Eigenstate thermalization hypothesis

The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble....

Full description

Saved in:
Bibliographic Details
Published inReports on progress in physics Vol. 81; no. 8; pp. 82001 - 82016
Main Author Deutsch, Joshua M
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states.
AbstractList The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states.The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states.
The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states.
Author Deutsch, Joshua M
Author_xml – sequence: 1
  givenname: Joshua M
  orcidid: 0000-0002-9622-5540
  surname: Deutsch
  fullname: Deutsch, Joshua M
  email: josh@ucsc.edu
  organization: University of California Department of Physics, Santa Cruz, CA 95064, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29862983$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLAzEURoNU7EP3rqQLQReOzWMemaWU-oCCG12HJJPYlJnJmKSL-utNndqFSBfhko_zXbhnDAatbRUAlwjeI0jpDJEcJXlOyIxzWWp0AkaHaABGEJI0SSnNhmDs_RpChCguz8AQlzSPj4zA9cJ8qNYHHtQ0rJRreG2-eDC2na62nY2RN_4cnGpee3WxnxPw_rh4mz8ny9enl_nDMpEpQiHBEMqiwpoiURS5RKmWWIqCV6TQqSIKEygUErwSQtJM4pRrSmQMRK5KyAWZgNt-b-fs50b5wBrjpapr3iq78QzDtCwJplkW0as9uhGNqljnTMPdlv1eFgHYA9JZ753SBwRBtpPHdqbYzhTr5cVK_qciTfhxERw39bHiXV80tmNru3FttHQMv_kHd_FDEaMM0igSsa7S5Bs_eo8s
CODEN RPPHAG
CitedBy_id crossref_primary_10_1103_PhysRevB_105_045114
crossref_primary_10_22331_q_2024_11_26_1537
crossref_primary_10_1088_1742_5468_ab02f4
crossref_primary_10_1103_PhysRevResearch_6_043045
crossref_primary_10_1103_PhysRevB_110_224201
crossref_primary_10_1007_JHEP08_2019_152
crossref_primary_10_1103_PhysRevResearch_5_033196
crossref_primary_10_3390_sym14020323
crossref_primary_10_1103_PhysRevLett_132_220405
crossref_primary_10_1103_PhysRevB_99_155130
crossref_primary_10_1063_10_0025297
crossref_primary_10_22331_q_2023_05_15_1004
crossref_primary_10_1103_PhysRevB_109_L060305
crossref_primary_10_1103_PhysRevE_107_024124
crossref_primary_10_1103_PhysRevLett_124_200604
crossref_primary_10_1103_PhysRevA_109_052433
crossref_primary_10_22331_q_2024_02_29_1274
crossref_primary_10_1103_PhysRevLett_124_040603
crossref_primary_10_1103_PhysRevB_106_134212
crossref_primary_10_3390_e26070564
crossref_primary_10_1103_PhysRevB_101_024306
crossref_primary_10_1103_PhysRevA_111_032414
crossref_primary_10_22331_q_2024_02_29_1271
crossref_primary_10_1103_PhysRevD_108_105020
crossref_primary_10_1103_PhysRevB_107_064205
crossref_primary_10_1088_1742_5468_adb7d3
crossref_primary_10_21468_SciPostPhys_12_2_060
crossref_primary_10_1103_PhysRevX_9_041017
crossref_primary_10_1103_PhysRevA_107_022206
crossref_primary_10_1103_PhysRevB_103_144307
crossref_primary_10_1103_PhysRevB_109_125127
crossref_primary_10_1103_PhysRevE_103_012129
crossref_primary_10_1103_PhysRevB_104_L121103
crossref_primary_10_1103_PhysRevB_100_115122
crossref_primary_10_22331_q_2024_02_13_1254
crossref_primary_10_1103_PhysRevB_110_144309
crossref_primary_10_1103_PhysRevLett_130_020404
crossref_primary_10_1088_1742_5468_ad0636
crossref_primary_10_1103_PhysRevResearch_3_L032069
crossref_primary_10_1103_PhysRevA_105_052204
crossref_primary_10_1103_PhysRevLett_129_060602
crossref_primary_10_1007_JHEP05_2023_078
crossref_primary_10_1088_1367_2630_ab354d
crossref_primary_10_1103_PhysRevB_101_104313
crossref_primary_10_1007_JHEP06_2023_140
crossref_primary_10_1103_PhysRevB_106_235147
crossref_primary_10_3390_condmat10010005
crossref_primary_10_1103_PhysRevLett_126_080602
crossref_primary_10_3390_e26010020
crossref_primary_10_1103_PhysRevE_107_024102
crossref_primary_10_1103_PhysRevB_101_174308
crossref_primary_10_1142_S0219749919410065
crossref_primary_10_1103_PhysRevB_103_L140302
crossref_primary_10_1103_PhysRevResearch_5_033168
crossref_primary_10_1103_PhysRevB_107_054422
crossref_primary_10_1103_PhysRevLett_131_110601
crossref_primary_10_1103_PhysRevA_107_022220
crossref_primary_10_1103_PhysRevLett_124_110605
crossref_primary_10_1103_PhysRevResearch_4_013155
crossref_primary_10_1103_PhysRevA_107_023318
crossref_primary_10_1103_PhysRevB_106_134301
crossref_primary_10_1038_s41377_022_00887_5
crossref_primary_10_1103_PhysRevB_108_L100304
crossref_primary_10_1103_PhysRevB_109_115117
crossref_primary_10_1103_PhysRevA_103_033307
crossref_primary_10_1103_PhysRevA_108_022414
crossref_primary_10_1016_j_aop_2022_168761
crossref_primary_10_22331_q_2024_08_29_1456
crossref_primary_10_4213_tm4169
crossref_primary_10_1088_1367_2630_ac3b2c
crossref_primary_10_1103_PhysRevLett_126_010601
crossref_primary_10_1103_PhysRevA_103_022416
crossref_primary_10_1103_PhysRevA_107_012213
crossref_primary_10_1103_PhysRevA_102_023321
crossref_primary_10_1103_PhysRevE_107_034125
crossref_primary_10_1038_s41567_024_02721_8
crossref_primary_10_1103_PhysRevB_104_L201117
crossref_primary_10_1103_PhysRevA_104_L031303
crossref_primary_10_1103_PhysRevB_111_064303
crossref_primary_10_1103_PhysRevB_110_144302
crossref_primary_10_1103_PhysRevResearch_4_023095
crossref_primary_10_1146_annurev_conmatphys_031620_101617
crossref_primary_10_1103_PhysRevE_107_L052102
crossref_primary_10_1103_PhysRevLett_134_010404
crossref_primary_10_1007_JHEP09_2021_205
crossref_primary_10_1103_PhysRevD_100_105010
crossref_primary_10_1103_PhysRevE_101_062141
crossref_primary_10_1103_PhysRevA_100_032107
crossref_primary_10_1103_PhysRevB_106_L060307
crossref_primary_10_21468_SciPostPhys_17_2_055
crossref_primary_10_1103_PhysRevResearch_5_023183
crossref_primary_10_1103_PhysRevLett_133_137101
crossref_primary_10_1103_PhysRevB_108_195133
crossref_primary_10_1103_PhysRevE_108_054114
crossref_primary_10_1007_JHEP01_2024_149
crossref_primary_10_1103_PhysRevE_107_034107
crossref_primary_10_1103_PhysRevE_109_064207
crossref_primary_10_1214_24_EJP1186
crossref_primary_10_1103_PhysRevLett_122_070601
crossref_primary_10_1103_PhysRevE_106_064107
crossref_primary_10_1103_PhysRevA_108_022208
crossref_primary_10_1103_PhysRevB_111_014302
crossref_primary_10_3390_e25020366
crossref_primary_10_1103_PhysRevE_104_054101
crossref_primary_10_1103_PhysRevB_100_064309
crossref_primary_10_1103_PhysRevLett_131_060401
crossref_primary_10_1088_1361_6382_ac0e17
crossref_primary_10_1103_PhysRevLett_124_100605
crossref_primary_10_1103_PhysRevB_108_195109
crossref_primary_10_1088_1361_6455_abc499
crossref_primary_10_1103_PhysRevB_102_224303
crossref_primary_10_1103_PhysRevLett_131_060404
crossref_primary_10_1098_rspa_2022_0377
crossref_primary_10_1103_PhysRevLett_124_100604
crossref_primary_10_1103_PhysRevB_104_104410
crossref_primary_10_1103_PhysRevB_108_104411
crossref_primary_10_1103_PhysRevD_110_094506
crossref_primary_10_1134_S1063779620040334
crossref_primary_10_3390_e26020107
crossref_primary_10_21468_SciPostPhys_10_5_107
crossref_primary_10_3389_fphy_2020_603190
crossref_primary_10_1103_PhysRevB_106_245110
crossref_primary_10_1142_S0217751X24501045
crossref_primary_10_1103_PhysRevX_14_031014
crossref_primary_10_1103_PhysRevLett_131_216701
crossref_primary_10_3390_e26020111
crossref_primary_10_7566_JPSJ_93_074004
crossref_primary_10_1103_PhysRevResearch_1_033104
crossref_primary_10_1103_PhysRevB_104_144205
crossref_primary_10_1103_PhysRevB_105_155146
crossref_primary_10_1103_PhysRevE_102_012127
crossref_primary_10_1103_PhysRevX_14_041051
crossref_primary_10_1103_PhysRevLett_134_113401
crossref_primary_10_1103_PhysRevA_109_L050201
crossref_primary_10_21468_SciPostPhys_9_1_004
crossref_primary_10_1103_PhysRevResearch_7_013092
crossref_primary_10_21468_SciPostPhys_10_6_146
crossref_primary_10_1142_S1230161223500099
crossref_primary_10_1103_PhysRevB_106_165111
crossref_primary_10_1103_PhysRevLett_128_106805
crossref_primary_10_1103_PRXQuantum_2_030202
crossref_primary_10_1103_PhysRevLett_133_180402
crossref_primary_10_1103_PhysRevE_100_042105
crossref_primary_10_1103_PhysRevE_108_024120
crossref_primary_10_1007_s00220_021_04239_z
crossref_primary_10_1103_PRXQuantum_2_040340
crossref_primary_10_1088_0256_307X_36_2_027201
crossref_primary_10_1103_PhysRevB_108_184205
crossref_primary_10_1007_JHEP05_2023_226
crossref_primary_10_1007_s13538_021_01025_z
crossref_primary_10_1088_1367_2630_ada84f
crossref_primary_10_1103_PhysRevB_110_134441
crossref_primary_10_1103_PhysRevB_106_214303
crossref_primary_10_1103_PhysRevB_103_L241118
crossref_primary_10_1088_1742_5468_ab900b
crossref_primary_10_1103_PhysRevA_109_012205
crossref_primary_10_1103_PhysRevResearch_6_043127
crossref_primary_10_1103_PhysRevB_110_134322
crossref_primary_10_1088_1572_9494_acabb9
crossref_primary_10_1103_PhysRevB_109_054313
crossref_primary_10_1103_PhysRevA_104_022414
crossref_primary_10_1088_1361_648X_ad94c3
crossref_primary_10_1103_PhysRevB_106_214313
crossref_primary_10_1098_rspa_2020_0278
crossref_primary_10_1103_PhysRevLett_128_020402
crossref_primary_10_21468_SciPostPhys_15_6_251
crossref_primary_10_3390_e23101347
crossref_primary_10_1103_PhysRevB_109_054203
crossref_primary_10_1103_PhysRevB_108_184303
crossref_primary_10_1038_s41586_024_08188_0
crossref_primary_10_1103_PhysRevB_103_104206
crossref_primary_10_1103_PhysRevResearch_3_023190
crossref_primary_10_1103_PhysRevB_106_214311
crossref_primary_10_1103_PhysRevResearch_5_043265
crossref_primary_10_1103_PhysRevResearch_3_L012010
crossref_primary_10_1103_PhysRevResearch_5_043020
crossref_primary_10_1103_PhysRevB_107_045137
crossref_primary_10_1038_s41467_024_54332_9
crossref_primary_10_1088_1367_2630_ad5865
crossref_primary_10_1103_PhysRevResearch_4_033059
crossref_primary_10_1103_PhysRevX_10_041017
crossref_primary_10_1088_1751_8121_ac4b16
crossref_primary_10_1103_PhysRevE_109_054120
crossref_primary_10_1103_PhysRevA_106_L021301
crossref_primary_10_1103_PRXQuantum_2_020321
crossref_primary_10_1103_PhysRevLett_125_050603
crossref_primary_10_1088_1367_2630_ac9fe8
crossref_primary_10_1103_PhysRevA_105_L040203
crossref_primary_10_1103_PhysRevB_107_024204
crossref_primary_10_1088_1572_9494_ab6909
crossref_primary_10_22331_q_2024_07_17_1414
crossref_primary_10_1103_PhysRevLett_127_150601
crossref_primary_10_1103_PhysRevD_109_105021
crossref_primary_10_1103_PhysRevResearch_5_033126
crossref_primary_10_1007_JHEP09_2021_064
crossref_primary_10_21468_SciPostPhys_15_6_221
crossref_primary_10_1103_PhysRevLett_129_030602
crossref_primary_10_1103_PhysRevA_106_042219
crossref_primary_10_1103_PhysRevE_109_024136
crossref_primary_10_1103_PhysRevA_106_043304
crossref_primary_10_1017_fms_2022_86
crossref_primary_10_1016_j_physleta_2020_126610
crossref_primary_10_1038_s41567_024_02562_5
crossref_primary_10_1103_PhysRevB_104_075161
crossref_primary_10_22331_q_2023_11_07_1171
crossref_primary_10_1103_PhysRevX_12_011018
crossref_primary_10_1103_PhysRevB_107_205112
crossref_primary_10_1103_PhysRevB_110_125137
crossref_primary_10_1103_PhysRevLett_132_021601
crossref_primary_10_1039_D3CP02291A
crossref_primary_10_1007_s00220_022_04314_z
crossref_primary_10_1103_PhysRevLett_130_140402
crossref_primary_10_1007_JHEP01_2019_022
crossref_primary_10_1103_PhysRevB_104_075159
crossref_primary_10_1103_PhysRevLett_123_036403
crossref_primary_10_1038_s41598_020_73015_1
crossref_primary_10_1103_PhysRevB_109_245137
crossref_primary_10_21468_SciPostPhys_17_5_143
crossref_primary_10_3390_e24101415
crossref_primary_10_1088_1361_648X_ab7c92
crossref_primary_10_1103_PhysRevA_105_022201
crossref_primary_10_1103_PhysRevB_102_014201
crossref_primary_10_1103_PhysRevB_106_014201
crossref_primary_10_1103_PhysRevB_99_045155
crossref_primary_10_1103_PhysRevB_101_144305
crossref_primary_10_1103_PhysRevB_110_104202
crossref_primary_10_1103_PhysRevA_102_022622
crossref_primary_10_1103_PhysRevA_108_012225
crossref_primary_10_3390_technologies12050064
crossref_primary_10_21468_SciPostPhys_12_4_117
crossref_primary_10_1007_s10955_021_02781_7
crossref_primary_10_1103_PRXQuantum_3_030335
crossref_primary_10_1038_s41567_020_01131_w
crossref_primary_10_1103_PhysRevE_105_014109
crossref_primary_10_1103_PRXQuantum_6_010325
crossref_primary_10_1103_PhysRevE_104_L022103
crossref_primary_10_1088_1751_8121_abe77c
crossref_primary_10_1103_PhysRevB_107_184312
crossref_primary_10_1142_S0219749919500503
crossref_primary_10_1103_PhysRevA_110_062219
crossref_primary_10_1116_5_0073853
crossref_primary_10_1103_PhysRevA_108_012217
crossref_primary_10_21468_SciPostPhys_9_5_075
crossref_primary_10_1103_PhysRevE_109_014226
crossref_primary_10_1088_1361_648X_ad1f8d
crossref_primary_10_1103_PhysRevB_110_125140
crossref_primary_10_22331_q_2022_02_02_642
crossref_primary_10_1103_PRXQuantum_2_010340
crossref_primary_10_1103_PhysRevX_13_021026
crossref_primary_10_21468_SciPostPhys_15_4_134
crossref_primary_10_1103_PhysRevA_108_012209
crossref_primary_10_1103_PhysRevB_109_134304
crossref_primary_10_1088_1367_2630_ad2895
crossref_primary_10_1103_PhysRevA_99_023605
crossref_primary_10_1103_PhysRevB_109_L020201
crossref_primary_10_1103_PhysRevLett_125_180604
crossref_primary_10_1103_PhysRevE_110_044127
crossref_primary_10_1088_0256_307X_42_2_020502
crossref_primary_10_1016_j_physa_2024_129823
crossref_primary_10_1098_rsta_2019_0470
crossref_primary_10_1103_PhysRevLett_126_133603
crossref_primary_10_1103_PhysRevA_105_013305
crossref_primary_10_1103_PhysRevLett_127_026802
crossref_primary_10_3390_e25010008
crossref_primary_10_1103_PhysRevA_102_052210
crossref_primary_10_1134_S0081543821020255
crossref_primary_10_1103_PhysRevB_105_L140202
crossref_primary_10_1103_PhysRevB_110_035149
crossref_primary_10_1038_s41598_020_60103_5
crossref_primary_10_1103_PhysRevA_100_053607
crossref_primary_10_1103_PhysRevD_108_L031504
crossref_primary_10_1103_PhysRevE_111_014129
crossref_primary_10_1038_s41467_022_34318_1
crossref_primary_10_3938_jkps_76_670
crossref_primary_10_1016_j_jfa_2024_110495
crossref_primary_10_1103_PhysRevLett_126_163203
crossref_primary_10_1007_s43673_024_00128_4
crossref_primary_10_1103_PhysRevB_106_174302
crossref_primary_10_1103_PhysRevLett_127_130602
crossref_primary_10_1103_PhysRevB_106_174305
crossref_primary_10_1088_1402_4896_acc0b1
crossref_primary_10_1088_1751_8121_ad389a
crossref_primary_10_22331_q_2024_05_23_1360
crossref_primary_10_1103_PhysRevLett_127_230603
crossref_primary_10_1103_PhysRevA_110_052223
crossref_primary_10_1103_PhysRevB_108_054412
crossref_primary_10_1103_PhysRevB_104_214203
crossref_primary_10_21468_SciPostPhysCore_4_2_010
crossref_primary_10_1007_JHEP08_2024_053
crossref_primary_10_1103_PhysRevB_105_075117
crossref_primary_10_1103_PhysRevResearch_7_013064
crossref_primary_10_1088_1361_6455_acc49b
crossref_primary_10_1103_PhysRevE_109_024102
crossref_primary_10_1103_PhysRevE_111_014135
crossref_primary_10_1103_PhysRevResearch_3_023006
crossref_primary_10_1103_PRXQuantum_3_020330
crossref_primary_10_1103_PhysRevLett_123_147201
crossref_primary_10_1103_PhysRevX_14_041027
crossref_primary_10_1103_PhysRevB_104_235133
crossref_primary_10_1103_PhysRevResearch_2_022065
crossref_primary_10_21468_SciPostPhys_15_2_048
crossref_primary_10_1103_PhysRevLett_133_140405
crossref_primary_10_1103_PhysRevB_104_184203
crossref_primary_10_1140_epjd_e2020_100489_1
crossref_primary_10_22331_q_2023_06_01_1027
crossref_primary_10_1088_1361_648X_ad64a0
crossref_primary_10_1103_PhysRevResearch_2_023159
crossref_primary_10_3367_UFNe_2020_06_038805
crossref_primary_10_1103_PhysRevB_111_104315
crossref_primary_10_1103_PhysRevE_98_060103
crossref_primary_10_1038_s41567_024_02664_0
crossref_primary_10_1103_PhysRevA_106_023307
crossref_primary_10_1103_PhysRevE_104_024135
crossref_primary_10_1103_PhysRevB_100_184312
crossref_primary_10_1103_PRXQuantum_4_030320
crossref_primary_10_1103_PhysRevE_103_052213
crossref_primary_10_1103_PhysRevE_103_062133
crossref_primary_10_1103_PhysRevLett_130_080401
crossref_primary_10_1103_PhysRevLett_133_040802
crossref_primary_10_1103_PhysRevB_98_174203
crossref_primary_10_1214_24_EJP1203
crossref_primary_10_1103_PhysRevA_106_022222
crossref_primary_10_1103_PhysRevE_102_042115
crossref_primary_10_1103_PhysRevA_109_022607
crossref_primary_10_1103_PhysRevResearch_3_023213
crossref_primary_10_1103_PhysRevB_108_155102
crossref_primary_10_1103_PhysRevB_102_064207
crossref_primary_10_1103_PhysRevB_101_134202
crossref_primary_10_1103_PhysRevResearch_6_033062
crossref_primary_10_1103_PhysRevA_109_052602
crossref_primary_10_1007_s10955_023_03132_4
crossref_primary_10_21468_SciPostPhys_15_1_024
crossref_primary_10_1007_JHEP09_2024_066
crossref_primary_10_1103_PhysRevB_103_035136
crossref_primary_10_21468_SciPostPhys_11_4_074
crossref_primary_10_1016_j_physleta_2024_129501
crossref_primary_10_1103_PhysRevLett_131_250401
crossref_primary_10_7498_aps_73_20231987
crossref_primary_10_1088_1361_648X_ace413
crossref_primary_10_21468_SciPostPhys_16_3_070
crossref_primary_10_1103_PhysRevResearch_6_023030
crossref_primary_10_1103_PhysRevB_105_L180201
crossref_primary_10_1103_PhysRevLett_129_200403
crossref_primary_10_1103_PhysRevLett_133_216601
crossref_primary_10_1103_PhysRevResearch_2_013119
crossref_primary_10_1103_PhysRevB_107_L201105
crossref_primary_10_1103_PhysRevE_106_054148
crossref_primary_10_1103_PhysRevE_106_054145
crossref_primary_10_1103_PhysRevResearch_2_043087
crossref_primary_10_1103_PhysRevB_108_L060201
crossref_primary_10_1103_PhysRevB_99_195108
crossref_primary_10_1103_PhysRevA_106_012206
crossref_primary_10_1088_2632_2153_ad4d3f
crossref_primary_10_1103_PhysRevB_109_174209
crossref_primary_10_1016_j_physrep_2021_11_002
crossref_primary_10_1103_PhysRevE_106_044103
crossref_primary_10_1103_PhysRevResearch_2_033154
crossref_primary_10_1088_1361_648X_ad1bf5
crossref_primary_10_1103_PhysRevB_106_054314
crossref_primary_10_1103_PhysRevB_103_214304
crossref_primary_10_1103_PhysRevD_110_094029
crossref_primary_10_1007_JHEP05_2021_126
crossref_primary_10_1103_PhysRevD_109_L121701
crossref_primary_10_1140_epjp_s13360_022_02678_8
crossref_primary_10_1103_PhysRevX_13_041023
crossref_primary_10_1103_PhysRevE_100_012215
crossref_primary_10_1142_S123016122380001X
crossref_primary_10_1103_PhysRevE_102_052117
crossref_primary_10_1103_PhysRevE_98_062218
crossref_primary_10_1103_PhysRevD_106_025003
crossref_primary_10_1103_PhysRevB_106_054309
crossref_primary_10_1103_PhysRevB_103_235137
crossref_primary_10_1103_PhysRevE_110_024125
crossref_primary_10_1007_JHEP05_2021_276
crossref_primary_10_1103_PhysRevA_109_062204
crossref_primary_10_21468_SciPostPhysCore_6_2_043
crossref_primary_10_1103_PhysRevLett_131_020402
crossref_primary_10_1103_PhysRevB_109_224410
crossref_primary_10_1103_PhysRevB_110_115145
crossref_primary_10_1103_PhysRevB_100_125132
crossref_primary_10_1103_PhysRevE_110_024135
crossref_primary_10_1103_PhysRevB_109_195162
crossref_primary_10_1038_s41467_020_14489_5
crossref_primary_10_1103_PhysRevX_11_021051
crossref_primary_10_1103_PhysRevA_106_013301
crossref_primary_10_1088_1742_5468_ab7f36
crossref_primary_10_1103_PhysRevE_107_054213
crossref_primary_10_22331_q_2024_06_27_1389
crossref_primary_10_1103_Physics_12_123
crossref_primary_10_1088_1367_2630_accd11
crossref_primary_10_1103_PhysRevB_102_165155
crossref_primary_10_1103_PhysRevLett_127_040603
crossref_primary_10_1007_JHEP03_2023_126
crossref_primary_10_1103_PhysRevApplied_17_034060
crossref_primary_10_1103_PhysRevLett_132_040402
crossref_primary_10_1103_PRXQuantum_4_020353
crossref_primary_10_1088_1742_5468_ab4e8d
crossref_primary_10_1103_PhysRevB_104_014424
crossref_primary_10_1103_PhysRevLett_126_063401
crossref_primary_10_1103_PhysRevE_111_024201
crossref_primary_10_1039_D1CP05255A
Cites_doi 10.1103/PhysRevLett.112.130403
10.1103/PhysRevLett.101.190403
10.1103/RevModPhys.75.715
10.1103/PhysRevA.34.591
10.1051/jphyslet:0198400450210101500
10.1103/PhysRevB.93.174202
10.1140/epjb/e2003-00029-3
10.1103/PhysRevLett.54.1879
10.1088/0305-4470/10/12/016
10.2307/1968225
10.1146/annurev-conmatphys-031214-014726
10.1103/PhysRevLett.111.050403
10.1103/PhysRevE.97.012140
10.1103/PhysRevA.89.042112
10.1007/BF01215225
10.1103/PhysRevLett.80.1373
10.1103/PhysRevB.88.014206
10.1007/BF01197884
10.1016/0009-2614(85)85241-6
10.1098/rspa.2009.0635
10.1103/PhysRevA.91.012120
10.1007/b98082
10.2307/1968537
10.1016/j.aop.2014.11.008
10.1007/BF01288195
10.1103/PhysRevA.82.011604
10.1088/0305-4470/29/4/003
10.1103/PhysRevLett.108.110601
10.1140/epjh/e2010-00007-7
10.1103/PhysRevX.8.021026
10.1142/S0217984913300032
10.1103/PhysRevLett.103.100403
10.1103/PhysRevE.92.040103
10.1016/S0167-2789(98)00287-5
10.1103/PhysRevE.90.050101
10.1103/PhysRevA.55.27
10.1103/PhysRev.97.1419
10.1007/s00220-015-2473-y
10.1143/PTP.22.745
10.4007/annals.2010.171.605
10.1103/PhysRevA.90.012110
10.1103/PhysRevE.91.012144
10.1103/PhysRevE.79.061103
10.2307/1969956
10.1126/science.aaf8834
10.1103/PhysRevE.85.060101
10.1088/0305-4470/32/7/007
10.1088/1742-5468/2014/10/P10010
10.1103/PhysRevA.80.053607
10.1103/PhysRevA.90.033606
10.1103/PhysRevLett.78.2803
10.1103/PhysRevA.44.2263
10.1088/1367-2630/12/7/075021
10.1103/PhysRevLett.111.171301
10.1007/978-3-642-76247-5_10
10.1103/PhysRevLett.107.040601
10.1007/s10955-016-1508-x
10.3934/dcds.2008.22.427
10.1103/PhysRevA.86.023609
10.1073/pnas.17.5.315
10.1007/978-3-662-02781-3_35
10.1103/PhysRev.106.620
10.1103/PhysRevA.43.2046
10.1098/rspa.1987.0109
10.1103/PhysRevLett.115.220401
10.1146/annurev-conmatphys-031214-014548
10.1038/nature06149
10.1088/0034-4885/42/12/002
10.1103/PhysRevLett.105.250401
10.1142/0073
10.1016/j.aop.2013.02.011
10.1140/epjh/e2010-00008-5
10.1103/PhysRevE.81.036206
10.1016/B978-0-444-53857-4.00003-9
10.1007/s00222-009-0182-x
10.1103/PhysRevLett.96.050403
10.1215/S0012-7094-87-05546-3
10.1103/PhysRevA.39.6507
10.1103/PhysRevE.87.042135
10.1007/s00023-004-0166-8
10.1016/j.aop.2005.11.014
10.1088/1367-2630/17/5/055025
10.1103/PhysRevA.87.012118
10.1103/PhysRevB.96.035153
10.1038/nphys444
10.1002/prop.201300020
10.1080/00018732.2016.1198134
10.1103/PhysRevB.96.085113
10.1038/nature06838
10.1103/PhysRevE.50.888
10.1103/PhysRevA.90.052105
10.1103/PhysRev.108.171
10.1038/nature04693
10.1007/BF01608499
10.1002/andp.19273881504
10.1103/PhysRevLett.52.1
10.1007/BF01209296
10.1103/RevModPhys.82.1225
10.1126/science.aaf6725
ContentType Journal Article
Copyright 2018 IOP Publishing Ltd
Copyright_xml – notice: 2018 IOP Publishing Ltd
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/1361-6633/aac9f1
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Eigenstate thermalization hypothesis
EISSN 1361-6633
ExternalDocumentID 29862983
10_1088_1361_6633_aac9f1
ropaac9f1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Foundational Questions Institute
  funderid: https://doi.org/10.13039/100009566
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ACNCT
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
WH7
XPP
ZMT
~02
AAYXX
ADEQX
CITATION
02O
1PV
1WK
29P
5ZI
9BW
AAGCF
ABEFU
ABTAH
ACKIV
ACWPO
ADIYS
AERVB
AFFNX
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
MVM
NPM
OHT
PKN
Q02
S3P
T37
VO1
XOL
ZCG
ZY4
7X8
ID FETCH-LOGICAL-c411t-200c7d2f81b776c14fc2cb7ad37f4e3e230be1badbbc85c24af83c1bab6e90ab3
IEDL.DBID IOP
ISSN 0034-4885
1361-6633
IngestDate Thu Jul 10 22:24:09 EDT 2025
Wed Feb 19 02:43:12 EST 2025
Tue Jul 01 02:52:56 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Wed Aug 21 03:33:13 EDT 2024
Thu Jan 07 13:48:46 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-200c7d2f81b776c14fc2cb7ad37f4e3e230be1badbbc85c24af83c1bab6e90ab3
Notes ROPP-101089.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9622-5540
PMID 29862983
PQID 2049932855
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2049932855
iop_journals_10_1088_1361_6633_aac9f1
crossref_primary_10_1088_1361_6633_aac9f1
pubmed_primary_29862983
crossref_citationtrail_10_1088_1361_6633_aac9f1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Reports on progress in physics
PublicationTitleAbbrev RoPP
PublicationTitleAlternate Rep. Prog. Phys
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Berry M V (68) 1977; 10
Jancel R (20) 2013; 19
110
111
112
113
114
90
91
Šafránek D (88) 2017
92
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
Mori T (81) 2016
1
2
3
4
5
6
9
Sinai Y G (22) 1970; 25
21
Grover T (115) 2014; 2014
23
24
25
26
27
Tolman R C (50) 1938
29
Schrödinger E (41) 1989
Deutsch J (77) 2010; 12
30
31
Srednicki M (8) 1999; 32
32
33
Mondaini R (83) 2017
35
36
37
38
Farquhar I E (19) 1964
Deffner S (60) 2016; 18
Shiraishi N (84) 2017
40
42
43
44
45
46
47
48
49
Arnol’d V I (28) 1968
51
53
55
Reif F (39) 2009
56
57
58
59
Reimann P (75) 2015; 17
Penrose O (34) 1979; 42
62
64
65
66
Gemmer J (52) 2004
67
69
Lindblad C (54) 2001; 5
Shnirelman A I (63) 1975; 171
Šafránek D (89) 2017
70
71
72
73
74
76
78
79
Srednicki M (7) 1996; 29
100
101
102
103
104
105
106
80
107
Zurek W H (61) 2018
108
82
109
85
86
87
References_xml – ident: 99
  doi: 10.1103/PhysRevLett.112.130403
– ident: 55
  doi: 10.1103/PhysRevLett.101.190403
– ident: 59
  doi: 10.1103/RevModPhys.75.715
– ident: 71
  doi: 10.1103/PhysRevA.34.591
– volume: 18
  issn: 1367-2630
  year: 2016
  ident: 60
  publication-title: New J. Phys.
– ident: 33
  doi: 10.1051/jphyslet:0198400450210101500
– ident: 103
  doi: 10.1103/PhysRevB.93.174202
– ident: 43
  doi: 10.1140/epjb/e2003-00029-3
– ident: 90
  doi: 10.1103/PhysRevLett.54.1879
– volume: 10
  start-page: 2083
  issn: 0305-4470
  year: 1977
  ident: 68
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/10/12/016
– ident: 37
  doi: 10.2307/1968225
– ident: 14
  doi: 10.1146/annurev-conmatphys-031214-014726
– ident: 9
  doi: 10.1103/PhysRevLett.111.050403
– ident: 79
  doi: 10.1103/PhysRevE.97.012140
– ident: 97
  doi: 10.1103/PhysRevA.89.042112
– year: 1938
  ident: 50
  publication-title: The Principles of Statistical Mechanics
– ident: 67
  doi: 10.1007/BF01215225
– ident: 42
  doi: 10.1103/PhysRevLett.80.1373
– ident: 13
  doi: 10.1103/PhysRevB.88.014206
– ident: 26
  doi: 10.1007/BF01197884
– ident: 70
  doi: 10.1016/0009-2614(85)85241-6
– ident: 56
  doi: 10.1098/rspa.2009.0635
– ident: 100
  doi: 10.1103/PhysRevA.91.012120
– year: 2004
  ident: 52
  publication-title: Lecture Notes in Physics
  doi: 10.1007/b98082
– ident: 36
  doi: 10.2307/1968537
– ident: 107
  doi: 10.1016/j.aop.2014.11.008
– ident: 30
  doi: 10.1007/BF01288195
– ident: 93
  doi: 10.1103/PhysRevA.82.011604
– volume: 29
  start-page: L75
  issn: 0305-4470
  year: 1996
  ident: 7
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/29/4/003
– volume: 5
  year: 2001
  ident: 54
  publication-title: Non-Equilibrium Entropy and Irreversibility
– year: 2016
  ident: 81
– ident: 58
  doi: 10.1103/PhysRevLett.108.110601
– ident: 57
  doi: 10.1140/epjh/e2010-00007-7
– ident: 78
  doi: 10.1103/PhysRevX.8.021026
– ident: 18
  doi: 10.1142/S0217984913300032
– ident: 91
  doi: 10.1103/PhysRevLett.103.100403
– ident: 102
  doi: 10.1103/PhysRevE.92.040103
– year: 2009
  ident: 39
  publication-title: Fundamentals of Statistical and Thermal Physics
– ident: 69
  doi: 10.1016/S0167-2789(98)00287-5
– ident: 114
  doi: 10.1103/PhysRevE.90.050101
– ident: 38
  doi: 10.1103/PhysRevA.55.27
– ident: 40
  doi: 10.1103/PhysRev.97.1419
– ident: 47
  doi: 10.1007/s00220-015-2473-y
– ident: 51
  doi: 10.1143/PTP.22.745
– ident: 62
  doi: 10.4007/annals.2010.171.605
– volume: 25
  start-page: 141
  issn: 0042-1316
  year: 1970
  ident: 22
  publication-title: Usp. Mat. Nauk
– year: 1989
  ident: 41
  publication-title: Statistical Thermodynamics
– ident: 106
  doi: 10.1103/PhysRevA.90.012110
– year: 2017
  ident: 89
– ident: 101
  doi: 10.1103/PhysRevE.91.012144
– ident: 46
  doi: 10.1103/PhysRevE.79.061103
– ident: 74
  doi: 10.2307/1969956
– ident: 111
  doi: 10.1126/science.aaf8834
– ident: 95
  doi: 10.1103/PhysRevE.85.060101
– volume: 32
  start-page: 1163
  issn: 0305-4470
  year: 1999
  ident: 8
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/32/7/007
– volume: 2014
  issn: 1742-5468
  year: 2014
  ident: 115
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2014/10/P10010
– ident: 92
  doi: 10.1103/PhysRevA.80.053607
– ident: 94
  doi: 10.1103/PhysRevA.90.033606
– ident: 10
  doi: 10.1103/PhysRevLett.78.2803
– ident: 27
  doi: 10.1103/PhysRevA.44.2263
– volume: 12
  issn: 1367-2630
  year: 2010
  ident: 77
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/7/075021
– ident: 15
  doi: 10.1103/PhysRevLett.111.171301
– ident: 64
  doi: 10.1007/978-3-642-76247-5_10
– ident: 87
  doi: 10.1103/PhysRevLett.107.040601
– ident: 12
  doi: 10.1007/s10955-016-1508-x
– year: 2017
  ident: 88
– ident: 25
  doi: 10.3934/dcds.2008.22.427
– ident: 73
  doi: 10.1103/PhysRevA.86.023609
– ident: 35
  doi: 10.1073/pnas.17.5.315
– ident: 31
  doi: 10.1007/978-3-662-02781-3_35
– volume: 19
  year: 2013
  ident: 20
  publication-title: Foundations of Classical and Quantum Statistical Mechanics: International Series of Monographs in Natural Philosophy
– ident: 48
  doi: 10.1103/PhysRev.106.620
– ident: 3
  doi: 10.1103/PhysRevA.43.2046
– ident: 29
  doi: 10.1098/rspa.1987.0109
– ident: 85
  doi: 10.1103/PhysRevLett.115.220401
– ident: 17
  doi: 10.1146/annurev-conmatphys-031214-014548
– ident: 108
  doi: 10.1038/nature06149
– volume: 42
  start-page: 1937
  issn: 0034-4885
  year: 1979
  ident: 34
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/42/12/002
– ident: 80
  doi: 10.1103/PhysRevLett.105.250401
– ident: 21
  doi: 10.1142/0073
– ident: 105
  doi: 10.1016/j.aop.2013.02.011
– year: 1964
  ident: 19
  publication-title: Ergodic Theory in Statistical Mechanics
– ident: 2
  doi: 10.1140/epjh/e2010-00008-5
– ident: 76
  doi: 10.1103/PhysRevE.81.036206
– ident: 16
  doi: 10.1016/B978-0-444-53857-4.00003-9
– ident: 24
  doi: 10.1007/s00222-009-0182-x
– ident: 45
  doi: 10.1103/PhysRevLett.96.050403
– issn: 0370-1573
  year: 2018
  ident: 61
  publication-title: Phys. Rep.
– ident: 65
  doi: 10.1215/S0012-7094-87-05546-3
– ident: 72
  doi: 10.1103/PhysRevA.39.6507
– ident: 86
  doi: 10.1103/PhysRevE.87.042135
– ident: 23
  doi: 10.1007/s00023-004-0166-8
– ident: 11
  doi: 10.1016/j.aop.2005.11.014
– volume: 17
  issn: 1367-2630
  year: 2015
  ident: 75
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/5/055025
– year: 2017
  ident: 84
– ident: 96
  doi: 10.1103/PhysRevA.87.012118
– ident: 104
  doi: 10.1103/PhysRevB.96.035153
– ident: 44
  doi: 10.1038/nphys444
– ident: 113
  doi: 10.1002/prop.201300020
– year: 1968
  ident: 28
  publication-title: Ergodic Problems of Classical Mechanics
– ident: 6
  doi: 10.1080/00018732.2016.1198134
– ident: 82
  doi: 10.1103/PhysRevB.96.085113
– ident: 5
  doi: 10.1038/nature06838
– ident: 4
  doi: 10.1103/PhysRevE.50.888
– ident: 98
  doi: 10.1103/PhysRevA.90.052105
– ident: 49
  doi: 10.1103/PhysRev.108.171
– year: 2017
  ident: 83
– ident: 110
  doi: 10.1038/nature04693
– ident: 53
  doi: 10.1007/BF01608499
– volume: 171
  start-page: 605
  year: 1975
  ident: 63
  publication-title: Usp. Math. Nauk
– ident: 1
  doi: 10.1002/andp.19273881504
– ident: 32
  doi: 10.1103/PhysRevLett.52.1
– ident: 66
  doi: 10.1007/BF01209296
– ident: 109
  doi: 10.1103/RevModPhys.82.1225
– ident: 112
  doi: 10.1126/science.aaf6725
SSID ssj0011829
Score 2.6961472
Snippet The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 82001
SubjectTerms eigenstate thermalization
entropy
quantum chaos
random matrix theory
statistical mechanics
Title Eigenstate thermalization hypothesis
URI https://iopscience.iop.org/article/10.1088/1361-6633/aac9f1
https://www.ncbi.nlm.nih.gov/pubmed/29862983
https://www.proquest.com/docview/2049932855
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC50ZMGLq-7DcV2JoAcPmUk_ku6wp0UUFXb1sIIHoenudKM4OzOYmYP-eqvTmYFZVBZvSagkXZ2q1FfUC2A_l5VmTpSpq7xIuc1kql3hU0GdzqhmFaGhwPnX7-L0ip9f59dL8GNeCzMat7_-Hh7GRsFxC9uEONknrCApGkrW19qWHl2fFSaLIowvOLu4nIcQEDhH7Mt4ilKatzHKl56wYJOW8b2vw83G7Jx8hJvZgmO2yX1vOjE9-_RPL8d3crQOay0cTX5G0g1YcsNN-NCkhdr6E-wfh2adTdFREpDiXz1o6zaT28dxKN6q7-rPcHVy_OfoNG3nKqSWEzIJimFFRT0iViEKS7i31BqhKyY8d8yhV2IcMboyxsrcUq69ZBYvmMKVmTbsC3SGo6HbgoRZREy5KRnPPK-40B790UJaKzzxiKy60J_trLJt0_Ew-2KgmuC3lCrwrgLvKvLehcP5HePYcOMN2gPcUtVqXf0GXbJA94AnkiipAv7JiBpXvgt7sy-uUMFC1EQP3WhaKxqcQkZlnnfhaxSF-cJoiQ5hKdn2fy7kG6wi4JIxgXAHOpOHqfuOoGZidhvhfQZhW-6U
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VqiIupaWUbkvbINFDD9mNH4mdI6KsoA_gUCRuxnZsFUF3V2T3UH4949i7EhVFSL0l0SSZmdiZbzQvgJ1SNpo5Ueeu8SLntpC5dpXPBXW6oJo1hIYC5x9H1cEp_3pWnqU5p10tzHiSfv19PIyNgqMKU0KcHBBWkRwNJRtobWtPBpPGL8HTklUsNM8_PD5ZhBEQPEf8y3iOK7VMccr7nnLHLi3hu_8NOTvTM1yD8znTMePksj-bmr69-auf439I9QKeJ1ia7Ubyl_DEjdbhWZceattXsLMfmnZ2xUdZQIy_9VWq38x-_ZmEIq72ot2A0-H-z72DPM1XyC0nZBo2iBUN9Yhchags4d5Sa4RumPDcMYfeiXHE6MYYK0tLufaSWbxgKlcX2rDXsDwaj9wbyJhF5FSamvHC84YL7dEvraS1whOPCKsHg7l2lU3Nx8MMjCvVBcGlVEF-FeRXUf4efF7cMYmNNx6g_YRqVWn3tQ_QZXforvFEEiVVwEEFUajyHmzPv7rCjRaiJ3rkxrNW0eAcMirLsgebcTksGKM1Ooa1ZG8fychHWDn5MlTfD4--vYNVxGAy5hRuwfL0eubeI86Zmg_dWr4FhMXz-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenstate+thermalization+hypothesis&rft.jtitle=Reports+on+progress+in+physics&rft.au=Deutsch%2C+Joshua+M&rft.date=2018-08-01&rft.issn=0034-4885&rft.eissn=1361-6633&rft.volume=81&rft.issue=8&rft.spage=82001&rft_id=info:doi/10.1088%2F1361-6633%2Faac9f1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6633_aac9f1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4885&client=summon