Energy savings and thermal comfort evaluation of a novel personal conditioning device
Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual’s thermal comfort than central HVAC systems can. Existing PCDs are categorized into stationary devices and wearable devices. Both types of devices have respective advantages a...
Saved in:
Published in | Energy and buildings Vol. 241; no. C; p. 110917 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.06.2021
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0378-7788 1872-6178 |
DOI | 10.1016/j.enbuild.2021.110917 |
Cover
Loading…
Abstract | Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual’s thermal comfort than central HVAC systems can. Existing PCDs are categorized into stationary devices and wearable devices. Both types of devices have respective advantages and disadvantages. This paper introduces a novel personal conditioning device called Roving Comforter (RoCo) which is ductless, portable, and capable of providing up to 8 h of conditioned air without rejecting waste heat while in use. The conditioned air, typically 5 K cooler than the ambient air, is produced by a 150 W-mini heat pump system that rejects its condenser heat to an onboard phase change material (PCM) container. The PCM is solidified by the heat pump’s reverse cycle after the cooling operation or by a thermo-syphon mode. Cyclic tests conducted in the lab confirmed the concept of RoCo design and its technical specifications. We further conducted EnergyPlus simulation to evaluate the power saving potential of RoCo in centrally air-conditioned buildings in seven US cities. The results show that increasing the central HVAC’s temperature setpoint by 2.6 K during the peak hours of the day in the summer season could lead to energy savings between 10% and 70% among the seven cities. Finally, a survey investigation with 14 valid datasets from 40 human subjects demonstrated that RoCo could improve the thermal comfort for the users. |
---|---|
AbstractList | Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual’s thermal comfort than central HVAC systems can. Existing PCDs are categorized into stationary devices and wearable devices. Both types of devices have respective advantages and disadvantages. This paper introduces a novel personal conditioning device called Roving Comforter (RoCo) which is ductless, portable, and capable of providing up to 8 h of conditioned air without rejecting waste heat while in use. The conditioned air, typically 5 K cooler than the ambient air, is produced by a 150 W-mini heat pump system that rejects its condenser heat to an onboard phase change material (PCM) container. The PCM is solidified by the heat pump’s reverse cycle after the cooling operation or by a thermo-syphon mode. Cyclic tests conducted in the lab confirmed the concept of RoCo design and its technical specifications. We further conducted EnergyPlus simulation to evaluate the power saving potential of RoCo in centrally air-conditioned buildings in seven US cities. The results show that increasing the central HVAC’s temperature setpoint by 2.6 K during the peak hours of the day in the summer season could lead to energy savings between 10% and 70% among the seven cities. Finally, a survey investigation with 14 valid datasets from 40 human subjects demonstrated that RoCo could improve the thermal comfort for the users. Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual's thermal comfort than central HVAC systems can. Existing PCDs are categorized into stationary devices and wearable devices. Both types of devices have respective advantages and disadvantages. This paper introduces a novel personal conditioning device called Roving Comforter (RoCo) which is ductless, portable, and capable of providing up to 8 h of conditioned air without rejecting waste heat while in use. The conditioned air, typically 5 K cooler than the ambient air, is produced by a 150 W-mini heat pump system that rejects its condenser heat to an onboard phase change material (PCM) container. The PCM is solidified by the heat pump's reverse cycle after the cooling operation or by a thermo-syphon mode. Cyclic tests conducted in the lab confirmed the concept of RoCo design and its technical specifications. We further conducted EnergyPlus simulation to evaluate the power saving potential of RoCo in centrally air-conditioned buildings in seven US cities. The results show that increasing the central HVAC's temperature setpoint by 2.6 K during the peak hours of the day in the summer season could lead to energy savings between 10% and 70% among the seven cities. Finally, a survey investigation with 14 valid datasets from 40 human subjects demonstrated that RoCo could improve the thermal comfort for the users. |
ArticleNumber | 110917 |
Author | Srebric, Jelena Aute, Vikrant Radermacher, Reinhard Muehlbauer, Jan Ling, Jiazhen Dalgo, Daniel A. Wang, Lingzhe Zhu, Shengwei Qiao, Yiyuan Hwang, Yunho |
Author_xml | – sequence: 1 givenname: Jiazhen surname: Ling fullname: Ling, Jiazhen email: jiazhen@umd.edu organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA – sequence: 2 givenname: Daniel A. surname: Dalgo fullname: Dalgo, Daniel A. organization: Montgomery College, 3155 Glenn Martin Hall, University of Maryland, College Park, MD 20742, USA – sequence: 3 givenname: Shengwei surname: Zhu fullname: Zhu, Shengwei organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA – sequence: 4 givenname: Yiyuan surname: Qiao fullname: Qiao, Yiyuan organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA – sequence: 5 givenname: Lingzhe surname: Wang fullname: Wang, Lingzhe organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA – sequence: 6 givenname: Vikrant surname: Aute fullname: Aute, Vikrant organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA – sequence: 7 givenname: Jelena surname: Srebric fullname: Srebric, Jelena organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA – sequence: 8 givenname: Jan surname: Muehlbauer fullname: Muehlbauer, Jan organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA – sequence: 9 givenname: Yunho surname: Hwang fullname: Hwang, Yunho organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA – sequence: 10 givenname: Reinhard surname: Radermacher fullname: Radermacher, Reinhard organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA |
BackLink | https://www.osti.gov/biblio/1782408$$D View this record in Osti.gov |
BookMark | eNqFkE1r3DAURUVJoZO0P6Eg2rWnerJsyXRRSkg_INBNsxay9Jxo8EhTSWPIv48cZ9VNVlro3Mu755JchBiQkI_A9sCg_3LYYxjPfnZ7zjjsAdgA8g3ZgZK86UGqC7JjrVSNlEq9I5c5HxhjfSdhR-5uAqb7R5rN4sN9piY4Wh4wHc1MbTxOMRWKi5nPpvgYaJyooSEuONMTphzDMxacX39rAXW4eIvvydvJzBk_vLxX5O7Hzd_rX83tn5-_r7_fNlYAlAYEoLKtUoMRIzeKuaEfoBcDdwKEsoMzHEdremOsFANTnOEwQat66GAcXXtFPm29MRevs_UF7UO9J6Atug7ngqkKfd6gU4r_zpiLPsRzqpdnzbtWQtcKJiv1daNsijknnHRtex5dkvGzBqZX2fqgX2TrVbbeZNd091_6lPzRpMdXc9-2HFZLi8e0jsBg0fm0bnDRv9LwBNrPneo |
CitedBy_id | crossref_primary_10_1016_j_enbuild_2022_112448 crossref_primary_10_1016_j_heliyon_2024_e31716 crossref_primary_10_1016_j_jobe_2022_104885 crossref_primary_10_1080_00140139_2024_2310079 crossref_primary_10_1016_j_buildenv_2023_110290 crossref_primary_10_1016_j_buildenv_2024_111647 |
Cites_doi | 10.1080/09613218.2015.993536 10.1016/j.enbuild.2020.109858 10.1016/j.enconman.2013.04.003 10.3389/fphys.2019.00424 10.1016/j.enbuild.2013.05.010 10.1016/j.enbuild.2019.02.009 10.1080/10789669.2013.781371 10.1080/10789669.2011.605510 10.1177/1420326X13504317 10.1016/j.buildenv.2014.11.027 10.1016/j.enbuild.2020.110230 10.1080/10789669.2005.10391157 10.3403/30046382 10.1016/j.ijheatmasstransfer.2018.05.155 10.1016/j.buildenv.2019.106198 10.1016/j.ijrefrig.2019.03.006 10.1016/j.jtherbio.2011.10.009 10.2172/1009264 10.1016/j.buildenv.2012.08.031 10.1016/j.nanoen.2013.03.020 10.1016/j.enbuild.2017.04.070 10.1016/j.buildenv.2010.03.003 10.1016/j.buildenv.2017.05.007 10.1016/j.buildenv.2009.06.022 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Jun 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Jun 15, 2021 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI OTOTI |
DOI | 10.1016/j.enbuild.2021.110917 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts OSTI.GOV |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6178 |
ExternalDocumentID | 1782408 10_1016_j_enbuild_2021_110917 S0378778821002012 |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG RPZ SAC SET SEW SSH WUQ ZMT ZY4 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI AALMO AAPBV ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c411t-141e8c3889a4b2a80d96916492d4148c9da2ebca6aac7490820e9f1386151bbd3 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Thu May 18 22:20:20 EDT 2023 Wed Aug 13 04:41:23 EDT 2025 Tue Jul 01 01:13:04 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 Fri Feb 23 02:45:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | EnergyPlus Personal cooling Thermal comfort Heat pump |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-141e8c3889a4b2a80d96916492d4148c9da2ebca6aac7490820e9f1386151bbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Advanced Research Projects Agency - Energy (ARPA-E) |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0378778821002012?via%3Dihub |
PQID | 2537153407 |
PQPubID | 2045483 |
ParticipantIDs | osti_scitechconnect_1782408 proquest_journals_2537153407 crossref_citationtrail_10_1016_j_enbuild_2021_110917 crossref_primary_10_1016_j_enbuild_2021_110917 elsevier_sciencedirect_doi_10_1016_j_enbuild_2021_110917 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-15 |
PublicationDateYYYYMMDD | 2021-06-15 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne – name: Netherlands |
PublicationTitle | Energy and buildings |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
References | ANSI/ASHRAE Standard 55-2013: Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, 2013. A. Makhoul, K. Ghali, N. Ghaddar, Desk fans for the control of the convection flow around occupants using ceiling mounted personalized ventilation, Build. Environ. 59 (2013) 336-348, ISSN 0360-1323 T. Akimoto, S. Tanabe, T. Yanai, M. Sasaki, Thermal comfort and productivity - Evaluation of workplace environment in a task conditioned office, Building and Environment, Volume 45, Issue 1, 2010, Pages 45-50, ISSN 0360-1323 Zhou, Lian, Lan (b0165) 2014; 23 R. Rawal, M. Schweiker, O.B. Kazanci, V. Vardhan, Q. Jin, L. Duanmu, Personal comfort systems: A review on comfort, energy, and economics, Energy and Buildings, Volume 214, 2020, 109858, ISSN 0378-7788 M. Alain, G. Kamel, G. Nesreen, A simplified combined displacement and personalized ventilation model, 18(4) (2012) 737-749 Bach, Maley, Minett, Zietek, Stewart, Stewart (b0095) 2019; 10 S.C. Sekhar, N. Gong, K.W. Tham, K.W. Cheong, A.K. Melikov, D.P. Wyon, P.O. Fanger. Findings of personalized ventilation studies in a hot and humid climate. HVAC&R Res. 11(4) (2011) 603-620. Doi: 10.1080/10789669.2005.10391157. M. Kong, J. Zhang, T. Q. Dang, A. Hedge, T. Teng, B. Carter, C. Chianese, H. E. Khalifa, Micro-environmental control for efficient local cooling: Results from manikin and human participant tests, Build. Environ. 160 (2019) 106198, ISSN 0360-1323 J. Verhaart, M. Vesely, R. Li, W. Zeller, Climate chamber tests for measuring performance characteristics of a personal cooling system, ASHRAE Trans.; (United States), 2015 AT-15-C059. A.F. Alajmi, F.A. Baddar, R.I. Bourisli, Thermal comfort assessment of an office building served by under-floor air distribution (UFAD) system – A case study, Build. Environ. 85 (2015) 153-159, ISSN 0360-1323 Y. Fan, X. Li, Y. Yan, J. Tu, Overall performance evaluation of underfloor air distribution system with different heights of return vents, Energy Build. 147 (2017) 176-187, ISSN 0378-7788 Fanger (b0010) 1970 C. Sun, H. Zhu, E. B. Baker III, M. Okada, J. Wan, A. Ghemes, Y. Inoue, L. Hu, Y. Wang, Weavable high-capacity electrodes, Nano Energy 2(5) (2013) 987-994, ISSN 2211-2855 Y. Qiao, Y. Du, J. Muehlbauer, Y. Hwang, R. Radermacher, Experimental study of enhanced PCM exchangers applied in a thermal energy storage system for personal cooling, Int. J. Refrig. 102 (2019) 22-34, ISSN 0140-7007 Brager, Zhang, Arens (b0140) 2015; 43 B. Kalluri, B. Seshadri, M. Gwerder, A. Schlueter, A longitudinal analysis of energy consumption data from a high-performance building in the tropics, Energy Build. 224 (2020), 110230, ISSN 0378-7788 M. J. Luomala, J. Oksa, J. A. Salmi, V. Linnamo, I. Holmér, J. Smolander, B. Dugué, Adding a cooling vest during cycling improves performance in warm and humid conditions, J. Therm. Biol. 37 (1) (2012) 47-55, ISSN 0306-4565 Dalgo, Wang, Mattise, Zhu, Srebric (b0145) 2020 A.F. Alajmi, H.Z.A., W. El-Amer, Energy analysis of under-floor air distribution (UFAD) system: An office building case study, Energy Convers. Manage. 73 (2013) 78-85, ISSN 0196-8904 X. Zhou, Y. Liu, M. Luo, L. Zhang, Q. Zhang, X. Zhang, Thermal comfort under radiant asymmetries of floor cooling system in 2 h and 8 h exposure durations, Energy Build. 188–189 (2019) 98-110, ISSN 0378-7788 Li, Sekhar, Melikov (b0155) 2010; 45 S. Zhu, D. Dalgo, J. Srebric, S. Kato, Cooling efficiency of a spot-type personalized air-conditioner, Building and Environment, Volume 121, 2017, Pages 35-48, ISSN 0360-1323 M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D. Winiarski, M. Rosenberg, M. Yazdanian, J. Huang, D. Crawley, U.S. Department of Energy Commercial Reference Building Models of the National Building Stock, 2011. F. Kalmár, T. Kalmár, Alternative personalized ventilation, Energy and Buildings. 65 (2013) 37–44. Du (b0130) 2016 W. A. Wulf, Great Achievements and Grand Challenges, The Bridge, Volume 30, 2000, National Academy of Engineering ISO Standard 7730, 2005, Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria: BSI British Standards, n.d. P. Tuomaala, R. Holopainen, K. Piira, M. Airaksinen. Impact of individual characteristics – such as age, gender, BMI, and fitness – on human thermal sensation, in: 13th Conference of International Building Performance Simulation Association, Aug. 26-28, 2018, Chambery, France. . X. Wan, F. Wang, Udayraj, Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans, Int. J. Heat Mass Transfer 126(Part B) (2018) 636-648 Du, Muehlbauer, Ling, Aute, Hwang, Radermacher (b0115) 2016 J. Edwin. Cool people: Wearable and personal comfort products that will contribute to an overall energy efficiency strategy, in: 9th International Conference on Energy Efficiency in Lighting and Domestic Appliances (EEDAL 2017), Sep. 13-15, 2017, Irvine, CA. Y.X. Chen, B. Raphael, S.C. Sekhar. Individual control of a personalized ventilation system integrated with an ambient mixing ventilation system. HVAC&R Res. 17(6) (2012) 1136-1152. Doi: 0.1080/10789669.2012.710059. X. Wan, F. Wang, Udayraj, Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans, Int. J. Heat and Mass Transfer 126(Part B) (2018) 636-648 W. Pasut, H. Zhang, E. Arens, S. Kaam, Y. Zhai, Effect of a heated and cooled office chair on thermal comfort, HVAC and R research 19(4) (2013) 574-583 Fanger (10.1016/j.enbuild.2021.110917_b0010) 1970 Bach (10.1016/j.enbuild.2021.110917_b0095) 2019; 10 Zhou (10.1016/j.enbuild.2021.110917_b0165) 2014; 23 10.1016/j.enbuild.2021.110917_b0105 10.1016/j.enbuild.2021.110917_b0055 10.1016/j.enbuild.2021.110917_b0110 10.1016/j.enbuild.2021.110917_b0075 10.1016/j.enbuild.2021.110917_b0175 10.1016/j.enbuild.2021.110917_b0015 10.1016/j.enbuild.2021.110917_b0035 10.1016/j.enbuild.2021.110917_b0135 Du (10.1016/j.enbuild.2021.110917_b0130) 2016 10.1016/j.enbuild.2021.110917_b0070 10.1016/j.enbuild.2021.110917_b0090 10.1016/j.enbuild.2021.110917_b0150 10.1016/j.enbuild.2021.110917_b0030 Du (10.1016/j.enbuild.2021.110917_b0115) 2016 10.1016/j.enbuild.2021.110917_b0170 10.1016/j.enbuild.2021.110917_b0050 Brager (10.1016/j.enbuild.2021.110917_b0140) 2015; 43 Dalgo (10.1016/j.enbuild.2021.110917_b0145) 2020 10.1016/j.enbuild.2021.110917_b0045 10.1016/j.enbuild.2021.110917_b0100 10.1016/j.enbuild.2021.110917_b0020 10.1016/j.enbuild.2021.110917_b0065 10.1016/j.enbuild.2021.110917_b0120 10.1016/j.enbuild.2021.110917_b0125 10.1016/j.enbuild.2021.110917_b0005 10.1016/j.enbuild.2021.110917_b0025 10.1016/j.enbuild.2021.110917_b0080 10.1016/j.enbuild.2021.110917_b0040 10.1016/j.enbuild.2021.110917_b0085 Li (10.1016/j.enbuild.2021.110917_b0155) 2010; 45 10.1016/j.enbuild.2021.110917_b0060 10.1016/j.enbuild.2021.110917_b0160 |
References_xml | – reference: A.F. Alajmi, F.A. Baddar, R.I. Bourisli, Thermal comfort assessment of an office building served by under-floor air distribution (UFAD) system – A case study, Build. Environ. 85 (2015) 153-159, ISSN 0360-1323, – reference: S. Zhu, D. Dalgo, J. Srebric, S. Kato, Cooling efficiency of a spot-type personalized air-conditioner, Building and Environment, Volume 121, 2017, Pages 35-48, ISSN 0360-1323, – volume: 23 start-page: 313 year: 2014 end-page: 323 ident: b0165 article-title: Experimental study on a bedside personalized ventilation system for improving sleep comfort and quality publication-title: Indoor Built Environ. – reference: J. Edwin. Cool people: Wearable and personal comfort products that will contribute to an overall energy efficiency strategy, in: 9th International Conference on Energy Efficiency in Lighting and Domestic Appliances (EEDAL 2017), Sep. 13-15, 2017, Irvine, CA. – reference: ISO Standard 7730, 2005, Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria: BSI British Standards, n.d. – reference: X. Zhou, Y. Liu, M. Luo, L. Zhang, Q. Zhang, X. Zhang, Thermal comfort under radiant asymmetries of floor cooling system in 2 h and 8 h exposure durations, Energy Build. 188–189 (2019) 98-110, ISSN 0378-7788, – reference: C. Sun, H. Zhu, E. B. Baker III, M. Okada, J. Wan, A. Ghemes, Y. Inoue, L. Hu, Y. Wang, Weavable high-capacity electrodes, Nano Energy 2(5) (2013) 987-994, ISSN 2211-2855, – reference: A. Makhoul, K. Ghali, N. Ghaddar, Desk fans for the control of the convection flow around occupants using ceiling mounted personalized ventilation, Build. Environ. 59 (2013) 336-348, ISSN 0360-1323, – reference: Y. Fan, X. Li, Y. Yan, J. Tu, Overall performance evaluation of underfloor air distribution system with different heights of return vents, Energy Build. 147 (2017) 176-187, ISSN 0378-7788, – reference: X. Wan, F. Wang, Udayraj, Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans, Int. J. Heat Mass Transfer 126(Part B) (2018) 636-648 – reference: F. Kalmár, T. Kalmár, Alternative personalized ventilation, Energy and Buildings. 65 (2013) 37–44. – reference: M. J. Luomala, J. Oksa, J. A. Salmi, V. Linnamo, I. Holmér, J. Smolander, B. Dugué, Adding a cooling vest during cycling improves performance in warm and humid conditions, J. Therm. Biol. 37 (1) (2012) 47-55, ISSN 0306-4565, – reference: W. A. Wulf, Great Achievements and Grand Challenges, The Bridge, Volume 30, 2000, National Academy of Engineering, – reference: B. Kalluri, B. Seshadri, M. Gwerder, A. Schlueter, A longitudinal analysis of energy consumption data from a high-performance building in the tropics, Energy Build. 224 (2020), 110230, ISSN 0378-7788, – volume: 10 start-page: 424 year: 2019 ident: b0095 article-title: An evaluation of personal cooling systems for reducing thermal strain whilst working in chemical/biological protective clothing publication-title: Front. Physiol. – reference: T. Akimoto, S. Tanabe, T. Yanai, M. Sasaki, Thermal comfort and productivity - Evaluation of workplace environment in a task conditioned office, Building and Environment, Volume 45, Issue 1, 2010, Pages 45-50, ISSN 0360-1323, – reference: ANSI/ASHRAE Standard 55-2013: Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, 2013. – year: 2016 ident: b0115 article-title: Rechargeable personal air conditioning device, ASME 2016 10th international conference on energy sustainability collocated with the ASME 2016 power conference and the ASME 2016 14th international conference on fuel cell science, engineering and technology publication-title: American Society of Mechanical Engineers – volume: 45 start-page: 1906 year: 2010 end-page: 1913 ident: b0155 article-title: Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate publication-title: Build. Environ. – reference: S.C. Sekhar, N. Gong, K.W. Tham, K.W. Cheong, A.K. Melikov, D.P. Wyon, P.O. Fanger. Findings of personalized ventilation studies in a hot and humid climate. HVAC&R Res. 11(4) (2011) 603-620. Doi: 10.1080/10789669.2005.10391157. – volume: 43 start-page: 274 year: 2015 end-page: 287 ident: b0140 article-title: Evolving opportunities for providing thermal comfort publication-title: Build. Res. Inf. – reference: R. Rawal, M. Schweiker, O.B. Kazanci, V. Vardhan, Q. Jin, L. Duanmu, Personal comfort systems: A review on comfort, energy, and economics, Energy and Buildings, Volume 214, 2020, 109858, ISSN 0378-7788, – year: 2020 ident: b0145 article-title: Occupants’ physiological responses to microenvironments changed by a personal cooling device (PCD) publication-title: Sustainable Cities and Society – reference: J. Verhaart, M. Vesely, R. Li, W. Zeller, Climate chamber tests for measuring performance characteristics of a personal cooling system, ASHRAE Trans.; (United States), 2015 AT-15-C059. – reference: . – reference: M. Alain, G. Kamel, G. Nesreen, A simplified combined displacement and personalized ventilation model, 18(4) (2012) 737-749 – reference: M. Kong, J. Zhang, T. Q. Dang, A. Hedge, T. Teng, B. Carter, C. Chianese, H. E. Khalifa, Micro-environmental control for efficient local cooling: Results from manikin and human participant tests, Build. Environ. 160 (2019) 106198, ISSN 0360-1323, – reference: W. Pasut, H. Zhang, E. Arens, S. Kaam, Y. Zhai, Effect of a heated and cooled office chair on thermal comfort, HVAC and R research 19(4) (2013) 574-583 – year: 2016 ident: b0130 article-title: Battery Powered Portable Vapor ompression Cycle System With Pcm Condenser – year: 1970 ident: b0010 article-title: Thermal Comfort - Analysis and applications in environmental engineering – reference: X. Wan, F. Wang, Udayraj, Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans, Int. J. Heat and Mass Transfer 126(Part B) (2018) 636-648 – reference: A.F. Alajmi, H.Z.A., W. El-Amer, Energy analysis of under-floor air distribution (UFAD) system: An office building case study, Energy Convers. Manage. 73 (2013) 78-85, ISSN 0196-8904, – reference: Y. Qiao, Y. Du, J. Muehlbauer, Y. Hwang, R. Radermacher, Experimental study of enhanced PCM exchangers applied in a thermal energy storage system for personal cooling, Int. J. Refrig. 102 (2019) 22-34, ISSN 0140-7007, – reference: P. Tuomaala, R. Holopainen, K. Piira, M. Airaksinen. Impact of individual characteristics – such as age, gender, BMI, and fitness – on human thermal sensation, in: 13th Conference of International Building Performance Simulation Association, Aug. 26-28, 2018, Chambery, France. – reference: Y.X. Chen, B. Raphael, S.C. Sekhar. Individual control of a personalized ventilation system integrated with an ambient mixing ventilation system. HVAC&R Res. 17(6) (2012) 1136-1152. Doi: 0.1080/10789669.2012.710059. – reference: M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D. Winiarski, M. Rosenberg, M. Yazdanian, J. Huang, D. Crawley, U.S. Department of Energy Commercial Reference Building Models of the National Building Stock, 2011. – ident: 10.1016/j.enbuild.2021.110917_b0005 – volume: 43 start-page: 274 issue: 3 year: 2015 ident: 10.1016/j.enbuild.2021.110917_b0140 article-title: Evolving opportunities for providing thermal comfort publication-title: Build. Res. Inf. doi: 10.1080/09613218.2015.993536 – year: 1970 ident: 10.1016/j.enbuild.2021.110917_b0010 – ident: 10.1016/j.enbuild.2021.110917_b0040 doi: 10.1016/j.enbuild.2020.109858 – ident: 10.1016/j.enbuild.2021.110917_b0045 doi: 10.1016/j.enconman.2013.04.003 – volume: 10 start-page: 424 year: 2019 ident: 10.1016/j.enbuild.2021.110917_b0095 article-title: An evaluation of personal cooling systems for reducing thermal strain whilst working in chemical/biological protective clothing publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00424 – ident: 10.1016/j.enbuild.2021.110917_b0030 doi: 10.1016/j.enbuild.2013.05.010 – ident: 10.1016/j.enbuild.2021.110917_b0020 – ident: 10.1016/j.enbuild.2021.110917_b0085 doi: 10.1016/j.enbuild.2019.02.009 – ident: 10.1016/j.enbuild.2021.110917_b0135 – ident: 10.1016/j.enbuild.2021.110917_b0075 doi: 10.1080/10789669.2013.781371 – ident: 10.1016/j.enbuild.2021.110917_b0150 – ident: 10.1016/j.enbuild.2021.110917_b0080 doi: 10.1080/10789669.2011.605510 – ident: 10.1016/j.enbuild.2021.110917_b0175 – volume: 23 start-page: 313 issue: 2 year: 2014 ident: 10.1016/j.enbuild.2021.110917_b0165 article-title: Experimental study on a bedside personalized ventilation system for improving sleep comfort and quality publication-title: Indoor Built Environ. doi: 10.1177/1420326X13504317 – ident: 10.1016/j.enbuild.2021.110917_b0050 doi: 10.1016/j.buildenv.2014.11.027 – ident: 10.1016/j.enbuild.2021.110917_b0055 doi: 10.1016/j.enbuild.2020.110230 – ident: 10.1016/j.enbuild.2021.110917_b0170 doi: 10.1080/10789669.2005.10391157 – ident: 10.1016/j.enbuild.2021.110917_b0015 doi: 10.3403/30046382 – ident: 10.1016/j.enbuild.2021.110917_b0100 doi: 10.1016/j.ijheatmasstransfer.2018.05.155 – ident: 10.1016/j.enbuild.2021.110917_b0070 doi: 10.1016/j.buildenv.2019.106198 – ident: 10.1016/j.enbuild.2021.110917_b0120 doi: 10.1016/j.ijrefrig.2019.03.006 – ident: 10.1016/j.enbuild.2021.110917_b0090 doi: 10.1016/j.jtherbio.2011.10.009 – year: 2016 ident: 10.1016/j.enbuild.2021.110917_b0115 article-title: Rechargeable personal air conditioning device, ASME 2016 10th international conference on energy sustainability collocated with the ASME 2016 power conference and the ASME 2016 14th international conference on fuel cell science, engineering and technology publication-title: American Society of Mechanical Engineers – ident: 10.1016/j.enbuild.2021.110917_b0125 doi: 10.2172/1009264 – ident: 10.1016/j.enbuild.2021.110917_b0065 doi: 10.1016/j.buildenv.2012.08.031 – year: 2016 ident: 10.1016/j.enbuild.2021.110917_b0130 – year: 2020 ident: 10.1016/j.enbuild.2021.110917_b0145 article-title: Occupants’ physiological responses to microenvironments changed by a personal cooling device (PCD) publication-title: Sustainable Cities and Society – ident: 10.1016/j.enbuild.2021.110917_b0110 doi: 10.1016/j.nanoen.2013.03.020 – ident: 10.1016/j.enbuild.2021.110917_b0105 doi: 10.1016/j.ijheatmasstransfer.2018.05.155 – ident: 10.1016/j.enbuild.2021.110917_b0060 doi: 10.1016/j.enbuild.2017.04.070 – volume: 45 start-page: 1906 issue: 9 year: 2010 ident: 10.1016/j.enbuild.2021.110917_b0155 article-title: Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.03.003 – ident: 10.1016/j.enbuild.2021.110917_b0160 – ident: 10.1016/j.enbuild.2021.110917_b0025 doi: 10.1016/j.buildenv.2017.05.007 – ident: 10.1016/j.enbuild.2021.110917_b0035 doi: 10.1016/j.buildenv.2009.06.022 |
SSID | ssj0006571 |
Score | 2.4004505 |
Snippet | Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual’s thermal comfort than central... Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual's thermal comfort than central... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110917 |
SubjectTerms | Air conditioners Conditioning Cyclic testing Devices Energy conservation EnergyPlus Heat Heat exchangers Heat pump Heat pumps HVAC HVAC equipment Personal cooling Phase change materials Portable equipment Thermal comfort Thermal cycling User satisfaction Wearable technology |
Title | Energy savings and thermal comfort evaluation of a novel personal conditioning device |
URI | https://dx.doi.org/10.1016/j.enbuild.2021.110917 https://www.proquest.com/docview/2537153407 https://www.osti.gov/biblio/1782408 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yX_RB_MS5OfLga7ekybr0cYzJ_ETUwd5C2qQwmd1w00f_du_a1CkKgk-lJdePy_U-krvfEXImZMwVMypwiXGBxPxGI1kaCOc4Sx1zWYwFzje30WgsLyfdyQYZVLUwmFbpdX-p0wtt7a90PDc7i-m088AECBtEcCGiiLKi0zCi14FMt9_XaR5Rtwi6cHCAo9dVPJ2nNsILTGcIGBryAnuz6Fv2q32qzeGX-6GwCyt0vkt2vPtI--Ub7pENl--T7S-gggdkPCzK-ejS4FrBkprcUvTynoEOvhKc1BVdY3zTeUYNzedvbkYX3jGHYbiRXa7UUutQmRyS8fnwcTAKfPOEIJWcrwIuuVOpUCo2MgmNYjaOwBWUcWglhEBpbE2IiVCRMWkPd_9C5uKMC4UuTpJYcURq-Tx3x4RaoaQAzebCDOx_BtpdCcMN3D4ykbWsTmTFMp16ZHFscDHTVQrZk_ac1shpXXK6TtqfZIsSWuMvAlXNh_4mIxrU_1-kDZw_JENs3BSTiICOg38kmaqTZjWt2v_CSx12RQ_MAQS8J_9_boNs4RnmlvFuk9RWL6_uFLyYVdIqxLRFNvuD--s7PF5cjW4_AKw78xw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQOAAHxFOMZw5cy5ImK-kRIdB47QKTuEVpk0pDo5vY4Pdjt-kGAgmJaxv34STO58T-DHAqVSo0tzrymfWRovhGq3geSe8Fzz33RUoJzg_9pDdQt8_d5yW4bHJhKKwy2P7aplfWOlzpBG12JsNh55FLHGzowcXEIsqp0vAysVOpFixf3Nz1-nODnHQrv4vaRySwSOTpvJwRw8BwRJyhsajoN6vSZb8uUa0xzrofNrtaiK43YD0gSHZRf-QmLPlyC9a-8Apuw-CqyuhjU0vbBVNmS8cI6L2iHP4o4tQZW9B8s3HBLCvHH37EJgGbYzM6y643a5nzZE92YHB99XTZi0L9hChXQswioYTXudQ6tSqLreYuTRANqjR2Cr2gPHU2plioxNr8nA4AY-7TQkhNKCfLnNyFVjku_R4wJ7WSaNx8XCAEKNDAa2mFxccnNnGOt0E1KjN5IBenGhcj00SRvZigaUOaNrWm23A2F5vU7Bp_CeimP8y3YWJwBfhL9ID6j8SIHjenOCKUEwiRFNdtOGy61YRZPDVxV57jioA-7_7_33sCK72nh3tzf9O_O4BVukOhZqJ7CK3Z27s_QlAzy47DoP0EY1T0OA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+savings+and+thermal+comfort+evaluation+of+a+novel+personal+conditioning+device&rft.jtitle=Energy+and+buildings&rft.au=Ling%2C+Jiazhen&rft.au=Dalgo%2C+Daniel+A.&rft.au=Zhu%2C+Shengwei&rft.au=Qiao%2C+Yiyuan&rft.date=2021-06-15&rft.pub=Elsevier&rft.issn=0378-7788&rft.volume=241&rft.issue=C&rft_id=info:doi/10.1016%2Fj.enbuild.2021.110917&rft.externalDocID=1782408 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |