Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe

Both nitrogen (N) and phosphorus (P) may limit plant production in steppes and affect plant community structure. However, few studies have explored in detail the differences and similarities in the responses of belowground microbial communities to long-term N and P inputs. Using a high-throughput Il...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 292; pp. 25 - 33
Main Authors Ling, Ning, Chen, Dima, Guo, Hui, Wei, Jiaxin, Bai, Yongfei, Shen, Qirong, Hu, Shuijin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Both nitrogen (N) and phosphorus (P) may limit plant production in steppes and affect plant community structure. However, few studies have explored in detail the differences and similarities in the responses of belowground microbial communities to long-term N and P inputs. Using a high-throughput Illumina Miseq sequencing platform, we characterized the bacterial communities in a semi-arid steppe subjected to long-term N or P additions. Our results showed that both the Chao richness and Shannon's diversity were negatively correlated to N input rate, while only Chao richness was significantly and negatively correlated to P input rate. Also, both N and P additions altered the bacterial community structure. The bacterial community between plots of the same N or P input rate was much more dissimilar with the higher input level, indicating more severe niche differentiation in pots with higher N or P input. N Inputs significantly increased the relative abundance of the predicted copiotrophic groups (Proteobacteria and Firmicutes) but reduced the predicted oligotrophic groups (Acidobacteria, Nitrospirae, Chloroflexi), with the order Rhizobiales being most affected. P additions significantly affected only two phyla (Armatimonadetes and Chlorobi), which were positively correlated with P source. Results from the structural equation modelling (SEM) showed that N additions affected the bacterial community primarily by changing the pH, while P additions did so mainly by improving P availability. Our results suggest that the below-ground bacterial communities are more sensitive to N inputs, but P inputs can also play an important role in bacterial niche differentiation. These findings improve our understanding of bacterial responses to N and P inputs, and their impacts on bacterial-mediated processes, especially in the context of increasing anthropogenic nutrient inputs. •Responses of soil bacterial communities to long-term N and P inputs in a steppe were compared.•Both N and P inputs altered the bacterial community but in a different manner.•Severer bacterial community dissimilarity was found by higher N and P inputs.•N inputs affect bacterial community primarily by changing the pH.•P inputs affect the community primarily via mediating P availability.
AbstractList Both nitrogen (N) and phosphorus (P) may limit plant production in steppes and affect plant community structure. However, few studies have explored in detail the differences and similarities in the responses of belowground microbial communities to long-term N and P inputs. Using a high-throughput Illumina Miseq sequencing platform, we characterized the bacterial communities in a semi-arid steppe subjected to long-term N or P additions. Our results showed that both the Chao richness and Shannon's diversity were negatively correlated to N input rate, while only Chao richness was significantly and negatively correlated to P input rate. Also, both N and P additions altered the bacterial community structure. The bacterial community between plots of the same N or P input rate was much more dissimilar with the higher input level, indicating more severe niche differentiation in pots with higher N or P input. N Inputs significantly increased the relative abundance of the predicted copiotrophic groups (Proteobacteria and Firmicutes) but reduced the predicted oligotrophic groups (Acidobacteria, Nitrospirae, Chloroflexi), with the order Rhizobiales being most affected. P additions significantly affected only two phyla (Armatimonadetes and Chlorobi), which were positively correlated with P source. Results from the structural equation modelling (SEM) showed that N additions affected the bacterial community primarily by changing the pH, while P additions did so mainly by improving P availability. Our results suggest that the below-ground bacterial communities are more sensitive to N inputs, but P inputs can also play an important role in bacterial niche differentiation. These findings improve our understanding of bacterial responses to N and P inputs, and their impacts on bacterial-mediated processes, especially in the context of increasing anthropogenic nutrient inputs.
Both nitrogen (N) and phosphorus (P) may limit plant production in steppes and affect plant community structure. However, few studies have explored in detail the differences and similarities in the responses of belowground microbial communities to long-term N and P inputs. Using a high-throughput Illumina Miseq sequencing platform, we characterized the bacterial communities in a semi-arid steppe subjected to long-term N or P additions. Our results showed that both the Chao richness and Shannon's diversity were negatively correlated to N input rate, while only Chao richness was significantly and negatively correlated to P input rate. Also, both N and P additions altered the bacterial community structure. The bacterial community between plots of the same N or P input rate was much more dissimilar with the higher input level, indicating more severe niche differentiation in pots with higher N or P input. N Inputs significantly increased the relative abundance of the predicted copiotrophic groups (Proteobacteria and Firmicutes) but reduced the predicted oligotrophic groups (Acidobacteria, Nitrospirae, Chloroflexi), with the order Rhizobiales being most affected. P additions significantly affected only two phyla (Armatimonadetes and Chlorobi), which were positively correlated with P source. Results from the structural equation modelling (SEM) showed that N additions affected the bacterial community primarily by changing the pH, while P additions did so mainly by improving P availability. Our results suggest that the below-ground bacterial communities are more sensitive to N inputs, but P inputs can also play an important role in bacterial niche differentiation. These findings improve our understanding of bacterial responses to N and P inputs, and their impacts on bacterial-mediated processes, especially in the context of increasing anthropogenic nutrient inputs. •Responses of soil bacterial communities to long-term N and P inputs in a steppe were compared.•Both N and P inputs altered the bacterial community but in a different manner.•Severer bacterial community dissimilarity was found by higher N and P inputs.•N inputs affect bacterial community primarily by changing the pH.•P inputs affect the community primarily via mediating P availability.
Author Ling, Ning
Wei, Jiaxin
Bai, Yongfei
Shen, Qirong
Guo, Hui
Chen, Dima
Hu, Shuijin
Author_xml – sequence: 1
  givenname: Ning
  surname: Ling
  fullname: Ling, Ning
  organization: College of resources and environmental sciences, Nanjing Agricultural University, Nanjing 210095, China
– sequence: 2
  givenname: Dima
  orcidid: 0000-0002-1687-0401
  surname: Chen
  fullname: Chen, Dima
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 3
  givenname: Hui
  surname: Guo
  fullname: Guo, Hui
  organization: College of resources and environmental sciences, Nanjing Agricultural University, Nanjing 210095, China
– sequence: 4
  givenname: Jiaxin
  surname: Wei
  fullname: Wei, Jiaxin
  organization: College of resources and environmental sciences, Nanjing Agricultural University, Nanjing 210095, China
– sequence: 5
  givenname: Yongfei
  surname: Bai
  fullname: Bai, Yongfei
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 6
  givenname: Qirong
  surname: Shen
  fullname: Shen, Qirong
  organization: College of resources and environmental sciences, Nanjing Agricultural University, Nanjing 210095, China
– sequence: 7
  givenname: Shuijin
  surname: Hu
  fullname: Hu, Shuijin
  email: shuijin_hu@njau.edu.cn
  organization: College of resources and environmental sciences, Nanjing Agricultural University, Nanjing 210095, China
BookMark eNqFkM2LFDEQxYOs4OzqvyA5eumxKtOf4EFZ1w9Y1IOeQzqpLDV0J22SEfzvzTB68bJQ8Cje-73DuxZXIQYS4iXCHgH718f9A0VHaTV7BTjsAesdnogdjoNqetVNV2IHNdkM0OMzcZ3zsb4DKNgJ_569p0ShsFlkorzFkCnL6GWOvMjZ2ELp7Nm4rqfAhatbolxieGiqtcov0gQnv0kO26nkKtLITCs3JrGTudC20XPx1Jsl04u_eiN-fLj7fvupuf_68fPtu_vGtoilUUr5znaTU-M0oHVIrW9nwsM8gmtHh-1oCQjnuQfqB2XI227GyXs7Ye_hcCNeXXq3FH-eKBe9cra0LCZQPGWtAKDtpm7EGn1zidoUc07kteViCsdQkuFFI-jzvPqo_82rz_NqwHqHivf_4Vvi1aTfj4NvLyDVHX4xJZ0tU7DkOJEt2kV-rOIP6SScYA
CitedBy_id crossref_primary_10_3389_fmicb_2022_1036451
crossref_primary_10_1007_s11356_020_08629_z
crossref_primary_10_3389_fmicb_2021_730117
crossref_primary_10_1016_j_still_2024_106241
crossref_primary_10_3389_fmicb_2022_856078
crossref_primary_10_3390_agronomy12102405
crossref_primary_10_1016_j_jenvman_2023_118766
crossref_primary_10_1016_j_apsoil_2024_105520
crossref_primary_10_3390_microorganisms8081193
crossref_primary_10_1590_18069657rbcs20180031
crossref_primary_10_1002_agj2_20358
crossref_primary_10_1016_j_pedobi_2021_150748
crossref_primary_10_1016_j_scitotenv_2020_140144
crossref_primary_10_1186_s12870_024_05759_1
crossref_primary_10_1016_j_apsoil_2021_103976
crossref_primary_10_1016_j_scitotenv_2018_01_081
crossref_primary_10_1016_j_biortech_2020_123398
crossref_primary_10_1016_j_soilbio_2021_108495
crossref_primary_10_1016_j_catena_2025_108869
crossref_primary_10_3389_fmars_2023_1131713
crossref_primary_10_1016_j_apsoil_2021_104025
crossref_primary_10_3390_microorganisms9071406
crossref_primary_10_1016_j_ecoenv_2021_112152
crossref_primary_10_1007_s00284_022_02863_z
crossref_primary_10_3389_fmicb_2023_1323902
crossref_primary_10_1134_S1062359022010150
crossref_primary_10_1016_j_indcrop_2020_112761
crossref_primary_10_1016_j_scitotenv_2021_152878
crossref_primary_10_1007_s11356_019_04839_2
crossref_primary_10_3389_fmicb_2024_1439446
crossref_primary_10_1002_ece3_9016
crossref_primary_10_3390_agronomy10010093
crossref_primary_10_1007_s11104_023_06043_1
crossref_primary_10_3390_agronomy13112837
crossref_primary_10_1016_j_still_2023_105668
crossref_primary_10_3390_agronomy13123052
crossref_primary_10_1186_s13568_021_01331_4
crossref_primary_10_1007_s00284_023_03391_0
crossref_primary_10_1002_ldr_4772
crossref_primary_10_1073_pnas_2419917122
crossref_primary_10_3389_fpls_2020_572741
crossref_primary_10_1111_gcb_15167
crossref_primary_10_5194_soil_7_595_2021
crossref_primary_10_3390_su14031613
crossref_primary_10_1002_ecy_3053
crossref_primary_10_1111_rec_13494
crossref_primary_10_1093_jpe_rtad040
crossref_primary_10_3389_fmicb_2023_1211768
crossref_primary_10_1002_ldr_4809
crossref_primary_10_1016_j_apsoil_2024_105341
crossref_primary_10_3389_fmars_2024_1403909
crossref_primary_10_1016_j_csbj_2024_03_012
crossref_primary_10_1016_j_envres_2022_115069
crossref_primary_10_3389_fmicb_2023_1187572
crossref_primary_10_1186_s12870_020_2300_2
crossref_primary_10_1016_j_ecolind_2022_108972
crossref_primary_10_3390_microorganisms13010056
crossref_primary_10_1002_ldr_3835
crossref_primary_10_3389_fmicb_2022_948875
crossref_primary_10_1264_jsme2_ME22013
crossref_primary_10_3389_fpls_2023_1241612
crossref_primary_10_1007_s11104_021_04960_7
crossref_primary_10_1016_j_apsoil_2022_104738
crossref_primary_10_3389_fmicb_2024_1514646
crossref_primary_10_3390_f16030459
crossref_primary_10_1128_msphere_00226_24
crossref_primary_10_1016_j_pedsph_2023_06_002
crossref_primary_10_1016_j_apsoil_2020_103510
crossref_primary_10_1016_j_apsoil_2020_103598
crossref_primary_10_1007_s00248_021_01954_x
crossref_primary_10_1016_j_micres_2021_126842
crossref_primary_10_3389_fmicb_2022_982109
crossref_primary_10_1016_j_soilbio_2019_107521
crossref_primary_10_1016_j_soilbio_2019_107520
crossref_primary_10_1186_s40793_022_00441_1
crossref_primary_10_1016_j_ecoenv_2020_111082
crossref_primary_10_1007_s00203_021_02535_9
crossref_primary_10_1016_j_scitotenv_2021_150136
crossref_primary_10_3390_microorganisms9061244
crossref_primary_10_1007_s11368_020_02619_x
crossref_primary_10_1016_j_geoderma_2021_115275
crossref_primary_10_1139_cjm_2022_0256
crossref_primary_10_1016_j_envpol_2022_120953
crossref_primary_10_7717_peerj_7631
crossref_primary_10_1007_s11104_020_04570_9
crossref_primary_10_1016_j_apsoil_2018_11_009
crossref_primary_10_1016_j_apsoil_2019_09_011
crossref_primary_10_1139_cjfr_2022_0001
crossref_primary_10_1016_j_scitotenv_2020_139849
crossref_primary_10_3389_fmicb_2021_739844
crossref_primary_10_1007_s11104_023_06133_0
crossref_primary_10_1111_ejss_12966
crossref_primary_10_1016_j_scitotenv_2023_168592
crossref_primary_10_3389_fmicb_2021_666982
crossref_primary_10_3390_agronomy13010038
crossref_primary_10_1007_s11368_021_03117_4
crossref_primary_10_1007_s11104_023_06015_5
crossref_primary_10_1016_j_scitotenv_2024_172575
crossref_primary_10_1128_msystems_00162_20
crossref_primary_10_1111_mec_17178
crossref_primary_10_1371_journal_pone_0246263
crossref_primary_10_3390_agriculture14071018
crossref_primary_10_3389_fmars_2025_1531902
crossref_primary_10_1007_s11104_023_05920_z
crossref_primary_10_1016_j_scitotenv_2018_12_126
crossref_primary_10_1016_j_soilbio_2020_107922
crossref_primary_10_1016_j_apsoil_2023_104878
crossref_primary_10_1016_j_still_2021_105112
crossref_primary_10_3389_fpls_2023_1168111
crossref_primary_10_1016_j_soilbio_2023_108975
crossref_primary_10_1007_s11368_022_03283_z
crossref_primary_10_1016_j_apsoil_2021_104103
crossref_primary_10_12677_HJAS_2022_127089
crossref_primary_10_3390_agronomy10060771
crossref_primary_10_3390_su13158318
crossref_primary_10_1038_s41396_019_0567_9
crossref_primary_10_1111_gcb_14163
crossref_primary_10_1016_j_indcrop_2024_119000
crossref_primary_10_1016_j_still_2024_106174
crossref_primary_10_1016_j_jenvman_2024_122896
crossref_primary_10_1016_j_soilbio_2020_107918
crossref_primary_10_1016_j_scitotenv_2024_172100
crossref_primary_10_3389_fmicb_2021_638326
crossref_primary_10_3390_agronomy13122950
crossref_primary_10_2139_ssrn_4192544
crossref_primary_10_1007_s11104_019_04120_y
crossref_primary_10_1007_s11274_024_04086_9
crossref_primary_10_3389_ffunb_2022_913570
crossref_primary_10_3389_fmicb_2022_931795
crossref_primary_10_7717_peerj_4623
crossref_primary_10_1016_j_scitotenv_2022_156148
crossref_primary_10_1007_s00374_020_01435_2
crossref_primary_10_1093_jambio_lxad163
crossref_primary_10_1007_s42729_020_00392_x
crossref_primary_10_1007_s11104_021_05237_9
crossref_primary_10_3390_microorganisms12071434
crossref_primary_10_1016_j_indcrop_2023_118016
crossref_primary_10_3390_microorganisms9030501
crossref_primary_10_3390_agronomy14051056
crossref_primary_10_1002_agj2_21264
crossref_primary_10_1016_j_apsoil_2021_104090
crossref_primary_10_1016_j_scitotenv_2021_148363
crossref_primary_10_1007_s11356_021_17759_x
crossref_primary_10_1007_s42729_023_01380_7
crossref_primary_10_1016_j_apsoil_2022_104496
crossref_primary_10_1016_j_agee_2022_108249
crossref_primary_10_1016_j_scitotenv_2017_12_142
crossref_primary_10_3389_fpls_2022_919912
crossref_primary_10_1016_j_agee_2022_108006
crossref_primary_10_3390_f14081665
crossref_primary_10_1016_j_apsoil_2024_105304
crossref_primary_10_1016_j_geoderma_2021_115086
crossref_primary_10_1080_13102818_2017_1396195
crossref_primary_10_3389_fpls_2023_1159823
crossref_primary_10_1016_j_scitotenv_2019_136207
crossref_primary_10_2166_wst_2018_114
crossref_primary_10_3389_fevo_2022_1073177
crossref_primary_10_1007_s11104_019_04250_3
crossref_primary_10_1016_j_foreco_2022_120165
crossref_primary_10_3390_su151411263
crossref_primary_10_1016_j_apsoil_2024_105391
crossref_primary_10_1016_j_chemosphere_2022_137101
crossref_primary_10_3389_fenvs_2022_947014
crossref_primary_10_3389_fmicb_2020_01462
crossref_primary_10_3389_fmicb_2023_1117355
crossref_primary_10_1016_j_scitotenv_2018_11_031
crossref_primary_10_1016_j_scitotenv_2021_148374
crossref_primary_10_1134_S2079086421010084
crossref_primary_10_3390_su142416759
crossref_primary_10_1371_journal_pone_0211310
crossref_primary_10_1007_s00248_022_01971_4
crossref_primary_10_1007_s11104_024_06881_7
crossref_primary_10_1007_s00248_023_02297_5
crossref_primary_10_3389_fpls_2024_1344733
crossref_primary_10_1016_j_scitotenv_2020_142134
crossref_primary_10_3389_fmicb_2022_999385
crossref_primary_10_3390_agriculture11121233
crossref_primary_10_3389_fmicb_2024_1455891
crossref_primary_10_1016_j_crmicr_2024_100221
crossref_primary_10_1016_j_apsoil_2024_105680
crossref_primary_10_3389_fmicb_2018_01543
crossref_primary_10_3389_fmicb_2024_1404428
crossref_primary_10_1007_s11104_021_05143_0
crossref_primary_10_1186_s12866_022_02452_x
crossref_primary_10_1007_s11368_019_02336_0
Cites_doi 10.1128/AEM.02811-06
10.1023/A:1025045919260
10.1126/science.1136674
10.1099/ijs.0.63911-0
10.1007/s00442-010-1818-7
10.1016/j.soilbio.2014.09.009
10.1007/s00248-009-9583-z
10.1038/ismej.2011.159
10.1016/j.soilbio.2015.05.007
10.1038/nmeth.f.303
10.1038/nature04742
10.1111/j.1365-2486.2009.01950.x
10.1111/j.1365-2486.2012.02639.x
10.1111/1365-2435.12525
10.1186/1471-2148-7-71
10.1007/BF00336054
10.1016/j.soilbio.2015.06.028
10.1016/j.agee.2014.02.001
10.1111/1574-6941.12384
10.1111/j.1461-0248.2005.00813.x
10.1007/s00374-013-0773-y
10.1016/j.soilbio.2014.01.034
10.1111/j.1461-0248.2007.01113.x
10.1016/j.ecolind.2015.12.024
10.3389/fmicb.2011.00094
10.1007/s00374-010-0463-y
10.1890/13-1648.1
10.3389/fmicb.2015.00789
10.1186/2192-1709-1-6
10.1007/s00374-012-0755-5
10.1111/1365-2435.12027
10.1890/05-1839
10.1016/j.soilbio.2015.09.018
10.1111/j.1461-0248.2007.01139.x
10.1007/s00374-014-0964-1
10.1890/10-0426.1
10.1016/j.scitotenv.2015.10.089
10.1038/ismej.2015.96
10.1016/j.apsoil.2014.10.004
10.1002/clen.201200021
10.1128/AEM.00062-07
10.1038/ismej.2013.251
10.1038/nmeth.2604
10.1016/j.soilbio.2015.08.031
10.1038/nature02850
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2017.01.013
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 33
ExternalDocumentID 10_1016_j_geoderma_2017_01_013
S001670611630461X
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c411t-222f5c59d28971cd1e4f4be13b80d48d148ce0e1bb60e672aefc5b19ffc916f03
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Tue Aug 05 10:21:11 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Tue Jul 01 04:04:43 EDT 2025
Fri Feb 23 02:27:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil bacterial diversity
Semi-arid steppe
Soil bacterial community structure
N or P inputs
Illumina Miseq sequencing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-222f5c59d28971cd1e4f4be13b80d48d148ce0e1bb60e672aefc5b19ffc916f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1687-0401
PQID 2000459581
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2000459581
crossref_citationtrail_10_1016_j_geoderma_2017_01_013
crossref_primary_10_1016_j_geoderma_2017_01_013
elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_01_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bai, Han, Wu, Chen, Li (bb0010) 2004; 431
Ramirez, Craine, Fierer (bb0155) 2012; 18
Mantelin, Saux, Zakhia, Béna, Bonneau, Jeder, de Lajudie, Cleyet-Marel (bb0140) 2006; 56
Fontaine, Barot (bb0075) 2005; 8
Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (bb0085) 2008; 320
Tilman, Reich, Knops (bb9000) 2006; 441
Ford, Roberts, Jones (bb0080) 2016; 542
Li, Zeng, Yu, Fan, Mao (bb0130) 2010; 46
Sun, Zhang, Guo, Wang, Chu (bb0185) 2015; 88
Zhang, Wei, Chen, Han (bb0230) 2014; 72
Bai, Wu, Clark, Naeem, Pan, Huang, Zhang, Han (bb0015) 2010; 16
Xu, Su, Su, Han, Biswas, Li (bb0210) 2014; 186
Li, Tang, Jia, Li (bb0120) 2015; 10
Griffiths, Spilles, Bonkowski (bb0100) 2012; 1
Bastian, Heymann, Jacomy (bb0020) 2009
Ramirez, Lauber, Knight, Bradford, Fierer (bb0160) 2010; 91
Chen, Lan, Hu, Bai (bb0045) 2015; 89
Beauregard, Hamel, Atul-Nayyar, St-Arnaud (bb0025) 2009; 59
He, Qi, Dong, Xiao, Peng, Liu, Sun (bb0110) 2013; 41
Yao, Rui, Li, Dai, Bai, Hedenec, Wang, Zhang, Pei, Liu, Wang, He, Frouz, Li (bb0220) 2014; 79
Gontang, Fenical, Jensen (bb0095) 2007; 73
van der Heijden, Bardgett, van Straalen (bb0200) 2008; 11
DeLuca, Drinkwater, Wiefling, DeNicola (bb0050) 1996; 23
Shi, Lalande, Hamel, Ziadi, Gagnon, Hu (bb0170) 2013; 49
Pan, Cassman, de Hollander, Mendes, Korevaar, Geerts, van Veen, Kuramae (bb0150) 2014; 90
Goldfarb, Karaoz, Hanson, Santee, Bradford, Treseder, Wallenstein, Brodie (bb0090) 2011; 2
Sapp, Harrison, Hany, Charlton, Thwaites (bb0180) 2015; 86
Pallett, Pescott, Schäfer (bb0145) 2016; 68
Zhao, Fu, Mathew, Lawrence, Feng (bb0240) 2015; 8
Schlatter, Bakker, Bradeen, Kinkel (bb0165) 2015; 96
Edgar (bb0055) 2013; 10
Zhang, Wei, Chen, Han (bb0235) 2014; 72
Zeng, Liu, Song, Lin, Zhang, Shen, Chu (bb0245) 2016; 92
Chen, Zheng, Shan, Taube, Bai (bb0040) 2013; 27
Li, Li, Wang, Zou, Chen, Zhao, Mo, Li, Li, Xia (bb0125) 2014; 51
Elser, Bracken, Cleland, Gruner, Harpole, Hillebrand, Ngai, Seabloom, Shurin, Smith (bb0060) 2007; 10
Tourova (bb0195) 2003; 72
Zhou, Fornara, Wasson, Wang, Ren, Christie, Jia (bb0250) 2015; 91
Amend, Martiny, Allison, Berlemont, Goulden, Lu, Treseder, Weihe, Martiny (bb0005) 2016; 10
Wang, Garrity, Tiedje, Cole (bb0205) 2007; 73
Liu, Zhang, Gilliam, Gundersen, Zhang, Chen, Mo (bb0135) 2013; 8
Skogen, Holsinger, Cardon (bb0175) 2011; 165
Fierer, Lauber, Ramirez, Zaneveld, Bradford, Knight (bb0070) 2012; 6
Fierer, Bradford, Jackson (bb0065) 2007; 88
Gupta, Lorenzini (bb0105) 2007; 7
Yang, Liu, Tian, Bai, Williams, Wang, Li, Zhang (bb0215) 2015; 6
Lee, Morgan, Dunfield, Tamas, McDonald, Stott (bb0115) 2014; 8
Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Pena, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Reeder, Sevinsky, Tumbaugh, Walters, Widmann, Yatsunenko, Zaneveld, Knight (bb0030) 2010; 7
Chen, Li, Lan, Hu, Bai (bb0035) 2015; 30
Tan, Barret, Mooij, Rice, Morrissey, Dobson, Griffiths, O'Gara (bb0190) 2013; 49
Chen (10.1016/j.geoderma.2017.01.013_bb0045) 2015; 89
Fontaine (10.1016/j.geoderma.2017.01.013_bb0075) 2005; 8
He (10.1016/j.geoderma.2017.01.013_bb0110) 2013; 41
Elser (10.1016/j.geoderma.2017.01.013_bb0060) 2007; 10
Skogen (10.1016/j.geoderma.2017.01.013_bb0175) 2011; 165
Liu (10.1016/j.geoderma.2017.01.013_bb0135) 2013; 8
Yang (10.1016/j.geoderma.2017.01.013_bb0215) 2015; 6
Li (10.1016/j.geoderma.2017.01.013_bb0120) 2015; 10
Amend (10.1016/j.geoderma.2017.01.013_bb0005) 2016; 10
Fierer (10.1016/j.geoderma.2017.01.013_bb0065) 2007; 88
Ford (10.1016/j.geoderma.2017.01.013_bb0080) 2016; 542
Ramirez (10.1016/j.geoderma.2017.01.013_bb0155) 2012; 18
Wang (10.1016/j.geoderma.2017.01.013_bb0205) 2007; 73
Caporaso (10.1016/j.geoderma.2017.01.013_bb0030) 2010; 7
Bastian (10.1016/j.geoderma.2017.01.013_bb0020) 2009
Edgar (10.1016/j.geoderma.2017.01.013_bb0055) 2013; 10
Zhou (10.1016/j.geoderma.2017.01.013_bb0250) 2015; 91
Chen (10.1016/j.geoderma.2017.01.013_bb0040) 2013; 27
Schlatter (10.1016/j.geoderma.2017.01.013_bb0165) 2015; 96
Bai (10.1016/j.geoderma.2017.01.013_bb0010) 2004; 431
Pallett (10.1016/j.geoderma.2017.01.013_bb0145) 2016; 68
Zhang (10.1016/j.geoderma.2017.01.013_bb0230) 2014; 72
Sun (10.1016/j.geoderma.2017.01.013_bb0185) 2015; 88
Tan (10.1016/j.geoderma.2017.01.013_bb0190) 2013; 49
Gontang (10.1016/j.geoderma.2017.01.013_bb0095) 2007; 73
Li (10.1016/j.geoderma.2017.01.013_bb0130) 2010; 46
Pan (10.1016/j.geoderma.2017.01.013_bb0150) 2014; 90
Li (10.1016/j.geoderma.2017.01.013_bb0125) 2014; 51
DeLuca (10.1016/j.geoderma.2017.01.013_bb0050) 1996; 23
Beauregard (10.1016/j.geoderma.2017.01.013_bb0025) 2009; 59
Fierer (10.1016/j.geoderma.2017.01.013_bb0070) 2012; 6
Griffiths (10.1016/j.geoderma.2017.01.013_bb0100) 2012; 1
Shi (10.1016/j.geoderma.2017.01.013_bb0170) 2013; 49
Chen (10.1016/j.geoderma.2017.01.013_bb0035) 2015; 30
Zhao (10.1016/j.geoderma.2017.01.013_bb0240) 2015; 8
Ramirez (10.1016/j.geoderma.2017.01.013_bb0160) 2010; 91
Gupta (10.1016/j.geoderma.2017.01.013_bb0105) 2007; 7
Zhang (10.1016/j.geoderma.2017.01.013_bb0235) 2014; 72
Mantelin (10.1016/j.geoderma.2017.01.013_bb0140) 2006; 56
Galloway (10.1016/j.geoderma.2017.01.013_bb0085) 2008; 320
Sapp (10.1016/j.geoderma.2017.01.013_bb0180) 2015; 86
Yao (10.1016/j.geoderma.2017.01.013_bb0220) 2014; 79
Bai (10.1016/j.geoderma.2017.01.013_bb0015) 2010; 16
Lee (10.1016/j.geoderma.2017.01.013_bb0115) 2014; 8
Tourova (10.1016/j.geoderma.2017.01.013_bb0195) 2003; 72
Zeng (10.1016/j.geoderma.2017.01.013_bb0245) 2016; 92
Xu (10.1016/j.geoderma.2017.01.013_bb0210) 2014; 186
Goldfarb (10.1016/j.geoderma.2017.01.013_bb0090) 2011; 2
Tilman (10.1016/j.geoderma.2017.01.013_bb9000) 2006; 441
van der Heijden (10.1016/j.geoderma.2017.01.013_bb0200) 2008; 11
References_xml – volume: 186
  start-page: 115
  year: 2014
  end-page: 123
  ident: bb0210
  article-title: Restoring the degraded grassland and improving sustainability of grassland ecosystem through chicken farming: a case study in northern China
  publication-title: Agric. Ecosyst. Environ.
– volume: 73
  start-page: 3272
  year: 2007
  end-page: 3282
  ident: bb0095
  article-title: Phylogenetic diversity of gram-positive bacteria cultured from marine sediments
  publication-title: Appl. Environ. Microbiol.
– volume: 10
  start-page: 1135
  year: 2007
  end-page: 1142
  ident: bb0060
  article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems
  publication-title: Ecol. Lett.
– volume: 88
  start-page: 9
  year: 2015
  end-page: 18
  ident: bb0185
  article-title: Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw
  publication-title: Soil Biol. Biochem.
– volume: 320
  start-page: 889
  year: 2008
  end-page: 892
  ident: bb0085
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
– volume: 10
  start-page: 996
  year: 2013
  ident: bb0055
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
– volume: 91
  start-page: 3463
  year: 2010
  end-page: 3470
  ident: bb0160
  article-title: Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems
  publication-title: Ecology
– volume: 8
  year: 2013
  ident: bb0135
  article-title: Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest
  publication-title: PLoS One
– volume: 6
  start-page: 1007
  year: 2012
  end-page: 1017
  ident: bb0070
  article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients
  publication-title: ISME J.
– volume: 18
  start-page: 1918
  year: 2012
  end-page: 1927
  ident: bb0155
  article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes
  publication-title: Glob. Chang. Biol.
– volume: 49
  start-page: 803
  year: 2013
  end-page: 818
  ident: bb0170
  article-title: Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices
  publication-title: Biol. Fertil. Soils
– volume: 10
  year: 2015
  ident: bb0120
  article-title: Profile changes in the soil microbial community when desert becomes oasis
  publication-title: PLoS One
– volume: 23
  start-page: 140
  year: 1996
  end-page: 144
  ident: bb0050
  article-title: Free-living nitrogen-fixing bacteria in temperate cropping systems: influence of nitrogen source
  publication-title: Biol. Fertil. Soils
– volume: 41
  start-page: 1216
  year: 2013
  end-page: 1221
  ident: bb0110
  article-title: Effects of nitrogen fertilization on soil microbial biomass and community functional diversity in temperate grassland in Inner Mongolia, China
  publication-title: Clean-Soil Air Water
– volume: 59
  start-page: 379
  year: 2009
  end-page: 389
  ident: bb0025
  article-title: Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in Alfalfa
  publication-title: Microb. Ecol.
– volume: 90
  start-page: 195
  year: 2014
  end-page: 205
  ident: bb0150
  article-title: Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil
  publication-title: FEMS Microbiol. Ecol.
– volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  ident: bb0200
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecol. Lett.
– volume: 46
  start-page: 653
  year: 2010
  end-page: 658
  ident: bb0130
  article-title: Soil microbial properties under N and P additions in a semi-arid, sandy grassland
  publication-title: Biol. Fertil. Soils
– volume: 7
  start-page: 71
  year: 2007
  ident: bb0105
  article-title: Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the
  publication-title: BMC Evol. Biol.
– volume: 6
  year: 2015
  ident: bb0215
  article-title: Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition
  publication-title: Front. Microbiol.
– volume: 91
  start-page: 76
  year: 2015
  end-page: 83
  ident: bb0250
  article-title: Effects of 44
  publication-title: Soil Biol. Biochem.
– volume: 27
  start-page: 273
  year: 2013
  end-page: 281
  ident: bb0040
  article-title: Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe
  publication-title: Funct. Ecol.
– volume: 96
  start-page: 134
  year: 2015
  end-page: 142
  ident: bb0165
  article-title: Plant community richness and microbial interactions structure bacterial communities in soil
  publication-title: Ecology
– start-page: 361
  year: 2009
  end-page: 362
  ident: bb0020
  publication-title: Gephi: an open source software for exploring and manipulating networks
– volume: 79
  start-page: 81
  year: 2014
  end-page: 90
  ident: bb0220
  article-title: Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the
  publication-title: Soil Biol. Biochem.
– volume: 56
  start-page: 827
  year: 2006
  end-page: 839
  ident: bb0140
  article-title: Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: phyllobacterium bourgognense sp. nov., phyllobacterium ifriqiyense sp. nov., phyllobacterium leguminum sp. nov. and phyllobacterium brassicacearum sp. nov
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 51
  start-page: 207
  year: 2014
  end-page: 215
  ident: bb0125
  article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China
  publication-title: Biol. Fertil. Soils
– volume: 165
  start-page: 261
  year: 2011
  end-page: 269
  ident: bb0175
  article-title: Nitrogen deposition, competition and the decline of a regionally threatened legume,
  publication-title: Oecologia
– volume: 16
  start-page: 358
  year: 2010
  end-page: 372
  ident: bb0015
  article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands
  publication-title: Glob. Chang. Biol.
– volume: 89
  start-page: 99
  year: 2015
  end-page: 108
  ident: bb0045
  article-title: Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification
  publication-title: Soil Biol. Biochem.
– volume: 8
  start-page: 623
  year: 2015
  end-page: 632
  ident: bb0240
  article-title: Soil microbial community structure and activity in a 100-year-old fertilization and crop rotation experiment
  publication-title: J. Plant Ecol.
– volume: 542
  start-page: 203
  year: 2016
  end-page: 209
  ident: bb0080
  article-title: Nitrogen and phosphorus co-limitation and grazing moderate nitrogen impacts on plant growth and nutrient cycling in sand dune grassland
  publication-title: Sci. Total Environ.
– volume: 441
  start-page: 629
  year: 2006
  end-page: 632
  ident: bb9000
  article-title: Biodiversity and ecosystem stability in a decade-long grassland experiment
  publication-title: Nature
– volume: 49
  start-page: 661
  year: 2013
  end-page: 672
  ident: bb0190
  article-title: Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils
  publication-title: Biol. Fertil. Soils
– volume: 30
  start-page: 658
  year: 2015
  end-page: 669
  ident: bb0035
  article-title: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment
  publication-title: Funct. Ecol.
– volume: 72
  start-page: 26
  year: 2014
  end-page: 34
  ident: bb0230
  article-title: The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem
  publication-title: Soil Biol. Biochem.
– volume: 92
  start-page: 41
  year: 2016
  end-page: 49
  ident: bb0245
  article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition
  publication-title: Soil Biol. Biochem.
– volume: 88
  start-page: 1354
  year: 2007
  end-page: 1364
  ident: bb0065
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
– volume: 1
  start-page: 1
  year: 2012
  end-page: 11
  ident: bb0100
  article-title: C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess
  publication-title: Ecol. Process.
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  ident: bb0205
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microbiol.
– volume: 68
  start-page: 73
  year: 2016
  end-page: 81
  ident: bb0145
  article-title: Changes in plant species richness and productivity in response to decreased nitrogen inputs in grassland in southern England
  publication-title: Ecol. Indic.
– volume: 8
  start-page: 1522
  year: 2014
  end-page: 1533
  ident: bb0115
  article-title: Genomic analysis of chthonomonas calidirosea, the first sequenced isolate of the phylum
  publication-title: ISME J.
– volume: 431
  start-page: 181
  year: 2004
  end-page: 184
  ident: bb0010
  article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland
  publication-title: Nature
– volume: 86
  start-page: 1
  year: 2015
  end-page: 9
  ident: bb0180
  article-title: Comparing the effect of digestate and chemical fertiliser on soil bacteria
  publication-title: Appl. Soil Ecol.
– volume: 10
  start-page: 109
  year: 2016
  end-page: 118
  ident: bb0005
  article-title: Microbial response to simulated global change is phylogenetically conserved and linked with functional potential
  publication-title: ISME J.
– volume: 2
  year: 2011
  ident: bb0090
  article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance
  publication-title: Front. Microbiol.
– volume: 72
  start-page: 26
  year: 2014
  end-page: 34
  ident: bb0235
  article-title: The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem
  publication-title: Soil Biol. Biochem.
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: bb0030
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
– volume: 8
  start-page: 1075
  year: 2005
  end-page: 1087
  ident: bb0075
  article-title: Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation
  publication-title: Ecol. Lett.
– volume: 72
  start-page: 389
  year: 2003
  end-page: 402
  ident: bb0195
  article-title: Copy number of ribosomal operons in prokaryotes and its effect on phylogenetic analyses
  publication-title: Microbiology
– volume: 8
  year: 2013
  ident: 10.1016/j.geoderma.2017.01.013_bb0135
  article-title: Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest
  publication-title: PLoS One
– volume: 73
  start-page: 3272
  year: 2007
  ident: 10.1016/j.geoderma.2017.01.013_bb0095
  article-title: Phylogenetic diversity of gram-positive bacteria cultured from marine sediments
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02811-06
– volume: 72
  start-page: 389
  year: 2003
  ident: 10.1016/j.geoderma.2017.01.013_bb0195
  article-title: Copy number of ribosomal operons in prokaryotes and its effect on phylogenetic analyses
  publication-title: Microbiology
  doi: 10.1023/A:1025045919260
– volume: 320
  start-page: 889
  year: 2008
  ident: 10.1016/j.geoderma.2017.01.013_bb0085
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
  doi: 10.1126/science.1136674
– volume: 56
  start-page: 827
  year: 2006
  ident: 10.1016/j.geoderma.2017.01.013_bb0140
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.63911-0
– volume: 165
  start-page: 261
  year: 2011
  ident: 10.1016/j.geoderma.2017.01.013_bb0175
  article-title: Nitrogen deposition, competition and the decline of a regionally threatened legume, Desmodium cuspidatum
  publication-title: Oecologia
  doi: 10.1007/s00442-010-1818-7
– volume: 79
  start-page: 81
  year: 2014
  ident: 10.1016/j.geoderma.2017.01.013_bb0220
  article-title: Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.09.009
– volume: 59
  start-page: 379
  year: 2009
  ident: 10.1016/j.geoderma.2017.01.013_bb0025
  article-title: Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in Alfalfa
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-009-9583-z
– volume: 6
  start-page: 1007
  year: 2012
  ident: 10.1016/j.geoderma.2017.01.013_bb0070
  article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.159
– volume: 88
  start-page: 9
  year: 2015
  ident: 10.1016/j.geoderma.2017.01.013_bb0185
  article-title: Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.05.007
– volume: 7
  start-page: 335
  year: 2010
  ident: 10.1016/j.geoderma.2017.01.013_bb0030
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.303
– start-page: 361
  year: 2009
  ident: 10.1016/j.geoderma.2017.01.013_bb0020
– volume: 441
  start-page: 629
  year: 2006
  ident: 10.1016/j.geoderma.2017.01.013_bb9000
  article-title: Biodiversity and ecosystem stability in a decade-long grassland experiment
  publication-title: Nature
  doi: 10.1038/nature04742
– volume: 16
  start-page: 358
  year: 2010
  ident: 10.1016/j.geoderma.2017.01.013_bb0015
  article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.01950.x
– volume: 18
  start-page: 1918
  year: 2012
  ident: 10.1016/j.geoderma.2017.01.013_bb0155
  article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2012.02639.x
– volume: 30
  start-page: 658
  year: 2015
  ident: 10.1016/j.geoderma.2017.01.013_bb0035
  article-title: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12525
– volume: 7
  start-page: 71
  year: 2007
  ident: 10.1016/j.geoderma.2017.01.013_bb0105
  article-title: Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-7-71
– volume: 23
  start-page: 140
  year: 1996
  ident: 10.1016/j.geoderma.2017.01.013_bb0050
  article-title: Free-living nitrogen-fixing bacteria in temperate cropping systems: influence of nitrogen source
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00336054
– volume: 89
  start-page: 99
  year: 2015
  ident: 10.1016/j.geoderma.2017.01.013_bb0045
  article-title: Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.06.028
– volume: 8
  start-page: 623
  year: 2015
  ident: 10.1016/j.geoderma.2017.01.013_bb0240
  article-title: Soil microbial community structure and activity in a 100-year-old fertilization and crop rotation experiment
  publication-title: J. Plant Ecol.
– volume: 186
  start-page: 115
  year: 2014
  ident: 10.1016/j.geoderma.2017.01.013_bb0210
  article-title: Restoring the degraded grassland and improving sustainability of grassland ecosystem through chicken farming: a case study in northern China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.02.001
– volume: 90
  start-page: 195
  year: 2014
  ident: 10.1016/j.geoderma.2017.01.013_bb0150
  article-title: Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12384
– volume: 8
  start-page: 1075
  year: 2005
  ident: 10.1016/j.geoderma.2017.01.013_bb0075
  article-title: Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2005.00813.x
– volume: 49
  start-page: 803
  year: 2013
  ident: 10.1016/j.geoderma.2017.01.013_bb0170
  article-title: Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-013-0773-y
– volume: 72
  start-page: 26
  year: 2014
  ident: 10.1016/j.geoderma.2017.01.013_bb0235
  article-title: The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.01.034
– volume: 10
  start-page: 1135
  year: 2007
  ident: 10.1016/j.geoderma.2017.01.013_bb0060
  article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01113.x
– volume: 68
  start-page: 73
  year: 2016
  ident: 10.1016/j.geoderma.2017.01.013_bb0145
  article-title: Changes in plant species richness and productivity in response to decreased nitrogen inputs in grassland in southern England
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.12.024
– volume: 2
  year: 2011
  ident: 10.1016/j.geoderma.2017.01.013_bb0090
  article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2011.00094
– volume: 46
  start-page: 653
  year: 2010
  ident: 10.1016/j.geoderma.2017.01.013_bb0130
  article-title: Soil microbial properties under N and P additions in a semi-arid, sandy grassland
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-010-0463-y
– volume: 96
  start-page: 134
  year: 2015
  ident: 10.1016/j.geoderma.2017.01.013_bb0165
  article-title: Plant community richness and microbial interactions structure bacterial communities in soil
  publication-title: Ecology
  doi: 10.1890/13-1648.1
– volume: 6
  year: 2015
  ident: 10.1016/j.geoderma.2017.01.013_bb0215
  article-title: Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00789
– volume: 10
  year: 2015
  ident: 10.1016/j.geoderma.2017.01.013_bb0120
  article-title: Profile changes in the soil microbial community when desert becomes oasis
  publication-title: PLoS One
– volume: 1
  start-page: 1
  year: 2012
  ident: 10.1016/j.geoderma.2017.01.013_bb0100
  article-title: C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess
  publication-title: Ecol. Process.
  doi: 10.1186/2192-1709-1-6
– volume: 49
  start-page: 661
  year: 2013
  ident: 10.1016/j.geoderma.2017.01.013_bb0190
  article-title: Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-012-0755-5
– volume: 27
  start-page: 273
  year: 2013
  ident: 10.1016/j.geoderma.2017.01.013_bb0040
  article-title: Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12027
– volume: 88
  start-page: 1354
  year: 2007
  ident: 10.1016/j.geoderma.2017.01.013_bb0065
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
  doi: 10.1890/05-1839
– volume: 92
  start-page: 41
  year: 2016
  ident: 10.1016/j.geoderma.2017.01.013_bb0245
  article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.09.018
– volume: 11
  start-page: 296
  year: 2008
  ident: 10.1016/j.geoderma.2017.01.013_bb0200
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01139.x
– volume: 51
  start-page: 207
  year: 2014
  ident: 10.1016/j.geoderma.2017.01.013_bb0125
  article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-014-0964-1
– volume: 91
  start-page: 3463
  year: 2010
  ident: 10.1016/j.geoderma.2017.01.013_bb0160
  article-title: Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems
  publication-title: Ecology
  doi: 10.1890/10-0426.1
– volume: 542
  start-page: 203
  year: 2016
  ident: 10.1016/j.geoderma.2017.01.013_bb0080
  article-title: Nitrogen and phosphorus co-limitation and grazing moderate nitrogen impacts on plant growth and nutrient cycling in sand dune grassland
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.10.089
– volume: 10
  start-page: 109
  year: 2016
  ident: 10.1016/j.geoderma.2017.01.013_bb0005
  article-title: Microbial response to simulated global change is phylogenetically conserved and linked with functional potential
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.96
– volume: 86
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2017.01.013_bb0180
  article-title: Comparing the effect of digestate and chemical fertiliser on soil bacteria
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2014.10.004
– volume: 41
  start-page: 1216
  year: 2013
  ident: 10.1016/j.geoderma.2017.01.013_bb0110
  article-title: Effects of nitrogen fertilization on soil microbial biomass and community functional diversity in temperate grassland in Inner Mongolia, China
  publication-title: Clean-Soil Air Water
  doi: 10.1002/clen.201200021
– volume: 73
  start-page: 5261
  year: 2007
  ident: 10.1016/j.geoderma.2017.01.013_bb0205
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00062-07
– volume: 8
  start-page: 1522
  year: 2014
  ident: 10.1016/j.geoderma.2017.01.013_bb0115
  article-title: Genomic analysis of chthonomonas calidirosea, the first sequenced isolate of the phylum Armatimonadetes
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.251
– volume: 10
  start-page: 996
  year: 2013
  ident: 10.1016/j.geoderma.2017.01.013_bb0055
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2604
– volume: 91
  start-page: 76
  year: 2015
  ident: 10.1016/j.geoderma.2017.01.013_bb0250
  article-title: Effects of 44years of chronic nitrogen fertilization on the soil nitrifying community of permanent grassland
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.08.031
– volume: 431
  start-page: 181
  year: 2004
  ident: 10.1016/j.geoderma.2017.01.013_bb0010
  article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland
  publication-title: Nature
  doi: 10.1038/nature02850
– volume: 72
  start-page: 26
  year: 2014
  ident: 10.1016/j.geoderma.2017.01.013_bb0230
  article-title: The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.01.034
SSID ssj0017020
Score 2.5834758
Snippet Both nitrogen (N) and phosphorus (P) may limit plant production in steppes and affect plant community structure. However, few studies have explored in detail...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25
SubjectTerms Acidobacteria
Armatimonadetes
bacterial communities
Chlorobi
Chloroflexi
community structure
correlation
eutrophication
Firmicutes
Illumina Miseq sequencing
N or P inputs
nitrogen
Nitrospirae
phosphorus
plant communities
Rhizobiales
Semi-arid steppe
soil bacteria
Soil bacterial community structure
Soil bacterial diversity
steppes
structural equation modeling
Title Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe
URI https://dx.doi.org/10.1016/j.geoderma.2017.01.013
https://www.proquest.com/docview/2000459581
Volume 292
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-QwFA-De3EP4rrKurqShb1mp7FJ2h4H12FUdtjDCnMrTfIilbEt0851_3Zf2lRcQTwIhdA2CeHl5X2Q936PkB-gUyXSTDKBy2SooQ1LVXHOjIuU41mibeGTk38v1eJWXK_kakIuxlwYH1YZZP8g03tpHb5MAzWnTVn6HF-uElRHaFF41PCVz2AXiefyn_-ewjx4EgVoRq6Y7_0sS_ge98gXHOvxh3jSw3fy-DUF9UJU9_pnvk_2guFIZ8PaPpEJVAfk4-xuE8Az4DNxv0K1Ezy1a7oZol-hpbWjbV2uqR6QmfGfGdJCPJgq7Wq6rqs75mU0XdKisvQPLatm27XY0IK28FAydKktRY5oGjgkt_PLvxcLFuooMCM47xiaAE4amVl0rhJuLAfhhAYe6zSyIrXoERmIgGutIlDJeQHOSM0z5wwajy6Kj8hOVVfwhVCb6hikAOzmhJFQpJlRRsVxYWNs9TGRI_FyE0DGfa2LdT5Gk93nI9FzT_Q84vjEx2T6NK4ZYDbeHJGNe5P_xzA56oI3x34fNzPH0-SvSIoK6m3ri3KijZvJlH99x_wnZNe_-UsnLk_JTrfZwje0XTp91jPnGfkwu7pZLB8BxpHxPw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOUAPqHyJFgpGgqPZeGM7yYFDRam2tF1xaKW9hdgeV6mWJNpkVfXCn-IPMk6cCpBQD6hSJEtxHFlje96MPPOGkHegUyXSTDKB02SI0Ialqpgy4yLleJZoW_jk5NO5mp2LLwu52CA_x1wYH1YZdP-g03ttHd5MgjQnTVn6HF-uEoQjtCg8a_giRFYew_UV-m3tx6MDXOT30-nh57NPMxZKCzAjOO8YoqKTRmYW_Y2EG8tBOKGBxzqNrEgtOgkGIuBaqwhUMi3AGal55pxBe8pFMf73HrkvUF34sgkfftzElfAkClyQXDE_vd_Ski9xU_gKZz3hEU96vlAe_wsR_8KGHvAOt8mjYKnS_UEYj8kGVE_I1v7FKrB1wFPiDkJ5FVQTS7oawm2hpbWjbV0uqR6ooLHPDHkonr2VdjVd1tUF86BA57SoLP1Ky6pZdy02tKAtfC8Z-vCW4hZsGnhGzu9Eus_JZlVX8IJQm-oYpAD8zAkjoUgzo4yK48LG2OodIkfh5SawmvviGst8DF-7zEeh517oecTxiXfI5GZcM_B63DoiG9cm_2OH5gg-t459Oy5mjsfX38kUFdTr1lcBRaM6kynf_Y__vyEPZmenJ_nJ0fz4JXnoe_yNF5evyGa3WsMeGk6dft1vVEq-3fXJ-AV7Xi3E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+responses+of+soil+bacterial+communities+to+long-term+N+and+P+inputs+in+a+semi-arid+steppe&rft.jtitle=Geoderma&rft.au=Ling%2C+Ning&rft.au=Chen%2C+Dima&rft.au=Guo%2C+Hui&rft.au=Wei%2C+Jiaxin&rft.date=2017-04-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=292&rft.spage=25&rft.epage=33&rft_id=info:doi/10.1016%2Fj.geoderma.2017.01.013&rft.externalDocID=S001670611630461X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon