Eigenstate thermalization hypothesis
The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble....
Saved in:
Published in | Reports on progress in physics Vol. 81; no. 8; pp. 82001 - 82016 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states. |
---|---|
AbstractList | The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states.The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states. The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states. |
Author | Deutsch, Joshua M |
Author_xml | – sequence: 1 givenname: Joshua M orcidid: 0000-0002-9622-5540 surname: Deutsch fullname: Deutsch, Joshua M email: josh@ucsc.edu organization: University of California Department of Physics, Santa Cruz, CA 95064, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29862983$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtLAzEURoNU7EP3rqQLQReOzWMemaWU-oCCG12HJJPYlJnJmKSL-utNndqFSBfhko_zXbhnDAatbRUAlwjeI0jpDJEcJXlOyIxzWWp0AkaHaABGEJI0SSnNhmDs_RpChCguz8AQlzSPj4zA9cJ8qNYHHtQ0rJRreG2-eDC2na62nY2RN_4cnGpee3WxnxPw_rh4mz8ny9enl_nDMpEpQiHBEMqiwpoiURS5RKmWWIqCV6TQqSIKEygUErwSQtJM4pRrSmQMRK5KyAWZgNt-b-fs50b5wBrjpapr3iq78QzDtCwJplkW0as9uhGNqljnTMPdlv1eFgHYA9JZ753SBwRBtpPHdqbYzhTr5cVK_qciTfhxERw39bHiXV80tmNru3FttHQMv_kHd_FDEaMM0igSsa7S5Bs_eo8s |
CODEN | RPPHAG |
CitedBy_id | crossref_primary_10_1103_PhysRevB_105_045114 crossref_primary_10_22331_q_2024_11_26_1537 crossref_primary_10_1088_1742_5468_ab02f4 crossref_primary_10_1103_PhysRevResearch_6_043045 crossref_primary_10_1103_PhysRevB_110_224201 crossref_primary_10_1007_JHEP08_2019_152 crossref_primary_10_1103_PhysRevResearch_5_033196 crossref_primary_10_3390_sym14020323 crossref_primary_10_1103_PhysRevLett_132_220405 crossref_primary_10_1103_PhysRevB_99_155130 crossref_primary_10_1063_10_0025297 crossref_primary_10_22331_q_2023_05_15_1004 crossref_primary_10_1103_PhysRevB_109_L060305 crossref_primary_10_1103_PhysRevE_107_024124 crossref_primary_10_1103_PhysRevLett_124_200604 crossref_primary_10_1103_PhysRevA_109_052433 crossref_primary_10_22331_q_2024_02_29_1274 crossref_primary_10_1103_PhysRevLett_124_040603 crossref_primary_10_1103_PhysRevB_106_134212 crossref_primary_10_3390_e26070564 crossref_primary_10_1103_PhysRevB_101_024306 crossref_primary_10_1103_PhysRevA_111_032414 crossref_primary_10_22331_q_2024_02_29_1271 crossref_primary_10_1103_PhysRevD_108_105020 crossref_primary_10_1103_PhysRevB_107_064205 crossref_primary_10_1088_1742_5468_adb7d3 crossref_primary_10_21468_SciPostPhys_12_2_060 crossref_primary_10_1103_PhysRevX_9_041017 crossref_primary_10_1103_PhysRevA_107_022206 crossref_primary_10_1103_PhysRevB_103_144307 crossref_primary_10_1103_PhysRevB_109_125127 crossref_primary_10_1103_PhysRevE_103_012129 crossref_primary_10_1103_PhysRevB_104_L121103 crossref_primary_10_1103_PhysRevB_100_115122 crossref_primary_10_22331_q_2024_02_13_1254 crossref_primary_10_1103_PhysRevB_110_144309 crossref_primary_10_1103_PhysRevLett_130_020404 crossref_primary_10_1088_1742_5468_ad0636 crossref_primary_10_1103_PhysRevResearch_3_L032069 crossref_primary_10_1103_PhysRevA_105_052204 crossref_primary_10_1103_PhysRevLett_129_060602 crossref_primary_10_1007_JHEP05_2023_078 crossref_primary_10_1088_1367_2630_ab354d crossref_primary_10_1103_PhysRevB_101_104313 crossref_primary_10_1007_JHEP06_2023_140 crossref_primary_10_1103_PhysRevB_106_235147 crossref_primary_10_3390_condmat10010005 crossref_primary_10_1103_PhysRevLett_126_080602 crossref_primary_10_3390_e26010020 crossref_primary_10_1103_PhysRevE_107_024102 crossref_primary_10_1103_PhysRevB_101_174308 crossref_primary_10_1142_S0219749919410065 crossref_primary_10_1103_PhysRevB_103_L140302 crossref_primary_10_1103_PhysRevResearch_5_033168 crossref_primary_10_1103_PhysRevB_107_054422 crossref_primary_10_1103_PhysRevLett_131_110601 crossref_primary_10_1103_PhysRevA_107_022220 crossref_primary_10_1103_PhysRevLett_124_110605 crossref_primary_10_1103_PhysRevResearch_4_013155 crossref_primary_10_1103_PhysRevA_107_023318 crossref_primary_10_1103_PhysRevB_106_134301 crossref_primary_10_1038_s41377_022_00887_5 crossref_primary_10_1103_PhysRevB_108_L100304 crossref_primary_10_1103_PhysRevB_109_115117 crossref_primary_10_1103_PhysRevA_103_033307 crossref_primary_10_1103_PhysRevA_108_022414 crossref_primary_10_1016_j_aop_2022_168761 crossref_primary_10_22331_q_2024_08_29_1456 crossref_primary_10_4213_tm4169 crossref_primary_10_1088_1367_2630_ac3b2c crossref_primary_10_1103_PhysRevLett_126_010601 crossref_primary_10_1103_PhysRevA_103_022416 crossref_primary_10_1103_PhysRevA_107_012213 crossref_primary_10_1103_PhysRevA_102_023321 crossref_primary_10_1103_PhysRevE_107_034125 crossref_primary_10_1038_s41567_024_02721_8 crossref_primary_10_1103_PhysRevB_104_L201117 crossref_primary_10_1103_PhysRevA_104_L031303 crossref_primary_10_1103_PhysRevB_111_064303 crossref_primary_10_1103_PhysRevB_110_144302 crossref_primary_10_1103_PhysRevResearch_4_023095 crossref_primary_10_1146_annurev_conmatphys_031620_101617 crossref_primary_10_1103_PhysRevE_107_L052102 crossref_primary_10_1103_PhysRevLett_134_010404 crossref_primary_10_1007_JHEP09_2021_205 crossref_primary_10_1103_PhysRevD_100_105010 crossref_primary_10_1103_PhysRevE_101_062141 crossref_primary_10_1103_PhysRevA_100_032107 crossref_primary_10_1103_PhysRevB_106_L060307 crossref_primary_10_21468_SciPostPhys_17_2_055 crossref_primary_10_1103_PhysRevResearch_5_023183 crossref_primary_10_1103_PhysRevLett_133_137101 crossref_primary_10_1103_PhysRevB_108_195133 crossref_primary_10_1103_PhysRevE_108_054114 crossref_primary_10_1007_JHEP01_2024_149 crossref_primary_10_1103_PhysRevE_107_034107 crossref_primary_10_1103_PhysRevE_109_064207 crossref_primary_10_1214_24_EJP1186 crossref_primary_10_1103_PhysRevLett_122_070601 crossref_primary_10_1103_PhysRevE_106_064107 crossref_primary_10_1103_PhysRevA_108_022208 crossref_primary_10_1103_PhysRevB_111_014302 crossref_primary_10_3390_e25020366 crossref_primary_10_1103_PhysRevE_104_054101 crossref_primary_10_1103_PhysRevB_100_064309 crossref_primary_10_1103_PhysRevLett_131_060401 crossref_primary_10_1088_1361_6382_ac0e17 crossref_primary_10_1103_PhysRevLett_124_100605 crossref_primary_10_1103_PhysRevB_108_195109 crossref_primary_10_1088_1361_6455_abc499 crossref_primary_10_1103_PhysRevB_102_224303 crossref_primary_10_1103_PhysRevLett_131_060404 crossref_primary_10_1098_rspa_2022_0377 crossref_primary_10_1103_PhysRevLett_124_100604 crossref_primary_10_1103_PhysRevB_104_104410 crossref_primary_10_1103_PhysRevB_108_104411 crossref_primary_10_1103_PhysRevD_110_094506 crossref_primary_10_1134_S1063779620040334 crossref_primary_10_3390_e26020107 crossref_primary_10_21468_SciPostPhys_10_5_107 crossref_primary_10_3389_fphy_2020_603190 crossref_primary_10_1103_PhysRevB_106_245110 crossref_primary_10_1142_S0217751X24501045 crossref_primary_10_1103_PhysRevX_14_031014 crossref_primary_10_1103_PhysRevLett_131_216701 crossref_primary_10_3390_e26020111 crossref_primary_10_7566_JPSJ_93_074004 crossref_primary_10_1103_PhysRevResearch_1_033104 crossref_primary_10_1103_PhysRevB_104_144205 crossref_primary_10_1103_PhysRevB_105_155146 crossref_primary_10_1103_PhysRevE_102_012127 crossref_primary_10_1103_PhysRevX_14_041051 crossref_primary_10_1103_PhysRevLett_134_113401 crossref_primary_10_1103_PhysRevA_109_L050201 crossref_primary_10_21468_SciPostPhys_9_1_004 crossref_primary_10_1103_PhysRevResearch_7_013092 crossref_primary_10_21468_SciPostPhys_10_6_146 crossref_primary_10_1142_S1230161223500099 crossref_primary_10_1103_PhysRevB_106_165111 crossref_primary_10_1103_PhysRevLett_128_106805 crossref_primary_10_1103_PRXQuantum_2_030202 crossref_primary_10_1103_PhysRevLett_133_180402 crossref_primary_10_1103_PhysRevE_100_042105 crossref_primary_10_1103_PhysRevE_108_024120 crossref_primary_10_1007_s00220_021_04239_z crossref_primary_10_1103_PRXQuantum_2_040340 crossref_primary_10_1088_0256_307X_36_2_027201 crossref_primary_10_1103_PhysRevB_108_184205 crossref_primary_10_1007_JHEP05_2023_226 crossref_primary_10_1007_s13538_021_01025_z crossref_primary_10_1088_1367_2630_ada84f crossref_primary_10_1103_PhysRevB_110_134441 crossref_primary_10_1103_PhysRevB_106_214303 crossref_primary_10_1103_PhysRevB_103_L241118 crossref_primary_10_1088_1742_5468_ab900b crossref_primary_10_1103_PhysRevA_109_012205 crossref_primary_10_1103_PhysRevResearch_6_043127 crossref_primary_10_1103_PhysRevB_110_134322 crossref_primary_10_1088_1572_9494_acabb9 crossref_primary_10_1103_PhysRevB_109_054313 crossref_primary_10_1103_PhysRevA_104_022414 crossref_primary_10_1088_1361_648X_ad94c3 crossref_primary_10_1103_PhysRevB_106_214313 crossref_primary_10_1098_rspa_2020_0278 crossref_primary_10_1103_PhysRevLett_128_020402 crossref_primary_10_21468_SciPostPhys_15_6_251 crossref_primary_10_3390_e23101347 crossref_primary_10_1103_PhysRevB_109_054203 crossref_primary_10_1103_PhysRevB_108_184303 crossref_primary_10_1038_s41586_024_08188_0 crossref_primary_10_1103_PhysRevB_103_104206 crossref_primary_10_1103_PhysRevResearch_3_023190 crossref_primary_10_1103_PhysRevB_106_214311 crossref_primary_10_1103_PhysRevResearch_5_043265 crossref_primary_10_1103_PhysRevResearch_3_L012010 crossref_primary_10_1103_PhysRevResearch_5_043020 crossref_primary_10_1103_PhysRevB_107_045137 crossref_primary_10_1038_s41467_024_54332_9 crossref_primary_10_1088_1367_2630_ad5865 crossref_primary_10_1103_PhysRevResearch_4_033059 crossref_primary_10_1103_PhysRevX_10_041017 crossref_primary_10_1088_1751_8121_ac4b16 crossref_primary_10_1103_PhysRevE_109_054120 crossref_primary_10_1103_PhysRevA_106_L021301 crossref_primary_10_1103_PRXQuantum_2_020321 crossref_primary_10_1103_PhysRevLett_125_050603 crossref_primary_10_1088_1367_2630_ac9fe8 crossref_primary_10_1103_PhysRevA_105_L040203 crossref_primary_10_1103_PhysRevB_107_024204 crossref_primary_10_1088_1572_9494_ab6909 crossref_primary_10_22331_q_2024_07_17_1414 crossref_primary_10_1103_PhysRevLett_127_150601 crossref_primary_10_1103_PhysRevD_109_105021 crossref_primary_10_1103_PhysRevResearch_5_033126 crossref_primary_10_1007_JHEP09_2021_064 crossref_primary_10_21468_SciPostPhys_15_6_221 crossref_primary_10_1103_PhysRevLett_129_030602 crossref_primary_10_1103_PhysRevA_106_042219 crossref_primary_10_1103_PhysRevE_109_024136 crossref_primary_10_1103_PhysRevA_106_043304 crossref_primary_10_1017_fms_2022_86 crossref_primary_10_1016_j_physleta_2020_126610 crossref_primary_10_1038_s41567_024_02562_5 crossref_primary_10_1103_PhysRevB_104_075161 crossref_primary_10_22331_q_2023_11_07_1171 crossref_primary_10_1103_PhysRevX_12_011018 crossref_primary_10_1103_PhysRevB_107_205112 crossref_primary_10_1103_PhysRevB_110_125137 crossref_primary_10_1103_PhysRevLett_132_021601 crossref_primary_10_1039_D3CP02291A crossref_primary_10_1007_s00220_022_04314_z crossref_primary_10_1103_PhysRevLett_130_140402 crossref_primary_10_1007_JHEP01_2019_022 crossref_primary_10_1103_PhysRevB_104_075159 crossref_primary_10_1103_PhysRevLett_123_036403 crossref_primary_10_1038_s41598_020_73015_1 crossref_primary_10_1103_PhysRevB_109_245137 crossref_primary_10_21468_SciPostPhys_17_5_143 crossref_primary_10_3390_e24101415 crossref_primary_10_1088_1361_648X_ab7c92 crossref_primary_10_1103_PhysRevA_105_022201 crossref_primary_10_1103_PhysRevB_102_014201 crossref_primary_10_1103_PhysRevB_106_014201 crossref_primary_10_1103_PhysRevB_99_045155 crossref_primary_10_1103_PhysRevB_101_144305 crossref_primary_10_1103_PhysRevB_110_104202 crossref_primary_10_1103_PhysRevA_102_022622 crossref_primary_10_1103_PhysRevA_108_012225 crossref_primary_10_3390_technologies12050064 crossref_primary_10_21468_SciPostPhys_12_4_117 crossref_primary_10_1007_s10955_021_02781_7 crossref_primary_10_1103_PRXQuantum_3_030335 crossref_primary_10_1038_s41567_020_01131_w crossref_primary_10_1103_PhysRevE_105_014109 crossref_primary_10_1103_PRXQuantum_6_010325 crossref_primary_10_1103_PhysRevE_104_L022103 crossref_primary_10_1088_1751_8121_abe77c crossref_primary_10_1103_PhysRevB_107_184312 crossref_primary_10_1142_S0219749919500503 crossref_primary_10_1103_PhysRevA_110_062219 crossref_primary_10_1116_5_0073853 crossref_primary_10_1103_PhysRevA_108_012217 crossref_primary_10_21468_SciPostPhys_9_5_075 crossref_primary_10_1103_PhysRevE_109_014226 crossref_primary_10_1088_1361_648X_ad1f8d crossref_primary_10_1103_PhysRevB_110_125140 crossref_primary_10_22331_q_2022_02_02_642 crossref_primary_10_1103_PRXQuantum_2_010340 crossref_primary_10_1103_PhysRevX_13_021026 crossref_primary_10_21468_SciPostPhys_15_4_134 crossref_primary_10_1103_PhysRevA_108_012209 crossref_primary_10_1103_PhysRevB_109_134304 crossref_primary_10_1088_1367_2630_ad2895 crossref_primary_10_1103_PhysRevA_99_023605 crossref_primary_10_1103_PhysRevB_109_L020201 crossref_primary_10_1103_PhysRevLett_125_180604 crossref_primary_10_1103_PhysRevE_110_044127 crossref_primary_10_1088_0256_307X_42_2_020502 crossref_primary_10_1016_j_physa_2024_129823 crossref_primary_10_1098_rsta_2019_0470 crossref_primary_10_1103_PhysRevLett_126_133603 crossref_primary_10_1103_PhysRevA_105_013305 crossref_primary_10_1103_PhysRevLett_127_026802 crossref_primary_10_3390_e25010008 crossref_primary_10_1103_PhysRevA_102_052210 crossref_primary_10_1134_S0081543821020255 crossref_primary_10_1103_PhysRevB_105_L140202 crossref_primary_10_1103_PhysRevB_110_035149 crossref_primary_10_1038_s41598_020_60103_5 crossref_primary_10_1103_PhysRevA_100_053607 crossref_primary_10_1103_PhysRevD_108_L031504 crossref_primary_10_1103_PhysRevE_111_014129 crossref_primary_10_1038_s41467_022_34318_1 crossref_primary_10_3938_jkps_76_670 crossref_primary_10_1016_j_jfa_2024_110495 crossref_primary_10_1103_PhysRevLett_126_163203 crossref_primary_10_1007_s43673_024_00128_4 crossref_primary_10_1103_PhysRevB_106_174302 crossref_primary_10_1103_PhysRevLett_127_130602 crossref_primary_10_1103_PhysRevB_106_174305 crossref_primary_10_1088_1402_4896_acc0b1 crossref_primary_10_1088_1751_8121_ad389a crossref_primary_10_22331_q_2024_05_23_1360 crossref_primary_10_1103_PhysRevLett_127_230603 crossref_primary_10_1103_PhysRevA_110_052223 crossref_primary_10_1103_PhysRevB_108_054412 crossref_primary_10_1103_PhysRevB_104_214203 crossref_primary_10_21468_SciPostPhysCore_4_2_010 crossref_primary_10_1007_JHEP08_2024_053 crossref_primary_10_1103_PhysRevB_105_075117 crossref_primary_10_1103_PhysRevResearch_7_013064 crossref_primary_10_1088_1361_6455_acc49b crossref_primary_10_1103_PhysRevE_109_024102 crossref_primary_10_1103_PhysRevE_111_014135 crossref_primary_10_1103_PhysRevResearch_3_023006 crossref_primary_10_1103_PRXQuantum_3_020330 crossref_primary_10_1103_PhysRevLett_123_147201 crossref_primary_10_1103_PhysRevX_14_041027 crossref_primary_10_1103_PhysRevB_104_235133 crossref_primary_10_1103_PhysRevResearch_2_022065 crossref_primary_10_21468_SciPostPhys_15_2_048 crossref_primary_10_1103_PhysRevLett_133_140405 crossref_primary_10_1103_PhysRevB_104_184203 crossref_primary_10_1140_epjd_e2020_100489_1 crossref_primary_10_22331_q_2023_06_01_1027 crossref_primary_10_1088_1361_648X_ad64a0 crossref_primary_10_1103_PhysRevResearch_2_023159 crossref_primary_10_3367_UFNe_2020_06_038805 crossref_primary_10_1103_PhysRevB_111_104315 crossref_primary_10_1103_PhysRevE_98_060103 crossref_primary_10_1038_s41567_024_02664_0 crossref_primary_10_1103_PhysRevA_106_023307 crossref_primary_10_1103_PhysRevE_104_024135 crossref_primary_10_1103_PhysRevB_100_184312 crossref_primary_10_1103_PRXQuantum_4_030320 crossref_primary_10_1103_PhysRevE_103_052213 crossref_primary_10_1103_PhysRevE_103_062133 crossref_primary_10_1103_PhysRevLett_130_080401 crossref_primary_10_1103_PhysRevLett_133_040802 crossref_primary_10_1103_PhysRevB_98_174203 crossref_primary_10_1214_24_EJP1203 crossref_primary_10_1103_PhysRevA_106_022222 crossref_primary_10_1103_PhysRevE_102_042115 crossref_primary_10_1103_PhysRevA_109_022607 crossref_primary_10_1103_PhysRevResearch_3_023213 crossref_primary_10_1103_PhysRevB_108_155102 crossref_primary_10_1103_PhysRevB_102_064207 crossref_primary_10_1103_PhysRevB_101_134202 crossref_primary_10_1103_PhysRevResearch_6_033062 crossref_primary_10_1103_PhysRevA_109_052602 crossref_primary_10_1007_s10955_023_03132_4 crossref_primary_10_21468_SciPostPhys_15_1_024 crossref_primary_10_1007_JHEP09_2024_066 crossref_primary_10_1103_PhysRevB_103_035136 crossref_primary_10_21468_SciPostPhys_11_4_074 crossref_primary_10_1016_j_physleta_2024_129501 crossref_primary_10_1103_PhysRevLett_131_250401 crossref_primary_10_7498_aps_73_20231987 crossref_primary_10_1088_1361_648X_ace413 crossref_primary_10_21468_SciPostPhys_16_3_070 crossref_primary_10_1103_PhysRevResearch_6_023030 crossref_primary_10_1103_PhysRevB_105_L180201 crossref_primary_10_1103_PhysRevLett_129_200403 crossref_primary_10_1103_PhysRevLett_133_216601 crossref_primary_10_1103_PhysRevResearch_2_013119 crossref_primary_10_1103_PhysRevB_107_L201105 crossref_primary_10_1103_PhysRevE_106_054148 crossref_primary_10_1103_PhysRevE_106_054145 crossref_primary_10_1103_PhysRevResearch_2_043087 crossref_primary_10_1103_PhysRevB_108_L060201 crossref_primary_10_1103_PhysRevB_99_195108 crossref_primary_10_1103_PhysRevA_106_012206 crossref_primary_10_1088_2632_2153_ad4d3f crossref_primary_10_1103_PhysRevB_109_174209 crossref_primary_10_1016_j_physrep_2021_11_002 crossref_primary_10_1103_PhysRevE_106_044103 crossref_primary_10_1103_PhysRevResearch_2_033154 crossref_primary_10_1088_1361_648X_ad1bf5 crossref_primary_10_1103_PhysRevB_106_054314 crossref_primary_10_1103_PhysRevB_103_214304 crossref_primary_10_1103_PhysRevD_110_094029 crossref_primary_10_1007_JHEP05_2021_126 crossref_primary_10_1103_PhysRevD_109_L121701 crossref_primary_10_1140_epjp_s13360_022_02678_8 crossref_primary_10_1103_PhysRevX_13_041023 crossref_primary_10_1103_PhysRevE_100_012215 crossref_primary_10_1142_S123016122380001X crossref_primary_10_1103_PhysRevE_102_052117 crossref_primary_10_1103_PhysRevE_98_062218 crossref_primary_10_1103_PhysRevD_106_025003 crossref_primary_10_1103_PhysRevB_106_054309 crossref_primary_10_1103_PhysRevB_103_235137 crossref_primary_10_1103_PhysRevE_110_024125 crossref_primary_10_1007_JHEP05_2021_276 crossref_primary_10_1103_PhysRevA_109_062204 crossref_primary_10_21468_SciPostPhysCore_6_2_043 crossref_primary_10_1103_PhysRevLett_131_020402 crossref_primary_10_1103_PhysRevB_109_224410 crossref_primary_10_1103_PhysRevB_110_115145 crossref_primary_10_1103_PhysRevB_100_125132 crossref_primary_10_1103_PhysRevE_110_024135 crossref_primary_10_1103_PhysRevB_109_195162 crossref_primary_10_1038_s41467_020_14489_5 crossref_primary_10_1103_PhysRevX_11_021051 crossref_primary_10_1103_PhysRevA_106_013301 crossref_primary_10_1088_1742_5468_ab7f36 crossref_primary_10_1103_PhysRevE_107_054213 crossref_primary_10_22331_q_2024_06_27_1389 crossref_primary_10_1103_Physics_12_123 crossref_primary_10_1088_1367_2630_accd11 crossref_primary_10_1103_PhysRevB_102_165155 crossref_primary_10_1103_PhysRevLett_127_040603 crossref_primary_10_1007_JHEP03_2023_126 crossref_primary_10_1103_PhysRevApplied_17_034060 crossref_primary_10_1103_PhysRevLett_132_040402 crossref_primary_10_1103_PRXQuantum_4_020353 crossref_primary_10_1088_1742_5468_ab4e8d crossref_primary_10_1103_PhysRevB_104_014424 crossref_primary_10_1103_PhysRevLett_126_063401 crossref_primary_10_1103_PhysRevE_111_024201 crossref_primary_10_1039_D1CP05255A |
Cites_doi | 10.1103/PhysRevLett.112.130403 10.1103/PhysRevLett.101.190403 10.1103/RevModPhys.75.715 10.1103/PhysRevA.34.591 10.1051/jphyslet:0198400450210101500 10.1103/PhysRevB.93.174202 10.1140/epjb/e2003-00029-3 10.1103/PhysRevLett.54.1879 10.1088/0305-4470/10/12/016 10.2307/1968225 10.1146/annurev-conmatphys-031214-014726 10.1103/PhysRevLett.111.050403 10.1103/PhysRevE.97.012140 10.1103/PhysRevA.89.042112 10.1007/BF01215225 10.1103/PhysRevLett.80.1373 10.1103/PhysRevB.88.014206 10.1007/BF01197884 10.1016/0009-2614(85)85241-6 10.1098/rspa.2009.0635 10.1103/PhysRevA.91.012120 10.1007/b98082 10.2307/1968537 10.1016/j.aop.2014.11.008 10.1007/BF01288195 10.1103/PhysRevA.82.011604 10.1088/0305-4470/29/4/003 10.1103/PhysRevLett.108.110601 10.1140/epjh/e2010-00007-7 10.1103/PhysRevX.8.021026 10.1142/S0217984913300032 10.1103/PhysRevLett.103.100403 10.1103/PhysRevE.92.040103 10.1016/S0167-2789(98)00287-5 10.1103/PhysRevE.90.050101 10.1103/PhysRevA.55.27 10.1103/PhysRev.97.1419 10.1007/s00220-015-2473-y 10.1143/PTP.22.745 10.4007/annals.2010.171.605 10.1103/PhysRevA.90.012110 10.1103/PhysRevE.91.012144 10.1103/PhysRevE.79.061103 10.2307/1969956 10.1126/science.aaf8834 10.1103/PhysRevE.85.060101 10.1088/0305-4470/32/7/007 10.1088/1742-5468/2014/10/P10010 10.1103/PhysRevA.80.053607 10.1103/PhysRevA.90.033606 10.1103/PhysRevLett.78.2803 10.1103/PhysRevA.44.2263 10.1088/1367-2630/12/7/075021 10.1103/PhysRevLett.111.171301 10.1007/978-3-642-76247-5_10 10.1103/PhysRevLett.107.040601 10.1007/s10955-016-1508-x 10.3934/dcds.2008.22.427 10.1103/PhysRevA.86.023609 10.1073/pnas.17.5.315 10.1007/978-3-662-02781-3_35 10.1103/PhysRev.106.620 10.1103/PhysRevA.43.2046 10.1098/rspa.1987.0109 10.1103/PhysRevLett.115.220401 10.1146/annurev-conmatphys-031214-014548 10.1038/nature06149 10.1088/0034-4885/42/12/002 10.1103/PhysRevLett.105.250401 10.1142/0073 10.1016/j.aop.2013.02.011 10.1140/epjh/e2010-00008-5 10.1103/PhysRevE.81.036206 10.1016/B978-0-444-53857-4.00003-9 10.1007/s00222-009-0182-x 10.1103/PhysRevLett.96.050403 10.1215/S0012-7094-87-05546-3 10.1103/PhysRevA.39.6507 10.1103/PhysRevE.87.042135 10.1007/s00023-004-0166-8 10.1016/j.aop.2005.11.014 10.1088/1367-2630/17/5/055025 10.1103/PhysRevA.87.012118 10.1103/PhysRevB.96.035153 10.1038/nphys444 10.1002/prop.201300020 10.1080/00018732.2016.1198134 10.1103/PhysRevB.96.085113 10.1038/nature06838 10.1103/PhysRevE.50.888 10.1103/PhysRevA.90.052105 10.1103/PhysRev.108.171 10.1038/nature04693 10.1007/BF01608499 10.1002/andp.19273881504 10.1103/PhysRevLett.52.1 10.1007/BF01209296 10.1103/RevModPhys.82.1225 10.1126/science.aaf6725 |
ContentType | Journal Article |
Copyright | 2018 IOP Publishing Ltd |
Copyright_xml | – notice: 2018 IOP Publishing Ltd |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1088/1361-6633/aac9f1 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Eigenstate thermalization hypothesis |
EISSN | 1361-6633 |
ExternalDocumentID | 29862983 10_1088_1361_6633_aac9f1 ropaac9f1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Foundational Questions Institute funderid: https://doi.org/10.13039/100009566 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ACAFW ACBEA ACGFO ACGFS ACHIP ACNCT AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RKQ RNS RO9 ROL RPA SY9 TN5 UCJ W28 WH7 XPP ZMT ~02 AAYXX ADEQX CITATION 02O 1PV 1WK 29P 5ZI 9BW AAGCF ABEFU ABTAH ACKIV ACWPO ADIYS AERVB AFFNX AHSEE ARNYC BBWZM FEDTE HVGLF JCGBZ MVM NPM OHT PKN Q02 S3P T37 VO1 XOL ZCG ZY4 7X8 |
ID | FETCH-LOGICAL-c411t-200c7d2f81b776c14fc2cb7ad37f4e3e230be1badbbc85c24af83c1bab6e90ab3 |
IEDL.DBID | IOP |
ISSN | 0034-4885 1361-6633 |
IngestDate | Thu Jul 10 22:24:09 EDT 2025 Wed Feb 19 02:43:12 EST 2025 Tue Jul 01 02:52:56 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Wed Aug 21 03:33:13 EDT 2024 Thu Jan 07 13:48:46 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-200c7d2f81b776c14fc2cb7ad37f4e3e230be1badbbc85c24af83c1bab6e90ab3 |
Notes | ROPP-101089.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9622-5540 |
PMID | 29862983 |
PQID | 2049932855 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2049932855 iop_journals_10_1088_1361_6633_aac9f1 crossref_primary_10_1088_1361_6633_aac9f1 pubmed_primary_29862983 crossref_citationtrail_10_1088_1361_6633_aac9f1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Reports on progress in physics |
PublicationTitleAbbrev | RoPP |
PublicationTitleAlternate | Rep. Prog. Phys |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Berry M V (68) 1977; 10 Jancel R (20) 2013; 19 110 111 112 113 114 90 91 Šafránek D (88) 2017 92 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 Mori T (81) 2016 1 2 3 4 5 6 9 Sinai Y G (22) 1970; 25 21 Grover T (115) 2014; 2014 23 24 25 26 27 Tolman R C (50) 1938 29 Schrödinger E (41) 1989 Deutsch J (77) 2010; 12 30 31 Srednicki M (8) 1999; 32 32 33 Mondaini R (83) 2017 35 36 37 38 Farquhar I E (19) 1964 Deffner S (60) 2016; 18 Shiraishi N (84) 2017 40 42 43 44 45 46 47 48 49 Arnol’d V I (28) 1968 51 53 55 Reif F (39) 2009 56 57 58 59 Reimann P (75) 2015; 17 Penrose O (34) 1979; 42 62 64 65 66 Gemmer J (52) 2004 67 69 Lindblad C (54) 2001; 5 Shnirelman A I (63) 1975; 171 Šafránek D (89) 2017 70 71 72 73 74 76 78 79 Srednicki M (7) 1996; 29 100 101 102 103 104 105 106 80 107 Zurek W H (61) 2018 108 82 109 85 86 87 |
References_xml | – ident: 99 doi: 10.1103/PhysRevLett.112.130403 – ident: 55 doi: 10.1103/PhysRevLett.101.190403 – ident: 59 doi: 10.1103/RevModPhys.75.715 – ident: 71 doi: 10.1103/PhysRevA.34.591 – volume: 18 issn: 1367-2630 year: 2016 ident: 60 publication-title: New J. Phys. – ident: 33 doi: 10.1051/jphyslet:0198400450210101500 – ident: 103 doi: 10.1103/PhysRevB.93.174202 – ident: 43 doi: 10.1140/epjb/e2003-00029-3 – ident: 90 doi: 10.1103/PhysRevLett.54.1879 – volume: 10 start-page: 2083 issn: 0305-4470 year: 1977 ident: 68 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/10/12/016 – ident: 37 doi: 10.2307/1968225 – ident: 14 doi: 10.1146/annurev-conmatphys-031214-014726 – ident: 9 doi: 10.1103/PhysRevLett.111.050403 – ident: 79 doi: 10.1103/PhysRevE.97.012140 – ident: 97 doi: 10.1103/PhysRevA.89.042112 – year: 1938 ident: 50 publication-title: The Principles of Statistical Mechanics – ident: 67 doi: 10.1007/BF01215225 – ident: 42 doi: 10.1103/PhysRevLett.80.1373 – ident: 13 doi: 10.1103/PhysRevB.88.014206 – ident: 26 doi: 10.1007/BF01197884 – ident: 70 doi: 10.1016/0009-2614(85)85241-6 – ident: 56 doi: 10.1098/rspa.2009.0635 – ident: 100 doi: 10.1103/PhysRevA.91.012120 – year: 2004 ident: 52 publication-title: Lecture Notes in Physics doi: 10.1007/b98082 – ident: 36 doi: 10.2307/1968537 – ident: 107 doi: 10.1016/j.aop.2014.11.008 – ident: 30 doi: 10.1007/BF01288195 – ident: 93 doi: 10.1103/PhysRevA.82.011604 – volume: 29 start-page: L75 issn: 0305-4470 year: 1996 ident: 7 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/29/4/003 – volume: 5 year: 2001 ident: 54 publication-title: Non-Equilibrium Entropy and Irreversibility – year: 2016 ident: 81 – ident: 58 doi: 10.1103/PhysRevLett.108.110601 – ident: 57 doi: 10.1140/epjh/e2010-00007-7 – ident: 78 doi: 10.1103/PhysRevX.8.021026 – ident: 18 doi: 10.1142/S0217984913300032 – ident: 91 doi: 10.1103/PhysRevLett.103.100403 – ident: 102 doi: 10.1103/PhysRevE.92.040103 – year: 2009 ident: 39 publication-title: Fundamentals of Statistical and Thermal Physics – ident: 69 doi: 10.1016/S0167-2789(98)00287-5 – ident: 114 doi: 10.1103/PhysRevE.90.050101 – ident: 38 doi: 10.1103/PhysRevA.55.27 – ident: 40 doi: 10.1103/PhysRev.97.1419 – ident: 47 doi: 10.1007/s00220-015-2473-y – ident: 51 doi: 10.1143/PTP.22.745 – ident: 62 doi: 10.4007/annals.2010.171.605 – volume: 25 start-page: 141 issn: 0042-1316 year: 1970 ident: 22 publication-title: Usp. Mat. Nauk – year: 1989 ident: 41 publication-title: Statistical Thermodynamics – ident: 106 doi: 10.1103/PhysRevA.90.012110 – year: 2017 ident: 89 – ident: 101 doi: 10.1103/PhysRevE.91.012144 – ident: 46 doi: 10.1103/PhysRevE.79.061103 – ident: 74 doi: 10.2307/1969956 – ident: 111 doi: 10.1126/science.aaf8834 – ident: 95 doi: 10.1103/PhysRevE.85.060101 – volume: 32 start-page: 1163 issn: 0305-4470 year: 1999 ident: 8 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/32/7/007 – volume: 2014 issn: 1742-5468 year: 2014 ident: 115 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2014/10/P10010 – ident: 92 doi: 10.1103/PhysRevA.80.053607 – ident: 94 doi: 10.1103/PhysRevA.90.033606 – ident: 10 doi: 10.1103/PhysRevLett.78.2803 – ident: 27 doi: 10.1103/PhysRevA.44.2263 – volume: 12 issn: 1367-2630 year: 2010 ident: 77 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/7/075021 – ident: 15 doi: 10.1103/PhysRevLett.111.171301 – ident: 64 doi: 10.1007/978-3-642-76247-5_10 – ident: 87 doi: 10.1103/PhysRevLett.107.040601 – ident: 12 doi: 10.1007/s10955-016-1508-x – year: 2017 ident: 88 – ident: 25 doi: 10.3934/dcds.2008.22.427 – ident: 73 doi: 10.1103/PhysRevA.86.023609 – ident: 35 doi: 10.1073/pnas.17.5.315 – ident: 31 doi: 10.1007/978-3-662-02781-3_35 – volume: 19 year: 2013 ident: 20 publication-title: Foundations of Classical and Quantum Statistical Mechanics: International Series of Monographs in Natural Philosophy – ident: 48 doi: 10.1103/PhysRev.106.620 – ident: 3 doi: 10.1103/PhysRevA.43.2046 – ident: 29 doi: 10.1098/rspa.1987.0109 – ident: 85 doi: 10.1103/PhysRevLett.115.220401 – ident: 17 doi: 10.1146/annurev-conmatphys-031214-014548 – ident: 108 doi: 10.1038/nature06149 – volume: 42 start-page: 1937 issn: 0034-4885 year: 1979 ident: 34 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/42/12/002 – ident: 80 doi: 10.1103/PhysRevLett.105.250401 – ident: 21 doi: 10.1142/0073 – ident: 105 doi: 10.1016/j.aop.2013.02.011 – year: 1964 ident: 19 publication-title: Ergodic Theory in Statistical Mechanics – ident: 2 doi: 10.1140/epjh/e2010-00008-5 – ident: 76 doi: 10.1103/PhysRevE.81.036206 – ident: 16 doi: 10.1016/B978-0-444-53857-4.00003-9 – ident: 24 doi: 10.1007/s00222-009-0182-x – ident: 45 doi: 10.1103/PhysRevLett.96.050403 – issn: 0370-1573 year: 2018 ident: 61 publication-title: Phys. Rep. – ident: 65 doi: 10.1215/S0012-7094-87-05546-3 – ident: 72 doi: 10.1103/PhysRevA.39.6507 – ident: 86 doi: 10.1103/PhysRevE.87.042135 – ident: 23 doi: 10.1007/s00023-004-0166-8 – ident: 11 doi: 10.1016/j.aop.2005.11.014 – volume: 17 issn: 1367-2630 year: 2015 ident: 75 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/5/055025 – year: 2017 ident: 84 – ident: 96 doi: 10.1103/PhysRevA.87.012118 – ident: 104 doi: 10.1103/PhysRevB.96.035153 – ident: 44 doi: 10.1038/nphys444 – ident: 113 doi: 10.1002/prop.201300020 – year: 1968 ident: 28 publication-title: Ergodic Problems of Classical Mechanics – ident: 6 doi: 10.1080/00018732.2016.1198134 – ident: 82 doi: 10.1103/PhysRevB.96.085113 – ident: 5 doi: 10.1038/nature06838 – ident: 4 doi: 10.1103/PhysRevE.50.888 – ident: 98 doi: 10.1103/PhysRevA.90.052105 – ident: 49 doi: 10.1103/PhysRev.108.171 – year: 2017 ident: 83 – ident: 110 doi: 10.1038/nature04693 – ident: 53 doi: 10.1007/BF01608499 – volume: 171 start-page: 605 year: 1975 ident: 63 publication-title: Usp. Math. Nauk – ident: 1 doi: 10.1002/andp.19273881504 – ident: 32 doi: 10.1103/PhysRevLett.52.1 – ident: 66 doi: 10.1007/BF01209296 – ident: 109 doi: 10.1103/RevModPhys.82.1225 – ident: 112 doi: 10.1126/science.aaf6725 |
SSID | ssj0011829 |
Score | 2.6961472 |
Snippet | The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 82001 |
SubjectTerms | eigenstate thermalization entropy quantum chaos random matrix theory statistical mechanics |
Title | Eigenstate thermalization hypothesis |
URI | https://iopscience.iop.org/article/10.1088/1361-6633/aac9f1 https://www.ncbi.nlm.nih.gov/pubmed/29862983 https://www.proquest.com/docview/2049932855 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC50ZMGLq-7DcV2JoAcPmUk_ku6wp0UUFXb1sIIHoenudKM4OzOYmYP-eqvTmYFZVBZvSagkXZ2q1FfUC2A_l5VmTpSpq7xIuc1kql3hU0GdzqhmFaGhwPnX7-L0ip9f59dL8GNeCzMat7_-Hh7GRsFxC9uEONknrCApGkrW19qWHl2fFSaLIowvOLu4nIcQEDhH7Mt4ilKatzHKl56wYJOW8b2vw83G7Jx8hJvZgmO2yX1vOjE9-_RPL8d3crQOay0cTX5G0g1YcsNN-NCkhdr6E-wfh2adTdFREpDiXz1o6zaT28dxKN6q7-rPcHVy_OfoNG3nKqSWEzIJimFFRT0iViEKS7i31BqhKyY8d8yhV2IcMboyxsrcUq69ZBYvmMKVmTbsC3SGo6HbgoRZREy5KRnPPK-40B790UJaKzzxiKy60J_trLJt0_Ew-2KgmuC3lCrwrgLvKvLehcP5HePYcOMN2gPcUtVqXf0GXbJA94AnkiipAv7JiBpXvgt7sy-uUMFC1EQP3WhaKxqcQkZlnnfhaxSF-cJoiQ5hKdn2fy7kG6wi4JIxgXAHOpOHqfuOoGZidhvhfQZhW-6U |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VqiIupaWUbkvbINFDD9mNH4mdI6KsoA_gUCRuxnZsFUF3V2T3UH4949i7EhVFSL0l0SSZmdiZbzQvgJ1SNpo5Ueeu8SLntpC5dpXPBXW6oJo1hIYC5x9H1cEp_3pWnqU5p10tzHiSfv19PIyNgqMKU0KcHBBWkRwNJRtobWtPBpPGL8HTklUsNM8_PD5ZhBEQPEf8y3iOK7VMccr7nnLHLi3hu_8NOTvTM1yD8znTMePksj-bmr69-auf439I9QKeJ1ia7Ubyl_DEjdbhWZceattXsLMfmnZ2xUdZQIy_9VWq38x-_ZmEIq72ot2A0-H-z72DPM1XyC0nZBo2iBUN9Yhchags4d5Sa4RumPDcMYfeiXHE6MYYK0tLufaSWbxgKlcX2rDXsDwaj9wbyJhF5FSamvHC84YL7dEvraS1whOPCKsHg7l2lU3Nx8MMjCvVBcGlVEF-FeRXUf4efF7cMYmNNx6g_YRqVWn3tQ_QZXforvFEEiVVwEEFUajyHmzPv7rCjRaiJ3rkxrNW0eAcMirLsgebcTksGKM1Ooa1ZG8fychHWDn5MlTfD4--vYNVxGAy5hRuwfL0eubeI86Zmg_dWr4FhMXz-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenstate+thermalization+hypothesis&rft.jtitle=Reports+on+progress+in+physics&rft.au=Deutsch%2C+Joshua+M&rft.date=2018-08-01&rft.issn=0034-4885&rft.eissn=1361-6633&rft.volume=81&rft.issue=8&rft.spage=82001&rft_id=info:doi/10.1088%2F1361-6633%2Faac9f1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6633_aac9f1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4885&client=summon |