Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe
Both nitrogen (N) and phosphorus (P) may limit plant production in steppes and affect plant community structure. However, few studies have explored in detail the differences and similarities in the responses of belowground microbial communities to long-term N and P inputs. Using a high-throughput Il...
Saved in:
Published in | Geoderma Vol. 292; pp. 25 - 33 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Both nitrogen (N) and phosphorus (P) may limit plant production in steppes and affect plant community structure. However, few studies have explored in detail the differences and similarities in the responses of belowground microbial communities to long-term N and P inputs. Using a high-throughput Illumina Miseq sequencing platform, we characterized the bacterial communities in a semi-arid steppe subjected to long-term N or P additions. Our results showed that both the Chao richness and Shannon's diversity were negatively correlated to N input rate, while only Chao richness was significantly and negatively correlated to P input rate. Also, both N and P additions altered the bacterial community structure. The bacterial community between plots of the same N or P input rate was much more dissimilar with the higher input level, indicating more severe niche differentiation in pots with higher N or P input. N Inputs significantly increased the relative abundance of the predicted copiotrophic groups (Proteobacteria and Firmicutes) but reduced the predicted oligotrophic groups (Acidobacteria, Nitrospirae, Chloroflexi), with the order Rhizobiales being most affected. P additions significantly affected only two phyla (Armatimonadetes and Chlorobi), which were positively correlated with P source. Results from the structural equation modelling (SEM) showed that N additions affected the bacterial community primarily by changing the pH, while P additions did so mainly by improving P availability. Our results suggest that the below-ground bacterial communities are more sensitive to N inputs, but P inputs can also play an important role in bacterial niche differentiation. These findings improve our understanding of bacterial responses to N and P inputs, and their impacts on bacterial-mediated processes, especially in the context of increasing anthropogenic nutrient inputs.
•Responses of soil bacterial communities to long-term N and P inputs in a steppe were compared.•Both N and P inputs altered the bacterial community but in a different manner.•Severer bacterial community dissimilarity was found by higher N and P inputs.•N inputs affect bacterial community primarily by changing the pH.•P inputs affect the community primarily via mediating P availability. |
---|---|
AbstractList | Both nitrogen (N) and phosphorus (P) may limit plant production in steppes and affect plant community structure. However, few studies have explored in detail the differences and similarities in the responses of belowground microbial communities to long-term N and P inputs. Using a high-throughput Illumina Miseq sequencing platform, we characterized the bacterial communities in a semi-arid steppe subjected to long-term N or P additions. Our results showed that both the Chao richness and Shannon's diversity were negatively correlated to N input rate, while only Chao richness was significantly and negatively correlated to P input rate. Also, both N and P additions altered the bacterial community structure. The bacterial community between plots of the same N or P input rate was much more dissimilar with the higher input level, indicating more severe niche differentiation in pots with higher N or P input. N Inputs significantly increased the relative abundance of the predicted copiotrophic groups (Proteobacteria and Firmicutes) but reduced the predicted oligotrophic groups (Acidobacteria, Nitrospirae, Chloroflexi), with the order Rhizobiales being most affected. P additions significantly affected only two phyla (Armatimonadetes and Chlorobi), which were positively correlated with P source. Results from the structural equation modelling (SEM) showed that N additions affected the bacterial community primarily by changing the pH, while P additions did so mainly by improving P availability. Our results suggest that the below-ground bacterial communities are more sensitive to N inputs, but P inputs can also play an important role in bacterial niche differentiation. These findings improve our understanding of bacterial responses to N and P inputs, and their impacts on bacterial-mediated processes, especially in the context of increasing anthropogenic nutrient inputs. Both nitrogen (N) and phosphorus (P) may limit plant production in steppes and affect plant community structure. However, few studies have explored in detail the differences and similarities in the responses of belowground microbial communities to long-term N and P inputs. Using a high-throughput Illumina Miseq sequencing platform, we characterized the bacterial communities in a semi-arid steppe subjected to long-term N or P additions. Our results showed that both the Chao richness and Shannon's diversity were negatively correlated to N input rate, while only Chao richness was significantly and negatively correlated to P input rate. Also, both N and P additions altered the bacterial community structure. The bacterial community between plots of the same N or P input rate was much more dissimilar with the higher input level, indicating more severe niche differentiation in pots with higher N or P input. N Inputs significantly increased the relative abundance of the predicted copiotrophic groups (Proteobacteria and Firmicutes) but reduced the predicted oligotrophic groups (Acidobacteria, Nitrospirae, Chloroflexi), with the order Rhizobiales being most affected. P additions significantly affected only two phyla (Armatimonadetes and Chlorobi), which were positively correlated with P source. Results from the structural equation modelling (SEM) showed that N additions affected the bacterial community primarily by changing the pH, while P additions did so mainly by improving P availability. Our results suggest that the below-ground bacterial communities are more sensitive to N inputs, but P inputs can also play an important role in bacterial niche differentiation. These findings improve our understanding of bacterial responses to N and P inputs, and their impacts on bacterial-mediated processes, especially in the context of increasing anthropogenic nutrient inputs. •Responses of soil bacterial communities to long-term N and P inputs in a steppe were compared.•Both N and P inputs altered the bacterial community but in a different manner.•Severer bacterial community dissimilarity was found by higher N and P inputs.•N inputs affect bacterial community primarily by changing the pH.•P inputs affect the community primarily via mediating P availability. |
Author | Ling, Ning Wei, Jiaxin Bai, Yongfei Shen, Qirong Guo, Hui Chen, Dima Hu, Shuijin |
Author_xml | – sequence: 1 givenname: Ning surname: Ling fullname: Ling, Ning organization: College of resources and environmental sciences, Nanjing Agricultural University, Nanjing 210095, China – sequence: 2 givenname: Dima orcidid: 0000-0002-1687-0401 surname: Chen fullname: Chen, Dima organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 3 givenname: Hui surname: Guo fullname: Guo, Hui organization: College of resources and environmental sciences, Nanjing Agricultural University, Nanjing 210095, China – sequence: 4 givenname: Jiaxin surname: Wei fullname: Wei, Jiaxin organization: College of resources and environmental sciences, Nanjing Agricultural University, Nanjing 210095, China – sequence: 5 givenname: Yongfei surname: Bai fullname: Bai, Yongfei organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 6 givenname: Qirong surname: Shen fullname: Shen, Qirong organization: College of resources and environmental sciences, Nanjing Agricultural University, Nanjing 210095, China – sequence: 7 givenname: Shuijin surname: Hu fullname: Hu, Shuijin email: shuijin_hu@njau.edu.cn organization: College of resources and environmental sciences, Nanjing Agricultural University, Nanjing 210095, China |
BookMark | eNqFkM2LFDEQxYOs4OzqvyA5eumxKtOf4EFZ1w9Y1IOeQzqpLDV0J22SEfzvzTB68bJQ8Cje-73DuxZXIQYS4iXCHgH718f9A0VHaTV7BTjsAesdnogdjoNqetVNV2IHNdkM0OMzcZ3zsb4DKNgJ_569p0ShsFlkorzFkCnL6GWOvMjZ2ELp7Nm4rqfAhatbolxieGiqtcov0gQnv0kO26nkKtLITCs3JrGTudC20XPx1Jsl04u_eiN-fLj7fvupuf_68fPtu_vGtoilUUr5znaTU-M0oHVIrW9nwsM8gmtHh-1oCQjnuQfqB2XI227GyXs7Ye_hcCNeXXq3FH-eKBe9cra0LCZQPGWtAKDtpm7EGn1zidoUc07kteViCsdQkuFFI-jzvPqo_82rz_NqwHqHivf_4Vvi1aTfj4NvLyDVHX4xJZ0tU7DkOJEt2kV-rOIP6SScYA |
CitedBy_id | crossref_primary_10_3389_fmicb_2022_1036451 crossref_primary_10_1007_s11356_020_08629_z crossref_primary_10_3389_fmicb_2021_730117 crossref_primary_10_1016_j_still_2024_106241 crossref_primary_10_3389_fmicb_2022_856078 crossref_primary_10_3390_agronomy12102405 crossref_primary_10_1016_j_jenvman_2023_118766 crossref_primary_10_1016_j_apsoil_2024_105520 crossref_primary_10_3390_microorganisms8081193 crossref_primary_10_1590_18069657rbcs20180031 crossref_primary_10_1002_agj2_20358 crossref_primary_10_1016_j_pedobi_2021_150748 crossref_primary_10_1016_j_scitotenv_2020_140144 crossref_primary_10_1186_s12870_024_05759_1 crossref_primary_10_1016_j_apsoil_2021_103976 crossref_primary_10_1016_j_scitotenv_2018_01_081 crossref_primary_10_1016_j_biortech_2020_123398 crossref_primary_10_1016_j_soilbio_2021_108495 crossref_primary_10_1016_j_catena_2025_108869 crossref_primary_10_3389_fmars_2023_1131713 crossref_primary_10_1016_j_apsoil_2021_104025 crossref_primary_10_3390_microorganisms9071406 crossref_primary_10_1016_j_ecoenv_2021_112152 crossref_primary_10_1007_s00284_022_02863_z crossref_primary_10_3389_fmicb_2023_1323902 crossref_primary_10_1134_S1062359022010150 crossref_primary_10_1016_j_indcrop_2020_112761 crossref_primary_10_1016_j_scitotenv_2021_152878 crossref_primary_10_1007_s11356_019_04839_2 crossref_primary_10_3389_fmicb_2024_1439446 crossref_primary_10_1002_ece3_9016 crossref_primary_10_3390_agronomy10010093 crossref_primary_10_1007_s11104_023_06043_1 crossref_primary_10_3390_agronomy13112837 crossref_primary_10_1016_j_still_2023_105668 crossref_primary_10_3390_agronomy13123052 crossref_primary_10_1186_s13568_021_01331_4 crossref_primary_10_1007_s00284_023_03391_0 crossref_primary_10_1002_ldr_4772 crossref_primary_10_1073_pnas_2419917122 crossref_primary_10_3389_fpls_2020_572741 crossref_primary_10_1111_gcb_15167 crossref_primary_10_5194_soil_7_595_2021 crossref_primary_10_3390_su14031613 crossref_primary_10_1002_ecy_3053 crossref_primary_10_1111_rec_13494 crossref_primary_10_1093_jpe_rtad040 crossref_primary_10_3389_fmicb_2023_1211768 crossref_primary_10_1002_ldr_4809 crossref_primary_10_1016_j_apsoil_2024_105341 crossref_primary_10_3389_fmars_2024_1403909 crossref_primary_10_1016_j_csbj_2024_03_012 crossref_primary_10_1016_j_envres_2022_115069 crossref_primary_10_3389_fmicb_2023_1187572 crossref_primary_10_1186_s12870_020_2300_2 crossref_primary_10_1016_j_ecolind_2022_108972 crossref_primary_10_3390_microorganisms13010056 crossref_primary_10_1002_ldr_3835 crossref_primary_10_3389_fmicb_2022_948875 crossref_primary_10_1264_jsme2_ME22013 crossref_primary_10_3389_fpls_2023_1241612 crossref_primary_10_1007_s11104_021_04960_7 crossref_primary_10_1016_j_apsoil_2022_104738 crossref_primary_10_3389_fmicb_2024_1514646 crossref_primary_10_3390_f16030459 crossref_primary_10_1128_msphere_00226_24 crossref_primary_10_1016_j_pedsph_2023_06_002 crossref_primary_10_1016_j_apsoil_2020_103510 crossref_primary_10_1016_j_apsoil_2020_103598 crossref_primary_10_1007_s00248_021_01954_x crossref_primary_10_1016_j_micres_2021_126842 crossref_primary_10_3389_fmicb_2022_982109 crossref_primary_10_1016_j_soilbio_2019_107521 crossref_primary_10_1016_j_soilbio_2019_107520 crossref_primary_10_1186_s40793_022_00441_1 crossref_primary_10_1016_j_ecoenv_2020_111082 crossref_primary_10_1007_s00203_021_02535_9 crossref_primary_10_1016_j_scitotenv_2021_150136 crossref_primary_10_3390_microorganisms9061244 crossref_primary_10_1007_s11368_020_02619_x crossref_primary_10_1016_j_geoderma_2021_115275 crossref_primary_10_1139_cjm_2022_0256 crossref_primary_10_1016_j_envpol_2022_120953 crossref_primary_10_7717_peerj_7631 crossref_primary_10_1007_s11104_020_04570_9 crossref_primary_10_1016_j_apsoil_2018_11_009 crossref_primary_10_1016_j_apsoil_2019_09_011 crossref_primary_10_1139_cjfr_2022_0001 crossref_primary_10_1016_j_scitotenv_2020_139849 crossref_primary_10_3389_fmicb_2021_739844 crossref_primary_10_1007_s11104_023_06133_0 crossref_primary_10_1111_ejss_12966 crossref_primary_10_1016_j_scitotenv_2023_168592 crossref_primary_10_3389_fmicb_2021_666982 crossref_primary_10_3390_agronomy13010038 crossref_primary_10_1007_s11368_021_03117_4 crossref_primary_10_1007_s11104_023_06015_5 crossref_primary_10_1016_j_scitotenv_2024_172575 crossref_primary_10_1128_msystems_00162_20 crossref_primary_10_1111_mec_17178 crossref_primary_10_1371_journal_pone_0246263 crossref_primary_10_3390_agriculture14071018 crossref_primary_10_3389_fmars_2025_1531902 crossref_primary_10_1007_s11104_023_05920_z crossref_primary_10_1016_j_scitotenv_2018_12_126 crossref_primary_10_1016_j_soilbio_2020_107922 crossref_primary_10_1016_j_apsoil_2023_104878 crossref_primary_10_1016_j_still_2021_105112 crossref_primary_10_3389_fpls_2023_1168111 crossref_primary_10_1016_j_soilbio_2023_108975 crossref_primary_10_1007_s11368_022_03283_z crossref_primary_10_1016_j_apsoil_2021_104103 crossref_primary_10_12677_HJAS_2022_127089 crossref_primary_10_3390_agronomy10060771 crossref_primary_10_3390_su13158318 crossref_primary_10_1038_s41396_019_0567_9 crossref_primary_10_1111_gcb_14163 crossref_primary_10_1016_j_indcrop_2024_119000 crossref_primary_10_1016_j_still_2024_106174 crossref_primary_10_1016_j_jenvman_2024_122896 crossref_primary_10_1016_j_soilbio_2020_107918 crossref_primary_10_1016_j_scitotenv_2024_172100 crossref_primary_10_3389_fmicb_2021_638326 crossref_primary_10_3390_agronomy13122950 crossref_primary_10_2139_ssrn_4192544 crossref_primary_10_1007_s11104_019_04120_y crossref_primary_10_1007_s11274_024_04086_9 crossref_primary_10_3389_ffunb_2022_913570 crossref_primary_10_3389_fmicb_2022_931795 crossref_primary_10_7717_peerj_4623 crossref_primary_10_1016_j_scitotenv_2022_156148 crossref_primary_10_1007_s00374_020_01435_2 crossref_primary_10_1093_jambio_lxad163 crossref_primary_10_1007_s42729_020_00392_x crossref_primary_10_1007_s11104_021_05237_9 crossref_primary_10_3390_microorganisms12071434 crossref_primary_10_1016_j_indcrop_2023_118016 crossref_primary_10_3390_microorganisms9030501 crossref_primary_10_3390_agronomy14051056 crossref_primary_10_1002_agj2_21264 crossref_primary_10_1016_j_apsoil_2021_104090 crossref_primary_10_1016_j_scitotenv_2021_148363 crossref_primary_10_1007_s11356_021_17759_x crossref_primary_10_1007_s42729_023_01380_7 crossref_primary_10_1016_j_apsoil_2022_104496 crossref_primary_10_1016_j_agee_2022_108249 crossref_primary_10_1016_j_scitotenv_2017_12_142 crossref_primary_10_3389_fpls_2022_919912 crossref_primary_10_1016_j_agee_2022_108006 crossref_primary_10_3390_f14081665 crossref_primary_10_1016_j_apsoil_2024_105304 crossref_primary_10_1016_j_geoderma_2021_115086 crossref_primary_10_1080_13102818_2017_1396195 crossref_primary_10_3389_fpls_2023_1159823 crossref_primary_10_1016_j_scitotenv_2019_136207 crossref_primary_10_2166_wst_2018_114 crossref_primary_10_3389_fevo_2022_1073177 crossref_primary_10_1007_s11104_019_04250_3 crossref_primary_10_1016_j_foreco_2022_120165 crossref_primary_10_3390_su151411263 crossref_primary_10_1016_j_apsoil_2024_105391 crossref_primary_10_1016_j_chemosphere_2022_137101 crossref_primary_10_3389_fenvs_2022_947014 crossref_primary_10_3389_fmicb_2020_01462 crossref_primary_10_3389_fmicb_2023_1117355 crossref_primary_10_1016_j_scitotenv_2018_11_031 crossref_primary_10_1016_j_scitotenv_2021_148374 crossref_primary_10_1134_S2079086421010084 crossref_primary_10_3390_su142416759 crossref_primary_10_1371_journal_pone_0211310 crossref_primary_10_1007_s00248_022_01971_4 crossref_primary_10_1007_s11104_024_06881_7 crossref_primary_10_1007_s00248_023_02297_5 crossref_primary_10_3389_fpls_2024_1344733 crossref_primary_10_1016_j_scitotenv_2020_142134 crossref_primary_10_3389_fmicb_2022_999385 crossref_primary_10_3390_agriculture11121233 crossref_primary_10_3389_fmicb_2024_1455891 crossref_primary_10_1016_j_crmicr_2024_100221 crossref_primary_10_1016_j_apsoil_2024_105680 crossref_primary_10_3389_fmicb_2018_01543 crossref_primary_10_3389_fmicb_2024_1404428 crossref_primary_10_1007_s11104_021_05143_0 crossref_primary_10_1186_s12866_022_02452_x crossref_primary_10_1007_s11368_019_02336_0 |
Cites_doi | 10.1128/AEM.02811-06 10.1023/A:1025045919260 10.1126/science.1136674 10.1099/ijs.0.63911-0 10.1007/s00442-010-1818-7 10.1016/j.soilbio.2014.09.009 10.1007/s00248-009-9583-z 10.1038/ismej.2011.159 10.1016/j.soilbio.2015.05.007 10.1038/nmeth.f.303 10.1038/nature04742 10.1111/j.1365-2486.2009.01950.x 10.1111/j.1365-2486.2012.02639.x 10.1111/1365-2435.12525 10.1186/1471-2148-7-71 10.1007/BF00336054 10.1016/j.soilbio.2015.06.028 10.1016/j.agee.2014.02.001 10.1111/1574-6941.12384 10.1111/j.1461-0248.2005.00813.x 10.1007/s00374-013-0773-y 10.1016/j.soilbio.2014.01.034 10.1111/j.1461-0248.2007.01113.x 10.1016/j.ecolind.2015.12.024 10.3389/fmicb.2011.00094 10.1007/s00374-010-0463-y 10.1890/13-1648.1 10.3389/fmicb.2015.00789 10.1186/2192-1709-1-6 10.1007/s00374-012-0755-5 10.1111/1365-2435.12027 10.1890/05-1839 10.1016/j.soilbio.2015.09.018 10.1111/j.1461-0248.2007.01139.x 10.1007/s00374-014-0964-1 10.1890/10-0426.1 10.1016/j.scitotenv.2015.10.089 10.1038/ismej.2015.96 10.1016/j.apsoil.2014.10.004 10.1002/clen.201200021 10.1128/AEM.00062-07 10.1038/ismej.2013.251 10.1038/nmeth.2604 10.1016/j.soilbio.2015.08.031 10.1038/nature02850 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2017.01.013 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 33 |
ExternalDocumentID | 10_1016_j_geoderma_2017_01_013 S001670611630461X |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c411t-222f5c59d28971cd1e4f4be13b80d48d148ce0e1bb60e672aefc5b19ffc916f03 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Tue Aug 05 10:21:11 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Tue Jul 01 04:04:43 EDT 2025 Fri Feb 23 02:27:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil bacterial diversity Semi-arid steppe Soil bacterial community structure N or P inputs Illumina Miseq sequencing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-222f5c59d28971cd1e4f4be13b80d48d148ce0e1bb60e672aefc5b19ffc916f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1687-0401 |
PQID | 2000459581 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000459581 crossref_citationtrail_10_1016_j_geoderma_2017_01_013 crossref_primary_10_1016_j_geoderma_2017_01_013 elsevier_sciencedirect_doi_10_1016_j_geoderma_2017_01_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-15 |
PublicationDateYYYYMMDD | 2017-04-15 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bai, Han, Wu, Chen, Li (bb0010) 2004; 431 Ramirez, Craine, Fierer (bb0155) 2012; 18 Mantelin, Saux, Zakhia, Béna, Bonneau, Jeder, de Lajudie, Cleyet-Marel (bb0140) 2006; 56 Fontaine, Barot (bb0075) 2005; 8 Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (bb0085) 2008; 320 Tilman, Reich, Knops (bb9000) 2006; 441 Ford, Roberts, Jones (bb0080) 2016; 542 Li, Zeng, Yu, Fan, Mao (bb0130) 2010; 46 Sun, Zhang, Guo, Wang, Chu (bb0185) 2015; 88 Zhang, Wei, Chen, Han (bb0230) 2014; 72 Bai, Wu, Clark, Naeem, Pan, Huang, Zhang, Han (bb0015) 2010; 16 Xu, Su, Su, Han, Biswas, Li (bb0210) 2014; 186 Li, Tang, Jia, Li (bb0120) 2015; 10 Griffiths, Spilles, Bonkowski (bb0100) 2012; 1 Bastian, Heymann, Jacomy (bb0020) 2009 Ramirez, Lauber, Knight, Bradford, Fierer (bb0160) 2010; 91 Chen, Lan, Hu, Bai (bb0045) 2015; 89 Beauregard, Hamel, Atul-Nayyar, St-Arnaud (bb0025) 2009; 59 He, Qi, Dong, Xiao, Peng, Liu, Sun (bb0110) 2013; 41 Yao, Rui, Li, Dai, Bai, Hedenec, Wang, Zhang, Pei, Liu, Wang, He, Frouz, Li (bb0220) 2014; 79 Gontang, Fenical, Jensen (bb0095) 2007; 73 van der Heijden, Bardgett, van Straalen (bb0200) 2008; 11 DeLuca, Drinkwater, Wiefling, DeNicola (bb0050) 1996; 23 Shi, Lalande, Hamel, Ziadi, Gagnon, Hu (bb0170) 2013; 49 Pan, Cassman, de Hollander, Mendes, Korevaar, Geerts, van Veen, Kuramae (bb0150) 2014; 90 Goldfarb, Karaoz, Hanson, Santee, Bradford, Treseder, Wallenstein, Brodie (bb0090) 2011; 2 Sapp, Harrison, Hany, Charlton, Thwaites (bb0180) 2015; 86 Pallett, Pescott, Schäfer (bb0145) 2016; 68 Zhao, Fu, Mathew, Lawrence, Feng (bb0240) 2015; 8 Schlatter, Bakker, Bradeen, Kinkel (bb0165) 2015; 96 Edgar (bb0055) 2013; 10 Zhang, Wei, Chen, Han (bb0235) 2014; 72 Zeng, Liu, Song, Lin, Zhang, Shen, Chu (bb0245) 2016; 92 Chen, Zheng, Shan, Taube, Bai (bb0040) 2013; 27 Li, Li, Wang, Zou, Chen, Zhao, Mo, Li, Li, Xia (bb0125) 2014; 51 Elser, Bracken, Cleland, Gruner, Harpole, Hillebrand, Ngai, Seabloom, Shurin, Smith (bb0060) 2007; 10 Tourova (bb0195) 2003; 72 Zhou, Fornara, Wasson, Wang, Ren, Christie, Jia (bb0250) 2015; 91 Amend, Martiny, Allison, Berlemont, Goulden, Lu, Treseder, Weihe, Martiny (bb0005) 2016; 10 Wang, Garrity, Tiedje, Cole (bb0205) 2007; 73 Liu, Zhang, Gilliam, Gundersen, Zhang, Chen, Mo (bb0135) 2013; 8 Skogen, Holsinger, Cardon (bb0175) 2011; 165 Fierer, Lauber, Ramirez, Zaneveld, Bradford, Knight (bb0070) 2012; 6 Fierer, Bradford, Jackson (bb0065) 2007; 88 Gupta, Lorenzini (bb0105) 2007; 7 Yang, Liu, Tian, Bai, Williams, Wang, Li, Zhang (bb0215) 2015; 6 Lee, Morgan, Dunfield, Tamas, McDonald, Stott (bb0115) 2014; 8 Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Pena, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Reeder, Sevinsky, Tumbaugh, Walters, Widmann, Yatsunenko, Zaneveld, Knight (bb0030) 2010; 7 Chen, Li, Lan, Hu, Bai (bb0035) 2015; 30 Tan, Barret, Mooij, Rice, Morrissey, Dobson, Griffiths, O'Gara (bb0190) 2013; 49 Chen (10.1016/j.geoderma.2017.01.013_bb0045) 2015; 89 Fontaine (10.1016/j.geoderma.2017.01.013_bb0075) 2005; 8 He (10.1016/j.geoderma.2017.01.013_bb0110) 2013; 41 Elser (10.1016/j.geoderma.2017.01.013_bb0060) 2007; 10 Skogen (10.1016/j.geoderma.2017.01.013_bb0175) 2011; 165 Liu (10.1016/j.geoderma.2017.01.013_bb0135) 2013; 8 Yang (10.1016/j.geoderma.2017.01.013_bb0215) 2015; 6 Li (10.1016/j.geoderma.2017.01.013_bb0120) 2015; 10 Amend (10.1016/j.geoderma.2017.01.013_bb0005) 2016; 10 Fierer (10.1016/j.geoderma.2017.01.013_bb0065) 2007; 88 Ford (10.1016/j.geoderma.2017.01.013_bb0080) 2016; 542 Ramirez (10.1016/j.geoderma.2017.01.013_bb0155) 2012; 18 Wang (10.1016/j.geoderma.2017.01.013_bb0205) 2007; 73 Caporaso (10.1016/j.geoderma.2017.01.013_bb0030) 2010; 7 Bastian (10.1016/j.geoderma.2017.01.013_bb0020) 2009 Edgar (10.1016/j.geoderma.2017.01.013_bb0055) 2013; 10 Zhou (10.1016/j.geoderma.2017.01.013_bb0250) 2015; 91 Chen (10.1016/j.geoderma.2017.01.013_bb0040) 2013; 27 Schlatter (10.1016/j.geoderma.2017.01.013_bb0165) 2015; 96 Bai (10.1016/j.geoderma.2017.01.013_bb0010) 2004; 431 Pallett (10.1016/j.geoderma.2017.01.013_bb0145) 2016; 68 Zhang (10.1016/j.geoderma.2017.01.013_bb0230) 2014; 72 Sun (10.1016/j.geoderma.2017.01.013_bb0185) 2015; 88 Tan (10.1016/j.geoderma.2017.01.013_bb0190) 2013; 49 Gontang (10.1016/j.geoderma.2017.01.013_bb0095) 2007; 73 Li (10.1016/j.geoderma.2017.01.013_bb0130) 2010; 46 Pan (10.1016/j.geoderma.2017.01.013_bb0150) 2014; 90 Li (10.1016/j.geoderma.2017.01.013_bb0125) 2014; 51 DeLuca (10.1016/j.geoderma.2017.01.013_bb0050) 1996; 23 Beauregard (10.1016/j.geoderma.2017.01.013_bb0025) 2009; 59 Fierer (10.1016/j.geoderma.2017.01.013_bb0070) 2012; 6 Griffiths (10.1016/j.geoderma.2017.01.013_bb0100) 2012; 1 Shi (10.1016/j.geoderma.2017.01.013_bb0170) 2013; 49 Chen (10.1016/j.geoderma.2017.01.013_bb0035) 2015; 30 Zhao (10.1016/j.geoderma.2017.01.013_bb0240) 2015; 8 Ramirez (10.1016/j.geoderma.2017.01.013_bb0160) 2010; 91 Gupta (10.1016/j.geoderma.2017.01.013_bb0105) 2007; 7 Zhang (10.1016/j.geoderma.2017.01.013_bb0235) 2014; 72 Mantelin (10.1016/j.geoderma.2017.01.013_bb0140) 2006; 56 Galloway (10.1016/j.geoderma.2017.01.013_bb0085) 2008; 320 Sapp (10.1016/j.geoderma.2017.01.013_bb0180) 2015; 86 Yao (10.1016/j.geoderma.2017.01.013_bb0220) 2014; 79 Bai (10.1016/j.geoderma.2017.01.013_bb0015) 2010; 16 Lee (10.1016/j.geoderma.2017.01.013_bb0115) 2014; 8 Tourova (10.1016/j.geoderma.2017.01.013_bb0195) 2003; 72 Zeng (10.1016/j.geoderma.2017.01.013_bb0245) 2016; 92 Xu (10.1016/j.geoderma.2017.01.013_bb0210) 2014; 186 Goldfarb (10.1016/j.geoderma.2017.01.013_bb0090) 2011; 2 Tilman (10.1016/j.geoderma.2017.01.013_bb9000) 2006; 441 van der Heijden (10.1016/j.geoderma.2017.01.013_bb0200) 2008; 11 |
References_xml | – volume: 186 start-page: 115 year: 2014 end-page: 123 ident: bb0210 article-title: Restoring the degraded grassland and improving sustainability of grassland ecosystem through chicken farming: a case study in northern China publication-title: Agric. Ecosyst. Environ. – volume: 73 start-page: 3272 year: 2007 end-page: 3282 ident: bb0095 article-title: Phylogenetic diversity of gram-positive bacteria cultured from marine sediments publication-title: Appl. Environ. Microbiol. – volume: 10 start-page: 1135 year: 2007 end-page: 1142 ident: bb0060 article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems publication-title: Ecol. Lett. – volume: 88 start-page: 9 year: 2015 end-page: 18 ident: bb0185 article-title: Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw publication-title: Soil Biol. Biochem. – volume: 320 start-page: 889 year: 2008 end-page: 892 ident: bb0085 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science – volume: 10 start-page: 996 year: 2013 ident: bb0055 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat. Methods – volume: 91 start-page: 3463 year: 2010 end-page: 3470 ident: bb0160 article-title: Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems publication-title: Ecology – volume: 8 year: 2013 ident: bb0135 article-title: Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest publication-title: PLoS One – volume: 6 start-page: 1007 year: 2012 end-page: 1017 ident: bb0070 article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients publication-title: ISME J. – volume: 18 start-page: 1918 year: 2012 end-page: 1927 ident: bb0155 article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes publication-title: Glob. Chang. Biol. – volume: 49 start-page: 803 year: 2013 end-page: 818 ident: bb0170 article-title: Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices publication-title: Biol. Fertil. Soils – volume: 10 year: 2015 ident: bb0120 article-title: Profile changes in the soil microbial community when desert becomes oasis publication-title: PLoS One – volume: 23 start-page: 140 year: 1996 end-page: 144 ident: bb0050 article-title: Free-living nitrogen-fixing bacteria in temperate cropping systems: influence of nitrogen source publication-title: Biol. Fertil. Soils – volume: 41 start-page: 1216 year: 2013 end-page: 1221 ident: bb0110 article-title: Effects of nitrogen fertilization on soil microbial biomass and community functional diversity in temperate grassland in Inner Mongolia, China publication-title: Clean-Soil Air Water – volume: 59 start-page: 379 year: 2009 end-page: 389 ident: bb0025 article-title: Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in Alfalfa publication-title: Microb. Ecol. – volume: 90 start-page: 195 year: 2014 end-page: 205 ident: bb0150 article-title: Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil publication-title: FEMS Microbiol. Ecol. – volume: 11 start-page: 296 year: 2008 end-page: 310 ident: bb0200 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecol. Lett. – volume: 46 start-page: 653 year: 2010 end-page: 658 ident: bb0130 article-title: Soil microbial properties under N and P additions in a semi-arid, sandy grassland publication-title: Biol. Fertil. Soils – volume: 7 start-page: 71 year: 2007 ident: bb0105 article-title: Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the publication-title: BMC Evol. Biol. – volume: 6 year: 2015 ident: bb0215 article-title: Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition publication-title: Front. Microbiol. – volume: 91 start-page: 76 year: 2015 end-page: 83 ident: bb0250 article-title: Effects of 44 publication-title: Soil Biol. Biochem. – volume: 27 start-page: 273 year: 2013 end-page: 281 ident: bb0040 article-title: Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe publication-title: Funct. Ecol. – volume: 96 start-page: 134 year: 2015 end-page: 142 ident: bb0165 article-title: Plant community richness and microbial interactions structure bacterial communities in soil publication-title: Ecology – start-page: 361 year: 2009 end-page: 362 ident: bb0020 publication-title: Gephi: an open source software for exploring and manipulating networks – volume: 79 start-page: 81 year: 2014 end-page: 90 ident: bb0220 article-title: Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the publication-title: Soil Biol. Biochem. – volume: 56 start-page: 827 year: 2006 end-page: 839 ident: bb0140 article-title: Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: phyllobacterium bourgognense sp. nov., phyllobacterium ifriqiyense sp. nov., phyllobacterium leguminum sp. nov. and phyllobacterium brassicacearum sp. nov publication-title: Int. J. Syst. Evol. Microbiol. – volume: 51 start-page: 207 year: 2014 end-page: 215 ident: bb0125 article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China publication-title: Biol. Fertil. Soils – volume: 165 start-page: 261 year: 2011 end-page: 269 ident: bb0175 article-title: Nitrogen deposition, competition and the decline of a regionally threatened legume, publication-title: Oecologia – volume: 16 start-page: 358 year: 2010 end-page: 372 ident: bb0015 article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands publication-title: Glob. Chang. Biol. – volume: 89 start-page: 99 year: 2015 end-page: 108 ident: bb0045 article-title: Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification publication-title: Soil Biol. Biochem. – volume: 8 start-page: 623 year: 2015 end-page: 632 ident: bb0240 article-title: Soil microbial community structure and activity in a 100-year-old fertilization and crop rotation experiment publication-title: J. Plant Ecol. – volume: 542 start-page: 203 year: 2016 end-page: 209 ident: bb0080 article-title: Nitrogen and phosphorus co-limitation and grazing moderate nitrogen impacts on plant growth and nutrient cycling in sand dune grassland publication-title: Sci. Total Environ. – volume: 441 start-page: 629 year: 2006 end-page: 632 ident: bb9000 article-title: Biodiversity and ecosystem stability in a decade-long grassland experiment publication-title: Nature – volume: 49 start-page: 661 year: 2013 end-page: 672 ident: bb0190 article-title: Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils publication-title: Biol. Fertil. Soils – volume: 30 start-page: 658 year: 2015 end-page: 669 ident: bb0035 article-title: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment publication-title: Funct. Ecol. – volume: 72 start-page: 26 year: 2014 end-page: 34 ident: bb0230 article-title: The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem publication-title: Soil Biol. Biochem. – volume: 92 start-page: 41 year: 2016 end-page: 49 ident: bb0245 article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition publication-title: Soil Biol. Biochem. – volume: 88 start-page: 1354 year: 2007 end-page: 1364 ident: bb0065 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology – volume: 1 start-page: 1 year: 2012 end-page: 11 ident: bb0100 article-title: C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess publication-title: Ecol. Process. – volume: 73 start-page: 5261 year: 2007 end-page: 5267 ident: bb0205 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Appl. Environ. Microbiol. – volume: 68 start-page: 73 year: 2016 end-page: 81 ident: bb0145 article-title: Changes in plant species richness and productivity in response to decreased nitrogen inputs in grassland in southern England publication-title: Ecol. Indic. – volume: 8 start-page: 1522 year: 2014 end-page: 1533 ident: bb0115 article-title: Genomic analysis of chthonomonas calidirosea, the first sequenced isolate of the phylum publication-title: ISME J. – volume: 431 start-page: 181 year: 2004 end-page: 184 ident: bb0010 article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland publication-title: Nature – volume: 86 start-page: 1 year: 2015 end-page: 9 ident: bb0180 article-title: Comparing the effect of digestate and chemical fertiliser on soil bacteria publication-title: Appl. Soil Ecol. – volume: 10 start-page: 109 year: 2016 end-page: 118 ident: bb0005 article-title: Microbial response to simulated global change is phylogenetically conserved and linked with functional potential publication-title: ISME J. – volume: 2 year: 2011 ident: bb0090 article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance publication-title: Front. Microbiol. – volume: 72 start-page: 26 year: 2014 end-page: 34 ident: bb0235 article-title: The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem publication-title: Soil Biol. Biochem. – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: bb0030 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods – volume: 8 start-page: 1075 year: 2005 end-page: 1087 ident: bb0075 article-title: Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation publication-title: Ecol. Lett. – volume: 72 start-page: 389 year: 2003 end-page: 402 ident: bb0195 article-title: Copy number of ribosomal operons in prokaryotes and its effect on phylogenetic analyses publication-title: Microbiology – volume: 8 year: 2013 ident: 10.1016/j.geoderma.2017.01.013_bb0135 article-title: Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest publication-title: PLoS One – volume: 73 start-page: 3272 year: 2007 ident: 10.1016/j.geoderma.2017.01.013_bb0095 article-title: Phylogenetic diversity of gram-positive bacteria cultured from marine sediments publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02811-06 – volume: 72 start-page: 389 year: 2003 ident: 10.1016/j.geoderma.2017.01.013_bb0195 article-title: Copy number of ribosomal operons in prokaryotes and its effect on phylogenetic analyses publication-title: Microbiology doi: 10.1023/A:1025045919260 – volume: 320 start-page: 889 year: 2008 ident: 10.1016/j.geoderma.2017.01.013_bb0085 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 56 start-page: 827 year: 2006 ident: 10.1016/j.geoderma.2017.01.013_bb0140 publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.63911-0 – volume: 165 start-page: 261 year: 2011 ident: 10.1016/j.geoderma.2017.01.013_bb0175 article-title: Nitrogen deposition, competition and the decline of a regionally threatened legume, Desmodium cuspidatum publication-title: Oecologia doi: 10.1007/s00442-010-1818-7 – volume: 79 start-page: 81 year: 2014 ident: 10.1016/j.geoderma.2017.01.013_bb0220 article-title: Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.09.009 – volume: 59 start-page: 379 year: 2009 ident: 10.1016/j.geoderma.2017.01.013_bb0025 article-title: Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in Alfalfa publication-title: Microb. Ecol. doi: 10.1007/s00248-009-9583-z – volume: 6 start-page: 1007 year: 2012 ident: 10.1016/j.geoderma.2017.01.013_bb0070 article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients publication-title: ISME J. doi: 10.1038/ismej.2011.159 – volume: 88 start-page: 9 year: 2015 ident: 10.1016/j.geoderma.2017.01.013_bb0185 article-title: Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.05.007 – volume: 7 start-page: 335 year: 2010 ident: 10.1016/j.geoderma.2017.01.013_bb0030 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods doi: 10.1038/nmeth.f.303 – start-page: 361 year: 2009 ident: 10.1016/j.geoderma.2017.01.013_bb0020 – volume: 441 start-page: 629 year: 2006 ident: 10.1016/j.geoderma.2017.01.013_bb9000 article-title: Biodiversity and ecosystem stability in a decade-long grassland experiment publication-title: Nature doi: 10.1038/nature04742 – volume: 16 start-page: 358 year: 2010 ident: 10.1016/j.geoderma.2017.01.013_bb0015 article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.01950.x – volume: 18 start-page: 1918 year: 2012 ident: 10.1016/j.geoderma.2017.01.013_bb0155 article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02639.x – volume: 30 start-page: 658 year: 2015 ident: 10.1016/j.geoderma.2017.01.013_bb0035 article-title: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment publication-title: Funct. Ecol. doi: 10.1111/1365-2435.12525 – volume: 7 start-page: 71 year: 2007 ident: 10.1016/j.geoderma.2017.01.013_bb0105 article-title: Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-7-71 – volume: 23 start-page: 140 year: 1996 ident: 10.1016/j.geoderma.2017.01.013_bb0050 article-title: Free-living nitrogen-fixing bacteria in temperate cropping systems: influence of nitrogen source publication-title: Biol. Fertil. Soils doi: 10.1007/BF00336054 – volume: 89 start-page: 99 year: 2015 ident: 10.1016/j.geoderma.2017.01.013_bb0045 article-title: Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.06.028 – volume: 8 start-page: 623 year: 2015 ident: 10.1016/j.geoderma.2017.01.013_bb0240 article-title: Soil microbial community structure and activity in a 100-year-old fertilization and crop rotation experiment publication-title: J. Plant Ecol. – volume: 186 start-page: 115 year: 2014 ident: 10.1016/j.geoderma.2017.01.013_bb0210 article-title: Restoring the degraded grassland and improving sustainability of grassland ecosystem through chicken farming: a case study in northern China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.02.001 – volume: 90 start-page: 195 year: 2014 ident: 10.1016/j.geoderma.2017.01.013_bb0150 article-title: Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12384 – volume: 8 start-page: 1075 year: 2005 ident: 10.1016/j.geoderma.2017.01.013_bb0075 article-title: Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2005.00813.x – volume: 49 start-page: 803 year: 2013 ident: 10.1016/j.geoderma.2017.01.013_bb0170 article-title: Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-013-0773-y – volume: 72 start-page: 26 year: 2014 ident: 10.1016/j.geoderma.2017.01.013_bb0235 article-title: The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.01.034 – volume: 10 start-page: 1135 year: 2007 ident: 10.1016/j.geoderma.2017.01.013_bb0060 article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01113.x – volume: 68 start-page: 73 year: 2016 ident: 10.1016/j.geoderma.2017.01.013_bb0145 article-title: Changes in plant species richness and productivity in response to decreased nitrogen inputs in grassland in southern England publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.12.024 – volume: 2 year: 2011 ident: 10.1016/j.geoderma.2017.01.013_bb0090 article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance publication-title: Front. Microbiol. doi: 10.3389/fmicb.2011.00094 – volume: 46 start-page: 653 year: 2010 ident: 10.1016/j.geoderma.2017.01.013_bb0130 article-title: Soil microbial properties under N and P additions in a semi-arid, sandy grassland publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-010-0463-y – volume: 96 start-page: 134 year: 2015 ident: 10.1016/j.geoderma.2017.01.013_bb0165 article-title: Plant community richness and microbial interactions structure bacterial communities in soil publication-title: Ecology doi: 10.1890/13-1648.1 – volume: 6 year: 2015 ident: 10.1016/j.geoderma.2017.01.013_bb0215 article-title: Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00789 – volume: 10 year: 2015 ident: 10.1016/j.geoderma.2017.01.013_bb0120 article-title: Profile changes in the soil microbial community when desert becomes oasis publication-title: PLoS One – volume: 1 start-page: 1 year: 2012 ident: 10.1016/j.geoderma.2017.01.013_bb0100 article-title: C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess publication-title: Ecol. Process. doi: 10.1186/2192-1709-1-6 – volume: 49 start-page: 661 year: 2013 ident: 10.1016/j.geoderma.2017.01.013_bb0190 article-title: Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-012-0755-5 – volume: 27 start-page: 273 year: 2013 ident: 10.1016/j.geoderma.2017.01.013_bb0040 article-title: Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe publication-title: Funct. Ecol. doi: 10.1111/1365-2435.12027 – volume: 88 start-page: 1354 year: 2007 ident: 10.1016/j.geoderma.2017.01.013_bb0065 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology doi: 10.1890/05-1839 – volume: 92 start-page: 41 year: 2016 ident: 10.1016/j.geoderma.2017.01.013_bb0245 article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.09.018 – volume: 11 start-page: 296 year: 2008 ident: 10.1016/j.geoderma.2017.01.013_bb0200 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01139.x – volume: 51 start-page: 207 year: 2014 ident: 10.1016/j.geoderma.2017.01.013_bb0125 article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-014-0964-1 – volume: 91 start-page: 3463 year: 2010 ident: 10.1016/j.geoderma.2017.01.013_bb0160 article-title: Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems publication-title: Ecology doi: 10.1890/10-0426.1 – volume: 542 start-page: 203 year: 2016 ident: 10.1016/j.geoderma.2017.01.013_bb0080 article-title: Nitrogen and phosphorus co-limitation and grazing moderate nitrogen impacts on plant growth and nutrient cycling in sand dune grassland publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.10.089 – volume: 10 start-page: 109 year: 2016 ident: 10.1016/j.geoderma.2017.01.013_bb0005 article-title: Microbial response to simulated global change is phylogenetically conserved and linked with functional potential publication-title: ISME J. doi: 10.1038/ismej.2015.96 – volume: 86 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2017.01.013_bb0180 article-title: Comparing the effect of digestate and chemical fertiliser on soil bacteria publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.10.004 – volume: 41 start-page: 1216 year: 2013 ident: 10.1016/j.geoderma.2017.01.013_bb0110 article-title: Effects of nitrogen fertilization on soil microbial biomass and community functional diversity in temperate grassland in Inner Mongolia, China publication-title: Clean-Soil Air Water doi: 10.1002/clen.201200021 – volume: 73 start-page: 5261 year: 2007 ident: 10.1016/j.geoderma.2017.01.013_bb0205 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00062-07 – volume: 8 start-page: 1522 year: 2014 ident: 10.1016/j.geoderma.2017.01.013_bb0115 article-title: Genomic analysis of chthonomonas calidirosea, the first sequenced isolate of the phylum Armatimonadetes publication-title: ISME J. doi: 10.1038/ismej.2013.251 – volume: 10 start-page: 996 year: 2013 ident: 10.1016/j.geoderma.2017.01.013_bb0055 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat. Methods doi: 10.1038/nmeth.2604 – volume: 91 start-page: 76 year: 2015 ident: 10.1016/j.geoderma.2017.01.013_bb0250 article-title: Effects of 44years of chronic nitrogen fertilization on the soil nitrifying community of permanent grassland publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.08.031 – volume: 431 start-page: 181 year: 2004 ident: 10.1016/j.geoderma.2017.01.013_bb0010 article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland publication-title: Nature doi: 10.1038/nature02850 – volume: 72 start-page: 26 year: 2014 ident: 10.1016/j.geoderma.2017.01.013_bb0230 article-title: The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.01.034 |
SSID | ssj0017020 |
Score | 2.5834758 |
Snippet | Both nitrogen (N) and phosphorus (P) may limit plant production in steppes and affect plant community structure. However, few studies have explored in detail... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25 |
SubjectTerms | Acidobacteria Armatimonadetes bacterial communities Chlorobi Chloroflexi community structure correlation eutrophication Firmicutes Illumina Miseq sequencing N or P inputs nitrogen Nitrospirae phosphorus plant communities Rhizobiales Semi-arid steppe soil bacteria Soil bacterial community structure Soil bacterial diversity steppes structural equation modeling |
Title | Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe |
URI | https://dx.doi.org/10.1016/j.geoderma.2017.01.013 https://www.proquest.com/docview/2000459581 |
Volume | 292 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-QwFA-De3EP4rrKurqShb1mp7FJ2h4H12FUdtjDCnMrTfIilbEt0851_3Zf2lRcQTwIhdA2CeHl5X2Q936PkB-gUyXSTDKBy2SooQ1LVXHOjIuU41mibeGTk38v1eJWXK_kakIuxlwYH1YZZP8g03tpHb5MAzWnTVn6HF-uElRHaFF41PCVz2AXiefyn_-ewjx4EgVoRq6Y7_0sS_ge98gXHOvxh3jSw3fy-DUF9UJU9_pnvk_2guFIZ8PaPpEJVAfk4-xuE8Az4DNxv0K1Ezy1a7oZol-hpbWjbV2uqR6QmfGfGdJCPJgq7Wq6rqs75mU0XdKisvQPLatm27XY0IK28FAydKktRY5oGjgkt_PLvxcLFuooMCM47xiaAE4amVl0rhJuLAfhhAYe6zSyIrXoERmIgGutIlDJeQHOSM0z5wwajy6Kj8hOVVfwhVCb6hikAOzmhJFQpJlRRsVxYWNs9TGRI_FyE0DGfa2LdT5Gk93nI9FzT_Q84vjEx2T6NK4ZYDbeHJGNe5P_xzA56oI3x34fNzPH0-SvSIoK6m3ri3KijZvJlH99x_wnZNe_-UsnLk_JTrfZwje0XTp91jPnGfkwu7pZLB8BxpHxPw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOUAPqHyJFgpGgqPZeGM7yYFDRam2tF1xaKW9hdgeV6mWJNpkVfXCn-IPMk6cCpBQD6hSJEtxHFlje96MPPOGkHegUyXSTDKB02SI0Ialqpgy4yLleJZoW_jk5NO5mp2LLwu52CA_x1wYH1YZdP-g03ttHd5MgjQnTVn6HF-uEoQjtCg8a_giRFYew_UV-m3tx6MDXOT30-nh57NPMxZKCzAjOO8YoqKTRmYW_Y2EG8tBOKGBxzqNrEgtOgkGIuBaqwhUMi3AGal55pxBe8pFMf73HrkvUF34sgkfftzElfAkClyQXDE_vd_Ski9xU_gKZz3hEU96vlAe_wsR_8KGHvAOt8mjYKnS_UEYj8kGVE_I1v7FKrB1wFPiDkJ5FVQTS7oawm2hpbWjbV0uqR6ooLHPDHkonr2VdjVd1tUF86BA57SoLP1Ky6pZdy02tKAtfC8Z-vCW4hZsGnhGzu9Eus_JZlVX8IJQm-oYpAD8zAkjoUgzo4yK48LG2OodIkfh5SawmvviGst8DF-7zEeh517oecTxiXfI5GZcM_B63DoiG9cm_2OH5gg-t459Oy5mjsfX38kUFdTr1lcBRaM6kynf_Y__vyEPZmenJ_nJ0fz4JXnoe_yNF5evyGa3WsMeGk6dft1vVEq-3fXJ-AV7Xi3E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+responses+of+soil+bacterial+communities+to+long-term+N+and+P+inputs+in+a+semi-arid+steppe&rft.jtitle=Geoderma&rft.au=Ling%2C+Ning&rft.au=Chen%2C+Dima&rft.au=Guo%2C+Hui&rft.au=Wei%2C+Jiaxin&rft.date=2017-04-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=292&rft.spage=25&rft.epage=33&rft_id=info:doi/10.1016%2Fj.geoderma.2017.01.013&rft.externalDocID=S001670611630461X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |