Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study

•We present an empirical comparison of two new meta-heuristics SSO and FP.•Real test images were used to perform thresholding using Otsu's method and Kapur's entropy.•Compared algorithms were SSO, FP, PSO, BAT.•Comparisons were made according to the fitness values, PSNR and SSIM.•SSO shows...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 55; pp. 566 - 584
Main Authors Ouadfel, Salima, Taleb-Ahmed, Abdelmalik
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.08.2016
Elsevier
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2016.02.024

Cover

Loading…
Abstract •We present an empirical comparison of two new meta-heuristics SSO and FP.•Real test images were used to perform thresholding using Otsu's method and Kapur's entropy.•Compared algorithms were SSO, FP, PSO, BAT.•Comparisons were made according to the fitness values, PSNR and SSIM.•SSO shows superior performance in convergence and in quality terms. In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization (SSO) algorithms to solve the image segmentation problem via multilevel thresholding. The FP algorithm is inspired from the biological process of flower pollination. It relies on two basic mechanisms to generate new solutions. The first one is the global pollination modeled in terms of a Levy distribution while the second one is the local pollination that is based on random selection of local solutions. For its part, the SSO algorithm mimics different natural cooperative behaviors of a spider colony. It considers male and female search agents subject to different evolutionary operators. In the two proposed algorithms, candidate solutions are firstly generated using the image histogram. Then, they are evolved according to the dynamics of their corresponding operators. During the optimization process, solutions are evaluated using the between-class variance or Kapur's method. The performance of each of the two proposed approaches has been assessed using a variety of benchmark images and compared against two other nature inspired algorithms from the literature namely PSO and BAT algorithms. Results have been analyzed both qualitatively and quantitatively based on the fitness values of obtained best solutions and two popular performance measures namely PSNR and SSIM indices as well. Experimental results have shown that both SSO and FP algorithms outperform PSO and BAT algorithms while exhibiting equal performance for small numbers of thresholds. For large numbers of thresholds, it was observed that the performance of FP algorithm decreases as it is often trapped in local minima. In contrary, the SSO algorithmprovides a good balance between exploration and exploitation and has shown to be the most efficient and the most stable for all images even with the increase of the threshold number. These promising results suggest that the SSO algorithm can be effectively considered as an attractive alternative for the multilevel image thresholding problem.
AbstractList We present an empirical comparison of two new meta-heuristics SSO and FP.Real test images were used to perform thresholding using Otsu's method and Kapur's entropy.Compared algorithms were SSO, FP, PSO, BAT.Comparisons were made according to the fitness values, PSNR and SSIM.SSO shows superior performance in convergence and in quality terms. In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization (SSO) algorithms to solve the image segmentation problem via multilevel thresholding. The FP algorithm is inspired from the biological process of flower pollination. It relies on two basic mechanisms to generate new solutions. The first one is the global pollination modeled in terms of a Levy distribution while the second one is the local pollination that is based on random selection of local solutions. For its part, the SSO algorithm mimics different natural cooperative behaviors of a spider colony. It considers male and female search agents subject to different evolutionary operators. In the two proposed algorithms, candidate solutions are firstly generated using the image histogram. Then, they are evolved according to the dynamics of their corresponding operators. During the optimization process, solutions are evaluated using the between-class variance or Kapur's method. The performance of each of the two proposed approaches has been assessed using a variety of benchmark images and compared against two other nature inspired algorithms from the literature namely PSO and BAT algorithms. Results have been analyzed both qualitatively and quantitatively based on the fitness values of obtained best solutions and two popular performance measures namely PSNR and SSIM indices as well. Experimental results have shown that both SSO and FP algorithms outperform PSO and BAT algorithms while exhibiting equal performance for small numbers of thresholds. For large numbers of thresholds, it was observed that the performance of FP algorithm decreases as it is often trapped in local minima. In contrary, the SSO algorithmprovides a good balance between exploration and exploitation and has shown to be the most efficient and the most stable for all images even with the increase of the threshold number. These promising results suggest that the SSO algorithm can be effectively considered as an attractive alternative for the multilevel image thresholding problem.
In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization (SSO) algorithms to solve the image segmentation problem via multilevel thresholding. The FP algorithm is inspired from the biological process of flower pollination. It relies on two basic mechanisms to generate new solutions. The first one is the global pollination modeled in terms of a Levy distribution while the second one is the local pollination that is based on random selection of local solutions. For its part, the SSO algorithm mimics different natural cooperative behaviors of a spider colony. It considers male and female search agents subject to different evolutionary operators. In the two proposed algorithms, candidate solutions are firstly generated using the image histogram. Then, they are evolved according to the dynamics of their corresponding operators. During the optimization process, solutions are evaluated using the between-class variance or Kapur's method. The performance of each of the two proposed approaches has been assessed using a variety of benchmark images and compared against two other nature inspired algorithms from the literature namely PSO and BAT algorithms. Results have been analyzed both qualitatively and quantitatively based on the fitness values of obtained best solutions and two popular performance measures namely PSNR and SSIM indices as well. Experimental results have shown that both SSO and FP algorithms outperform PSO and BAT algorithms while exhibiting equal performance for small numbers of thresholds. For large numbers of thresholds, it was observed that the performance of FP algorithm decreases as it is often trapped in local minima. In contrary, the SSO algorithm provides a good balance between exploration and exploitation and has shown to be the most efficient and the most stable for all images even with the increase of the threshold number. These promising results suggest that the SSO algorithm can be effectively considered as an attractive alternative for the multilevel image thresholding problem.
•We present an empirical comparison of two new meta-heuristics SSO and FP.•Real test images were used to perform thresholding using Otsu's method and Kapur's entropy.•Compared algorithms were SSO, FP, PSO, BAT.•Comparisons were made according to the fitness values, PSNR and SSIM.•SSO shows superior performance in convergence and in quality terms. In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization (SSO) algorithms to solve the image segmentation problem via multilevel thresholding. The FP algorithm is inspired from the biological process of flower pollination. It relies on two basic mechanisms to generate new solutions. The first one is the global pollination modeled in terms of a Levy distribution while the second one is the local pollination that is based on random selection of local solutions. For its part, the SSO algorithm mimics different natural cooperative behaviors of a spider colony. It considers male and female search agents subject to different evolutionary operators. In the two proposed algorithms, candidate solutions are firstly generated using the image histogram. Then, they are evolved according to the dynamics of their corresponding operators. During the optimization process, solutions are evaluated using the between-class variance or Kapur's method. The performance of each of the two proposed approaches has been assessed using a variety of benchmark images and compared against two other nature inspired algorithms from the literature namely PSO and BAT algorithms. Results have been analyzed both qualitatively and quantitatively based on the fitness values of obtained best solutions and two popular performance measures namely PSNR and SSIM indices as well. Experimental results have shown that both SSO and FP algorithms outperform PSO and BAT algorithms while exhibiting equal performance for small numbers of thresholds. For large numbers of thresholds, it was observed that the performance of FP algorithm decreases as it is often trapped in local minima. In contrary, the SSO algorithmprovides a good balance between exploration and exploitation and has shown to be the most efficient and the most stable for all images even with the increase of the threshold number. These promising results suggest that the SSO algorithm can be effectively considered as an attractive alternative for the multilevel image thresholding problem.
Author Ouadfel, Salima
Taleb-Ahmed, Abdelmalik
Author_xml – sequence: 1
  givenname: Salima
  surname: Ouadfel
  fullname: Ouadfel, Salima
  email: souadfel@yahoo.fr, ouadfel@gmail.com
  organization: NTIC Faculty, University of Constantine 2-Abdelhamid Mehri, Constantine, Algeria
– sequence: 2
  givenname: Abdelmalik
  surname: Taleb-Ahmed
  fullname: Taleb-Ahmed, Abdelmalik
  email: taleb@univ-valenciennes.fr
  organization: LAMIH UMR CNRS 8201 UVHC, Laboratory of Industrial and Human Automation, Mechanics and Computer Science Université de Valenciennes et du Hainaut Cambrésis, Le mont Houy, 59313 Valenciennes Cedex 9, France
BackLink https://uphf.hal.science/hal-03426984$$DView record in HAL
BookMark eNp9kUFvEzEQhS1UJNLCH-DkIxw22I7X3kVcoqpQpEgcgLPl2LPJRN71Yjupyq_HIeXCodJIHo2-Z828d02upjgBIW85W3LG1YfDEvKDXYraL5moJV-QBe_0qlG6X12RBetb3Uiu5StynfOBMa4Z0wuSv0eHNtA8o4eUaZwLjvjbFowTtZOnQ4gPkOgcQ8DpaRx2MWHZj3SIiY7HUDDACQLF0e6Aln2CvI_B47T7SNd0hlS50U4OaC5H__iavBxsyPDm6b0hPz_f_bi9bzbfvny9XW8aJzkvDe9hGDo5bDupWb_tFXO-7cAKNggAVXu_5S3TXvtWMF8vUi1XqhXWc6l7u7oh7y__7m0wc6rbpUcTLZr79cacZ2wlheo7eeKVfXdh5xR_HSEXM2J2EIKdIB6z4Z1opdJciIp2F9SlmHOCwTgsf50pyWIwnJlzJuZgzpmYcyaGiVqySsV_0n9rPSv6dBFB9eqEkEx2CNVNjwlcMT7ic_I_1dSpfA
CitedBy_id crossref_primary_10_1007_s00500_021_05611_w
crossref_primary_10_1109_ACCESS_2020_3005452
crossref_primary_10_1016_j_measurement_2020_108066
crossref_primary_10_1016_j_knosys_2020_106552
crossref_primary_10_1049_iet_ipr_2019_1717
crossref_primary_10_1186_s13677_022_00380_9
crossref_primary_10_1007_s12065_019_00238_1
crossref_primary_10_1016_j_iswa_2024_200445
crossref_primary_10_1016_j_neucom_2018_09_034
crossref_primary_10_4018_IJSIR_2020040103
crossref_primary_10_1007_s00500_020_04842_7
crossref_primary_10_1007_s11042_020_10313_w
crossref_primary_10_1016_j_eswa_2017_04_023
crossref_primary_10_1002_qre_2811
crossref_primary_10_1016_j_aej_2024_07_127
crossref_primary_10_1109_ACCESS_2019_2896673
crossref_primary_10_1007_s10462_018_09676_2
crossref_primary_10_3389_feart_2022_849079
crossref_primary_10_1007_s10462_018_9624_4
crossref_primary_10_1007_s11042_021_10641_5
crossref_primary_10_1007_s00530_020_00716_y
crossref_primary_10_1007_s10586_024_04525_0
crossref_primary_10_1007_s00521_020_05013_3
crossref_primary_10_1007_s00521_020_05368_7
crossref_primary_10_1016_j_eswa_2019_01_075
crossref_primary_10_1016_j_biortech_2016_05_091
crossref_primary_10_1007_s13198_024_02422_8
crossref_primary_10_1007_s40031_022_00740_8
crossref_primary_10_1016_j_eswa_2018_08_045
crossref_primary_10_1007_s40998_019_00251_1
crossref_primary_10_1007_s12530_022_09443_3
crossref_primary_10_3934_mbe_2021155
crossref_primary_10_1016_j_fuel_2017_12_028
crossref_primary_10_4018_IJAMC_2020100104
crossref_primary_10_1016_j_asoc_2019_105704
crossref_primary_10_1016_j_eswa_2018_09_008
crossref_primary_10_1016_j_asoc_2020_106157
crossref_primary_10_1007_s12065_024_01001_x
crossref_primary_10_1007_s11042_020_09310_w
crossref_primary_10_1109_ACCESS_2019_2942064
crossref_primary_10_1016_j_aej_2017_05_024
crossref_primary_10_1016_j_eswa_2020_113201
crossref_primary_10_1007_s13369_019_03874_y
crossref_primary_10_1007_s11831_019_09334_y
crossref_primary_10_1016_j_knosys_2020_106510
crossref_primary_10_1016_j_energy_2018_07_053
crossref_primary_10_3390_rs11121421
crossref_primary_10_1016_j_trgeo_2023_101065
crossref_primary_10_1155_2018_6843923
crossref_primary_10_1007_s11042_020_09664_1
crossref_primary_10_3390_e21030318
crossref_primary_10_1155_2021_6036410
crossref_primary_10_1155_2018_1973604
crossref_primary_10_3390_rs11091134
crossref_primary_10_1016_j_jappgeo_2021_104405
crossref_primary_10_1007_s11042_022_14293_x
crossref_primary_10_1007_s10462_023_10683_1
crossref_primary_10_1007_s11042_023_14637_1
crossref_primary_10_3390_s18051393
crossref_primary_10_1007_s00521_017_3313_0
crossref_primary_10_1002_pip_3315
crossref_primary_10_1007_s00521_020_04820_y
crossref_primary_10_1016_j_asoc_2019_03_042
crossref_primary_10_1002_cpe_6325
crossref_primary_10_1007_s12539_018_0295_2
crossref_primary_10_1016_j_energy_2016_10_084
crossref_primary_10_1016_j_eswa_2021_114766
crossref_primary_10_1007_s00521_018_3771_z
crossref_primary_10_1109_ACCESS_2020_2966665
crossref_primary_10_3390_sym9090183
crossref_primary_10_1016_j_eswa_2020_113210
crossref_primary_10_1007_s41348_024_00953_7
crossref_primary_10_1007_s11042_022_12001_3
crossref_primary_10_1007_s11042_023_16300_1
crossref_primary_10_1016_j_bspc_2022_104513
crossref_primary_10_1109_ACCESS_2020_2969021
crossref_primary_10_32604_cmc_2021_016097
crossref_primary_10_1038_s41598_024_76457_z
crossref_primary_10_1016_j_eswa_2016_06_044
crossref_primary_10_1109_ACCESS_2018_2837062
crossref_primary_10_1007_s11760_019_01585_3
crossref_primary_10_1049_iet_gtd_2016_0455
crossref_primary_10_1007_s11227_017_2230_4
crossref_primary_10_1155_2017_5193013
crossref_primary_10_1016_j_swevo_2019_100591
crossref_primary_10_1007_s42235_023_00332_2
crossref_primary_10_1016_j_heliyon_2022_e09027
crossref_primary_10_1016_j_bspc_2024_106631
crossref_primary_10_4018_IJAMC_2017100104
crossref_primary_10_1016_j_asoc_2019_105570
crossref_primary_10_1007_s13204_021_02034_9
crossref_primary_10_1016_j_asoc_2020_106243
crossref_primary_10_1016_j_asoc_2019_105577
crossref_primary_10_1016_j_biortech_2016_11_045
crossref_primary_10_1016_j_biortech_2019_121461
crossref_primary_10_1109_ACCESS_2020_2987689
crossref_primary_10_37394_23202_2020_19_23
crossref_primary_10_1016_j_eswa_2016_08_046
crossref_primary_10_1155_2016_7343794
crossref_primary_10_1007_s10489_017_0899_y
crossref_primary_10_3934_mbe_2021353
crossref_primary_10_1007_s11042_018_5815_x
crossref_primary_10_1007_s11042_019_08195_8
crossref_primary_10_32604_csse_2023_037948
Cites_doi 10.1016/j.eswa.2013.05.041
10.1016/j.eswa.2011.06.011
10.1109/LAWP.2011.2178224
10.1016/j.engappai.2009.09.011
10.1016/j.engappai.2010.12.001
10.1007/s10732-008-9080-4
10.1016/S0165-1684(98)00167-4
10.1109/TSMC.1979.4310076
10.1016/0146-664X(81)90038-1
10.1016/j.eswa.2014.09.049
10.1155/2014/191242
10.1155/2013/575414
10.1016/j.amc.2009.10.018
10.1016/0734-189X(85)90125-2
10.2307/3001968
10.1016/j.eswa.2013.07.060
10.1016/j.sigpro.2012.07.010
10.1007/978-3-319-11313-5_40
10.1155/2014/140140
10.1016/j.cviu.2007.09.001
10.1016/0734-189X(88)90022-9
10.1504/IJBIC.2011.042259
10.14445/22315381/IJETT-V7P225
10.1016/j.asoc.2011.05.039
10.1016/j.eswa.2009.12.050
10.1016/j.imavis.2011.06.003
10.1016/j.knosys.2011.02.013
10.1016/j.eswa.2013.10.059
10.1016/j.jcp.2007.06.008
10.1016/j.measurement.2013.09.031
10.1016/j.asoc.2012.03.072
10.1080/0305215X.2013.832237
10.1016/j.eswa.2010.01.013
10.1016/j.patrec.2006.11.005
10.1016/j.eswa.2011.05.069
10.1109/TAP.2013.2238654
10.1016/j.jocs.2013.07.001
10.1109/TIM.2009.2030931
10.3390/e13040841
10.1155/2014/794574
10.1016/j.eswa.2011.06.004
10.1109/TGRS.2013.2260552
10.1016/j.eswa.2007.01.002
10.1016/j.asoc.2015.08.037
10.1016/j.neucom.2014.02.020
10.1016/S0165-1684(98)00239-4
10.1016/j.patrec.2006.11.007
10.5815/ijeme.2014.02.01
10.1016/j.patcog.2012.09.015
10.1007/s12293-013-0123-5
10.1109/TIP.2003.819861
10.1007/s10489-011-0330-z
10.1016/j.amc.2006.06.057
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.eswa.2016.02.024
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 584
ExternalDocumentID oai_HAL_hal_03426984v1
10_1016_j_eswa_2016_02_024
S0957417416300550
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c411t-19eff84fb84709b960cd58ea20f2ee6d58db1507d7d520d0176516652ad1479a3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri May 09 12:22:54 EDT 2025
Fri Jul 11 02:34:33 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Tue Jul 01 03:12:27 EDT 2025
Fri Feb 23 02:29:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multilevel thresholding
Bat algorithm
Social spider optimization
Particle swarm optimization
Optimization
Flower pollination algorithm
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-19eff84fb84709b960cd58ea20f2ee6d58db1507d7d520d0176516652ad1479a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7218-3799
0000-0001-8750-1905
OpenAccessLink https://uphf.hal.science/hal-03426984
PQID 1825467122
PQPubID 23500
PageCount 19
ParticipantIDs hal_primary_oai_HAL_hal_03426984v1
proquest_miscellaneous_1825467122
crossref_citationtrail_10_1016_j_eswa_2016_02_024
crossref_primary_10_1016_j_eswa_2016_02_024
elsevier_sciencedirect_doi_10_1016_j_eswa_2016_02_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-15
PublicationDateYYYYMMDD 2016-08-15
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-15
  day: 15
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yang (bib0066) 2009
Platt (bib0045) 2014
Hammouche, Diaf, Siarry (bib0023) 2008; 109
Otsu (bib0038) 1979
Maitra, Chatterjee (bib0033) 2008; 34
Kumar, Kumar, Sharma, Pant (bib0030) 2013; 5
Horng (bib0026) 2011; 38
Kapur, Sahoo, Wong (bib0028) 1985; 29
Pun (bib0103) 1981; 16
Shapiro, Stockman (bib0057) 2002
Cuevas, Cienfuegos, Zaldivar, Perez (bib0015) 2013; 40
Alihodzic, Tuba (bib0004) 2013
Sarkar, RanjanPatra, Das (bib0053) 2011; 1
Brajevic, Tuba, Bacanin (bib0011) 2012
Ouadfel, Meshoul (bib0039) 2014; 49
Xue, Titterington (bib0064) 2011; 29
Kennedy, Eberhart (bib0029) 1995; Vol. 4
Tao, Jin, Liu (bib0060) 2007; 28
Horng (bib0025) 2010; 37
Oliva, Cuevas, Pajares, Zaldivar, Osuna (bib0036) 2014; 139
Abdel-Raouf, Abdel-Baset, El-Henawy (bib0002) 2014; 7
Gao, Xu, Sun, Tang (bib0019) 2010; 59
Łukasik, Kowalski (bib0031) 2015; 322
Zhang, Wu (bib0070) 2011; 13
Pal, Pal (bib0101) 1993; 26
Bhandari, Singh, Kumar, Singh (bib0010) 2014; 41
Sahoo, Soltani, Wong (bib0049) 1988; 41
Akay (bib0003) 2013; 13
Bayraktar, Komurcu, Bossard, Werner (bib0006) 2013; 61
Hammouche, Diaf, Siarry (bib0102) 2010; 23
Yin (bib0068) 1999; 72
Mulya, Hadi, Ali (bib0035) 2014
Tang, Yuan, Sun, Yang, Gao (bib0059) 2011; 24
Bayraktar, Turpin, Werner (bib0007) 2011; 10
Cuevas, Sención, Zaldivar, Pérez-Cisneros, Sossa (bib0013) 2012; 37
Fan, Lin (bib0018) 2007; 28
Sanyal, Chatterjee, Munshi (bib0052) 2011; 38
Oliva, Cuevas, Pajares, Zaldivar, Perez-Cisneros (bib0037) 2013; 2013
Chakraborty, Saha, Dutta (bib0012) 2014
Pavlyukevich (bib0042) 2007; 226
Rodrigues, Yang, de Souza, Papa (bib0048) 2015; 585
Abdel-Raouf, Abdel-Baset, El-Henawy (bib0001) 2014; 4
Peng, Zhang, Zhang (bib0043) 2013; 46
Sathya, Kayalvizhi (bib0055) 2011; 24
Gao, Xu, Sun, Tang (bib0020) 2013; 59
Yang, Karamanoglu, He (bib0105) 2014; 46
Cheng, Chen, Sun (bib0104) 1999; 75
Priyadharshini, Divya, Preethi, Pazhaniraja, Paul (bib0047) 2015; 2015
Manikandan, Ramar, Willjuice, Srinivasagan (bib0034) 2014; 47
Yang (bib0067) 2011; 3
Yin (bib0069) 2007; 184
Zhang, Li, Tang, Lu, Zheng, Zhou (bib0071) 2014; 2014
Cuevas, Zaldivar, Pérez-Cisneros (bib0014) 2010; 37
Ghamisi, Couceiro, Martins, Benediktsson (bib0022) 2014; 52
Sezgin, Sankur (bib0056) 2004; 13
Raja, Rajinikanth, Latha (bib0058) 2014; 2014
Wang, Zhou (bib0061) 2014; 2014
Dirami, Hammouche, Diaf, Siarry (bib0016) 2013; 1046 93
Horng, Liou (bib0027) 2011; 38
Wang, Bovik, Sheikh, Simoncelli (bib0062) 2004; 13
Prathiba, Balasingh, Moses (bib0046) 2014; 6
Sathya, Kayalvizhi (bib0054) 2011; 38
Ma, Liang, Guo, Fan, Yin (bib0032) 2011; 11
Horng (bib0024) 2010; 215
Wilcoxon (bib0063) 1945; 1
Bakhshali, Shamsi (bib0005) 2014; 5
Ibrahim, Mahmoud (bib0017) 2014; 8
García, Molina, Lozano, Herrera (bib0021) 2009; 15
Panda, Agrawal, Bhuyan (bib0041) 2013; 40
Pereira, Delpiano, Papa (bib0044) 2014
Bhandari, Kumar, Singh (bib0009) 2015; 42
Yang (bib0065) 2012; 7445
Bekdaş, Nigdeli, Yang (bib0008) 2015; 37
Sanjay, Rutuparna, Sudipta, Panigrahib (bib0050) 2013; 11
Cuevas (10.1016/j.eswa.2016.02.024_bib0015) 2013; 40
Wang (10.1016/j.eswa.2016.02.024_bib0061) 2014; 2014
Cheng (10.1016/j.eswa.2016.02.024_bib0104) 1999; 75
Łukasik (10.1016/j.eswa.2016.02.024_bib0031) 2015; 322
Bayraktar (10.1016/j.eswa.2016.02.024_bib0006) 2013; 61
Yang (10.1016/j.eswa.2016.02.024_bib0066) 2009
Bekdaş (10.1016/j.eswa.2016.02.024_bib0008) 2015; 37
Platt (10.1016/j.eswa.2016.02.024_bib0045) 2014
Akay (10.1016/j.eswa.2016.02.024_bib0003) 2013; 13
Pereira (10.1016/j.eswa.2016.02.024_bib0044) 2014
Shapiro (10.1016/j.eswa.2016.02.024_bib0057) 2002
Zhang (10.1016/j.eswa.2016.02.024_bib0070) 2011; 13
Mulya (10.1016/j.eswa.2016.02.024_bib0035) 2014
Raja (10.1016/j.eswa.2016.02.024_bib0058) 2014; 2014
Hammouche (10.1016/j.eswa.2016.02.024_bib0023) 2008; 109
Yang (10.1016/j.eswa.2016.02.024_bib0065) 2012; 7445
Yang (10.1016/j.eswa.2016.02.024_bib0105) 2014; 46
Alihodzic (10.1016/j.eswa.2016.02.024_bib0004) 2013
Ouadfel (10.1016/j.eswa.2016.02.024_bib0039) 2014; 49
Fan (10.1016/j.eswa.2016.02.024_bib0018) 2007; 28
Zhang (10.1016/j.eswa.2016.02.024_bib0071) 2014; 2014
Abdel-Raouf (10.1016/j.eswa.2016.02.024_bib0002) 2014; 7
Brajevic (10.1016/j.eswa.2016.02.024_bib0011) 2012
Kennedy (10.1016/j.eswa.2016.02.024_bib0029) 1995; Vol. 4
Sahoo (10.1016/j.eswa.2016.02.024_bib0049) 1988; 41
Bayraktar (10.1016/j.eswa.2016.02.024_bib0007) 2011; 10
Ghamisi (10.1016/j.eswa.2016.02.024_bib0022) 2014; 52
Dirami (10.1016/j.eswa.2016.02.024_bib0016) 2013; 1046 93
Tang (10.1016/j.eswa.2016.02.024_bib0059) 2011; 24
Wang (10.1016/j.eswa.2016.02.024_bib0062) 2004; 13
Ma (10.1016/j.eswa.2016.02.024_bib0032) 2011; 11
Panda (10.1016/j.eswa.2016.02.024_bib0041) 2013; 40
Sathya (10.1016/j.eswa.2016.02.024_bib0054) 2011; 38
Otsu (10.1016/j.eswa.2016.02.024_bib0038) 1979
Yang (10.1016/j.eswa.2016.02.024_bib0067) 2011; 3
Abdel-Raouf (10.1016/j.eswa.2016.02.024_bib0001) 2014; 4
Bhandari (10.1016/j.eswa.2016.02.024_bib0010) 2014; 41
Rodrigues (10.1016/j.eswa.2016.02.024_bib0048) 2015; 585
Sathya (10.1016/j.eswa.2016.02.024_bib0055) 2011; 24
Horng (10.1016/j.eswa.2016.02.024_bib0025) 2010; 37
Priyadharshini (10.1016/j.eswa.2016.02.024_bib0047) 2015; 2015
Kumar (10.1016/j.eswa.2016.02.024_bib0030) 2013; 5
Bhandari (10.1016/j.eswa.2016.02.024_bib0009) 2015; 42
Kapur (10.1016/j.eswa.2016.02.024_bib0028) 1985; 29
Sarkar (10.1016/j.eswa.2016.02.024_bib0053) 2011; 1
Cuevas (10.1016/j.eswa.2016.02.024_bib0013) 2012; 37
Yin (10.1016/j.eswa.2016.02.024_bib0069) 2007; 184
Tao (10.1016/j.eswa.2016.02.024_bib0060) 2007; 28
Horng (10.1016/j.eswa.2016.02.024_bib0027) 2011; 38
Peng (10.1016/j.eswa.2016.02.024_bib0043) 2013; 46
Chakraborty (10.1016/j.eswa.2016.02.024_bib0012) 2014
Ibrahim (10.1016/j.eswa.2016.02.024_bib0017) 2014; 8
Pavlyukevich (10.1016/j.eswa.2016.02.024_bib0042) 2007; 226
Wilcoxon (10.1016/j.eswa.2016.02.024_bib0063) 1945; 1
Sezgin (10.1016/j.eswa.2016.02.024_bib0056) 2004; 13
Gao (10.1016/j.eswa.2016.02.024_bib0019) 2010; 59
Oliva (10.1016/j.eswa.2016.02.024_bib0036) 2014; 139
Manikandan (10.1016/j.eswa.2016.02.024_bib0034) 2014; 47
Pal (10.1016/j.eswa.2016.02.024_bib0101) 1993; 26
Sanyal (10.1016/j.eswa.2016.02.024_bib0052) 2011; 38
Hammouche (10.1016/j.eswa.2016.02.024_bib0102) 2010; 23
Oliva (10.1016/j.eswa.2016.02.024_bib0037) 2013; 2013
Yin (10.1016/j.eswa.2016.02.024_bib0068) 1999; 72
Sanjay (10.1016/j.eswa.2016.02.024_bib0050) 2013; 11
Cuevas (10.1016/j.eswa.2016.02.024_bib0014) 2010; 37
Maitra (10.1016/j.eswa.2016.02.024_bib0033) 2008; 34
Horng (10.1016/j.eswa.2016.02.024_bib0026) 2011; 38
García (10.1016/j.eswa.2016.02.024_bib0021) 2009; 15
Bakhshali (10.1016/j.eswa.2016.02.024_bib0005) 2014; 5
Pun (10.1016/j.eswa.2016.02.024_bib0103) 1981; 16
Gao (10.1016/j.eswa.2016.02.024_bib0020) 2013; 59
Prathiba (10.1016/j.eswa.2016.02.024_bib0046) 2014; 6
Xue (10.1016/j.eswa.2016.02.024_bib0064) 2011; 29
Horng (10.1016/j.eswa.2016.02.024_bib0024) 2010; 215
References_xml – start-page: 1
  year: 2014
  end-page: 6
  ident: bib0012
  article-title: DE-FPA, a hybrid differential evolution-flower pollination algorithm for function minimization, high perform
  publication-title: Conference on high performances computing and applications (ICHPCA’14)
– volume: 59
  start-page: 934
  year: 2010
  end-page: 946
  ident: bib0019
  article-title: Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 10
  start-page: 1563
  year: 2011
  end-page: 1566
  ident: bib0007
  article-title: Nature-inspired optimization of high impedance metasurfaces with ultrasmall interwoven unit cells
  publication-title: IEEE Letters on Antennas and Wireless Propagation
– volume: 139
  start-page: 357
  year: 2014
  end-page: 1118
  ident: bib0036
  article-title: A multilevel thresholding algorithm using electromagnetism optimization
  publication-title: Neurocomputing
– volume: 37
  start-page: 5265
  year: 2010
  end-page: 5271
  ident: bib0014
  article-title: A novel multi-threshold segmentation approach based on differential evolution optimization
  publication-title: Expert Systems with Applications
– start-page: 62
  year: 1979
  end-page: 66
  ident: bib0038
  article-title: A threshold selection method from gray level histograms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– volume: 24
  start-page: 65
  year: 2011
  end-page: 69
  ident: bib0055
  article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 4
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib0001
  article-title: An improved flower pollination algorithm with chaos
  publication-title: International Journal of Education and Management Engineering
– volume: 46
  start-page: 1020
  year: 2013
  end-page: 1038
  ident: bib0043
  article-title: A survey of graph theoretical approaches to image segmentation
  publication-title: Pattern Recognition
– year: 2014
  ident: bib0045
  article-title: Application of flower pollination algorithm in nonlinear algebraic systems with multiple solutions
  publication-title: Proceedings of the international conference on engineering optimization (ENGOPT 2014), Lisbon, Portugal, 8–11 September 2014
– volume: 5
  start-page: 251
  year: 2014
  end-page: 257
  ident: bib0005
  article-title: Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO)
  publication-title: Journal of Computational Science
– volume: 34
  start-page: 1341
  year: 2008
  end-page: 1350
  ident: bib0033
  article-title: A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding
  publication-title: Expert Systems with Applications
– volume: 23
  start-page: 667
  year: 2010
  end-page: 688
  ident: bib0102
  article-title: A comparative study of various metaheuristic techniques applied to multilevel thresholding problem
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 5
  start-page: 323
  year: 2013
  end-page: 334
  ident: bib0030
  article-title: Bi-level thresholding using PSO, artificial bee colony and MRLDE embedded with Otsu method
  publication-title: Memetic Computing
– volume: 38
  start-page: 13785
  year: 2011
  end-page: 13791
  ident: bib0026
  article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
  publication-title: Expert Systems with Applications
– volume: 3
  start-page: 267
  year: 2011
  end-page: 274
  ident: bib0067
  article-title: Bat algorithm for multi-objective optimisation
  publication-title: International Journal of Bio-Inspired Computation
– volume: 47
  start-page: 558
  year: 2014
  end-page: 568
  ident: bib0034
  article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm
  publication-title: Measurement
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib0035
  article-title: Flower pollination algorithm for optimal control in multi-machine system with GUPFC
  publication-title: 6th international conference on information technology and electrical engineering (ICITEE)
– volume: 38
  start-page: 15549
  year: 2011
  end-page: 15564
  ident: bib0054
  article-title: Optimal multilevel thresholding using bacterial foraging algorithm
  publication-title: Expert Systems with Applications
– volume: 226
  start-page: 1830
  year: 2007
  end-page: 1844
  ident: bib0042
  article-title: Levy flights, non-local search and simulated annealing
  publication-title: Journal of Computational Physics
– volume: 37
  start-page: 322
  year: 2015
  end-page: 331
  ident: bib0008
  article-title: Sizing optimization of truss structures using flower pollination algorithm
  publication-title: Applied Soft Computing
– volume: 59
  start-page: 934
  year: 2013
  end-page: 946
  ident: bib0020
  article-title: Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 24
  ident: bib0037
  article-title: Multilevel thresholding segmentation based on harmony search optimization
  publication-title: Journal of Applied Mathematics
– volume: 41
  start-page: 3538
  year: 2014
  end-page: 3560
  ident: bib0010
  article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy
  publication-title: Expert Systems with Applications
– volume: 109
  start-page: 163
  year: 2008
  end-page: 175
  ident: bib0023
  article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation
  publication-title: Computer Vision Image Understanding
– volume: 61
  start-page: 2745
  year: 2013
  end-page: 2757
  ident: bib0006
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: 215
  start-page: 3302
  year: 2010
  end-page: 3310
  ident: bib0024
  article-title: A multilevel image thresholding using the honey bee mating optimization
  publication-title: Applied Mathematics and Computation
– volume: 8
  start-page: 72
  year: 2014
  end-page: 81
  ident: bib0017
  article-title: An improved chaotic flower pollination algorithm for solving large integer programming problems
  publication-title: International Journal of Digital Content Technology and Its Applications
– volume: 1
  start-page: 51
  year: 2011
  end-page: 58
  ident: bib0053
  article-title: Differential evolution based approach for multilevel image segmentation using minimum cross entropy thresholding
  publication-title: SEMCCO
– volume: 75
  start-page: 277
  year: 1999
  end-page: 301
  ident: bib0104
  article-title: A novel fuzzy entropy approach to image enhancement and thresholding
  publication-title: Signal Processing
– volume: 41
  start-page: 233
  year: 1988
  end-page: 260
  ident: bib0049
  article-title: A survey of thresholding techniques
  publication-title: Computer Vision Graphics Image Processing
– volume: 11
  start-page: 5205
  year: 2011
  end-page: 5214
  ident: bib0032
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Applied Soft Computing
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib0063
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics
– volume: 322
  start-page: 451
  year: 2015
  end-page: 459
  ident: bib0031
  article-title: Study of flower pollination algorithm for continuous optimization, intelligent systems'2014
  publication-title: Advances in Intelligent Systems and Computing
– volume: 6
  start-page: 1009
  year: 2014
  end-page: 1016
  ident: bib0046
  article-title: Flower pollination algorithm applied for different economic load dispatch problems
  publication-title: International Journal of Engineering and Technology (IJET)
– volume: 38
  start-page: 15489
  year: 2011
  end-page: 15498
  ident: bib0052
  article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 7617
  year: 2013
  end-page: 7628
  ident: bib0041
  article-title: Edgemagnitude based multilevel thresholding using Cuckoo search technique
  publication-title: Expert Systems with Applications
– volume: 29
  start-page: 631
  year: 2011
  end-page: 637
  ident: bib0064
  article-title: Median-based image thresholding
  publication-title: Image and Vision Computing
– volume: 184
  start-page: 503
  year: 2007
  end-page: 513
  ident: bib0069
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
– volume: 13
  start-page: 3066
  year: 2013
  end-page: 3091
  ident: bib0003
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Applied Soft Computing
– volume: 49
  start-page: 207
  year: 2014
  end-page: 226
  ident: bib0039
  article-title: Bio-inspired algorithms for multilevel image thresholding
  publication-title: International Journal of Computer Applications in Technology, Special Issue on Computational Optimization and Engineering Applications
– year: 2002
  ident: bib0057
  article-title: Computer vision
– volume: 15
  start-page: 617
  year: 2009
  end-page: 644
  ident: bib0021
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization
  publication-title: Journal of Heuristics
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: bib0028
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision Graphics Image Processing
– volume: 7445
  start-page: 240
  year: 2012
  end-page: 249
  ident: bib0065
  article-title: Flower pollination algorithm for global optimization
  publication-title: Unconventional computation and natural computation 2012
– start-page: 364
  year: 2013
  end-page: 369
  ident: bib0004
  article-title: Bat algorithm (BA) for image thresholding
  publication-title: Recent researches in telecommunications, informatics, Electronics and Signal Processing
– volume: 7
  start-page: 126
  year: 2014
  end-page: 132
  ident: bib0002
  article-title: A novel hybrid flower pollination algorithm with chaotic harmony search for solving Sudoku puzzles
  publication-title: International Journal of Engineering Trends and Technology
– volume: 28
  start-page: 788
  year: 2007
  end-page: 796
  ident: bib0060
  article-title: Object segmentation using ant colony optimization algorithm and fuzzy entropy
  publication-title: Pattern Recognition Letters
– volume: 26
  start-page: 1274
  year: 1993
  end-page: 1294
  ident: bib0101
  article-title: Pattern Recognition
  publication-title: Expert Systems with Applications
– volume: 13
  start-page: 146
  year: 2004
  end-page: 165
  ident: bib0056
  article-title: Survey over image thresholding techniques and quantitative performance
  publication-title: Journal of Electronic Imaging
– start-page: 125
  year: 2014
  end-page: 132
  ident: bib0044
  article-title: Evolutionary optimization applied for fine-tuning parameter estimation in optical flow-based environments
  publication-title: 2014 27th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI)
– volume: 37
  start-page: 321
  year: 2012
  end-page: 336
  ident: bib0013
  article-title: A multithreshold segmentation approach based on artificial bee colony optimization
  publication-title: Applied Intelligence
– volume: 11
  start-page: 16
  year: 2013
  end-page: 30
  ident: bib0050
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm and Evolutionary Computation
– volume: 46
  start-page: 1222
  year: 2014
  end-page: 1237
  ident: bib0105
  article-title: Flower Pollination Algorithm: A Novel Approach for Multiobjective Optimization
  publication-title: Engineering Optimization
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib0071
  article-title: An improved quantum inspired genetic algorithm for image multilevel thresholding segmentation
  publication-title: Mathematical Problems in Engineering
– volume: 28
  start-page: 662
  year: 2007
  end-page: 669
  ident: bib0018
  article-title: A multi-level thresholding approach using a hybrid optimal estimation algorithm
  publication-title: Pattern Recognition Letters
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 17
  ident: bib0058
  article-title: Otsu based optimal multilevel image thresholding using firefly algorithm
  publication-title: Modelling and Simulation in Engineering
– volume: 16
  start-page: 210
  year: 1981
  end-page: 239
  ident: bib0103
  article-title: Entropy thresholding: A new approach
  publication-title: Computer Vision Graphics and Image Processing
– volume: Vol. 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0029
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE international conference on neural networks
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0062
  article-title: Image quality assessment: From error measurement to structural similarity
  publication-title: IEEE Transactions on Image Processing
– volume: 52
  start-page: 2382
  year: 2014
  end-page: 2394
  ident: bib0022
  article-title: Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 72
  start-page: 85
  year: 1999
  end-page: 95
  ident: bib0068
  article-title: A fast scheme for optimal thresholding using genetic algorithms
  publication-title: Signal Processing
– volume: 1046 93
  start-page: 139
  year: 2013
  end-page: 153
  ident: bib0016
  article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method
  publication-title: Signal Processing
– volume: 2015
  start-page: 0373
  year: 2015
  end-page: 0387
  ident: bib0047
  article-title: A novel Web service publishing model based on social spider optimization technique
  publication-title: Computation of Power, Energy Information and Communication (ICCPEIC)
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib0061
  article-title: Flower pollination algorithm with dimension by dimension improvement
  publication-title: Mathematical Problems in Engineering
– start-page: 217
  year: 2012
  end-page: 222
  ident: bib0011
  article-title: Multilevel image thresholding selection based on the cuckoo search algorithm
  publication-title: Advances in sensors, signals, visualization, imaging and simulation
– volume: 24
  start-page: 1131
  year: 2011
  end-page: 1138
  ident: bib0059
  article-title: An improved scheme for minimum cross entropy threshold selection based on genetic algorithm
  publication-title: Knowledge Based Systems
– volume: 40
  start-page: 6374
  year: 2013
  end-page: 6384
  ident: bib0015
  article-title: A swarm optimization algorithm inspired in the behavior of the social-spider
  publication-title: Expert Systems with Applications
– volume: 585
  start-page: 85
  year: 2015
  end-page: 100
  ident: bib0048
  article-title: Binary flower pollination algorithm and its application to feature selection
  publication-title: Recent advances in swarm intelligence and evolutionary computation studies in computational intelligence
– start-page: 169
  year: 2009
  end-page: 178
  ident: bib0066
  article-title: Firefly algorithms for multimodal optimization
  publication-title: Stochastic algorithms: Foundations and applications
– volume: 42
  start-page: 1573
  year: 2015
  end-page: 1601
  ident: bib0009
  article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions
  publication-title: Expert Systems with Applications
– volume: 13
  start-page: 841
  year: 2011
  end-page: 859
  ident: bib0070
  article-title: Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach
  publication-title: Entropy
– volume: 38
  year: 2011
  ident: bib0027
  article-title: Multilevel minimum cross entropy threshold selection based on the firefly algorithm
  publication-title: Expert Systems with Applications
– volume: 37
  start-page: 4580
  year: 2010
  end-page: 4592
  ident: bib0025
  article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 6374
  issue: 16
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0015
  article-title: A swarm optimization algorithm inspired in the behavior of the social-spider
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.05.041
– start-page: 217
  year: 2012
  ident: 10.1016/j.eswa.2016.02.024_bib0011
  article-title: Multilevel image thresholding selection based on the cuckoo search algorithm
– volume: 38
  start-page: 15489
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0052
  article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.06.011
– year: 2002
  ident: 10.1016/j.eswa.2016.02.024_bib0057
– volume: 10
  start-page: 1563
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0007
  article-title: Nature-inspired optimization of high impedance metasurfaces with ultrasmall interwoven unit cells
  publication-title: IEEE Letters on Antennas and Wireless Propagation
  doi: 10.1109/LAWP.2011.2178224
– volume: 23
  start-page: 667
  year: 2010
  ident: 10.1016/j.eswa.2016.02.024_bib0102
  article-title: A comparative study of various metaheuristic techniques applied to multilevel thresholding problem
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2009.09.011
– volume: 24
  start-page: 65
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0055
  article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2010.12.001
– volume: 15
  start-page: 617
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2016.02.024_bib0021
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-008-9080-4
– volume: 72
  start-page: 85
  year: 1999
  ident: 10.1016/j.eswa.2016.02.024_bib0068
  article-title: A fast scheme for optimal thresholding using genetic algorithms
  publication-title: Signal Processing
  doi: 10.1016/S0165-1684(98)00167-4
– start-page: 62
  year: 1979
  ident: 10.1016/j.eswa.2016.02.024_bib0038
  article-title: A threshold selection method from gray level histograms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 16
  start-page: 210
  year: 1981
  ident: 10.1016/j.eswa.2016.02.024_bib0103
  article-title: Entropy thresholding: A new approach
  publication-title: Computer Vision Graphics and Image Processing
  doi: 10.1016/0146-664X(81)90038-1
– volume: 26
  start-page: 1274
  issue: 9
  year: 1993
  ident: 10.1016/j.eswa.2016.02.024_bib0101
  article-title: Pattern Recognition
  publication-title: Expert Systems with Applications
– volume: 42
  start-page: 1573
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2016.02.024_bib0009
  article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.09.049
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0061
  article-title: Flower pollination algorithm with dimension by dimension improvement
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2014/191242
– start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0035
  article-title: Flower pollination algorithm for optimal control in multi-machine system with GUPFC
– volume: Vol. 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.eswa.2016.02.024_bib0029
  article-title: Particle swarm optimization
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0037
  article-title: Multilevel thresholding segmentation based on harmony search optimization
  publication-title: Journal of Applied Mathematics
  doi: 10.1155/2013/575414
– volume: 215
  start-page: 3302
  issue: 9
  year: 2010
  ident: 10.1016/j.eswa.2016.02.024_bib0024
  article-title: A multilevel image thresholding using the honey bee mating optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.10.018
– volume: 29
  start-page: 273
  year: 1985
  ident: 10.1016/j.eswa.2016.02.024_bib0028
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision Graphics Image Processing
  doi: 10.1016/0734-189X(85)90125-2
– volume: 1
  start-page: 80
  year: 1945
  ident: 10.1016/j.eswa.2016.02.024_bib0063
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics
  doi: 10.2307/3001968
– volume: 40
  start-page: 7617
  issue: 18
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0041
  article-title: Edgemagnitude based multilevel thresholding using Cuckoo search technique
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.07.060
– volume: 1046 93
  start-page: 139
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0016
  article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2012.07.010
– volume: 38
  start-page: 13785
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0026
  article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
  publication-title: Expert Systems with Applications
– volume: 322
  start-page: 451
  year: 2015
  ident: 10.1016/j.eswa.2016.02.024_bib0031
  article-title: Study of flower pollination algorithm for continuous optimization, intelligent systems'2014
  publication-title: Advances in Intelligent Systems and Computing
  doi: 10.1007/978-3-319-11313-5_40
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0071
  article-title: An improved quantum inspired genetic algorithm for image multilevel thresholding segmentation
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2014/140140
– year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0045
  article-title: Application of flower pollination algorithm in nonlinear algebraic systems with multiple solutions
– volume: 109
  start-page: 163
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2016.02.024_bib0023
  article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation
  publication-title: Computer Vision Image Understanding
  doi: 10.1016/j.cviu.2007.09.001
– volume: 41
  start-page: 233
  year: 1988
  ident: 10.1016/j.eswa.2016.02.024_bib0049
  article-title: A survey of thresholding techniques
  publication-title: Computer Vision Graphics Image Processing
  doi: 10.1016/0734-189X(88)90022-9
– volume: 3
  start-page: 267
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0067
  article-title: Bat algorithm for multi-objective optimisation
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2011.042259
– volume: 7
  start-page: 126
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0002
  article-title: A novel hybrid flower pollination algorithm with chaotic harmony search for solving Sudoku puzzles
  publication-title: International Journal of Engineering Trends and Technology
  doi: 10.14445/22315381/IJETT-V7P225
– volume: 11
  start-page: 5205
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0032
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.05.039
– volume: 37
  start-page: 4580
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2016.02.024_bib0025
  article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.12.050
– volume: 29
  start-page: 631
  issue: 9
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0064
  article-title: Median-based image thresholding
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2011.06.003
– volume: 49
  start-page: 207
  issue: 3/4
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0039
  article-title: Bio-inspired algorithms for multilevel image thresholding
  publication-title: International Journal of Computer Applications in Technology, Special Issue on Computational Optimization and Engineering Applications
– start-page: 169
  year: 2009
  ident: 10.1016/j.eswa.2016.02.024_bib0066
  article-title: Firefly algorithms for multimodal optimization
– volume: 6
  start-page: 1009
  issue: April–May (2)
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0046
  article-title: Flower pollination algorithm applied for different economic load dispatch problems
  publication-title: International Journal of Engineering and Technology (IJET)
– volume: 24
  start-page: 1131
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0059
  article-title: An improved scheme for minimum cross entropy threshold selection based on genetic algorithm
  publication-title: Knowledge Based Systems
  doi: 10.1016/j.knosys.2011.02.013
– start-page: 364
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0004
  article-title: Bat algorithm (BA) for image thresholding
– volume: 41
  start-page: 3538
  issue: 7
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0010
  article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.10.059
– volume: 226
  start-page: 1830
  year: 2007
  ident: 10.1016/j.eswa.2016.02.024_bib0042
  article-title: Levy flights, non-local search and simulated annealing
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2007.06.008
– volume: 1
  start-page: 51
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0053
  article-title: Differential evolution based approach for multilevel image segmentation using minimum cross entropy thresholding
  publication-title: SEMCCO
– volume: 47
  start-page: 558
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0034
  article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.031
– volume: 13
  start-page: 3066
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0003
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.03.072
– volume: 46
  start-page: 1222
  issue: 9
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0105
  article-title: Flower Pollination Algorithm: A Novel Approach for Multiobjective Optimization
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2013.832237
– volume: 11
  start-page: 16
  issue: August
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0050
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm and Evolutionary Computation
– volume: 37
  start-page: 5265
  issue: 7
  year: 2010
  ident: 10.1016/j.eswa.2016.02.024_bib0014
  article-title: A novel multi-threshold segmentation approach based on differential evolution optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.01.013
– volume: 28
  start-page: 662
  year: 2007
  ident: 10.1016/j.eswa.2016.02.024_bib0018
  article-title: A multi-level thresholding approach using a hybrid optimal estimation algorithm
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2006.11.005
– volume: 38
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0027
  article-title: Multilevel minimum cross entropy threshold selection based on the firefly algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.05.069
– volume: 7445
  start-page: 240
  year: 2012
  ident: 10.1016/j.eswa.2016.02.024_bib0065
  article-title: Flower pollination algorithm for global optimization
– volume: 61
  start-page: 2745
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0006
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE Transactions on Antennas and Propagation
  doi: 10.1109/TAP.2013.2238654
– volume: 5
  start-page: 251
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0005
  article-title: Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO)
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2013.07.001
– volume: 59
  start-page: 934
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0020
  article-title: Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2009.2030931
– volume: 8
  start-page: 72
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0017
  article-title: An improved chaotic flower pollination algorithm for solving large integer programming problems
  publication-title: International Journal of Digital Content Technology and Its Applications
– volume: 59
  start-page: 934
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2016.02.024_bib0019
  article-title: Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2009.2030931
– start-page: 125
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0044
  article-title: Evolutionary optimization applied for fine-tuning parameter estimation in optical flow-based environments
– volume: 13
  start-page: 841
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0070
  article-title: Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach
  publication-title: Entropy
  doi: 10.3390/e13040841
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0058
  article-title: Otsu based optimal multilevel image thresholding using firefly algorithm
  publication-title: Modelling and Simulation in Engineering
  doi: 10.1155/2014/794574
– volume: 38
  start-page: 15549
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2016.02.024_bib0054
  article-title: Optimal multilevel thresholding using bacterial foraging algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.06.004
– volume: 52
  start-page: 2382
  issue: 5
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0022
  article-title: Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2013.2260552
– volume: 34
  start-page: 1341
  year: 2008
  ident: 10.1016/j.eswa.2016.02.024_bib0033
  article-title: A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.01.002
– volume: 37
  start-page: 322
  year: 2015
  ident: 10.1016/j.eswa.2016.02.024_bib0008
  article-title: Sizing optimization of truss structures using flower pollination algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.08.037
– volume: 139
  start-page: 357
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0036
  article-title: A multilevel thresholding algorithm using electromagnetism optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.020
– volume: 75
  start-page: 277
  year: 1999
  ident: 10.1016/j.eswa.2016.02.024_bib0104
  article-title: A novel fuzzy entropy approach to image enhancement and thresholding
  publication-title: Signal Processing
  doi: 10.1016/S0165-1684(98)00239-4
– volume: 13
  start-page: 146
  issue: January
  year: 2004
  ident: 10.1016/j.eswa.2016.02.024_bib0056
  article-title: Survey over image thresholding techniques and quantitative performance
  publication-title: Journal of Electronic Imaging
– volume: 28
  start-page: 788
  issue: 7
  year: 2007
  ident: 10.1016/j.eswa.2016.02.024_bib0060
  article-title: Object segmentation using ant colony optimization algorithm and fuzzy entropy
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2006.11.007
– volume: 4
  start-page: 1
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0001
  article-title: An improved flower pollination algorithm with chaos
  publication-title: International Journal of Education and Management Engineering
  doi: 10.5815/ijeme.2014.02.01
– volume: 46
  start-page: 1020
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0043
  article-title: A survey of graph theoretical approaches to image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.09.015
– volume: 585
  start-page: 85
  year: 2015
  ident: 10.1016/j.eswa.2016.02.024_bib0048
  article-title: Binary flower pollination algorithm and its application to feature selection
– start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2016.02.024_bib0012
  article-title: DE-FPA, a hybrid differential evolution-flower pollination algorithm for function minimization, high perform
– volume: 5
  start-page: 323
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2016.02.024_bib0030
  article-title: Bi-level thresholding using PSO, artificial bee colony and MRLDE embedded with Otsu method
  publication-title: Memetic Computing
  doi: 10.1007/s12293-013-0123-5
– volume: 13
  start-page: 600
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2016.02.024_bib0062
  article-title: Image quality assessment: From error measurement to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– volume: 37
  start-page: 321
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2016.02.024_bib0013
  article-title: A multithreshold segmentation approach based on artificial bee colony optimization
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-011-0330-z
– volume: 2015
  start-page: 0373
  year: 2015
  ident: 10.1016/j.eswa.2016.02.024_bib0047
  article-title: A novel Web service publishing model based on social spider optimization technique
  publication-title: Computation of Power, Energy Information and Communication (ICCPEIC)
– volume: 184
  start-page: 503
  year: 2007
  ident: 10.1016/j.eswa.2016.02.024_bib0069
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.06.057
SSID ssj0017007
Score 2.5162935
Snippet •We present an empirical comparison of two new meta-heuristics SSO and FP.•Real test images were used to perform thresholding using Otsu's method and Kapur's...
In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization...
We present an empirical comparison of two new meta-heuristics SSO and FP.Real test images were used to perform thresholding using Otsu's method and Kapur's...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 566
SubjectTerms Algorithms
Automatic
Bat algorithm
Engineering Sciences
Filled plastics
Flower pollination algorithm
Flowers
Mathematical models
Multilevel
Multilevel thresholding
Optimization
Particle swarm optimization
Social spider optimization
Spiders
Thresholds
Title Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study
URI https://dx.doi.org/10.1016/j.eswa.2016.02.024
https://www.proquest.com/docview/1825467122
https://uphf.hal.science/hal-03426984
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXChPEWBVgZxQ2HXjh9Jb6uKanmoF6jUmxW_6KLd7GqTlhu_nRnHWQQSPSDlkFi2YnnsmbH9zTeEvFHKcWaVAAlUHjYopSsqqZvCBceEdzFEm1C-52p-IT5eyss9cjrGwiCsMuv-QacnbZ1LJnk0J5vFYvIFnAMwh8mjQCYp3Lcjex3M6Xc_dzAPpJ_TA9-eLrB2DpwZMF6h-4HcQ0wl3k4u_mWc7lwhSvIvZZ0s0NkDcj-7jnQ29O4h2QvtI3IwpmWgeZU-Jt0Qcks7TP667egatMIqh1vSpvU0LjE1Gt0kPu5cvPy23i76qxUFJ5YmlOES4UR0sQKFQ3uQeJcvqk7ojG5-hxvQRFD7hFycvf96Oi9yboXCCcb6gtUhxkpEC9ZpWlvYxzgvq9DwaeQhKHj3Fn1Fr73kUw_jqCRTSvLGM6HrpnxK9tt1G54RqmQTvWa1ZrEEtcutrnmIZWm1dbyO7JCwcVCNy8TjmP9iaUaE2XeDgjAoCDPl8IhD8nbXZjPQbtxaW46yMn9MHgN24dZ2r0Gwux8g0_Z89tlgGTIjqroSN9D9V6PcDSw9vE9p2rC-7gxLyQQ04_z5f3bgBbmHX3hGzeRLst9vr8MRODm9PU6z-JjcnX34ND__BQm9_Ps
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAX3ojyNIgbijZ2_Ei4rSqqlC57oZV6sxI_2kW72dUmhb_PTOIsAokekHKIHFuxPPbM2P7mG0I-KGU5q5UACeQONiiZTXKpq8R6y4SzwYe6R_kuVHkhvlzKywNyPMbCIKwy6v5Bp_faOpZM42hOt8vl9Bs4B2AOe48CmaRg336I7FRiQg5np2flYn-ZoNMhahrqJ9ggxs4MMC_f_kT6IaZ66k4u_mWf7lwjUPIvfd0boZOH5H70Huls6OAjcuCbx-TBmJmBxoX6hLRD1C1tMf_rrqUbUAzrGHFJq8bRsMLsaHTbU3LH4tXVZrfsrtcU_FjaAw1XiCiiyzXoHNqB0Nt4V_WJzuj2d8QB7Tlqn5KLk8_nx2US0yskVjDWJazwIeQi1GCg0qKGrYx1MvcVTwP3XsG7q9FddNpJnjoYRyWZUpJXjgldVNkzMmk2jX9OqJJVcJoVmoUMNC-vdcF9yLJa15YXgR0RNg6qsZF7HFNgrMwIMvtuUBAGBWFSDo84Ih_3bbYD88atteUoK_PH_DFgGm5t9x4Eu_8Bkm2Xs7nBMiRHVEUufkD3341yN7D68EqlavzmpjWszyegGecv_rMDb8nd8vzr3MxPF2cvyT38gkfWTL4ik25341-Dz9PVb-Kc_gWvK_-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+spiders+optimization+and+flower+pollination+algorithm+for+multilevel+image+thresholding%3A+A+performance+study&rft.jtitle=Expert+systems+with+applications&rft.au=Ouadfel%2C+Salima&rft.au=Taleb-Ahmed%2C+Abdelmalik&rft.date=2016-08-15&rft.issn=0957-4174&rft.volume=55&rft.spage=566&rft.epage=584&rft_id=info:doi/10.1016%2Fj.eswa.2016.02.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2016_02_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon