Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study
•We present an empirical comparison of two new meta-heuristics SSO and FP.•Real test images were used to perform thresholding using Otsu's method and Kapur's entropy.•Compared algorithms were SSO, FP, PSO, BAT.•Comparisons were made according to the fitness values, PSNR and SSIM.•SSO shows...
Saved in:
Published in | Expert systems with applications Vol. 55; pp. 566 - 584 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2016
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2016.02.024 |
Cover
Loading…
Abstract | •We present an empirical comparison of two new meta-heuristics SSO and FP.•Real test images were used to perform thresholding using Otsu's method and Kapur's entropy.•Compared algorithms were SSO, FP, PSO, BAT.•Comparisons were made according to the fitness values, PSNR and SSIM.•SSO shows superior performance in convergence and in quality terms.
In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization (SSO) algorithms to solve the image segmentation problem via multilevel thresholding. The FP algorithm is inspired from the biological process of flower pollination. It relies on two basic mechanisms to generate new solutions. The first one is the global pollination modeled in terms of a Levy distribution while the second one is the local pollination that is based on random selection of local solutions. For its part, the SSO algorithm mimics different natural cooperative behaviors of a spider colony. It considers male and female search agents subject to different evolutionary operators. In the two proposed algorithms, candidate solutions are firstly generated using the image histogram. Then, they are evolved according to the dynamics of their corresponding operators. During the optimization process, solutions are evaluated using the between-class variance or Kapur's method. The performance of each of the two proposed approaches has been assessed using a variety of benchmark images and compared against two other nature inspired algorithms from the literature namely PSO and BAT algorithms. Results have been analyzed both qualitatively and quantitatively based on the fitness values of obtained best solutions and two popular performance measures namely PSNR and SSIM indices as well. Experimental results have shown that both SSO and FP algorithms outperform PSO and BAT algorithms while exhibiting equal performance for small numbers of thresholds. For large numbers of thresholds, it was observed that the performance of FP algorithm decreases as it is often trapped in local minima. In contrary, the SSO algorithmprovides a good balance between exploration and exploitation and has shown to be the most efficient and the most stable for all images even with the increase of the threshold number. These promising results suggest that the SSO algorithm can be effectively considered as an attractive alternative for the multilevel image thresholding problem. |
---|---|
AbstractList | We present an empirical comparison of two new meta-heuristics SSO and FP.Real test images were used to perform thresholding using Otsu's method and Kapur's entropy.Compared algorithms were SSO, FP, PSO, BAT.Comparisons were made according to the fitness values, PSNR and SSIM.SSO shows superior performance in convergence and in quality terms. In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization (SSO) algorithms to solve the image segmentation problem via multilevel thresholding. The FP algorithm is inspired from the biological process of flower pollination. It relies on two basic mechanisms to generate new solutions. The first one is the global pollination modeled in terms of a Levy distribution while the second one is the local pollination that is based on random selection of local solutions. For its part, the SSO algorithm mimics different natural cooperative behaviors of a spider colony. It considers male and female search agents subject to different evolutionary operators. In the two proposed algorithms, candidate solutions are firstly generated using the image histogram. Then, they are evolved according to the dynamics of their corresponding operators. During the optimization process, solutions are evaluated using the between-class variance or Kapur's method. The performance of each of the two proposed approaches has been assessed using a variety of benchmark images and compared against two other nature inspired algorithms from the literature namely PSO and BAT algorithms. Results have been analyzed both qualitatively and quantitatively based on the fitness values of obtained best solutions and two popular performance measures namely PSNR and SSIM indices as well. Experimental results have shown that both SSO and FP algorithms outperform PSO and BAT algorithms while exhibiting equal performance for small numbers of thresholds. For large numbers of thresholds, it was observed that the performance of FP algorithm decreases as it is often trapped in local minima. In contrary, the SSO algorithmprovides a good balance between exploration and exploitation and has shown to be the most efficient and the most stable for all images even with the increase of the threshold number. These promising results suggest that the SSO algorithm can be effectively considered as an attractive alternative for the multilevel image thresholding problem. In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization (SSO) algorithms to solve the image segmentation problem via multilevel thresholding. The FP algorithm is inspired from the biological process of flower pollination. It relies on two basic mechanisms to generate new solutions. The first one is the global pollination modeled in terms of a Levy distribution while the second one is the local pollination that is based on random selection of local solutions. For its part, the SSO algorithm mimics different natural cooperative behaviors of a spider colony. It considers male and female search agents subject to different evolutionary operators. In the two proposed algorithms, candidate solutions are firstly generated using the image histogram. Then, they are evolved according to the dynamics of their corresponding operators. During the optimization process, solutions are evaluated using the between-class variance or Kapur's method. The performance of each of the two proposed approaches has been assessed using a variety of benchmark images and compared against two other nature inspired algorithms from the literature namely PSO and BAT algorithms. Results have been analyzed both qualitatively and quantitatively based on the fitness values of obtained best solutions and two popular performance measures namely PSNR and SSIM indices as well. Experimental results have shown that both SSO and FP algorithms outperform PSO and BAT algorithms while exhibiting equal performance for small numbers of thresholds. For large numbers of thresholds, it was observed that the performance of FP algorithm decreases as it is often trapped in local minima. In contrary, the SSO algorithm provides a good balance between exploration and exploitation and has shown to be the most efficient and the most stable for all images even with the increase of the threshold number. These promising results suggest that the SSO algorithm can be effectively considered as an attractive alternative for the multilevel image thresholding problem. •We present an empirical comparison of two new meta-heuristics SSO and FP.•Real test images were used to perform thresholding using Otsu's method and Kapur's entropy.•Compared algorithms were SSO, FP, PSO, BAT.•Comparisons were made according to the fitness values, PSNR and SSIM.•SSO shows superior performance in convergence and in quality terms. In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization (SSO) algorithms to solve the image segmentation problem via multilevel thresholding. The FP algorithm is inspired from the biological process of flower pollination. It relies on two basic mechanisms to generate new solutions. The first one is the global pollination modeled in terms of a Levy distribution while the second one is the local pollination that is based on random selection of local solutions. For its part, the SSO algorithm mimics different natural cooperative behaviors of a spider colony. It considers male and female search agents subject to different evolutionary operators. In the two proposed algorithms, candidate solutions are firstly generated using the image histogram. Then, they are evolved according to the dynamics of their corresponding operators. During the optimization process, solutions are evaluated using the between-class variance or Kapur's method. The performance of each of the two proposed approaches has been assessed using a variety of benchmark images and compared against two other nature inspired algorithms from the literature namely PSO and BAT algorithms. Results have been analyzed both qualitatively and quantitatively based on the fitness values of obtained best solutions and two popular performance measures namely PSNR and SSIM indices as well. Experimental results have shown that both SSO and FP algorithms outperform PSO and BAT algorithms while exhibiting equal performance for small numbers of thresholds. For large numbers of thresholds, it was observed that the performance of FP algorithm decreases as it is often trapped in local minima. In contrary, the SSO algorithmprovides a good balance between exploration and exploitation and has shown to be the most efficient and the most stable for all images even with the increase of the threshold number. These promising results suggest that the SSO algorithm can be effectively considered as an attractive alternative for the multilevel image thresholding problem. |
Author | Ouadfel, Salima Taleb-Ahmed, Abdelmalik |
Author_xml | – sequence: 1 givenname: Salima surname: Ouadfel fullname: Ouadfel, Salima email: souadfel@yahoo.fr, ouadfel@gmail.com organization: NTIC Faculty, University of Constantine 2-Abdelhamid Mehri, Constantine, Algeria – sequence: 2 givenname: Abdelmalik surname: Taleb-Ahmed fullname: Taleb-Ahmed, Abdelmalik email: taleb@univ-valenciennes.fr organization: LAMIH UMR CNRS 8201 UVHC, Laboratory of Industrial and Human Automation, Mechanics and Computer Science Université de Valenciennes et du Hainaut Cambrésis, Le mont Houy, 59313 Valenciennes Cedex 9, France |
BackLink | https://uphf.hal.science/hal-03426984$$DView record in HAL |
BookMark | eNp9kUFvEzEQhS1UJNLCH-DkIxw22I7X3kVcoqpQpEgcgLPl2LPJRN71Yjupyq_HIeXCodJIHo2-Z828d02upjgBIW85W3LG1YfDEvKDXYraL5moJV-QBe_0qlG6X12RBetb3Uiu5StynfOBMa4Z0wuSv0eHNtA8o4eUaZwLjvjbFowTtZOnQ4gPkOgcQ8DpaRx2MWHZj3SIiY7HUDDACQLF0e6Aln2CvI_B47T7SNd0hlS50U4OaC5H__iavBxsyPDm6b0hPz_f_bi9bzbfvny9XW8aJzkvDe9hGDo5bDupWb_tFXO-7cAKNggAVXu_5S3TXvtWMF8vUi1XqhXWc6l7u7oh7y__7m0wc6rbpUcTLZr79cacZ2wlheo7eeKVfXdh5xR_HSEXM2J2EIKdIB6z4Z1opdJciIp2F9SlmHOCwTgsf50pyWIwnJlzJuZgzpmYcyaGiVqySsV_0n9rPSv6dBFB9eqEkEx2CNVNjwlcMT7ic_I_1dSpfA |
CitedBy_id | crossref_primary_10_1007_s00500_021_05611_w crossref_primary_10_1109_ACCESS_2020_3005452 crossref_primary_10_1016_j_measurement_2020_108066 crossref_primary_10_1016_j_knosys_2020_106552 crossref_primary_10_1049_iet_ipr_2019_1717 crossref_primary_10_1186_s13677_022_00380_9 crossref_primary_10_1007_s12065_019_00238_1 crossref_primary_10_1016_j_iswa_2024_200445 crossref_primary_10_1016_j_neucom_2018_09_034 crossref_primary_10_4018_IJSIR_2020040103 crossref_primary_10_1007_s00500_020_04842_7 crossref_primary_10_1007_s11042_020_10313_w crossref_primary_10_1016_j_eswa_2017_04_023 crossref_primary_10_1002_qre_2811 crossref_primary_10_1016_j_aej_2024_07_127 crossref_primary_10_1109_ACCESS_2019_2896673 crossref_primary_10_1007_s10462_018_09676_2 crossref_primary_10_3389_feart_2022_849079 crossref_primary_10_1007_s10462_018_9624_4 crossref_primary_10_1007_s11042_021_10641_5 crossref_primary_10_1007_s00530_020_00716_y crossref_primary_10_1007_s10586_024_04525_0 crossref_primary_10_1007_s00521_020_05013_3 crossref_primary_10_1007_s00521_020_05368_7 crossref_primary_10_1016_j_eswa_2019_01_075 crossref_primary_10_1016_j_biortech_2016_05_091 crossref_primary_10_1007_s13198_024_02422_8 crossref_primary_10_1007_s40031_022_00740_8 crossref_primary_10_1016_j_eswa_2018_08_045 crossref_primary_10_1007_s40998_019_00251_1 crossref_primary_10_1007_s12530_022_09443_3 crossref_primary_10_3934_mbe_2021155 crossref_primary_10_1016_j_fuel_2017_12_028 crossref_primary_10_4018_IJAMC_2020100104 crossref_primary_10_1016_j_asoc_2019_105704 crossref_primary_10_1016_j_eswa_2018_09_008 crossref_primary_10_1016_j_asoc_2020_106157 crossref_primary_10_1007_s12065_024_01001_x crossref_primary_10_1007_s11042_020_09310_w crossref_primary_10_1109_ACCESS_2019_2942064 crossref_primary_10_1016_j_aej_2017_05_024 crossref_primary_10_1016_j_eswa_2020_113201 crossref_primary_10_1007_s13369_019_03874_y crossref_primary_10_1007_s11831_019_09334_y crossref_primary_10_1016_j_knosys_2020_106510 crossref_primary_10_1016_j_energy_2018_07_053 crossref_primary_10_3390_rs11121421 crossref_primary_10_1016_j_trgeo_2023_101065 crossref_primary_10_1155_2018_6843923 crossref_primary_10_1007_s11042_020_09664_1 crossref_primary_10_3390_e21030318 crossref_primary_10_1155_2021_6036410 crossref_primary_10_1155_2018_1973604 crossref_primary_10_3390_rs11091134 crossref_primary_10_1016_j_jappgeo_2021_104405 crossref_primary_10_1007_s11042_022_14293_x crossref_primary_10_1007_s10462_023_10683_1 crossref_primary_10_1007_s11042_023_14637_1 crossref_primary_10_3390_s18051393 crossref_primary_10_1007_s00521_017_3313_0 crossref_primary_10_1002_pip_3315 crossref_primary_10_1007_s00521_020_04820_y crossref_primary_10_1016_j_asoc_2019_03_042 crossref_primary_10_1002_cpe_6325 crossref_primary_10_1007_s12539_018_0295_2 crossref_primary_10_1016_j_energy_2016_10_084 crossref_primary_10_1016_j_eswa_2021_114766 crossref_primary_10_1007_s00521_018_3771_z crossref_primary_10_1109_ACCESS_2020_2966665 crossref_primary_10_3390_sym9090183 crossref_primary_10_1016_j_eswa_2020_113210 crossref_primary_10_1007_s41348_024_00953_7 crossref_primary_10_1007_s11042_022_12001_3 crossref_primary_10_1007_s11042_023_16300_1 crossref_primary_10_1016_j_bspc_2022_104513 crossref_primary_10_1109_ACCESS_2020_2969021 crossref_primary_10_32604_cmc_2021_016097 crossref_primary_10_1038_s41598_024_76457_z crossref_primary_10_1016_j_eswa_2016_06_044 crossref_primary_10_1109_ACCESS_2018_2837062 crossref_primary_10_1007_s11760_019_01585_3 crossref_primary_10_1049_iet_gtd_2016_0455 crossref_primary_10_1007_s11227_017_2230_4 crossref_primary_10_1155_2017_5193013 crossref_primary_10_1016_j_swevo_2019_100591 crossref_primary_10_1007_s42235_023_00332_2 crossref_primary_10_1016_j_heliyon_2022_e09027 crossref_primary_10_1016_j_bspc_2024_106631 crossref_primary_10_4018_IJAMC_2017100104 crossref_primary_10_1016_j_asoc_2019_105570 crossref_primary_10_1007_s13204_021_02034_9 crossref_primary_10_1016_j_asoc_2020_106243 crossref_primary_10_1016_j_asoc_2019_105577 crossref_primary_10_1016_j_biortech_2016_11_045 crossref_primary_10_1016_j_biortech_2019_121461 crossref_primary_10_1109_ACCESS_2020_2987689 crossref_primary_10_37394_23202_2020_19_23 crossref_primary_10_1016_j_eswa_2016_08_046 crossref_primary_10_1155_2016_7343794 crossref_primary_10_1007_s10489_017_0899_y crossref_primary_10_3934_mbe_2021353 crossref_primary_10_1007_s11042_018_5815_x crossref_primary_10_1007_s11042_019_08195_8 crossref_primary_10_32604_csse_2023_037948 |
Cites_doi | 10.1016/j.eswa.2013.05.041 10.1016/j.eswa.2011.06.011 10.1109/LAWP.2011.2178224 10.1016/j.engappai.2009.09.011 10.1016/j.engappai.2010.12.001 10.1007/s10732-008-9080-4 10.1016/S0165-1684(98)00167-4 10.1109/TSMC.1979.4310076 10.1016/0146-664X(81)90038-1 10.1016/j.eswa.2014.09.049 10.1155/2014/191242 10.1155/2013/575414 10.1016/j.amc.2009.10.018 10.1016/0734-189X(85)90125-2 10.2307/3001968 10.1016/j.eswa.2013.07.060 10.1016/j.sigpro.2012.07.010 10.1007/978-3-319-11313-5_40 10.1155/2014/140140 10.1016/j.cviu.2007.09.001 10.1016/0734-189X(88)90022-9 10.1504/IJBIC.2011.042259 10.14445/22315381/IJETT-V7P225 10.1016/j.asoc.2011.05.039 10.1016/j.eswa.2009.12.050 10.1016/j.imavis.2011.06.003 10.1016/j.knosys.2011.02.013 10.1016/j.eswa.2013.10.059 10.1016/j.jcp.2007.06.008 10.1016/j.measurement.2013.09.031 10.1016/j.asoc.2012.03.072 10.1080/0305215X.2013.832237 10.1016/j.eswa.2010.01.013 10.1016/j.patrec.2006.11.005 10.1016/j.eswa.2011.05.069 10.1109/TAP.2013.2238654 10.1016/j.jocs.2013.07.001 10.1109/TIM.2009.2030931 10.3390/e13040841 10.1155/2014/794574 10.1016/j.eswa.2011.06.004 10.1109/TGRS.2013.2260552 10.1016/j.eswa.2007.01.002 10.1016/j.asoc.2015.08.037 10.1016/j.neucom.2014.02.020 10.1016/S0165-1684(98)00239-4 10.1016/j.patrec.2006.11.007 10.5815/ijeme.2014.02.01 10.1016/j.patcog.2012.09.015 10.1007/s12293-013-0123-5 10.1109/TIP.2003.819861 10.1007/s10489-011-0330-z 10.1016/j.amc.2006.06.057 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1016/j.eswa.2016.02.024 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 584 |
ExternalDocumentID | oai_HAL_hal_03426984v1 10_1016_j_eswa_2016_02_024 S0957417416300550 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c411t-19eff84fb84709b960cd58ea20f2ee6d58db1507d7d520d0176516652ad1479a3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri May 09 12:22:54 EDT 2025 Fri Jul 11 02:34:33 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Tue Jul 01 03:12:27 EDT 2025 Fri Feb 23 02:29:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multilevel thresholding Bat algorithm Social spider optimization Particle swarm optimization Optimization Flower pollination algorithm |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-19eff84fb84709b960cd58ea20f2ee6d58db1507d7d520d0176516652ad1479a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7218-3799 0000-0001-8750-1905 |
OpenAccessLink | https://uphf.hal.science/hal-03426984 |
PQID | 1825467122 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | hal_primary_oai_HAL_hal_03426984v1 proquest_miscellaneous_1825467122 crossref_citationtrail_10_1016_j_eswa_2016_02_024 crossref_primary_10_1016_j_eswa_2016_02_024 elsevier_sciencedirect_doi_10_1016_j_eswa_2016_02_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-15 |
PublicationDateYYYYMMDD | 2016-08-15 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Yang (bib0066) 2009 Platt (bib0045) 2014 Hammouche, Diaf, Siarry (bib0023) 2008; 109 Otsu (bib0038) 1979 Maitra, Chatterjee (bib0033) 2008; 34 Kumar, Kumar, Sharma, Pant (bib0030) 2013; 5 Horng (bib0026) 2011; 38 Kapur, Sahoo, Wong (bib0028) 1985; 29 Pun (bib0103) 1981; 16 Shapiro, Stockman (bib0057) 2002 Cuevas, Cienfuegos, Zaldivar, Perez (bib0015) 2013; 40 Alihodzic, Tuba (bib0004) 2013 Sarkar, RanjanPatra, Das (bib0053) 2011; 1 Brajevic, Tuba, Bacanin (bib0011) 2012 Ouadfel, Meshoul (bib0039) 2014; 49 Xue, Titterington (bib0064) 2011; 29 Kennedy, Eberhart (bib0029) 1995; Vol. 4 Tao, Jin, Liu (bib0060) 2007; 28 Horng (bib0025) 2010; 37 Oliva, Cuevas, Pajares, Zaldivar, Osuna (bib0036) 2014; 139 Abdel-Raouf, Abdel-Baset, El-Henawy (bib0002) 2014; 7 Gao, Xu, Sun, Tang (bib0019) 2010; 59 Łukasik, Kowalski (bib0031) 2015; 322 Zhang, Wu (bib0070) 2011; 13 Pal, Pal (bib0101) 1993; 26 Bhandari, Singh, Kumar, Singh (bib0010) 2014; 41 Sahoo, Soltani, Wong (bib0049) 1988; 41 Akay (bib0003) 2013; 13 Bayraktar, Komurcu, Bossard, Werner (bib0006) 2013; 61 Hammouche, Diaf, Siarry (bib0102) 2010; 23 Yin (bib0068) 1999; 72 Mulya, Hadi, Ali (bib0035) 2014 Tang, Yuan, Sun, Yang, Gao (bib0059) 2011; 24 Bayraktar, Turpin, Werner (bib0007) 2011; 10 Cuevas, Sención, Zaldivar, Pérez-Cisneros, Sossa (bib0013) 2012; 37 Fan, Lin (bib0018) 2007; 28 Sanyal, Chatterjee, Munshi (bib0052) 2011; 38 Oliva, Cuevas, Pajares, Zaldivar, Perez-Cisneros (bib0037) 2013; 2013 Chakraborty, Saha, Dutta (bib0012) 2014 Pavlyukevich (bib0042) 2007; 226 Rodrigues, Yang, de Souza, Papa (bib0048) 2015; 585 Abdel-Raouf, Abdel-Baset, El-Henawy (bib0001) 2014; 4 Peng, Zhang, Zhang (bib0043) 2013; 46 Sathya, Kayalvizhi (bib0055) 2011; 24 Gao, Xu, Sun, Tang (bib0020) 2013; 59 Yang, Karamanoglu, He (bib0105) 2014; 46 Cheng, Chen, Sun (bib0104) 1999; 75 Priyadharshini, Divya, Preethi, Pazhaniraja, Paul (bib0047) 2015; 2015 Manikandan, Ramar, Willjuice, Srinivasagan (bib0034) 2014; 47 Yang (bib0067) 2011; 3 Yin (bib0069) 2007; 184 Zhang, Li, Tang, Lu, Zheng, Zhou (bib0071) 2014; 2014 Cuevas, Zaldivar, Pérez-Cisneros (bib0014) 2010; 37 Ghamisi, Couceiro, Martins, Benediktsson (bib0022) 2014; 52 Sezgin, Sankur (bib0056) 2004; 13 Raja, Rajinikanth, Latha (bib0058) 2014; 2014 Wang, Zhou (bib0061) 2014; 2014 Dirami, Hammouche, Diaf, Siarry (bib0016) 2013; 1046 93 Horng, Liou (bib0027) 2011; 38 Wang, Bovik, Sheikh, Simoncelli (bib0062) 2004; 13 Prathiba, Balasingh, Moses (bib0046) 2014; 6 Sathya, Kayalvizhi (bib0054) 2011; 38 Ma, Liang, Guo, Fan, Yin (bib0032) 2011; 11 Horng (bib0024) 2010; 215 Wilcoxon (bib0063) 1945; 1 Bakhshali, Shamsi (bib0005) 2014; 5 Ibrahim, Mahmoud (bib0017) 2014; 8 García, Molina, Lozano, Herrera (bib0021) 2009; 15 Panda, Agrawal, Bhuyan (bib0041) 2013; 40 Pereira, Delpiano, Papa (bib0044) 2014 Bhandari, Kumar, Singh (bib0009) 2015; 42 Yang (bib0065) 2012; 7445 Bekdaş, Nigdeli, Yang (bib0008) 2015; 37 Sanjay, Rutuparna, Sudipta, Panigrahib (bib0050) 2013; 11 Cuevas (10.1016/j.eswa.2016.02.024_bib0015) 2013; 40 Wang (10.1016/j.eswa.2016.02.024_bib0061) 2014; 2014 Cheng (10.1016/j.eswa.2016.02.024_bib0104) 1999; 75 Łukasik (10.1016/j.eswa.2016.02.024_bib0031) 2015; 322 Bayraktar (10.1016/j.eswa.2016.02.024_bib0006) 2013; 61 Yang (10.1016/j.eswa.2016.02.024_bib0066) 2009 Bekdaş (10.1016/j.eswa.2016.02.024_bib0008) 2015; 37 Platt (10.1016/j.eswa.2016.02.024_bib0045) 2014 Akay (10.1016/j.eswa.2016.02.024_bib0003) 2013; 13 Pereira (10.1016/j.eswa.2016.02.024_bib0044) 2014 Shapiro (10.1016/j.eswa.2016.02.024_bib0057) 2002 Zhang (10.1016/j.eswa.2016.02.024_bib0070) 2011; 13 Mulya (10.1016/j.eswa.2016.02.024_bib0035) 2014 Raja (10.1016/j.eswa.2016.02.024_bib0058) 2014; 2014 Hammouche (10.1016/j.eswa.2016.02.024_bib0023) 2008; 109 Yang (10.1016/j.eswa.2016.02.024_bib0065) 2012; 7445 Yang (10.1016/j.eswa.2016.02.024_bib0105) 2014; 46 Alihodzic (10.1016/j.eswa.2016.02.024_bib0004) 2013 Ouadfel (10.1016/j.eswa.2016.02.024_bib0039) 2014; 49 Fan (10.1016/j.eswa.2016.02.024_bib0018) 2007; 28 Zhang (10.1016/j.eswa.2016.02.024_bib0071) 2014; 2014 Abdel-Raouf (10.1016/j.eswa.2016.02.024_bib0002) 2014; 7 Brajevic (10.1016/j.eswa.2016.02.024_bib0011) 2012 Kennedy (10.1016/j.eswa.2016.02.024_bib0029) 1995; Vol. 4 Sahoo (10.1016/j.eswa.2016.02.024_bib0049) 1988; 41 Bayraktar (10.1016/j.eswa.2016.02.024_bib0007) 2011; 10 Ghamisi (10.1016/j.eswa.2016.02.024_bib0022) 2014; 52 Dirami (10.1016/j.eswa.2016.02.024_bib0016) 2013; 1046 93 Tang (10.1016/j.eswa.2016.02.024_bib0059) 2011; 24 Wang (10.1016/j.eswa.2016.02.024_bib0062) 2004; 13 Ma (10.1016/j.eswa.2016.02.024_bib0032) 2011; 11 Panda (10.1016/j.eswa.2016.02.024_bib0041) 2013; 40 Sathya (10.1016/j.eswa.2016.02.024_bib0054) 2011; 38 Otsu (10.1016/j.eswa.2016.02.024_bib0038) 1979 Yang (10.1016/j.eswa.2016.02.024_bib0067) 2011; 3 Abdel-Raouf (10.1016/j.eswa.2016.02.024_bib0001) 2014; 4 Bhandari (10.1016/j.eswa.2016.02.024_bib0010) 2014; 41 Rodrigues (10.1016/j.eswa.2016.02.024_bib0048) 2015; 585 Sathya (10.1016/j.eswa.2016.02.024_bib0055) 2011; 24 Horng (10.1016/j.eswa.2016.02.024_bib0025) 2010; 37 Priyadharshini (10.1016/j.eswa.2016.02.024_bib0047) 2015; 2015 Kumar (10.1016/j.eswa.2016.02.024_bib0030) 2013; 5 Bhandari (10.1016/j.eswa.2016.02.024_bib0009) 2015; 42 Kapur (10.1016/j.eswa.2016.02.024_bib0028) 1985; 29 Sarkar (10.1016/j.eswa.2016.02.024_bib0053) 2011; 1 Cuevas (10.1016/j.eswa.2016.02.024_bib0013) 2012; 37 Yin (10.1016/j.eswa.2016.02.024_bib0069) 2007; 184 Tao (10.1016/j.eswa.2016.02.024_bib0060) 2007; 28 Horng (10.1016/j.eswa.2016.02.024_bib0027) 2011; 38 Peng (10.1016/j.eswa.2016.02.024_bib0043) 2013; 46 Chakraborty (10.1016/j.eswa.2016.02.024_bib0012) 2014 Ibrahim (10.1016/j.eswa.2016.02.024_bib0017) 2014; 8 Pavlyukevich (10.1016/j.eswa.2016.02.024_bib0042) 2007; 226 Wilcoxon (10.1016/j.eswa.2016.02.024_bib0063) 1945; 1 Sezgin (10.1016/j.eswa.2016.02.024_bib0056) 2004; 13 Gao (10.1016/j.eswa.2016.02.024_bib0019) 2010; 59 Oliva (10.1016/j.eswa.2016.02.024_bib0036) 2014; 139 Manikandan (10.1016/j.eswa.2016.02.024_bib0034) 2014; 47 Pal (10.1016/j.eswa.2016.02.024_bib0101) 1993; 26 Sanyal (10.1016/j.eswa.2016.02.024_bib0052) 2011; 38 Hammouche (10.1016/j.eswa.2016.02.024_bib0102) 2010; 23 Oliva (10.1016/j.eswa.2016.02.024_bib0037) 2013; 2013 Yin (10.1016/j.eswa.2016.02.024_bib0068) 1999; 72 Sanjay (10.1016/j.eswa.2016.02.024_bib0050) 2013; 11 Cuevas (10.1016/j.eswa.2016.02.024_bib0014) 2010; 37 Maitra (10.1016/j.eswa.2016.02.024_bib0033) 2008; 34 Horng (10.1016/j.eswa.2016.02.024_bib0026) 2011; 38 García (10.1016/j.eswa.2016.02.024_bib0021) 2009; 15 Bakhshali (10.1016/j.eswa.2016.02.024_bib0005) 2014; 5 Pun (10.1016/j.eswa.2016.02.024_bib0103) 1981; 16 Gao (10.1016/j.eswa.2016.02.024_bib0020) 2013; 59 Prathiba (10.1016/j.eswa.2016.02.024_bib0046) 2014; 6 Xue (10.1016/j.eswa.2016.02.024_bib0064) 2011; 29 Horng (10.1016/j.eswa.2016.02.024_bib0024) 2010; 215 |
References_xml | – start-page: 1 year: 2014 end-page: 6 ident: bib0012 article-title: DE-FPA, a hybrid differential evolution-flower pollination algorithm for function minimization, high perform publication-title: Conference on high performances computing and applications (ICHPCA’14) – volume: 59 start-page: 934 year: 2010 end-page: 946 ident: bib0019 article-title: Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 10 start-page: 1563 year: 2011 end-page: 1566 ident: bib0007 article-title: Nature-inspired optimization of high impedance metasurfaces with ultrasmall interwoven unit cells publication-title: IEEE Letters on Antennas and Wireless Propagation – volume: 139 start-page: 357 year: 2014 end-page: 1118 ident: bib0036 article-title: A multilevel thresholding algorithm using electromagnetism optimization publication-title: Neurocomputing – volume: 37 start-page: 5265 year: 2010 end-page: 5271 ident: bib0014 article-title: A novel multi-threshold segmentation approach based on differential evolution optimization publication-title: Expert Systems with Applications – start-page: 62 year: 1979 end-page: 66 ident: bib0038 article-title: A threshold selection method from gray level histograms publication-title: IEEE Transactions on Systems, Man and Cybernetics – volume: 24 start-page: 65 year: 2011 end-page: 69 ident: bib0055 article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation publication-title: Engineering Applications of Artificial Intelligence – volume: 4 start-page: 1 year: 2014 end-page: 8 ident: bib0001 article-title: An improved flower pollination algorithm with chaos publication-title: International Journal of Education and Management Engineering – volume: 46 start-page: 1020 year: 2013 end-page: 1038 ident: bib0043 article-title: A survey of graph theoretical approaches to image segmentation publication-title: Pattern Recognition – year: 2014 ident: bib0045 article-title: Application of flower pollination algorithm in nonlinear algebraic systems with multiple solutions publication-title: Proceedings of the international conference on engineering optimization (ENGOPT 2014), Lisbon, Portugal, 8–11 September 2014 – volume: 5 start-page: 251 year: 2014 end-page: 257 ident: bib0005 article-title: Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO) publication-title: Journal of Computational Science – volume: 34 start-page: 1341 year: 2008 end-page: 1350 ident: bib0033 article-title: A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding publication-title: Expert Systems with Applications – volume: 23 start-page: 667 year: 2010 end-page: 688 ident: bib0102 article-title: A comparative study of various metaheuristic techniques applied to multilevel thresholding problem publication-title: Engineering Applications of Artificial Intelligence – volume: 5 start-page: 323 year: 2013 end-page: 334 ident: bib0030 article-title: Bi-level thresholding using PSO, artificial bee colony and MRLDE embedded with Otsu method publication-title: Memetic Computing – volume: 38 start-page: 13785 year: 2011 end-page: 13791 ident: bib0026 article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation publication-title: Expert Systems with Applications – volume: 3 start-page: 267 year: 2011 end-page: 274 ident: bib0067 article-title: Bat algorithm for multi-objective optimisation publication-title: International Journal of Bio-Inspired Computation – volume: 47 start-page: 558 year: 2014 end-page: 568 ident: bib0034 article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm publication-title: Measurement – start-page: 1 year: 2014 end-page: 6 ident: bib0035 article-title: Flower pollination algorithm for optimal control in multi-machine system with GUPFC publication-title: 6th international conference on information technology and electrical engineering (ICITEE) – volume: 38 start-page: 15549 year: 2011 end-page: 15564 ident: bib0054 article-title: Optimal multilevel thresholding using bacterial foraging algorithm publication-title: Expert Systems with Applications – volume: 226 start-page: 1830 year: 2007 end-page: 1844 ident: bib0042 article-title: Levy flights, non-local search and simulated annealing publication-title: Journal of Computational Physics – volume: 37 start-page: 322 year: 2015 end-page: 331 ident: bib0008 article-title: Sizing optimization of truss structures using flower pollination algorithm publication-title: Applied Soft Computing – volume: 59 start-page: 934 year: 2013 end-page: 946 ident: bib0020 article-title: Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 2013 start-page: 1 year: 2013 end-page: 24 ident: bib0037 article-title: Multilevel thresholding segmentation based on harmony search optimization publication-title: Journal of Applied Mathematics – volume: 41 start-page: 3538 year: 2014 end-page: 3560 ident: bib0010 article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy publication-title: Expert Systems with Applications – volume: 109 start-page: 163 year: 2008 end-page: 175 ident: bib0023 article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation publication-title: Computer Vision Image Understanding – volume: 61 start-page: 2745 year: 2013 end-page: 2757 ident: bib0006 article-title: The wind driven optimization technique and its application in electromagnetics publication-title: IEEE Transactions on Antennas and Propagation – volume: 215 start-page: 3302 year: 2010 end-page: 3310 ident: bib0024 article-title: A multilevel image thresholding using the honey bee mating optimization publication-title: Applied Mathematics and Computation – volume: 8 start-page: 72 year: 2014 end-page: 81 ident: bib0017 article-title: An improved chaotic flower pollination algorithm for solving large integer programming problems publication-title: International Journal of Digital Content Technology and Its Applications – volume: 1 start-page: 51 year: 2011 end-page: 58 ident: bib0053 article-title: Differential evolution based approach for multilevel image segmentation using minimum cross entropy thresholding publication-title: SEMCCO – volume: 75 start-page: 277 year: 1999 end-page: 301 ident: bib0104 article-title: A novel fuzzy entropy approach to image enhancement and thresholding publication-title: Signal Processing – volume: 41 start-page: 233 year: 1988 end-page: 260 ident: bib0049 article-title: A survey of thresholding techniques publication-title: Computer Vision Graphics Image Processing – volume: 11 start-page: 5205 year: 2011 end-page: 5214 ident: bib0032 article-title: SAR image segmentation based on artificial bee colony algorithm publication-title: Applied Soft Computing – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: bib0063 article-title: Individual comparisons by ranking methods publication-title: Biometrics – volume: 322 start-page: 451 year: 2015 end-page: 459 ident: bib0031 article-title: Study of flower pollination algorithm for continuous optimization, intelligent systems'2014 publication-title: Advances in Intelligent Systems and Computing – volume: 6 start-page: 1009 year: 2014 end-page: 1016 ident: bib0046 article-title: Flower pollination algorithm applied for different economic load dispatch problems publication-title: International Journal of Engineering and Technology (IJET) – volume: 38 start-page: 15489 year: 2011 end-page: 15498 ident: bib0052 article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation publication-title: Expert Systems with Applications – volume: 40 start-page: 7617 year: 2013 end-page: 7628 ident: bib0041 article-title: Edgemagnitude based multilevel thresholding using Cuckoo search technique publication-title: Expert Systems with Applications – volume: 29 start-page: 631 year: 2011 end-page: 637 ident: bib0064 article-title: Median-based image thresholding publication-title: Image and Vision Computing – volume: 184 start-page: 503 year: 2007 end-page: 513 ident: bib0069 article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization publication-title: Applied Mathematics and Computation – volume: 13 start-page: 3066 year: 2013 end-page: 3091 ident: bib0003 article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding publication-title: Applied Soft Computing – volume: 49 start-page: 207 year: 2014 end-page: 226 ident: bib0039 article-title: Bio-inspired algorithms for multilevel image thresholding publication-title: International Journal of Computer Applications in Technology, Special Issue on Computational Optimization and Engineering Applications – year: 2002 ident: bib0057 article-title: Computer vision – volume: 15 start-page: 617 year: 2009 end-page: 644 ident: bib0021 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization publication-title: Journal of Heuristics – volume: 29 start-page: 273 year: 1985 end-page: 285 ident: bib0028 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Computer Vision Graphics Image Processing – volume: 7445 start-page: 240 year: 2012 end-page: 249 ident: bib0065 article-title: Flower pollination algorithm for global optimization publication-title: Unconventional computation and natural computation 2012 – start-page: 364 year: 2013 end-page: 369 ident: bib0004 article-title: Bat algorithm (BA) for image thresholding publication-title: Recent researches in telecommunications, informatics, Electronics and Signal Processing – volume: 7 start-page: 126 year: 2014 end-page: 132 ident: bib0002 article-title: A novel hybrid flower pollination algorithm with chaotic harmony search for solving Sudoku puzzles publication-title: International Journal of Engineering Trends and Technology – volume: 28 start-page: 788 year: 2007 end-page: 796 ident: bib0060 article-title: Object segmentation using ant colony optimization algorithm and fuzzy entropy publication-title: Pattern Recognition Letters – volume: 26 start-page: 1274 year: 1993 end-page: 1294 ident: bib0101 article-title: Pattern Recognition publication-title: Expert Systems with Applications – volume: 13 start-page: 146 year: 2004 end-page: 165 ident: bib0056 article-title: Survey over image thresholding techniques and quantitative performance publication-title: Journal of Electronic Imaging – start-page: 125 year: 2014 end-page: 132 ident: bib0044 article-title: Evolutionary optimization applied for fine-tuning parameter estimation in optical flow-based environments publication-title: 2014 27th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI) – volume: 37 start-page: 321 year: 2012 end-page: 336 ident: bib0013 article-title: A multithreshold segmentation approach based on artificial bee colony optimization publication-title: Applied Intelligence – volume: 11 start-page: 16 year: 2013 end-page: 30 ident: bib0050 article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm publication-title: Swarm and Evolutionary Computation – volume: 46 start-page: 1222 year: 2014 end-page: 1237 ident: bib0105 article-title: Flower Pollination Algorithm: A Novel Approach for Multiobjective Optimization publication-title: Engineering Optimization – volume: 2014 start-page: 1 year: 2014 end-page: 12 ident: bib0071 article-title: An improved quantum inspired genetic algorithm for image multilevel thresholding segmentation publication-title: Mathematical Problems in Engineering – volume: 28 start-page: 662 year: 2007 end-page: 669 ident: bib0018 article-title: A multi-level thresholding approach using a hybrid optimal estimation algorithm publication-title: Pattern Recognition Letters – volume: 2014 start-page: 1 year: 2014 end-page: 17 ident: bib0058 article-title: Otsu based optimal multilevel image thresholding using firefly algorithm publication-title: Modelling and Simulation in Engineering – volume: 16 start-page: 210 year: 1981 end-page: 239 ident: bib0103 article-title: Entropy thresholding: A new approach publication-title: Computer Vision Graphics and Image Processing – volume: Vol. 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0029 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE international conference on neural networks – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0062 article-title: Image quality assessment: From error measurement to structural similarity publication-title: IEEE Transactions on Image Processing – volume: 52 start-page: 2382 year: 2014 end-page: 2394 ident: bib0022 article-title: Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 72 start-page: 85 year: 1999 end-page: 95 ident: bib0068 article-title: A fast scheme for optimal thresholding using genetic algorithms publication-title: Signal Processing – volume: 1046 93 start-page: 139 year: 2013 end-page: 153 ident: bib0016 article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method publication-title: Signal Processing – volume: 2015 start-page: 0373 year: 2015 end-page: 0387 ident: bib0047 article-title: A novel Web service publishing model based on social spider optimization technique publication-title: Computation of Power, Energy Information and Communication (ICCPEIC) – volume: 2014 start-page: 1 year: 2014 end-page: 9 ident: bib0061 article-title: Flower pollination algorithm with dimension by dimension improvement publication-title: Mathematical Problems in Engineering – start-page: 217 year: 2012 end-page: 222 ident: bib0011 article-title: Multilevel image thresholding selection based on the cuckoo search algorithm publication-title: Advances in sensors, signals, visualization, imaging and simulation – volume: 24 start-page: 1131 year: 2011 end-page: 1138 ident: bib0059 article-title: An improved scheme for minimum cross entropy threshold selection based on genetic algorithm publication-title: Knowledge Based Systems – volume: 40 start-page: 6374 year: 2013 end-page: 6384 ident: bib0015 article-title: A swarm optimization algorithm inspired in the behavior of the social-spider publication-title: Expert Systems with Applications – volume: 585 start-page: 85 year: 2015 end-page: 100 ident: bib0048 article-title: Binary flower pollination algorithm and its application to feature selection publication-title: Recent advances in swarm intelligence and evolutionary computation studies in computational intelligence – start-page: 169 year: 2009 end-page: 178 ident: bib0066 article-title: Firefly algorithms for multimodal optimization publication-title: Stochastic algorithms: Foundations and applications – volume: 42 start-page: 1573 year: 2015 end-page: 1601 ident: bib0009 article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions publication-title: Expert Systems with Applications – volume: 13 start-page: 841 year: 2011 end-page: 859 ident: bib0070 article-title: Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach publication-title: Entropy – volume: 38 year: 2011 ident: bib0027 article-title: Multilevel minimum cross entropy threshold selection based on the firefly algorithm publication-title: Expert Systems with Applications – volume: 37 start-page: 4580 year: 2010 end-page: 4592 ident: bib0025 article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization publication-title: Expert Systems with Applications – volume: 40 start-page: 6374 issue: 16 year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0015 article-title: A swarm optimization algorithm inspired in the behavior of the social-spider publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.05.041 – start-page: 217 year: 2012 ident: 10.1016/j.eswa.2016.02.024_bib0011 article-title: Multilevel image thresholding selection based on the cuckoo search algorithm – volume: 38 start-page: 15489 issue: 12 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0052 article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.06.011 – year: 2002 ident: 10.1016/j.eswa.2016.02.024_bib0057 – volume: 10 start-page: 1563 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0007 article-title: Nature-inspired optimization of high impedance metasurfaces with ultrasmall interwoven unit cells publication-title: IEEE Letters on Antennas and Wireless Propagation doi: 10.1109/LAWP.2011.2178224 – volume: 23 start-page: 667 year: 2010 ident: 10.1016/j.eswa.2016.02.024_bib0102 article-title: A comparative study of various metaheuristic techniques applied to multilevel thresholding problem publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2009.09.011 – volume: 24 start-page: 65 issue: 4 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0055 article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2010.12.001 – volume: 15 start-page: 617 issue: 6 year: 2009 ident: 10.1016/j.eswa.2016.02.024_bib0021 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization publication-title: Journal of Heuristics doi: 10.1007/s10732-008-9080-4 – volume: 72 start-page: 85 year: 1999 ident: 10.1016/j.eswa.2016.02.024_bib0068 article-title: A fast scheme for optimal thresholding using genetic algorithms publication-title: Signal Processing doi: 10.1016/S0165-1684(98)00167-4 – start-page: 62 year: 1979 ident: 10.1016/j.eswa.2016.02.024_bib0038 article-title: A threshold selection method from gray level histograms publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 16 start-page: 210 year: 1981 ident: 10.1016/j.eswa.2016.02.024_bib0103 article-title: Entropy thresholding: A new approach publication-title: Computer Vision Graphics and Image Processing doi: 10.1016/0146-664X(81)90038-1 – volume: 26 start-page: 1274 issue: 9 year: 1993 ident: 10.1016/j.eswa.2016.02.024_bib0101 article-title: Pattern Recognition publication-title: Expert Systems with Applications – volume: 42 start-page: 1573 issue: 3 year: 2015 ident: 10.1016/j.eswa.2016.02.024_bib0009 article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.09.049 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0061 article-title: Flower pollination algorithm with dimension by dimension improvement publication-title: Mathematical Problems in Engineering doi: 10.1155/2014/191242 – start-page: 1 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0035 article-title: Flower pollination algorithm for optimal control in multi-machine system with GUPFC – volume: Vol. 4 start-page: 1942 year: 1995 ident: 10.1016/j.eswa.2016.02.024_bib0029 article-title: Particle swarm optimization – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0037 article-title: Multilevel thresholding segmentation based on harmony search optimization publication-title: Journal of Applied Mathematics doi: 10.1155/2013/575414 – volume: 215 start-page: 3302 issue: 9 year: 2010 ident: 10.1016/j.eswa.2016.02.024_bib0024 article-title: A multilevel image thresholding using the honey bee mating optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2009.10.018 – volume: 29 start-page: 273 year: 1985 ident: 10.1016/j.eswa.2016.02.024_bib0028 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Computer Vision Graphics Image Processing doi: 10.1016/0734-189X(85)90125-2 – volume: 1 start-page: 80 year: 1945 ident: 10.1016/j.eswa.2016.02.024_bib0063 article-title: Individual comparisons by ranking methods publication-title: Biometrics doi: 10.2307/3001968 – volume: 40 start-page: 7617 issue: 18 year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0041 article-title: Edgemagnitude based multilevel thresholding using Cuckoo search technique publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.07.060 – volume: 1046 93 start-page: 139 issue: 1 year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0016 article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method publication-title: Signal Processing doi: 10.1016/j.sigpro.2012.07.010 – volume: 38 start-page: 13785 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0026 article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation publication-title: Expert Systems with Applications – volume: 322 start-page: 451 year: 2015 ident: 10.1016/j.eswa.2016.02.024_bib0031 article-title: Study of flower pollination algorithm for continuous optimization, intelligent systems'2014 publication-title: Advances in Intelligent Systems and Computing doi: 10.1007/978-3-319-11313-5_40 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0071 article-title: An improved quantum inspired genetic algorithm for image multilevel thresholding segmentation publication-title: Mathematical Problems in Engineering doi: 10.1155/2014/140140 – year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0045 article-title: Application of flower pollination algorithm in nonlinear algebraic systems with multiple solutions – volume: 109 start-page: 163 issue: 2 year: 2008 ident: 10.1016/j.eswa.2016.02.024_bib0023 article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation publication-title: Computer Vision Image Understanding doi: 10.1016/j.cviu.2007.09.001 – volume: 41 start-page: 233 year: 1988 ident: 10.1016/j.eswa.2016.02.024_bib0049 article-title: A survey of thresholding techniques publication-title: Computer Vision Graphics Image Processing doi: 10.1016/0734-189X(88)90022-9 – volume: 3 start-page: 267 issue: 5 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0067 article-title: Bat algorithm for multi-objective optimisation publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2011.042259 – volume: 7 start-page: 126 issue: 3 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0002 article-title: A novel hybrid flower pollination algorithm with chaotic harmony search for solving Sudoku puzzles publication-title: International Journal of Engineering Trends and Technology doi: 10.14445/22315381/IJETT-V7P225 – volume: 11 start-page: 5205 issue: 8 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0032 article-title: SAR image segmentation based on artificial bee colony algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.05.039 – volume: 37 start-page: 4580 issue: 6 year: 2010 ident: 10.1016/j.eswa.2016.02.024_bib0025 article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.12.050 – volume: 29 start-page: 631 issue: 9 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0064 article-title: Median-based image thresholding publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2011.06.003 – volume: 49 start-page: 207 issue: 3/4 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0039 article-title: Bio-inspired algorithms for multilevel image thresholding publication-title: International Journal of Computer Applications in Technology, Special Issue on Computational Optimization and Engineering Applications – start-page: 169 year: 2009 ident: 10.1016/j.eswa.2016.02.024_bib0066 article-title: Firefly algorithms for multimodal optimization – volume: 6 start-page: 1009 issue: April–May (2) year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0046 article-title: Flower pollination algorithm applied for different economic load dispatch problems publication-title: International Journal of Engineering and Technology (IJET) – volume: 24 start-page: 1131 issue: 8 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0059 article-title: An improved scheme for minimum cross entropy threshold selection based on genetic algorithm publication-title: Knowledge Based Systems doi: 10.1016/j.knosys.2011.02.013 – start-page: 364 year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0004 article-title: Bat algorithm (BA) for image thresholding – volume: 41 start-page: 3538 issue: 7 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0010 article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.10.059 – volume: 226 start-page: 1830 year: 2007 ident: 10.1016/j.eswa.2016.02.024_bib0042 article-title: Levy flights, non-local search and simulated annealing publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2007.06.008 – volume: 1 start-page: 51 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0053 article-title: Differential evolution based approach for multilevel image segmentation using minimum cross entropy thresholding publication-title: SEMCCO – volume: 47 start-page: 558 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0034 article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm publication-title: Measurement doi: 10.1016/j.measurement.2013.09.031 – volume: 13 start-page: 3066 issue: 6 year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0003 article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.03.072 – volume: 46 start-page: 1222 issue: 9 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0105 article-title: Flower Pollination Algorithm: A Novel Approach for Multiobjective Optimization publication-title: Engineering Optimization doi: 10.1080/0305215X.2013.832237 – volume: 11 start-page: 16 issue: August year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0050 article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm publication-title: Swarm and Evolutionary Computation – volume: 37 start-page: 5265 issue: 7 year: 2010 ident: 10.1016/j.eswa.2016.02.024_bib0014 article-title: A novel multi-threshold segmentation approach based on differential evolution optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.01.013 – volume: 28 start-page: 662 year: 2007 ident: 10.1016/j.eswa.2016.02.024_bib0018 article-title: A multi-level thresholding approach using a hybrid optimal estimation algorithm publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2006.11.005 – volume: 38 issue: 12 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0027 article-title: Multilevel minimum cross entropy threshold selection based on the firefly algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.05.069 – volume: 7445 start-page: 240 year: 2012 ident: 10.1016/j.eswa.2016.02.024_bib0065 article-title: Flower pollination algorithm for global optimization – volume: 61 start-page: 2745 issue: 5 year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0006 article-title: The wind driven optimization technique and its application in electromagnetics publication-title: IEEE Transactions on Antennas and Propagation doi: 10.1109/TAP.2013.2238654 – volume: 5 start-page: 251 issue: 2 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0005 article-title: Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO) publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2013.07.001 – volume: 59 start-page: 934 issue: 4 year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0020 article-title: Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2009.2030931 – volume: 8 start-page: 72 issue: 3 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0017 article-title: An improved chaotic flower pollination algorithm for solving large integer programming problems publication-title: International Journal of Digital Content Technology and Its Applications – volume: 59 start-page: 934 issue: 4 year: 2010 ident: 10.1016/j.eswa.2016.02.024_bib0019 article-title: Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2009.2030931 – start-page: 125 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0044 article-title: Evolutionary optimization applied for fine-tuning parameter estimation in optical flow-based environments – volume: 13 start-page: 841 issue: 4 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0070 article-title: Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach publication-title: Entropy doi: 10.3390/e13040841 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0058 article-title: Otsu based optimal multilevel image thresholding using firefly algorithm publication-title: Modelling and Simulation in Engineering doi: 10.1155/2014/794574 – volume: 38 start-page: 15549 issue: 12 year: 2011 ident: 10.1016/j.eswa.2016.02.024_bib0054 article-title: Optimal multilevel thresholding using bacterial foraging algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.06.004 – volume: 52 start-page: 2382 issue: 5 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0022 article-title: Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2013.2260552 – volume: 34 start-page: 1341 year: 2008 ident: 10.1016/j.eswa.2016.02.024_bib0033 article-title: A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.01.002 – volume: 37 start-page: 322 year: 2015 ident: 10.1016/j.eswa.2016.02.024_bib0008 article-title: Sizing optimization of truss structures using flower pollination algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.08.037 – volume: 139 start-page: 357 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0036 article-title: A multilevel thresholding algorithm using electromagnetism optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.020 – volume: 75 start-page: 277 year: 1999 ident: 10.1016/j.eswa.2016.02.024_bib0104 article-title: A novel fuzzy entropy approach to image enhancement and thresholding publication-title: Signal Processing doi: 10.1016/S0165-1684(98)00239-4 – volume: 13 start-page: 146 issue: January year: 2004 ident: 10.1016/j.eswa.2016.02.024_bib0056 article-title: Survey over image thresholding techniques and quantitative performance publication-title: Journal of Electronic Imaging – volume: 28 start-page: 788 issue: 7 year: 2007 ident: 10.1016/j.eswa.2016.02.024_bib0060 article-title: Object segmentation using ant colony optimization algorithm and fuzzy entropy publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2006.11.007 – volume: 4 start-page: 1 issue: 2 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0001 article-title: An improved flower pollination algorithm with chaos publication-title: International Journal of Education and Management Engineering doi: 10.5815/ijeme.2014.02.01 – volume: 46 start-page: 1020 issue: 3 year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0043 article-title: A survey of graph theoretical approaches to image segmentation publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.09.015 – volume: 585 start-page: 85 year: 2015 ident: 10.1016/j.eswa.2016.02.024_bib0048 article-title: Binary flower pollination algorithm and its application to feature selection – start-page: 1 year: 2014 ident: 10.1016/j.eswa.2016.02.024_bib0012 article-title: DE-FPA, a hybrid differential evolution-flower pollination algorithm for function minimization, high perform – volume: 5 start-page: 323 issue: 4 year: 2013 ident: 10.1016/j.eswa.2016.02.024_bib0030 article-title: Bi-level thresholding using PSO, artificial bee colony and MRLDE embedded with Otsu method publication-title: Memetic Computing doi: 10.1007/s12293-013-0123-5 – volume: 13 start-page: 600 issue: 1 year: 2004 ident: 10.1016/j.eswa.2016.02.024_bib0062 article-title: Image quality assessment: From error measurement to structural similarity publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – volume: 37 start-page: 321 issue: 3 year: 2012 ident: 10.1016/j.eswa.2016.02.024_bib0013 article-title: A multithreshold segmentation approach based on artificial bee colony optimization publication-title: Applied Intelligence doi: 10.1007/s10489-011-0330-z – volume: 2015 start-page: 0373 year: 2015 ident: 10.1016/j.eswa.2016.02.024_bib0047 article-title: A novel Web service publishing model based on social spider optimization technique publication-title: Computation of Power, Energy Information and Communication (ICCPEIC) – volume: 184 start-page: 503 year: 2007 ident: 10.1016/j.eswa.2016.02.024_bib0069 article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.06.057 |
SSID | ssj0017007 |
Score | 2.5162935 |
Snippet | •We present an empirical comparison of two new meta-heuristics SSO and FP.•Real test images were used to perform thresholding using Otsu's method and Kapur's... In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization... We present an empirical comparison of two new meta-heuristics SSO and FP.Real test images were used to perform thresholding using Otsu's method and Kapur's... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 566 |
SubjectTerms | Algorithms Automatic Bat algorithm Engineering Sciences Filled plastics Flower pollination algorithm Flowers Mathematical models Multilevel Multilevel thresholding Optimization Particle swarm optimization Social spider optimization Spiders Thresholds |
Title | Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study |
URI | https://dx.doi.org/10.1016/j.eswa.2016.02.024 https://www.proquest.com/docview/1825467122 https://uphf.hal.science/hal-03426984 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXChPEWBVgZxQ2HXjh9Jb6uKanmoF6jUmxW_6KLd7GqTlhu_nRnHWQQSPSDlkFi2YnnsmbH9zTeEvFHKcWaVAAlUHjYopSsqqZvCBceEdzFEm1C-52p-IT5eyss9cjrGwiCsMuv-QacnbZ1LJnk0J5vFYvIFnAMwh8mjQCYp3Lcjex3M6Xc_dzAPpJ_TA9-eLrB2DpwZMF6h-4HcQ0wl3k4u_mWc7lwhSvIvZZ0s0NkDcj-7jnQ29O4h2QvtI3IwpmWgeZU-Jt0Qcks7TP667egatMIqh1vSpvU0LjE1Gt0kPu5cvPy23i76qxUFJ5YmlOES4UR0sQKFQ3uQeJcvqk7ojG5-hxvQRFD7hFycvf96Oi9yboXCCcb6gtUhxkpEC9ZpWlvYxzgvq9DwaeQhKHj3Fn1Fr73kUw_jqCRTSvLGM6HrpnxK9tt1G54RqmQTvWa1ZrEEtcutrnmIZWm1dbyO7JCwcVCNy8TjmP9iaUaE2XeDgjAoCDPl8IhD8nbXZjPQbtxaW46yMn9MHgN24dZ2r0Gwux8g0_Z89tlgGTIjqroSN9D9V6PcDSw9vE9p2rC-7gxLyQQ04_z5f3bgBbmHX3hGzeRLst9vr8MRODm9PU6z-JjcnX34ND__BQm9_Ps |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAX3ojyNIgbijZ2_Ei4rSqqlC57oZV6sxI_2kW72dUmhb_PTOIsAokekHKIHFuxPPbM2P7mG0I-KGU5q5UACeQONiiZTXKpq8R6y4SzwYe6R_kuVHkhvlzKywNyPMbCIKwy6v5Bp_faOpZM42hOt8vl9Bs4B2AOe48CmaRg336I7FRiQg5np2flYn-ZoNMhahrqJ9ggxs4MMC_f_kT6IaZ66k4u_mWf7lwjUPIvfd0boZOH5H70Huls6OAjcuCbx-TBmJmBxoX6hLRD1C1tMf_rrqUbUAzrGHFJq8bRsMLsaHTbU3LH4tXVZrfsrtcU_FjaAw1XiCiiyzXoHNqB0Nt4V_WJzuj2d8QB7Tlqn5KLk8_nx2US0yskVjDWJazwIeQi1GCg0qKGrYx1MvcVTwP3XsG7q9FddNpJnjoYRyWZUpJXjgldVNkzMmk2jX9OqJJVcJoVmoUMNC-vdcF9yLJa15YXgR0RNg6qsZF7HFNgrMwIMvtuUBAGBWFSDo84Ih_3bbYD88atteUoK_PH_DFgGm5t9x4Eu_8Bkm2Xs7nBMiRHVEUufkD3341yN7D68EqlavzmpjWszyegGecv_rMDb8nd8vzr3MxPF2cvyT38gkfWTL4ik25341-Dz9PVb-Kc_gWvK_-s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+spiders+optimization+and+flower+pollination+algorithm+for+multilevel+image+thresholding%3A+A+performance+study&rft.jtitle=Expert+systems+with+applications&rft.au=Ouadfel%2C+Salima&rft.au=Taleb-Ahmed%2C+Abdelmalik&rft.date=2016-08-15&rft.issn=0957-4174&rft.volume=55&rft.spage=566&rft.epage=584&rft_id=info:doi/10.1016%2Fj.eswa.2016.02.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2016_02_024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |