3 crossref_primary_10_1007_s11368_024_03953_0 crossref_primary_10_1016_j_fecs_2024_100194 crossref_primary_10_1111_aab_12833 crossref_primary_10_3390_f15122193 crossref_primary_10_1016_j_ecoleng_2025_107578 crossref_primary_10_1016_j_apsoil_2025_105903 crossref_primary_10_1016_j_catena_2023_107390 crossref_primary_10_1016_j_pedobi_2024_150974 crossref_primary_10_1016_j_pedobi_2024_150975 crossref_primary_10_1016_j_soilbio_2020_107786 crossref_primary_10_1016_j_pedobi_2023_150896 crossref_primary_10_1007_s11368_021_03006_w crossref_primary_10_1016_j_geoderma_2022_115804 crossref_primary_10_1071_SR23160 crossref_primary_10_1111_1365_2745_13960 crossref_primary_10_1007_s11356_022_23699_x crossref_primary_10_1016_j_geoderma_2021_115525 crossref_primary_10_1016_j_soilbio_2023_109245 crossref_primary_10_3390_f15030492 crossref_primary_10_1007_s10021_020_00573_w crossref_primary_10_1007_s12649_020_01137_8 crossref_primary_10_1111_gcb_16122 crossref_primary_10_1007_s11104_020_04651_9 crossref_primary_10_1007_s42974_022_00103_9 crossref_primary_10_3389_ffgc_2022_826186 crossref_primary_10_1134_S1064229319120032 crossref_primary_10_1111_1365_2745_13711 crossref_primary_10_1111_btp_12980 crossref_primary_10_1016_j_ejsobi_2021_103383 crossref_primary_10_1016_j_soilbio_2022_108783 crossref_primary_10_1002_ps_5507 crossref_primary_10_1002_ldr_3466 crossref_primary_10_1007_s10493_021_00646_y crossref_primary_10_1016_j_foreco_2022_120396 crossref_primary_10_1016_j_gecco_2021_e01456 crossref_primary_10_1007_s00442_023_05494_8 crossref_primary_10_3390_soilsystems7010006 crossref_primary_10_1111_1365_2435_14720 crossref_primary_10_3390_f15020389 crossref_primary_10_1007_s10533_024_01182_8 crossref_primary_10_1007_s11356_020_09842_6 crossref_primary_10_1007_s10342_023_01628_y crossref_primary_10_1016_j_jenvman_2025_124768 crossref_primary_10_1016_j_geoderma_2024_117042 crossref_primary_10_3390_f12111444 crossref_primary_10_3390_land13040505 crossref_primary_10_5194_bg_16_1225_2019 crossref_primary_10_1007_s10973_020_09961_9 crossref_primary_10_3897_natureconservation_53_106260 crossref_primary_10_1111_1365_2435_14229 crossref_primary_10_1134_S1064229320010135 crossref_primary_10_59717_j_xinn_geo_2024_100117 crossref_primary_10_1007_s11676_019_00915_y crossref_primary_10_1038_s41598_019_46394_3 crossref_primary_10_3390_f14081557 crossref_primary_10_3390_en15114157 crossref_primary_10_1016_j_geoderma_2021_115372 crossref_primary_10_1111_ele_14333 crossref_primary_10_3390_plants13010104 crossref_primary_10_3390_app15020639 crossref_primary_10_3390_f11121280 crossref_primary_10_1016_j_gecco_2022_e02344 crossref_primary_10_1007_s00374_024_01802_3 crossref_primary_10_1016_j_scitotenv_2023_163257 crossref_primary_10_48077_scihor2_2024_65 crossref_primary_10_1016_j_geoderma_2021_114963 crossref_primary_10_1016_j_catena_2025_108872 crossref_primary_10_1016_j_apsoil_2019_07_002 crossref_primary_10_1111_1365_2435_14589 crossref_primary_10_1111_mec_15299 crossref_primary_10_1002_ldr_4409 crossref_primary_10_1016_j_soilbio_2021_108394 crossref_primary_10_1139_cjfr_2021_0169 crossref_primary_10_3390_app13095794 crossref_primary_10_1016_j_jenvman_2025_124673 crossref_primary_10_1111_1365_2745_14174 crossref_primary_10_36783_18069657rbcs20220130 crossref_primary_10_3390_f10110939 crossref_primary_10_3389_fenvs_2022_975904 crossref_primary_10_1007_s11368_024_03896_6 crossref_primary_10_1016_j_fmre_2022_01_029 crossref_primary_10_7717_peerj_18796 crossref_primary_10_1017_S0266467424000026 crossref_primary_10_1016_j_foreco_2020_118510 crossref_primary_10_1016_j_scitotenv_2023_166742 crossref_primary_10_1016_j_apsoil_2020_103585 crossref_primary_10_1016_j_catena_2022_106134 crossref_primary_10_1016_j_catena_2021_105269 crossref_primary_10_1071_WF21112 crossref_primary_10_1016_j_geoderma_2022_116151 crossref_primary_10_1080_01904167_2024_2443120 crossref_primary_10_1007_s10705_021_10160_7 crossref_primary_10_1007_s40333_023_0009_4 crossref_primary_10_3389_feart_2022_1047079 crossref_primary_10_5902_1980509870837 crossref_primary_10_1016_j_apsoil_2022_104633 crossref_primary_10_1007_s10668_022_02885_4 crossref_primary_10_1002_agj2_21642 crossref_primary_10_1016_j_geoderma_2023_116395 crossref_primary_10_1016_j_pedobi_2020_150703 crossref_primary_10_18470_1992_1098_2023_2_127_139 crossref_primary_10_1002_ldr_4068 crossref_primary_10_1016_j_agsy_2021_103251 crossref_primary_10_1111_1749_4877_12503 crossref_primary_10_1016_j_catena_2021_105673 crossref_primary_10_1016_j_jenvman_2024_123881 crossref_primary_10_36783_18069657rbcs20230006 crossref_primary_10_3390_agronomy12010070 crossref_primary_10_1016_j_apsoil_2024_105450 crossref_primary_10_3390_su16156534 crossref_primary_10_3390_microorganisms10020311 crossref_primary_10_1007_s00300_023_03131_x crossref_primary_10_3390_ijerph19063210 crossref_primary_10_1016_j_envres_2025_121459 crossref_primary_10_1016_j_still_2020_104763 crossref_primary_10_1007_s40093_019_00314_7 crossref_primary_10_1016_j_eng_2024_09_012 crossref_primary_10_1134_S1064229321130019 crossref_primary_10_7717_peerj_9750 crossref_primary_10_1016_j_soilbio_2021_108189 crossref_primary_10_1002_ldr_5260 crossref_primary_10_1016_j_apsoil_2021_104231 crossref_primary_10_1093_femsec_fiad131 crossref_primary_10_3390_f15071270 crossref_primary_10_1038_s41598_022_21563_z crossref_primary_10_1111_1365_2435_13217 crossref_primary_10_1111_ejss_13073 crossref_primary_10_1016_j_geoderma_2024_116775 crossref_primary_10_1016_j_soilbio_2020_108115 crossref_primary_10_1038_s41598_019_43026_8 crossref_primary_10_1007_s11104_022_05844_0 crossref_primary_10_1038_s41598_022_20738_y crossref_primary_10_1111_ele_14068 crossref_primary_10_1016_j_ejsobi_2023_103568 crossref_primary_10_1016_j_apsoil_2020_103673 crossref_primary_10_1002_saj2_20136 crossref_primary_10_1016_j_pedobi_2025_151033 crossref_primary_10_1016_j_geoderma_2019_113910 crossref_primary_10_1111_1365_2745_13319 crossref_primary_10_3390_agriculture14030445 crossref_primary_10_1016_j_soilbio_2020_107933 crossref_primary_10_1016_j_apsoil_2021_103968 crossref_primary_10_1002_ldr_5125 crossref_primary_10_1038_s41598_019_47072_0 crossref_primary_10_21697_seb_2023_32 crossref_primary_10_3390_en16207083 crossref_primary_10_1016_j_soilbio_2021_108522 crossref_primary_10_1016_j_scitotenv_2020_137227 crossref_primary_10_1016_j_apsoil_2019_103463 crossref_primary_10_3389_fenvs_2020_00014 crossref_primary_10_1016_j_apsoil_2019_103460 crossref_primary_10_1016_j_catena_2023_107203 |
Cites_doi | 10.1016/0038-0717(88)90096-X 10.2307/2425341 10.1016/S0038-0717(01)00138-9 10.1016/j.apsoil.2013.05.011 10.1016/j.soilbio.2013.01.017 10.1016/j.ejsobi.2014.09.004 10.1111/j.1365-2389.2010.01314.x 10.1016/0038-0717(89)90093-X 10.1016/j.ejsobi.2015.10.002 10.1139/x06-016 10.1007/s10021-016-9990-1 10.1007/s10533-009-9313-0 10.1371/journal.pone.0079694 10.1017/S1464793105006846 10.1139/x00-014 10.1098/rsbl.2012.0537 10.1016/j.apsoil.2014.04.012 10.1016/0038-0717(83)90012-3 10.1016/j.foreco.2013.02.013 10.1016/j.still.2004.03.008 10.1007/BF00378988 10.1038/nature10386 10.1023/A:1008313309557 10.1073/pnas.0404977102 10.1016/S0038-0717(97)00252-6 10.1016/S0022-1910(99)00196-1 10.1007/BF00336131 10.1016/j.soilbio.2012.07.020 10.1111/gcb.12113 10.1007/s11284-012-1022-9 10.1016/j.pedobi.2011.07.002 10.1016/0038-0717(82)90010-4 10.1016/S0016-7061(96)00092-4 10.1016/j.soilbio.2012.07.019 10.1093/jisesa/iev004 10.1007/s10533-011-9658-z 10.1016/S0929-1393(98)00068-7 10.2136/sssaj2002.1981 10.1007/BF02931337 10.1016/S0038-0717(01)00216-4 10.2307/3545406 10.1016/j.geoderma.2007.10.001 10.1016/S1164-5563(01)01123-2 10.1016/j.soilbio.2013.08.025 10.5194/soil-2-565-2016 10.1016/S0038-0717(99)00165-0 10.1016/j.soilbio.2009.03.023 10.1016/S0031-4056(24)00506-7 10.1016/S0929-1393(98)00126-7 10.1016/S0031-4056(23)00618-2 10.2307/3565203 10.1016/S0031-4056(24)00288-9 10.1078/0031-4056-00090 10.1016/j.foreco.2005.08.005 10.1016/j.ecolecon.2010.05.002 10.1016/j.soilbio.2005.01.026 10.1111/nph.13385 10.1016/S0031-4056(23)06896-8 10.1016/j.foreco.2009.11.014 10.1007/s12223-011-0011-7 10.1111/j.1365-2389.2006.00809.x 10.1016/S0031-4056(23)00380-3 10.1016/S0031-4056(23)00320-7 10.1002/(SICI)1520-6327(1996)32:1<85::AID-ARCH6>3.0.CO;2-W 10.1016/S0929-1393(99)00035-9 10.1016/j.jinsphys.2014.06.007 10.1016/j.ejsobi.2007.09.002 10.1016/j.orggeochem.2009.06.008 10.1016/S0929-1393(98)00070-5 10.1007/BF00318544 10.1016/S0038-0717(02)00065-2 10.2307/2388776 10.1128/AEM.00683-12 10.1016/j.ejsobi.2007.08.033 10.1016/S0038-0717(03)00149-4 10.1023/A:1016125726789 10.1016/j.soilbio.2014.07.011 10.1016/j.ejsobi.2008.09.012 10.1016/j.soilbio.2014.05.009 10.1111/j.1365-2486.2008.01672.x 10.1038/ncomms8869 10.1016/j.soilbio.2014.01.011 10.1016/S0038-0717(00)00046-8 10.1007/BF00389017 10.1007/s003740050618 10.1890/1540-9295(2004)002[0427:NIEAAO]2.0.CO;2 10.1016/j.apsoil.2011.12.009 10.1016/j.foreco.2013.05.010 10.1007/BF00000091 10.1016/j.soilbio.2015.03.002 10.1002/ldr.2580 10.1078/S0031-4056(04)70080-3 10.1128/AEM.69.11.6650-6658.2003 10.1126/science.1094875 10.1016/0038-0717(92)90138-N 10.1016/j.soilbio.2009.09.022 10.1371/journal.pone.0139099 10.1016/S0378-1127(98)00505-2 10.1890/06-1357.1 10.1080/02757549308035309 10.1111/j.1469-8137.2007.01984.x 10.1007/BF00260820 10.2307/3544689 10.1007/s00374-009-0391-x 10.1111/j.1469-185X.2009.00078.x 10.1111/ele.12137 10.1016/S0006-3207(02)00355-5 10.1016/S1360-1385(00)01656-3 10.1016/j.soilbio.2010.04.003 10.1016/j.geoderma.2004.12.033 10.1016/S0268-005X(03)00045-6 10.1016/j.apsoil.2005.11.001 10.1073/pnas.0805600105 10.1007/s11104-016-2798-0 10.1016/S0038-0717(00)00097-3 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2017.08.039 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 172 |
ExternalDocumentID | 10_1016_j_geoderma_2017_08_039 S0016706116306668 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c411t-260bde1f1d31826d0fb8624e29efa24ed35d46a02c36196e050a9730f31a58873 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 05:46:08 EDT 2025 Tue Jul 01 04:04:44 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Fri Feb 23 02:30:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil organic matter Mineralization Carbon Sequestration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-260bde1f1d31826d0fb8624e29efa24ed35d46a02c36196e050a9730f31a58873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000551153 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000551153 crossref_citationtrail_10_1016_j_geoderma_2017_08_039 crossref_primary_10_1016_j_geoderma_2017_08_039 elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_08_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-15 |
PublicationDateYYYYMMDD | 2018-12-15 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Byzov (10.1016/j.geoderma.2017.08.039_bb0045) 1998; 9 Tiunov (10.1016/j.geoderma.2017.08.039_bb0595) 2000; 32 Frouz (10.1016/j.geoderma.2017.08.039_bb0165) 2005; 129 Irmler (10.1016/j.geoderma.2017.08.039_bb0320) 1995 Kaneda (10.1016/j.geoderma.2017.08.039_bb0355) 2013; 72 Setälä (10.1016/j.geoderma.2017.08.039_bb0540) 1990; 10 Huhta (10.1016/j.geoderma.2017.08.039_bb0315) 1998; 10 Coûteaux (10.1016/j.geoderma.2017.08.039_bb0080) 1991; 61 Frouz (10.1016/j.geoderma.2017.08.039_bb0200) 2007; 43 Frouz (10.1016/j.geoderma.2017.08.039_bb0155) 2006; 25 Lavelle (10.1016/j.geoderma.2017.08.039_bb0400) 1997; 33 Anderson (10.1016/j.geoderma.2017.08.039_bb0010) 1983; 15 Lavelle (10.1016/j.geoderma.2017.08.039_bb0395) 1992; 24 Osler (10.1016/j.geoderma.2017.08.039_bb0475) 2007; 88 Liao (10.1016/j.geoderma.2017.08.039_bb0415) 2015; 10 Ponge (10.1016/j.geoderma.2017.08.039_bb0495) 2013; 57 Wardle (10.1016/j.geoderma.2017.08.039_bb0620) 2004; 304 Piccolo (10.1016/j.geoderma.2017.08.039_bb0485) 1997; 75 Marín-Spiotta (10.1016/j.geoderma.2017.08.039_bb0435) 2008; 143 David (10.1016/j.geoderma.2017.08.039_bb0100) 1987; 30 Filser (10.1016/j.geoderma.2017.08.039_bb0140) 2016; 2 Hartenstein (10.1016/j.geoderma.2017.08.039_bb0270) 1982; 14 Huhta (10.1016/j.geoderma.2017.08.039_bb0310) 1988; 20 Hassall (10.1016/j.geoderma.2017.08.039_bb0280) 1986; 29 Prescott (10.1016/j.geoderma.2017.08.039_bb0500) 2005; 220 Anderson (10.1016/j.geoderma.2017.08.039_bb0005) 1984 Schmidt (10.1016/j.geoderma.2017.08.039_bb0530) 2011; 478 Šustr (10.1016/j.geoderma.2017.08.039_bb0580) 2014; 67 Hopkins (10.1016/j.geoderma.2017.08.039_bb0305) 1998; 9 Hobbie (10.1016/j.geoderma.2017.08.039_bb0295) 2007; 173 Köhler (10.1016/j.geoderma.2017.08.039_bb0380) 2012; 78 Frouz (10.1016/j.geoderma.2017.08.039_bb0235) 2015; 71 Karpachevsky (10.1016/j.geoderma.2017.08.039_bb0365) 1968; 8 Snyder (10.1016/j.geoderma.2017.08.039_bb0560) 2009; 71 Frouz (10.1016/j.geoderma.2017.08.039_bb0175) 1996; 3 Cárcamo (10.1016/j.geoderma.2017.08.039_bb0050) 2000; 30 Nielsen (10.1016/j.geoderma.2017.08.039_bb0470) 2011; 62 Coulis (10.1016/j.geoderma.2017.08.039_bb0070) 2009; 41 Miltner (10.1016/j.geoderma.2017.08.039_bb0460) 2009; 40 Brady (10.1016/j.geoderma.2017.08.039_bb0040) 2008 van der Drift (10.1016/j.geoderma.2017.08.039_bb0125) 1977; Vol. 25 Frouz (10.1016/j.geoderma.2017.08.039_bb0230) 2013; 8 Špaldoňová (10.1016/j.geoderma.2017.08.039_bb0565) 2014; 83 David (10.1016/j.geoderma.2017.08.039_bb0105) 2014; 76 Williams (10.1016/j.geoderma.2017.08.039_bb0635) 1989; 21 Gunina (10.1016/j.geoderma.2017.08.039_bb0260) 2014; 71 Six (10.1016/j.geoderma.2017.08.039_bb0545) 2002; 66 Frouz (10.1016/j.geoderma.2017.08.039_bb0195) 2006; 33 Whalen (10.1016/j.geoderma.2017.08.039_bb0625) 1999; 31 Six (10.1016/j.geoderma.2017.08.039_bb0550) 2002; 241 Gleixner (10.1016/j.geoderma.2017.08.039_bb0250) 2013; 28 Lemke (10.1016/j.geoderma.2017.08.039_bb0410) 2003; 69 Lawrence (10.1016/j.geoderma.2017.08.039_bb0405) 2003; 113 Bohlen (10.1016/j.geoderma.2017.08.039_bb0025) 2004; 2 Kadamannaya (10.1016/j.geoderma.2017.08.039_bb0345) 2009; 45 Dominati (10.1016/j.geoderma.2017.08.039_bb0120) 2010; 69 Wolters (10.1016/j.geoderma.2017.08.039_bb0645) 2000; 31 Crowther (10.1016/j.geoderma.2017.08.039_bb0090) 2015; 85 Frouz (10.1016/j.geoderma.2017.08.039_bb0180) 1999; 43 Carrera (10.1016/j.geoderma.2017.08.039_bb0055) 2011; 54 Bonkowski (10.1016/j.geoderma.2017.08.039_bb0030) 1998; 9 Liebeke (10.1016/j.geoderma.2017.08.039_bb0420) 2015; 6 von Lützow (10.1016/j.geoderma.2017.08.039_bb0430) 2006; 57 Hassall (10.1016/j.geoderma.2017.08.039_bb0285) 1987; 72 Liiri (10.1016/j.geoderma.2017.08.039_bb0425) 2012; 55 Saito (10.1016/j.geoderma.2017.08.039_bb0515) 1966; 16 Wang (10.1016/j.geoderma.2017.08.039_bb0615) 2015; 206 García-Palacios (10.1016/j.geoderma.2017.08.039_bb0240) 2013; 16 Griffiths (10.1016/j.geoderma.2017.08.039_bb0255) 1989; 33 Miltner (10.1016/j.geoderma.2017.08.039_bb0465) 2012; 111 Gere (10.1016/j.geoderma.2017.08.039_bb0245) 1962; 8 Frouz (10.1016/j.geoderma.2017.08.039_bb0160) 2001; 45 Ponge (10.1016/j.geoderma.2017.08.039_bb0490) 2003; 35 Schwarz (10.1016/j.geoderma.2017.08.039_bb0535) 2016; 403 Kappler (10.1016/j.geoderma.2017.08.039_bb0360) 1999; 13 Wachendorf (10.1016/j.geoderma.2017.08.039_bb0605) 1997 Bocock (10.1016/j.geoderma.2017.08.039_bb0020) 1963 Gunnarsson (10.1016/j.geoderma.2017.08.039_bb0265) 1988; 52 Cole (10.1016/j.geoderma.2017.08.039_bb0060) 2002; 34 Frouz (10.1016/j.geoderma.2017.08.039_bb0190) 2003; 48 McCay (10.1016/j.geoderma.2017.08.039_bb0440) 2013; 304 Williams (10.1016/j.geoderma.2017.08.039_bb0630) 1993; 8 Toyota (10.1016/j.geoderma.2017.08.039_bb0600) 2013; 60 Cragg (10.1016/j.geoderma.2017.08.039_bb0085) 2001; 33 Meier (10.1016/j.geoderma.2017.08.039_bb0450) 2008; 105 Frouz (10.1016/j.geoderma.2017.08.039_bb0185) 2002; 38 Johnson (10.1016/j.geoderma.2017.08.039_bb0335) 2000; 46 Petersen (10.1016/j.geoderma.2017.08.039_bb0480) 1982; 39 Szabó (10.1016/j.geoderma.2017.08.039_bb0590) 1974 Frouz (10.1016/j.geoderma.2017.08.039_bb0150) 2016; 28 Frouz (10.1016/j.geoderma.2017.08.039_bb0225) 2013; 309 Strauss (10.1016/j.geoderma.2017.08.039_bb0570) 2004; 18 Roubíčková (10.1016/j.geoderma.2017.08.039_bb0505) 2014; 65 Schaefer (10.1016/j.geoderma.2017.08.039_bb0525) 1990; 82 Ji (10.1016/j.geoderma.2017.08.039_bb0330) 2000; 32 Bonkowski (10.1016/j.geoderma.2017.08.039_bb0035) 2000; 44 Deleporte (10.1016/j.geoderma.2017.08.039_bb0115) 1999; 118 Fabiel (10.1016/j.geoderma.2017.08.039_bb0135) 1991; 226 Frouz (10.1016/j.geoderma.2017.08.039_bb0215) 2011; 56 Cotrufo (10.1016/j.geoderma.2017.08.039_bb0065) 2013; 19 Rusek (10.1016/j.geoderma.2017.08.039_bb0510) 1978; 18 Knollenberg (10.1016/j.geoderma.2017.08.039_bb0375) 1985; 113 Kautz (10.1016/j.geoderma.2017.08.039_bb0370) 2002; 34 Frouz (10.1016/j.geoderma.2017.08.039_bb9815) 2014; 78 Frouz (10.1016/j.geoderma.2017.08.039_bb0220) 2013; 67 McInerney (10.1016/j.geoderma.2017.08.039_bb0445) 2000; 32 Deleporte (10.1016/j.geoderma.2017.08.039_bb0110) 1988; 9 Wall (10.1016/j.geoderma.2017.08.039_bb0610) 2008; 14 Kampichler (10.1016/j.geoderma.2017.08.039_bb0350) 2009; 84 Frouz (10.1016/j.geoderma.2017.08.039_bb0205) 2008; 44 Suzuki (10.1016/j.geoderma.2017.08.039_bb0585) 2013; 57 Frouz (10.1016/j.geoderma.2017.08.039_bb0170) 2009; 45 Six (10.1016/j.geoderma.2017.08.039_bb0555) 2004; 79 Frouz (10.1016/j.geoderma.2017.08.039_bb0210) 2009; 94 Melody (10.1016/j.geoderma.2017.08.039_bb0455) 2012; 8 Sun (10.1016/j.geoderma.2017.08.039_bb0575) 2015; 15 Coulis (10.1016/j.geoderma.2017.08.039_bb0075) 2016; 19 Dangerfield (10.1016/j.geoderma.2017.08.039_bb0095) 1996; 28 Hättenschwiler (10.1016/j.geoderma.2017.08.039_bb0290) 2005; 102 Dunger (10.1016/j.geoderma.2017.08.039_bb0130) 1991; 118 Aubert (10.1016/j.geoderma.2017.08.039_bb0015) 2010; 259 Francis (10.1016/j.geoderma.2017.08.039_bb0145) 1994; 159 Johnson (10.1016/j.geoderma.2017.08.039_bb0340) 1996; 32 Lavelle (10.1016/j.geoderma.2017.08.039_bb0390) 1988; 6 Hodge (10.1016/j.geoderma.2017.08.039_bb0300) 2000; 5 Sayer (10.1016/j.geoderma.2017.08.039_bb0520) 2005; 80 Wironen (10.1016/j.geoderma.2017.08.039_bb0640) 2006; 36 Ji (10.1016/j.geoderma.2017.08.039_bb0325) 2005; 3 Hassall (10.1016/j.geoderma.2017.08.039_bb0275) 1982; 53 Kuzyakov (10.1016/j.geoderma.2017.08.039_bb0385) 2010; 42 |
References_xml | – volume: 20 start-page: 875 year: 1988 ident: 10.1016/j.geoderma.2017.08.039_bb0310 article-title: Leaching of N and C from birch leaf litter and raw humus with special emphasis on the influence of soil fauna publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(88)90096-X – volume: 113 start-page: 1 year: 1985 ident: 10.1016/j.geoderma.2017.08.039_bb0375 article-title: Consumption of leaf litter by Lumbricus terrestris (Oligochaeta) on a Michigan woodland floodplain publication-title: Am. Midl. Nat. doi: 10.2307/2425341 – volume: 33 start-page: 2073 year: 2001 ident: 10.1016/j.geoderma.2017.08.039_bb0085 article-title: How changes in species group diversity and composition within a trophic group influence decomposition process publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00138-9 – volume: 72 start-page: 7 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0355 article-title: Does the addition of leaf litter affect soil respiration in the same way as addition of macrofauna excrements (of Bibio marci Diptera larvae) produced from the same litter? publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2013.05.011 – volume: 60 start-page: 105 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0600 article-title: Soil fauna increase nitrogen loss in tilled soil with legume but reduce nitrogen loss in non-tilled soil without legume publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.01.017 – volume: 65 start-page: 57 year: 2014 ident: 10.1016/j.geoderma.2017.08.039_bb0505 article-title: Performance of the earthworm Aporrectodea caliginosa on unreclaimed spoil heaps at different successional stages publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2014.09.004 – volume: 62 start-page: 105 year: 2011 ident: 10.1016/j.geoderma.2017.08.039_bb0470 article-title: Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2010.01314.x – volume: 21 start-page: 183 year: 1989 ident: 10.1016/j.geoderma.2017.08.039_bb0635 article-title: Enhanced nutrient mineralization and leaching from decomposing sitka spruce litter by enchytraeid worms publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(89)90093-X – volume: 71 start-page: 21 year: 2015 ident: 10.1016/j.geoderma.2017.08.039_bb0235 article-title: The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2015.10.002 – volume: 36 start-page: 845 year: 2006 ident: 10.1016/j.geoderma.2017.08.039_bb0640 article-title: Exotic earthworm invasion increases soil carbon and nitrogen in an old-growth forest in southern Quebec publication-title: Can. J. For. Res. doi: 10.1139/x06-016 – volume: 118 start-page: 423 year: 1991 ident: 10.1016/j.geoderma.2017.08.039_bb0130 article-title: Zur Primärsukzession humiphager Tiergruppen auf Bergbauflächen publication-title: Zool. Jahrb. Syst. – volume: 19 start-page: 1104 year: 2016 ident: 10.1016/j.geoderma.2017.08.039_bb0075 article-title: Leaf litter consumption by macroarthropods and burial of their faeces enhance decomposition in a Mediterranean ecosystem publication-title: Ecosystems doi: 10.1007/s10021-016-9990-1 – volume: 94 start-page: 111 year: 2009 ident: 10.1016/j.geoderma.2017.08.039_bb0210 article-title: Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation publication-title: Biogeochemistry doi: 10.1007/s10533-009-9313-0 – volume: 9 start-page: 13 year: 1988 ident: 10.1016/j.geoderma.2017.08.039_bb0110 article-title: Etude expérimentale de l'ajustement entre le cycle de Bradysia confinis (Diptera: Sciaridae) et l'évolution du substrat trophique (litière de feuillus): importance des microorganismes publication-title: Acta Oecol. Oecol. Gen. – volume: 8 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0230 article-title: Soil food web changes during spontaneous succession at post mining sites: a possible ecosystem engineering effect on food web organization? publication-title: PLoS One doi: 10.1371/journal.pone.0079694 – volume: 80 start-page: 1 year: 2005 ident: 10.1016/j.geoderma.2017.08.039_bb0520 article-title: Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems publication-title: Biol. Rev. doi: 10.1017/S1464793105006846 – volume: 30 start-page: 817 year: 2000 ident: 10.1016/j.geoderma.2017.08.039_bb0050 article-title: Influence of millipedes on litter decomposition, N mineralization, and microbial communities in a coastal forest in British Columbia, Canada publication-title: Can. J. For. Res. doi: 10.1139/x00-014 – year: 2008 ident: 10.1016/j.geoderma.2017.08.039_bb0040 – volume: 8 start-page: 956 year: 2012 ident: 10.1016/j.geoderma.2017.08.039_bb0455 article-title: Northward range extension of an endemic soil decomposer with a distinct trophic position publication-title: Biol. Lett. doi: 10.1098/rsbl.2012.0537 – volume: 83 start-page: 186 year: 2014 ident: 10.1016/j.geoderma.2017.08.039_bb0565 article-title: The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.04.012 – volume: 15 start-page: 463 year: 1983 ident: 10.1016/j.geoderma.2017.08.039_bb0010 article-title: Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic matter from deciduous woodlands publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(83)90012-3 – volume: 309 start-page: 87 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0225 article-title: Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites publication-title: Forest Ecol. Manag. doi: 10.1016/j.foreco.2013.02.013 – volume: 79 start-page: 7 year: 2004 ident: 10.1016/j.geoderma.2017.08.039_bb0555 article-title: A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.03.008 – volume: 72 start-page: 597 year: 1987 ident: 10.1016/j.geoderma.2017.08.039_bb0285 article-title: Effect of terrestrial isopods on the decomposition of woodland leaf litter publication-title: Oecologia doi: 10.1007/BF00378988 – volume: 478 start-page: 49 year: 2011 ident: 10.1016/j.geoderma.2017.08.039_bb0530 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature doi: 10.1038/nature10386 – volume: Vol. 25 start-page: 203 year: 1977 ident: 10.1016/j.geoderma.2017.08.039_bb0125 article-title: Grazing of springtails on hyphal mats and its influence on fungal growth and respiration – volume: 9 start-page: 423 year: 1998 ident: 10.1016/j.geoderma.2017.08.039_bb0305 article-title: Application of 13C NMR to investigate the transformations and biodegradation of organic materials by some soil and litter-dwelling insects publication-title: Biodegradation doi: 10.1023/A:1008313309557 – volume: 102 start-page: 1519 issue: 5 year: 2005 ident: 10.1016/j.geoderma.2017.08.039_bb0290 article-title: Soil animals alter plant litter diversity effects on decomposition publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0404977102 – volume: 31 start-page: 487 year: 1999 ident: 10.1016/j.geoderma.2017.08.039_bb0625 article-title: Movement of N from decomposing earthworm tissue to soil, microbial and plant N pools publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(97)00252-6 – volume: 46 start-page: 897 year: 2000 ident: 10.1016/j.geoderma.2017.08.039_bb0335 article-title: Oxygen levels in the gut lumens of herbivorous insects publication-title: J. Insect Physiol. doi: 10.1016/S0022-1910(99)00196-1 – start-page: 85 year: 1963 ident: 10.1016/j.geoderma.2017.08.039_bb0020 article-title: The digestion of food by Glomeris – volume: 25 start-page: 388 year: 2006 ident: 10.1016/j.geoderma.2017.08.039_bb0155 article-title: Accumulation of soil organic carbon in relation to other soil characteristic during spontaneous succession in non reclaimed colliery spoil heaps after brown coal mining near Sokolov (the Czech Republic) publication-title: Ekologia – volume: 10 start-page: 170 year: 1990 ident: 10.1016/j.geoderma.2017.08.039_bb0540 article-title: Effects of soil fauna on leaching of nitrogen and phosphorous from experimental systems simulating coniferous forest floor publication-title: Biol. Fertil. Soils doi: 10.1007/BF00336131 – volume: 57 start-page: 116 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0585 article-title: Effects of leaf litter consumption by millipedes (Harpaphe haydeniana) on subsequent decomposition depends on litter type publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.07.020 – volume: 33 start-page: 159 year: 1997 ident: 10.1016/j.geoderma.2017.08.039_bb0400 article-title: Soil function in a changing world: the role of invertebrate ecosystem engineers publication-title: Eur. J. Soil Biol. – volume: 19 start-page: 988 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0065 article-title: The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12113 – volume: 28 start-page: 683 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0250 article-title: Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies publication-title: Ecol. Res. doi: 10.1007/s11284-012-1022-9 – volume: 54 start-page: 291 year: 2011 ident: 10.1016/j.geoderma.2017.08.039_bb0055 article-title: Interactive effects of temperature, soil moisture and enchytraeid activities on C losses from a peatland soil publication-title: Pedobiologia doi: 10.1016/j.pedobi.2011.07.002 – volume: 14 start-page: 387 year: 1982 ident: 10.1016/j.geoderma.2017.08.039_bb0270 article-title: Soil macroinvertebrates, aldehyde oxidase, catalase, cellulase and peroxidase publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(82)90010-4 – volume: 75 start-page: 267 year: 1997 ident: 10.1016/j.geoderma.2017.08.039_bb0485 article-title: Use of humic substances as soil conditioners to increase aggregate stability publication-title: Geoderma doi: 10.1016/S0016-7061(96)00092-4 – volume: 57 start-page: 1048 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0495 article-title: Plant–soil feedbacks mediated by humus forms: a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.07.019 – volume: 15 start-page: 25 year: 2015 ident: 10.1016/j.geoderma.2017.08.039_bb0575 article-title: Variation in C:N:S stoichiometry and nutrient storage related to body size in a holometabolous insect (Curculio davidi) (Coleoptera: Curculionidae) larva publication-title: J. Insect Sci. doi: 10.1093/jisesa/iev004 – volume: 111 start-page: 41 year: 2012 ident: 10.1016/j.geoderma.2017.08.039_bb0465 article-title: SOM genesis: microbial biomass as a significant source publication-title: Biogeochemistry doi: 10.1007/s10533-011-9658-z – year: 1974 ident: 10.1016/j.geoderma.2017.08.039_bb0590 – volume: 9 start-page: 145 year: 1998 ident: 10.1016/j.geoderma.2017.08.039_bb0045 article-title: Principles of the digestion of microorganisms in the gut of soil millipedes: specify and possible mechanisms publication-title: Appl. Soil Ecol. doi: 10.1016/S0929-1393(98)00068-7 – volume: 66 start-page: 1981 year: 2002 ident: 10.1016/j.geoderma.2017.08.039_bb0545 article-title: Measuring and understanding carbon storage in afforested soils by physical fractionation publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1981 – volume: 48 start-page: 535 year: 2003 ident: 10.1016/j.geoderma.2017.08.039_bb0190 article-title: Changes in amount of bacteria during gut passage of leaf litter and during coprophagy in three species of Bibionidae (Diptera) larvae publication-title: Folia Microbiol. doi: 10.1007/BF02931337 – volume: 34 start-page: 599 year: 2002 ident: 10.1016/j.geoderma.2017.08.039_bb0060 article-title: Relationships between enchytraeid worm (Oligochaeta) climate change, and the release of dissolved organic carbon from blanked peat from blanked peat in northern England publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00216-4 – volume: 61 start-page: 54 year: 1991 ident: 10.1016/j.geoderma.2017.08.039_bb0080 article-title: Increasing atmospheric carbon dioxide and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities publication-title: Oikos doi: 10.2307/3545406 – volume: 143 start-page: 49 year: 2008 ident: 10.1016/j.geoderma.2017.08.039_bb0435 article-title: Chemical and mineral control of soil carbon turnover in abandoned tropical pastures publication-title: Geoderma doi: 10.1016/j.geoderma.2007.10.001 – volume: 38 start-page: 47 year: 2002 ident: 10.1016/j.geoderma.2017.08.039_bb0185 article-title: Preliminary data about compartmentalization of the gut of the saprophagous dipteran larvae Penthetria holosericea (Bibionidae) publication-title: Eur. J. Soil Biol. doi: 10.1016/S1164-5563(01)01123-2 – volume: 67 start-page: 212 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0220 article-title: Soil biota in post-mining sites along a climatic gradient in the USA: simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.08.025 – volume: 2 start-page: 565 year: 2016 ident: 10.1016/j.geoderma.2017.08.039_bb0140 article-title: Soil fauna: key to new carbon models publication-title: Soil doi: 10.5194/soil-2-565-2016 – volume: 32 start-page: 265 year: 2000 ident: 10.1016/j.geoderma.2017.08.039_bb0595 article-title: Microbial biomass, biovolume and respiration in Lumbricus terrestris L. cast material of different age publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00165-0 – volume: 71 start-page: 1442 year: 2009 ident: 10.1016/j.geoderma.2017.08.039_bb0560 article-title: Competition between invasive earthworms (Amynthas corticis, Megascolecidae) and native North American millipedes (Pseudopolydesmus erasus, Polydesmidae): effects on carbon cycling and soil structure publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.03.023 – start-page: 135 year: 1997 ident: 10.1016/j.geoderma.2017.08.039_bb0605 article-title: Relationships between litter fauna and chemical changes of litter during decomposition under different moisture conditions – volume: 43 start-page: 221 year: 1999 ident: 10.1016/j.geoderma.2017.08.039_bb0180 article-title: The effect of bibionid larvae feeding on the microbial community of litter and reconsumed excrements publication-title: Pedobiologia doi: 10.1016/S0031-4056(24)00506-7 – volume: 226 start-page: 97 year: 1991 ident: 10.1016/j.geoderma.2017.08.039_bb0135 article-title: Effect of food on growth and bioenergetics of the woodlouse Hemilepistus reaumuri (Audouin de Savigny, 1826) (Isopoda, Oniscoidea) in Benghazi, Libya publication-title: Zool. Anz. – volume: 10 start-page: 277 year: 1998 ident: 10.1016/j.geoderma.2017.08.039_bb0315 article-title: Functional implications of soil fauna diversity in boreal forests publication-title: Appl. Soil Ecol. doi: 10.1016/S0929-1393(98)00126-7 – volume: 18 start-page: 426 year: 1978 ident: 10.1016/j.geoderma.2017.08.039_bb0510 article-title: Pedozootische sukzession während der entwicklung von ökosystemen publication-title: Pedobiologia doi: 10.1016/S0031-4056(23)00618-2 – volume: 52 start-page: 303 year: 1988 ident: 10.1016/j.geoderma.2017.08.039_bb0265 article-title: Importance of leaf litter fragmentation for bacterial growth publication-title: Oikos doi: 10.2307/3565203 – volume: 33 start-page: 355 year: 1989 ident: 10.1016/j.geoderma.2017.08.039_bb0255 article-title: Mineralisation of 14C labelled plant material by Porcellio scaber (Crustacea: Isopoda) publication-title: Pedobiologia doi: 10.1016/S0031-4056(24)00288-9 – volume: 45 start-page: 329 year: 2001 ident: 10.1016/j.geoderma.2017.08.039_bb0160 article-title: A new method for rearing the sciarid fly, Lycoriella ingenua (Diptera: Sciaridae) in the laboratory: possible implications for the study of fly – fungal interactions publication-title: Pedobiologia doi: 10.1078/0031-4056-00090 – volume: 220 start-page: 66 year: 2005 ident: 10.1016/j.geoderma.2017.08.039_bb0500 article-title: Do rates of litter decomposition tell us anything we really need to know? publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2005.08.005 – volume: 69 start-page: 1858 year: 2010 ident: 10.1016/j.geoderma.2017.08.039_bb0120 article-title: A framework for classifying and quantifying the natural capital and ecosystem services of soils publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2010.05.002 – start-page: 1 issue: Supplement 18 year: 1995 ident: 10.1016/j.geoderma.2017.08.039_bb0320 article-title: Die Stellung der Bodenfauna im Stoffhaushalt schleswig-holsteinischer Wälder. Faunistisch-Ökologische Mitteilungen publication-title: Kiel – volume: 3 start-page: 1648 year: 2005 ident: 10.1016/j.geoderma.2017.08.039_bb0325 article-title: Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.01.026 – volume: 206 start-page: 1261 year: 2015 ident: 10.1016/j.geoderma.2017.08.039_bb0615 article-title: Phenolic profile within the fine-root branching orders of an evergreen species highlights a disconnect in root tissue quality predicted by elemental- and molecular-level carbon composition publication-title: New Phytol. doi: 10.1111/nph.13385 – volume: 29 start-page: 219 year: 1986 ident: 10.1016/j.geoderma.2017.08.039_bb0280 article-title: Effects of the collembolan Onychiurus subtenuis on decomposition of Populus tremuloides leaf litter publication-title: Pedobiologia doi: 10.1016/S0031-4056(23)06896-8 – volume: 259 start-page: 563 year: 2010 ident: 10.1016/j.geoderma.2017.08.039_bb0015 article-title: Aboveground–belowground relationships in temperate forests: plant litter composes and microbiota orchestrates publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2009.11.014 – volume: 56 start-page: 36 year: 2011 ident: 10.1016/j.geoderma.2017.08.039_bb0215 article-title: Microbial properties of soil aggregates created by earthworms and other factors: spherical and prismatic soil aggregates from unreclaimed post-mining sites publication-title: Folia Microbiol. doi: 10.1007/s12223-011-0011-7 – volume: 57 start-page: 426 year: 2006 ident: 10.1016/j.geoderma.2017.08.039_bb0430 article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions a review publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00809.x – volume: 30 start-page: 299 year: 1987 ident: 10.1016/j.geoderma.2017.08.039_bb0100 article-title: Consommation annuelle d’ une litiere de chene par une population adulte de Diplopode Cylindroiulus nittidus publication-title: Pedobiologia doi: 10.1016/S0031-4056(23)00380-3 – volume: 8 start-page: 385 year: 1962 ident: 10.1016/j.geoderma.2017.08.039_bb0245 article-title: Natuhrungsverbrauch der Diplopoden und Isopoden in Freulanduntersuchungen publication-title: Acta Zool. Acad. Sci. Hung. – volume: 8 start-page: 146 year: 1968 ident: 10.1016/j.geoderma.2017.08.039_bb0365 article-title: The role of bibionid larvae in decomposition of forest floor litter publication-title: Pedobiologia doi: 10.1016/S0031-4056(23)00320-7 – volume: 32 start-page: 85 year: 1996 ident: 10.1016/j.geoderma.2017.08.039_bb0340 article-title: Potential influence of midgut pH and redox potential on protein utilization in insect herbivores publication-title: Arch. Insect Biochem. Physiol. doi: 10.1002/(SICI)1520-6327(1996)32:1<85::AID-ARCH6>3.0.CO;2-W – volume: 13 start-page: 219 year: 1999 ident: 10.1016/j.geoderma.2017.08.039_bb0360 article-title: Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites publication-title: Appl. Soil Ecol. doi: 10.1016/S0929-1393(99)00035-9 – volume: 67 start-page: 64 year: 2014 ident: 10.1016/j.geoderma.2017.08.039_bb0580 article-title: Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae) publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2014.06.007 – volume: 44 start-page: 109 year: 2008 ident: 10.1016/j.geoderma.2017.08.039_bb0205 article-title: Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2007.09.002 – volume: 40 start-page: 978 year: 2009 ident: 10.1016/j.geoderma.2017.08.039_bb0460 article-title: Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2009.06.008 – volume: 9 start-page: 161 year: 1998 ident: 10.1016/j.geoderma.2017.08.039_bb0030 article-title: Interactions of earthworms (Octolasion lacteum), millipedes (Glomeris marginata) and plants (Hordelymus europaeus) in a beechwood on a basalt hill: implications for litter decomposition and soil formation publication-title: Appl. Soil Ecol. doi: 10.1016/S0929-1393(98)00070-5 – volume: 82 start-page: 128 year: 1990 ident: 10.1016/j.geoderma.2017.08.039_bb0525 article-title: The soil fauna of a beech forest on limestone: trophic structure and energy budget publication-title: Oecologia doi: 10.1007/BF00318544 – volume: 34 start-page: 1253 year: 2002 ident: 10.1016/j.geoderma.2017.08.039_bb0370 article-title: Does Porcellio scaber (Isopoda: Oniscidea) gain from coprophagy? publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00065-2 – volume: 28 start-page: 113 year: 1996 ident: 10.1016/j.geoderma.2017.08.039_bb0095 article-title: Millipede fecal pellet production in selected natural and managed habitats of southern Africa: implications for litter dynamics publication-title: Biotropica doi: 10.2307/2388776 – volume: 78 start-page: 4691 year: 2012 ident: 10.1016/j.geoderma.2017.08.039_bb0380 article-title: High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.) publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00683-12 – volume: 16 start-page: 245 year: 1966 ident: 10.1016/j.geoderma.2017.08.039_bb0515 article-title: Sequential pattern of decomposition of beech litter with special reference to microbial succession publication-title: Ecol. Rev. – volume: 43 start-page: 184 year: 2007 ident: 10.1016/j.geoderma.2017.08.039_bb0200 article-title: The effect of earthworms and other saprophagous macrofauna on soil microstructure in reclaimed and un-reclaimed post-mining sites in Central Europe publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2007.08.033 – volume: 35 start-page: 935 year: 2003 ident: 10.1016/j.geoderma.2017.08.039_bb0490 article-title: Humus form in terrestrial ecosystem: a framework to biodiversity publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00149-4 – volume: 241 start-page: 155 year: 2002 ident: 10.1016/j.geoderma.2017.08.039_bb0550 article-title: Stabilization mechanism of soil organic matter: implication for C saturation of soil publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 78 start-page: 58 year: 2014 ident: 10.1016/j.geoderma.2017.08.039_bb9815 article-title: The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.07.011 – volume: 45 start-page: 192 year: 2009 ident: 10.1016/j.geoderma.2017.08.039_bb0170 article-title: Short term and long term effects of bibionid (Diptera: Bibionidae) larvae feeding on microbial respiration and alder litter decomposition publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2008.09.012 – volume: 76 start-page: 109 year: 2014 ident: 10.1016/j.geoderma.2017.08.039_bb0105 article-title: The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.05.009 – volume: 14 start-page: 2661 year: 2008 ident: 10.1016/j.geoderma.2017.08.039_bb0610 article-title: Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2008.01672.x – volume: 6 start-page: 7869 year: 2015 ident: 10.1016/j.geoderma.2017.08.039_bb0420 article-title: Unique metabolites protect earthworms against plant polyphenols publication-title: Nat. Commun. doi: 10.1038/ncomms8869 – volume: 71 start-page: 95 year: 2014 ident: 10.1016/j.geoderma.2017.08.039_bb0260 article-title: Pathways of litter C by formation of aggregates and SOM density fractions: implications from 13C natural abundance publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.01.011 – volume: 32 start-page: 1281 year: 2000 ident: 10.1016/j.geoderma.2017.08.039_bb0330 article-title: Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00046-8 – volume: 53 start-page: 374 year: 1982 ident: 10.1016/j.geoderma.2017.08.039_bb0275 article-title: The role of coprophagy in the feeding strategies of terrestrial isopods publication-title: Oecologia doi: 10.1007/BF00389017 – volume: 31 start-page: 1 year: 2000 ident: 10.1016/j.geoderma.2017.08.039_bb0645 article-title: Invertebrate control of soil organic matter stability publication-title: Biol. Fertil. Soils doi: 10.1007/s003740050618 – volume: 2 start-page: 427 year: 2004 ident: 10.1016/j.geoderma.2017.08.039_bb0025 article-title: Non-native invasive earthworms as agents of change in northern temperate forests publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2004)002[0427:NIEAAO]2.0.CO;2 – volume: 55 start-page: 53 year: 2012 ident: 10.1016/j.geoderma.2017.08.039_bb0425 article-title: History of land-use intensity can modify the relationship between functional complexity of the soil fauna and soil ecosystem services: a microcosm study publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2011.12.009 – volume: 304 start-page: 254 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0440 article-title: Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack Mountains, USA publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2013.05.010 – volume: 159 start-page: 11 year: 1994 ident: 10.1016/j.geoderma.2017.08.039_bb0145 article-title: The contributions of mycorrhizal fungi to the determination of plant community structure publication-title: Plant Soil doi: 10.1007/BF00000091 – volume: 85 start-page: 153 year: 2015 ident: 10.1016/j.geoderma.2017.08.039_bb0090 article-title: Environmental stress response limits microbial necromass contributions to soil organic carbon publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.03.002 – volume: 28 start-page: 664 year: 2016 ident: 10.1016/j.geoderma.2017.08.039_bb0150 article-title: Effects of soil development time and litter quality on soil carbon sequestration: assessing soil carbon saturation with a field transplant experiment along a post-mining chronosequence publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2580 – volume: 44 start-page: 666 year: 2000 ident: 10.1016/j.geoderma.2017.08.039_bb0035 article-title: Food preferences of earthworms for soil fungi publication-title: Pedobiologia doi: 10.1078/S0031-4056(04)70080-3 – volume: 3 start-page: 101 year: 1996 ident: 10.1016/j.geoderma.2017.08.039_bb0175 article-title: The impact of drying and rewetting of leaf litter on feeding activity of Bibio pomonae (Diptera: Bibionidae) larvae publication-title: Stud. Dipterol. – volume: 69 start-page: 6650 year: 2003 ident: 10.1016/j.geoderma.2017.08.039_bb0410 article-title: Physicochemical conditions and microbial activities in the highly alkaline gut of the humus feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae) publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.11.6650-6658.2003 – volume: 304 start-page: 1629 year: 2004 ident: 10.1016/j.geoderma.2017.08.039_bb0620 article-title: Ecological linkages between aboveground and belowground biota publication-title: Science doi: 10.1126/science.1094875 – volume: 24 start-page: 1491 year: 1992 ident: 10.1016/j.geoderma.2017.08.039_bb0395 article-title: Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(92)90138-N – volume: 41 start-page: 2573 year: 2009 ident: 10.1016/j.geoderma.2017.08.039_bb0070 article-title: The fate of condensed tannins during litter consumption by soil animals publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.09.022 – volume: 10 year: 2015 ident: 10.1016/j.geoderma.2017.08.039_bb0415 article-title: Soil fauna affects dissolved carbon and nitrogen in foliar litter in alpine forest and alpine meadow publication-title: PLoS One doi: 10.1371/journal.pone.0139099 – volume: 118 start-page: 245 year: 1999 ident: 10.1016/j.geoderma.2017.08.039_bb0115 article-title: Long-term effects of mineral amendments on soil fauna and humus in an acid beech forest floor publication-title: Forest Ecol. Manag. doi: 10.1016/S0378-1127(98)00505-2 – volume: 88 start-page: 1611 year: 2007 ident: 10.1016/j.geoderma.2017.08.039_bb0475 article-title: Toward a complete soil C and N cycle: incorporating the soil fauna publication-title: Ecology doi: 10.1890/06-1357.1 – volume: 8 start-page: 203 year: 1993 ident: 10.1016/j.geoderma.2017.08.039_bb0630 article-title: Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soils publication-title: Chem. Ecol. doi: 10.1080/02757549308035309 – volume: 173 start-page: 447 year: 2007 ident: 10.1016/j.geoderma.2017.08.039_bb0295 article-title: Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.01984.x – volume: 6 start-page: 237 year: 1988 ident: 10.1016/j.geoderma.2017.08.039_bb0390 article-title: Earthworm activities and the soil system publication-title: Biol. Fertil. Soils doi: 10.1007/BF00260820 – volume: 39 start-page: 288 year: 1982 ident: 10.1016/j.geoderma.2017.08.039_bb0480 article-title: A comparative analysis of soil fauna populations and their role in decomposition processes publication-title: Oikos doi: 10.2307/3544689 – volume: 45 start-page: 761 year: 2009 ident: 10.1016/j.geoderma.2017.08.039_bb0345 article-title: Leaf litter ingestion and assimilation by two endemic pill millipedes (Arthrosphaera) publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-009-0391-x – volume: 84 start-page: 375 year: 2009 ident: 10.1016/j.geoderma.2017.08.039_bb0350 article-title: The role of microarthropods in terrestrial decomposition: a meta-analysis of 40years of litterbag studies publication-title: Biol. Rev. Camb. Philos. Soc. doi: 10.1111/j.1469-185X.2009.00078.x – volume: 16 start-page: 1045 year: 2013 ident: 10.1016/j.geoderma.2017.08.039_bb0240 article-title: Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes publication-title: Ecol. Lett. doi: 10.1111/ele.12137 – start-page: 59 year: 1984 ident: 10.1016/j.geoderma.2017.08.039_bb0005 article-title: Interaction between microorganisms and soil invertebrates in nutrient flux pathways of forest ecosystems – volume: 113 start-page: 125 year: 2003 ident: 10.1016/j.geoderma.2017.08.039_bb0405 article-title: Litter breakdown by the Seychelles giant millipede and the conservation of soil processes on Cousine Island, Seychelles publication-title: Biol. Conserv. doi: 10.1016/S0006-3207(02)00355-5 – volume: 5 start-page: 304 year: 2000 ident: 10.1016/j.geoderma.2017.08.039_bb0300 article-title: Are microorganisms more effective than plants at competing for nitrogen? publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01656-3 – volume: 42 start-page: 1363 year: 2010 ident: 10.1016/j.geoderma.2017.08.039_bb0385 article-title: Priming effects: interactions between living and dead organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.04.003 – volume: 129 start-page: 54 year: 2005 ident: 10.1016/j.geoderma.2017.08.039_bb0165 article-title: Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.033 – volume: 18 start-page: 81 year: 2004 ident: 10.1016/j.geoderma.2017.08.039_bb0570 article-title: Plant phenolics as cross-linkers of gelatin gels and gelatin based coacervates for use as food ingredients publication-title: Food Hydrocoll. doi: 10.1016/S0268-005X(03)00045-6 – volume: 33 start-page: 308 year: 2006 ident: 10.1016/j.geoderma.2017.08.039_bb0195 article-title: Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: results of a field microcosm experiment publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2005.11.001 – volume: 105 start-page: 19780 year: 2008 ident: 10.1016/j.geoderma.2017.08.039_bb0450 article-title: Links between plant litter chemistry, species diversity, and below-ground ecosystem function publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0805600105 – volume: 403 start-page: 343 year: 2016 ident: 10.1016/j.geoderma.2017.08.039_bb0535 article-title: Drivers of nitrogen leaching from organic layers in Central European beech forests publication-title: Plant Soil doi: 10.1007/s11104-016-2798-0 – volume: 32 start-page: 1989 year: 2000 ident: 10.1016/j.geoderma.2017.08.039_bb0445 article-title: Decomposition of Quercus petraea litter: influence of burial, comminution and earthworms publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00097-3 |
SSID | ssj0017020 |
Score | 2.6474743 |
Snippet | Soil fauna consumes substantial amounts of litter and can even consume the entire annual litterfall in some ecosystems. The assimilation efficiency of fauna... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 161 |
SubjectTerms | Carbon carbon sequestration clay coatings earthworms ecosystems edaphic factors feces leaching lignin microbial activity microbial communities microorganisms Mineralization nutrients oxygen particulate organic matter plant communities polyphenols polysaccharides secondary succession Sequestration Soil organic matter soil profiles soil properties |
Title | Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization |
URI | https://dx.doi.org/10.1016/j.geoderma.2017.08.039 https://www.proquest.com/docview/2000551153 |
Volume | 332 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EXtpD6ZPah2yh19Rdd5OYo0jFttRTBW9hk-wWRRMxeu1v78xmI20peOgpJMwkYWZ35ptkHoQ8pDxKFeAAD8If48mU98AOgkKAnDMB8Ri3ny7exsFoIl-m_rRBBnUtDKZVOttf2XRrrd2VjpNmZzWbYY0vD0JwR4AoEIRjwa-UIa7yx89dmgcPmWvNyAMPqb9VCc9BRzhwzPYf4qFt5YlDw_92UL9MtfU_wxNy7IAj7VfvdkoaOj8jR_2PtWueoc9JUrUiLmlhaFnMFnSp4BkeVXlGl7osjNrmihY5BegN4qSZxoRyl7VlqSxXNegpBW5LBfARE2ircs0LMhk-vQ9Gnpuh4KWS840H4UqSaW54JjCSyJhJsCREdyNtFBwz4WcyUKybCgilAs18piLY9UZw5YMBEpekmRe5viIU--SA-5eaS4RxLOFhKnvMgMlkJhDdFvFrwcWpazCOcy4WcZ1JNo9rgcco8BgHYIqoRTo7vlXVYmMvR1TrJf6xWGLwA3t572tFxrCT8PeIynWxLXEgJwP8CC7g-h_3vyGHcNbDjBfu35LmZr3Vd4BbNknbLsw2Oeg_v47GXxjE7GE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MS3EfRYN-lrtwcP4oP1eVLwFtM2kV20FbuLePFP-QedSVNRETyIp0KbactMZuabdh4A25lIMoU4wMPwx3hhJjpoB1EguFzwAOMxYT9dXFzG3evw9Ca6GYG3phaG0iqd7a9turXW7kzLcbP12OtRja-I2-iOEFEQCO-4zMoz_fKMcVu1d3KIQt7x_eOjq4Ou50YLeFkoxMBDFJ_mWhiRBwSwc25SqpTQfqKNwmMeRHkYK-5nAUYYseYRVwkqgwmEilAvA7zvKIyHaC5obMLu60deiWhz1wtSxB693qey5D5uCppwZhseibbtHUpTyn_2iN98g3V4xzMw7ZAq26-ZMQsjupiDqf27J9etQ89DWvc-rlhpWFX27tmDwmd4TBU5e9BVadSwUKwsGGJ9lB_LNWWwuzQxu8pS1ZOlMqS2qxCvUsZuXR-6ANf_wtlFGCvKQi8Bo8Y8iDdCLULCjTwV7SzscINM5yYO_GWIGsbJzHU0p8Ea97JJXevLhuGSGC5p4maQLEPrg-6x7unxK0XSyEV-2Z0SHc-vtFuNICWqLv2PUYUuhxVNAOUIWNHnrPzh_psw0b26OJfnJ5dnqzCJVzqUbiOiNRgbPA31OoKmQbphNymD2__WincTGyaQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+soil+macro-+and+mesofauna+on+litter+decomposition+and+soil+organic+matter+stabilization&rft.jtitle=Geoderma&rft.au=Frouz%2C+Jan&rft.date=2018-12-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=332&rft.spage=161&rft.epage=172&rft_id=info:doi/10.1016%2Fj.geoderma.2017.08.039&rft.externalDocID=S0016706116306668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |