Energy savings and thermal comfort evaluation of a novel personal conditioning device

Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual’s thermal comfort than central HVAC systems can. Existing PCDs are categorized into stationary devices and wearable devices. Both types of devices have respective advantages a...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 241; no. C; p. 110917
Main Authors Ling, Jiazhen, Dalgo, Daniel A., Zhu, Shengwei, Qiao, Yiyuan, Wang, Lingzhe, Aute, Vikrant, Srebric, Jelena, Muehlbauer, Jan, Hwang, Yunho, Radermacher, Reinhard
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.06.2021
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0378-7788
1872-6178
DOI10.1016/j.enbuild.2021.110917

Cover

Loading…
Abstract Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual’s thermal comfort than central HVAC systems can. Existing PCDs are categorized into stationary devices and wearable devices. Both types of devices have respective advantages and disadvantages. This paper introduces a novel personal conditioning device called Roving Comforter (RoCo) which is ductless, portable, and capable of providing up to 8 h of conditioned air without rejecting waste heat while in use. The conditioned air, typically 5 K cooler than the ambient air, is produced by a 150 W-mini heat pump system that rejects its condenser heat to an onboard phase change material (PCM) container. The PCM is solidified by the heat pump’s reverse cycle after the cooling operation or by a thermo-syphon mode. Cyclic tests conducted in the lab confirmed the concept of RoCo design and its technical specifications. We further conducted EnergyPlus simulation to evaluate the power saving potential of RoCo in centrally air-conditioned buildings in seven US cities. The results show that increasing the central HVAC’s temperature setpoint by 2.6 K during the peak hours of the day in the summer season could lead to energy savings between 10% and 70% among the seven cities. Finally, a survey investigation with 14 valid datasets from 40 human subjects demonstrated that RoCo could improve the thermal comfort for the users.
AbstractList Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual’s thermal comfort than central HVAC systems can. Existing PCDs are categorized into stationary devices and wearable devices. Both types of devices have respective advantages and disadvantages. This paper introduces a novel personal conditioning device called Roving Comforter (RoCo) which is ductless, portable, and capable of providing up to 8 h of conditioned air without rejecting waste heat while in use. The conditioned air, typically 5 K cooler than the ambient air, is produced by a 150 W-mini heat pump system that rejects its condenser heat to an onboard phase change material (PCM) container. The PCM is solidified by the heat pump’s reverse cycle after the cooling operation or by a thermo-syphon mode. Cyclic tests conducted in the lab confirmed the concept of RoCo design and its technical specifications. We further conducted EnergyPlus simulation to evaluate the power saving potential of RoCo in centrally air-conditioned buildings in seven US cities. The results show that increasing the central HVAC’s temperature setpoint by 2.6 K during the peak hours of the day in the summer season could lead to energy savings between 10% and 70% among the seven cities. Finally, a survey investigation with 14 valid datasets from 40 human subjects demonstrated that RoCo could improve the thermal comfort for the users.
Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual's thermal comfort than central HVAC systems can. Existing PCDs are categorized into stationary devices and wearable devices. Both types of devices have respective advantages and disadvantages. This paper introduces a novel personal conditioning device called Roving Comforter (RoCo) which is ductless, portable, and capable of providing up to 8 h of conditioned air without rejecting waste heat while in use. The conditioned air, typically 5 K cooler than the ambient air, is produced by a 150 W-mini heat pump system that rejects its condenser heat to an onboard phase change material (PCM) container. The PCM is solidified by the heat pump's reverse cycle after the cooling operation or by a thermo-syphon mode. Cyclic tests conducted in the lab confirmed the concept of RoCo design and its technical specifications. We further conducted EnergyPlus simulation to evaluate the power saving potential of RoCo in centrally air-conditioned buildings in seven US cities. The results show that increasing the central HVAC's temperature setpoint by 2.6 K during the peak hours of the day in the summer season could lead to energy savings between 10% and 70% among the seven cities. Finally, a survey investigation with 14 valid datasets from 40 human subjects demonstrated that RoCo could improve the thermal comfort for the users.
ArticleNumber 110917
Author Srebric, Jelena
Aute, Vikrant
Radermacher, Reinhard
Muehlbauer, Jan
Ling, Jiazhen
Dalgo, Daniel A.
Wang, Lingzhe
Zhu, Shengwei
Qiao, Yiyuan
Hwang, Yunho
Author_xml – sequence: 1
  givenname: Jiazhen
  surname: Ling
  fullname: Ling, Jiazhen
  email: jiazhen@umd.edu
  organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA
– sequence: 2
  givenname: Daniel A.
  surname: Dalgo
  fullname: Dalgo, Daniel A.
  organization: Montgomery College, 3155 Glenn Martin Hall, University of Maryland, College Park, MD 20742, USA
– sequence: 3
  givenname: Shengwei
  surname: Zhu
  fullname: Zhu, Shengwei
  organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA
– sequence: 4
  givenname: Yiyuan
  surname: Qiao
  fullname: Qiao, Yiyuan
  organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA
– sequence: 5
  givenname: Lingzhe
  surname: Wang
  fullname: Wang, Lingzhe
  organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA
– sequence: 6
  givenname: Vikrant
  surname: Aute
  fullname: Aute, Vikrant
  organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA
– sequence: 7
  givenname: Jelena
  surname: Srebric
  fullname: Srebric, Jelena
  organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA
– sequence: 8
  givenname: Jan
  surname: Muehlbauer
  fullname: Muehlbauer, Jan
  organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA
– sequence: 9
  givenname: Yunho
  surname: Hwang
  fullname: Hwang, Yunho
  organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA
– sequence: 10
  givenname: Reinhard
  surname: Radermacher
  fullname: Radermacher, Reinhard
  organization: University of Maryland, 3155 Glenn Martin Hall, College Park, MD 20742, USA
BackLink https://www.osti.gov/biblio/1782408$$D View this record in Osti.gov
BookMark eNqFkE1r3DAURUVJoZO0P6Eg2rWnerJsyXRRSkg_INBNsxay9Jxo8EhTSWPIv48cZ9VNVlro3Mu755JchBiQkI_A9sCg_3LYYxjPfnZ7zjjsAdgA8g3ZgZK86UGqC7JjrVSNlEq9I5c5HxhjfSdhR-5uAqb7R5rN4sN9piY4Wh4wHc1MbTxOMRWKi5nPpvgYaJyooSEuONMTphzDMxacX39rAXW4eIvvydvJzBk_vLxX5O7Hzd_rX83tn5-_r7_fNlYAlAYEoLKtUoMRIzeKuaEfoBcDdwKEsoMzHEdremOsFANTnOEwQat66GAcXXtFPm29MRevs_UF7UO9J6Atug7ngqkKfd6gU4r_zpiLPsRzqpdnzbtWQtcKJiv1daNsijknnHRtex5dkvGzBqZX2fqgX2TrVbbeZNd091_6lPzRpMdXc9-2HFZLi8e0jsBg0fm0bnDRv9LwBNrPneo
CitedBy_id crossref_primary_10_1016_j_enbuild_2022_112448
crossref_primary_10_1016_j_heliyon_2024_e31716
crossref_primary_10_1016_j_jobe_2022_104885
crossref_primary_10_1080_00140139_2024_2310079
crossref_primary_10_1016_j_buildenv_2023_110290
crossref_primary_10_1016_j_buildenv_2024_111647
Cites_doi 10.1080/09613218.2015.993536
10.1016/j.enbuild.2020.109858
10.1016/j.enconman.2013.04.003
10.3389/fphys.2019.00424
10.1016/j.enbuild.2013.05.010
10.1016/j.enbuild.2019.02.009
10.1080/10789669.2013.781371
10.1080/10789669.2011.605510
10.1177/1420326X13504317
10.1016/j.buildenv.2014.11.027
10.1016/j.enbuild.2020.110230
10.1080/10789669.2005.10391157
10.3403/30046382
10.1016/j.ijheatmasstransfer.2018.05.155
10.1016/j.buildenv.2019.106198
10.1016/j.ijrefrig.2019.03.006
10.1016/j.jtherbio.2011.10.009
10.2172/1009264
10.1016/j.buildenv.2012.08.031
10.1016/j.nanoen.2013.03.020
10.1016/j.enbuild.2017.04.070
10.1016/j.buildenv.2010.03.003
10.1016/j.buildenv.2017.05.007
10.1016/j.buildenv.2009.06.022
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Jun 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Jun 15, 2021
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
OTOTI
DOI 10.1016/j.enbuild.2021.110917
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
ExternalDocumentID 1782408
10_1016_j_enbuild_2021_110917
S0378778821002012
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
RPZ
SAC
SET
SEW
SSH
WUQ
ZMT
ZY4
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c411t-141e8c3889a4b2a80d96916492d4148c9da2ebca6aac7490820e9f1386151bbd3
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Thu May 18 22:20:20 EDT 2023
Wed Aug 13 04:41:23 EDT 2025
Tue Jul 01 01:13:04 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Fri Feb 23 02:45:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords EnergyPlus
Personal cooling
Thermal comfort
Heat pump
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-141e8c3889a4b2a80d96916492d4148c9da2ebca6aac7490820e9f1386151bbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0378778821002012?via%3Dihub
PQID 2537153407
PQPubID 2045483
ParticipantIDs osti_scitechconnect_1782408
proquest_journals_2537153407
crossref_citationtrail_10_1016_j_enbuild_2021_110917
crossref_primary_10_1016_j_enbuild_2021_110917
elsevier_sciencedirect_doi_10_1016_j_enbuild_2021_110917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
– name: Netherlands
PublicationTitle Energy and buildings
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References ANSI/ASHRAE Standard 55-2013: Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, 2013.
A. Makhoul, K. Ghali, N. Ghaddar, Desk fans for the control of the convection flow around occupants using ceiling mounted personalized ventilation, Build. Environ. 59 (2013) 336-348, ISSN 0360-1323
T. Akimoto, S. Tanabe, T. Yanai, M. Sasaki, Thermal comfort and productivity - Evaluation of workplace environment in a task conditioned office, Building and Environment, Volume 45, Issue 1, 2010, Pages 45-50, ISSN 0360-1323
Zhou, Lian, Lan (b0165) 2014; 23
R. Rawal, M. Schweiker, O.B. Kazanci, V. Vardhan, Q. Jin, L. Duanmu, Personal comfort systems: A review on comfort, energy, and economics, Energy and Buildings, Volume 214, 2020, 109858, ISSN 0378-7788
M. Alain, G. Kamel, G. Nesreen, A simplified combined displacement and personalized ventilation model, 18(4) (2012) 737-749
Bach, Maley, Minett, Zietek, Stewart, Stewart (b0095) 2019; 10
S.C. Sekhar, N. Gong, K.W. Tham, K.W. Cheong, A.K. Melikov, D.P. Wyon, P.O. Fanger. Findings of personalized ventilation studies in a hot and humid climate. HVAC&R Res. 11(4) (2011) 603-620. Doi: 10.1080/10789669.2005.10391157.
M. Kong, J. Zhang, T. Q. Dang, A. Hedge, T. Teng, B. Carter, C. Chianese, H. E. Khalifa, Micro-environmental control for efficient local cooling: Results from manikin and human participant tests, Build. Environ. 160 (2019) 106198, ISSN 0360-1323
J. Verhaart, M. Vesely, R. Li, W. Zeller, Climate chamber tests for measuring performance characteristics of a personal cooling system, ASHRAE Trans.; (United States), 2015 AT-15-C059.
A.F. Alajmi, F.A. Baddar, R.I. Bourisli, Thermal comfort assessment of an office building served by under-floor air distribution (UFAD) system – A case study, Build. Environ. 85 (2015) 153-159, ISSN 0360-1323
Y. Fan, X. Li, Y. Yan, J. Tu, Overall performance evaluation of underfloor air distribution system with different heights of return vents, Energy Build. 147 (2017) 176-187, ISSN 0378-7788
Fanger (b0010) 1970
C. Sun, H. Zhu, E. B. Baker III, M. Okada, J. Wan, A. Ghemes, Y. Inoue, L. Hu, Y. Wang, Weavable high-capacity electrodes, Nano Energy 2(5) (2013) 987-994, ISSN 2211-2855
Y. Qiao, Y. Du, J. Muehlbauer, Y. Hwang, R. Radermacher, Experimental study of enhanced PCM exchangers applied in a thermal energy storage system for personal cooling, Int. J. Refrig. 102 (2019) 22-34, ISSN 0140-7007
Brager, Zhang, Arens (b0140) 2015; 43
B. Kalluri, B. Seshadri, M. Gwerder, A. Schlueter, A longitudinal analysis of energy consumption data from a high-performance building in the tropics, Energy Build. 224 (2020), 110230, ISSN 0378-7788
M. J. Luomala, J. Oksa, J. A. Salmi, V. Linnamo, I. Holmér, J. Smolander, B. Dugué, Adding a cooling vest during cycling improves performance in warm and humid conditions, J. Therm. Biol. 37 (1) (2012) 47-55, ISSN 0306-4565
Dalgo, Wang, Mattise, Zhu, Srebric (b0145) 2020
A.F. Alajmi, H.Z.A., W. El-Amer, Energy analysis of under-floor air distribution (UFAD) system: An office building case study, Energy Convers. Manage. 73 (2013) 78-85, ISSN 0196-8904
X. Zhou, Y. Liu, M. Luo, L. Zhang, Q. Zhang, X. Zhang, Thermal comfort under radiant asymmetries of floor cooling system in 2 h and 8 h exposure durations, Energy Build. 188–189 (2019) 98-110, ISSN 0378-7788
Li, Sekhar, Melikov (b0155) 2010; 45
S. Zhu, D. Dalgo, J. Srebric, S. Kato, Cooling efficiency of a spot-type personalized air-conditioner, Building and Environment, Volume 121, 2017, Pages 35-48, ISSN 0360-1323
M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D. Winiarski, M. Rosenberg, M. Yazdanian, J. Huang, D. Crawley, U.S. Department of Energy Commercial Reference Building Models of the National Building Stock, 2011.
F. Kalmár, T. Kalmár, Alternative personalized ventilation, Energy and Buildings. 65 (2013) 37–44.
Du (b0130) 2016
W. A. Wulf, Great Achievements and Grand Challenges, The Bridge, Volume 30, 2000, National Academy of Engineering
ISO Standard 7730, 2005, Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria: BSI British Standards, n.d.
P. Tuomaala, R. Holopainen, K. Piira, M. Airaksinen. Impact of individual characteristics – such as age, gender, BMI, and fitness – on human thermal sensation, in: 13th Conference of International Building Performance Simulation Association, Aug. 26-28, 2018, Chambery, France.
.
X. Wan, F. Wang, Udayraj, Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans, Int. J. Heat Mass Transfer 126(Part B) (2018) 636-648
Du, Muehlbauer, Ling, Aute, Hwang, Radermacher (b0115) 2016
J. Edwin. Cool people: Wearable and personal comfort products that will contribute to an overall energy efficiency strategy, in: 9th International Conference on Energy Efficiency in Lighting and Domestic Appliances (EEDAL 2017), Sep. 13-15, 2017, Irvine, CA.
Y.X. Chen, B. Raphael, S.C. Sekhar. Individual control of a personalized ventilation system integrated with an ambient mixing ventilation system. HVAC&R Res. 17(6) (2012) 1136-1152. Doi: 0.1080/10789669.2012.710059.
X. Wan, F. Wang, Udayraj, Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans, Int. J. Heat and Mass Transfer 126(Part B) (2018) 636-648
W. Pasut, H. Zhang, E. Arens, S. Kaam, Y. Zhai, Effect of a heated and cooled office chair on thermal comfort, HVAC and R research 19(4) (2013) 574-583
Fanger (10.1016/j.enbuild.2021.110917_b0010) 1970
Bach (10.1016/j.enbuild.2021.110917_b0095) 2019; 10
Zhou (10.1016/j.enbuild.2021.110917_b0165) 2014; 23
10.1016/j.enbuild.2021.110917_b0105
10.1016/j.enbuild.2021.110917_b0055
10.1016/j.enbuild.2021.110917_b0110
10.1016/j.enbuild.2021.110917_b0075
10.1016/j.enbuild.2021.110917_b0175
10.1016/j.enbuild.2021.110917_b0015
10.1016/j.enbuild.2021.110917_b0035
10.1016/j.enbuild.2021.110917_b0135
Du (10.1016/j.enbuild.2021.110917_b0130) 2016
10.1016/j.enbuild.2021.110917_b0070
10.1016/j.enbuild.2021.110917_b0090
10.1016/j.enbuild.2021.110917_b0150
10.1016/j.enbuild.2021.110917_b0030
Du (10.1016/j.enbuild.2021.110917_b0115) 2016
10.1016/j.enbuild.2021.110917_b0170
10.1016/j.enbuild.2021.110917_b0050
Brager (10.1016/j.enbuild.2021.110917_b0140) 2015; 43
Dalgo (10.1016/j.enbuild.2021.110917_b0145) 2020
10.1016/j.enbuild.2021.110917_b0045
10.1016/j.enbuild.2021.110917_b0100
10.1016/j.enbuild.2021.110917_b0020
10.1016/j.enbuild.2021.110917_b0065
10.1016/j.enbuild.2021.110917_b0120
10.1016/j.enbuild.2021.110917_b0125
10.1016/j.enbuild.2021.110917_b0005
10.1016/j.enbuild.2021.110917_b0025
10.1016/j.enbuild.2021.110917_b0080
10.1016/j.enbuild.2021.110917_b0040
10.1016/j.enbuild.2021.110917_b0085
Li (10.1016/j.enbuild.2021.110917_b0155) 2010; 45
10.1016/j.enbuild.2021.110917_b0060
10.1016/j.enbuild.2021.110917_b0160
References_xml – reference: A.F. Alajmi, F.A. Baddar, R.I. Bourisli, Thermal comfort assessment of an office building served by under-floor air distribution (UFAD) system – A case study, Build. Environ. 85 (2015) 153-159, ISSN 0360-1323,
– reference: S. Zhu, D. Dalgo, J. Srebric, S. Kato, Cooling efficiency of a spot-type personalized air-conditioner, Building and Environment, Volume 121, 2017, Pages 35-48, ISSN 0360-1323,
– volume: 23
  start-page: 313
  year: 2014
  end-page: 323
  ident: b0165
  article-title: Experimental study on a bedside personalized ventilation system for improving sleep comfort and quality
  publication-title: Indoor Built Environ.
– reference: J. Edwin. Cool people: Wearable and personal comfort products that will contribute to an overall energy efficiency strategy, in: 9th International Conference on Energy Efficiency in Lighting and Domestic Appliances (EEDAL 2017), Sep. 13-15, 2017, Irvine, CA.
– reference: ISO Standard 7730, 2005, Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria: BSI British Standards, n.d.
– reference: X. Zhou, Y. Liu, M. Luo, L. Zhang, Q. Zhang, X. Zhang, Thermal comfort under radiant asymmetries of floor cooling system in 2 h and 8 h exposure durations, Energy Build. 188–189 (2019) 98-110, ISSN 0378-7788,
– reference: C. Sun, H. Zhu, E. B. Baker III, M. Okada, J. Wan, A. Ghemes, Y. Inoue, L. Hu, Y. Wang, Weavable high-capacity electrodes, Nano Energy 2(5) (2013) 987-994, ISSN 2211-2855,
– reference: A. Makhoul, K. Ghali, N. Ghaddar, Desk fans for the control of the convection flow around occupants using ceiling mounted personalized ventilation, Build. Environ. 59 (2013) 336-348, ISSN 0360-1323,
– reference: Y. Fan, X. Li, Y. Yan, J. Tu, Overall performance evaluation of underfloor air distribution system with different heights of return vents, Energy Build. 147 (2017) 176-187, ISSN 0378-7788,
– reference: X. Wan, F. Wang, Udayraj, Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans, Int. J. Heat Mass Transfer 126(Part B) (2018) 636-648
– reference: F. Kalmár, T. Kalmár, Alternative personalized ventilation, Energy and Buildings. 65 (2013) 37–44.
– reference: M. J. Luomala, J. Oksa, J. A. Salmi, V. Linnamo, I. Holmér, J. Smolander, B. Dugué, Adding a cooling vest during cycling improves performance in warm and humid conditions, J. Therm. Biol. 37 (1) (2012) 47-55, ISSN 0306-4565,
– reference: W. A. Wulf, Great Achievements and Grand Challenges, The Bridge, Volume 30, 2000, National Academy of Engineering,
– reference: B. Kalluri, B. Seshadri, M. Gwerder, A. Schlueter, A longitudinal analysis of energy consumption data from a high-performance building in the tropics, Energy Build. 224 (2020), 110230, ISSN 0378-7788,
– volume: 10
  start-page: 424
  year: 2019
  ident: b0095
  article-title: An evaluation of personal cooling systems for reducing thermal strain whilst working in chemical/biological protective clothing
  publication-title: Front. Physiol.
– reference: T. Akimoto, S. Tanabe, T. Yanai, M. Sasaki, Thermal comfort and productivity - Evaluation of workplace environment in a task conditioned office, Building and Environment, Volume 45, Issue 1, 2010, Pages 45-50, ISSN 0360-1323,
– reference: ANSI/ASHRAE Standard 55-2013: Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, 2013.
– year: 2016
  ident: b0115
  article-title: Rechargeable personal air conditioning device, ASME 2016 10th international conference on energy sustainability collocated with the ASME 2016 power conference and the ASME 2016 14th international conference on fuel cell science, engineering and technology
  publication-title: American Society of Mechanical Engineers
– volume: 45
  start-page: 1906
  year: 2010
  end-page: 1913
  ident: b0155
  article-title: Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate
  publication-title: Build. Environ.
– reference: S.C. Sekhar, N. Gong, K.W. Tham, K.W. Cheong, A.K. Melikov, D.P. Wyon, P.O. Fanger. Findings of personalized ventilation studies in a hot and humid climate. HVAC&R Res. 11(4) (2011) 603-620. Doi: 10.1080/10789669.2005.10391157.
– volume: 43
  start-page: 274
  year: 2015
  end-page: 287
  ident: b0140
  article-title: Evolving opportunities for providing thermal comfort
  publication-title: Build. Res. Inf.
– reference: R. Rawal, M. Schweiker, O.B. Kazanci, V. Vardhan, Q. Jin, L. Duanmu, Personal comfort systems: A review on comfort, energy, and economics, Energy and Buildings, Volume 214, 2020, 109858, ISSN 0378-7788,
– year: 2020
  ident: b0145
  article-title: Occupants’ physiological responses to microenvironments changed by a personal cooling device (PCD)
  publication-title: Sustainable Cities and Society
– reference: J. Verhaart, M. Vesely, R. Li, W. Zeller, Climate chamber tests for measuring performance characteristics of a personal cooling system, ASHRAE Trans.; (United States), 2015 AT-15-C059.
– reference: .
– reference: M. Alain, G. Kamel, G. Nesreen, A simplified combined displacement and personalized ventilation model, 18(4) (2012) 737-749
– reference: M. Kong, J. Zhang, T. Q. Dang, A. Hedge, T. Teng, B. Carter, C. Chianese, H. E. Khalifa, Micro-environmental control for efficient local cooling: Results from manikin and human participant tests, Build. Environ. 160 (2019) 106198, ISSN 0360-1323,
– reference: W. Pasut, H. Zhang, E. Arens, S. Kaam, Y. Zhai, Effect of a heated and cooled office chair on thermal comfort, HVAC and R research 19(4) (2013) 574-583
– year: 2016
  ident: b0130
  article-title: Battery Powered Portable Vapor ompression Cycle System With Pcm Condenser
– year: 1970
  ident: b0010
  article-title: Thermal Comfort - Analysis and applications in environmental engineering
– reference: X. Wan, F. Wang, Udayraj, Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans, Int. J. Heat and Mass Transfer 126(Part B) (2018) 636-648
– reference: A.F. Alajmi, H.Z.A., W. El-Amer, Energy analysis of under-floor air distribution (UFAD) system: An office building case study, Energy Convers. Manage. 73 (2013) 78-85, ISSN 0196-8904,
– reference: Y. Qiao, Y. Du, J. Muehlbauer, Y. Hwang, R. Radermacher, Experimental study of enhanced PCM exchangers applied in a thermal energy storage system for personal cooling, Int. J. Refrig. 102 (2019) 22-34, ISSN 0140-7007,
– reference: P. Tuomaala, R. Holopainen, K. Piira, M. Airaksinen. Impact of individual characteristics – such as age, gender, BMI, and fitness – on human thermal sensation, in: 13th Conference of International Building Performance Simulation Association, Aug. 26-28, 2018, Chambery, France.
– reference: Y.X. Chen, B. Raphael, S.C. Sekhar. Individual control of a personalized ventilation system integrated with an ambient mixing ventilation system. HVAC&R Res. 17(6) (2012) 1136-1152. Doi: 0.1080/10789669.2012.710059.
– reference: M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D. Winiarski, M. Rosenberg, M. Yazdanian, J. Huang, D. Crawley, U.S. Department of Energy Commercial Reference Building Models of the National Building Stock, 2011.
– ident: 10.1016/j.enbuild.2021.110917_b0005
– volume: 43
  start-page: 274
  issue: 3
  year: 2015
  ident: 10.1016/j.enbuild.2021.110917_b0140
  article-title: Evolving opportunities for providing thermal comfort
  publication-title: Build. Res. Inf.
  doi: 10.1080/09613218.2015.993536
– year: 1970
  ident: 10.1016/j.enbuild.2021.110917_b0010
– ident: 10.1016/j.enbuild.2021.110917_b0040
  doi: 10.1016/j.enbuild.2020.109858
– ident: 10.1016/j.enbuild.2021.110917_b0045
  doi: 10.1016/j.enconman.2013.04.003
– volume: 10
  start-page: 424
  year: 2019
  ident: 10.1016/j.enbuild.2021.110917_b0095
  article-title: An evaluation of personal cooling systems for reducing thermal strain whilst working in chemical/biological protective clothing
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00424
– ident: 10.1016/j.enbuild.2021.110917_b0030
  doi: 10.1016/j.enbuild.2013.05.010
– ident: 10.1016/j.enbuild.2021.110917_b0020
– ident: 10.1016/j.enbuild.2021.110917_b0085
  doi: 10.1016/j.enbuild.2019.02.009
– ident: 10.1016/j.enbuild.2021.110917_b0135
– ident: 10.1016/j.enbuild.2021.110917_b0075
  doi: 10.1080/10789669.2013.781371
– ident: 10.1016/j.enbuild.2021.110917_b0150
– ident: 10.1016/j.enbuild.2021.110917_b0080
  doi: 10.1080/10789669.2011.605510
– ident: 10.1016/j.enbuild.2021.110917_b0175
– volume: 23
  start-page: 313
  issue: 2
  year: 2014
  ident: 10.1016/j.enbuild.2021.110917_b0165
  article-title: Experimental study on a bedside personalized ventilation system for improving sleep comfort and quality
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X13504317
– ident: 10.1016/j.enbuild.2021.110917_b0050
  doi: 10.1016/j.buildenv.2014.11.027
– ident: 10.1016/j.enbuild.2021.110917_b0055
  doi: 10.1016/j.enbuild.2020.110230
– ident: 10.1016/j.enbuild.2021.110917_b0170
  doi: 10.1080/10789669.2005.10391157
– ident: 10.1016/j.enbuild.2021.110917_b0015
  doi: 10.3403/30046382
– ident: 10.1016/j.enbuild.2021.110917_b0100
  doi: 10.1016/j.ijheatmasstransfer.2018.05.155
– ident: 10.1016/j.enbuild.2021.110917_b0070
  doi: 10.1016/j.buildenv.2019.106198
– ident: 10.1016/j.enbuild.2021.110917_b0120
  doi: 10.1016/j.ijrefrig.2019.03.006
– ident: 10.1016/j.enbuild.2021.110917_b0090
  doi: 10.1016/j.jtherbio.2011.10.009
– year: 2016
  ident: 10.1016/j.enbuild.2021.110917_b0115
  article-title: Rechargeable personal air conditioning device, ASME 2016 10th international conference on energy sustainability collocated with the ASME 2016 power conference and the ASME 2016 14th international conference on fuel cell science, engineering and technology
  publication-title: American Society of Mechanical Engineers
– ident: 10.1016/j.enbuild.2021.110917_b0125
  doi: 10.2172/1009264
– ident: 10.1016/j.enbuild.2021.110917_b0065
  doi: 10.1016/j.buildenv.2012.08.031
– year: 2016
  ident: 10.1016/j.enbuild.2021.110917_b0130
– year: 2020
  ident: 10.1016/j.enbuild.2021.110917_b0145
  article-title: Occupants’ physiological responses to microenvironments changed by a personal cooling device (PCD)
  publication-title: Sustainable Cities and Society
– ident: 10.1016/j.enbuild.2021.110917_b0110
  doi: 10.1016/j.nanoen.2013.03.020
– ident: 10.1016/j.enbuild.2021.110917_b0105
  doi: 10.1016/j.ijheatmasstransfer.2018.05.155
– ident: 10.1016/j.enbuild.2021.110917_b0060
  doi: 10.1016/j.enbuild.2017.04.070
– volume: 45
  start-page: 1906
  issue: 9
  year: 2010
  ident: 10.1016/j.enbuild.2021.110917_b0155
  article-title: Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.03.003
– ident: 10.1016/j.enbuild.2021.110917_b0160
– ident: 10.1016/j.enbuild.2021.110917_b0025
  doi: 10.1016/j.buildenv.2017.05.007
– ident: 10.1016/j.enbuild.2021.110917_b0035
  doi: 10.1016/j.buildenv.2009.06.022
SSID ssj0006571
Score 2.4004505
Snippet Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual’s thermal comfort than central...
Personal Conditioning Devices (PCD) create a microenvironment around their users and therefore, better satisfy an individual's thermal comfort than central...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110917
SubjectTerms Air conditioners
Conditioning
Cyclic testing
Devices
Energy conservation
EnergyPlus
Heat
Heat exchangers
Heat pump
Heat pumps
HVAC
HVAC equipment
Personal cooling
Phase change materials
Portable equipment
Thermal comfort
Thermal cycling
User satisfaction
Wearable technology
Title Energy savings and thermal comfort evaluation of a novel personal conditioning device
URI https://dx.doi.org/10.1016/j.enbuild.2021.110917
https://www.proquest.com/docview/2537153407
https://www.osti.gov/biblio/1782408
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yX_RB_MS5OfLga7ekybr0cYzJ_ETUwd5C2qQwmd1w00f_du_a1CkKgk-lJdePy_U-krvfEXImZMwVMypwiXGBxPxGI1kaCOc4Sx1zWYwFzje30WgsLyfdyQYZVLUwmFbpdX-p0wtt7a90PDc7i-m088AECBtEcCGiiLKi0zCi14FMt9_XaR5Rtwi6cHCAo9dVPJ2nNsILTGcIGBryAnuz6Fv2q32qzeGX-6GwCyt0vkt2vPtI--Ub7pENl--T7S-gggdkPCzK-ejS4FrBkprcUvTynoEOvhKc1BVdY3zTeUYNzedvbkYX3jGHYbiRXa7UUutQmRyS8fnwcTAKfPOEIJWcrwIuuVOpUCo2MgmNYjaOwBWUcWglhEBpbE2IiVCRMWkPd_9C5uKMC4UuTpJYcURq-Tx3x4RaoaQAzebCDOx_BtpdCcMN3D4ykbWsTmTFMp16ZHFscDHTVQrZk_ac1shpXXK6TtqfZIsSWuMvAlXNh_4mIxrU_1-kDZw_JENs3BSTiICOg38kmaqTZjWt2v_CSx12RQ_MAQS8J_9_boNs4RnmlvFuk9RWL6_uFLyYVdIqxLRFNvuD--s7PF5cjW4_AKw78xw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQOAAHxFOMZw5cy5ImK-kRIdB47QKTuEVpk0pDo5vY4Pdjt-kGAgmJaxv34STO58T-DHAqVSo0tzrymfWRovhGq3geSe8Fzz33RUoJzg_9pDdQt8_d5yW4bHJhKKwy2P7aplfWOlzpBG12JsNh55FLHGzowcXEIsqp0vAysVOpFixf3Nz1-nODnHQrv4vaRySwSOTpvJwRw8BwRJyhsajoN6vSZb8uUa0xzrofNrtaiK43YD0gSHZRf-QmLPlyC9a-8Apuw-CqyuhjU0vbBVNmS8cI6L2iHP4o4tQZW9B8s3HBLCvHH37EJgGbYzM6y643a5nzZE92YHB99XTZi0L9hChXQswioYTXudQ6tSqLreYuTRANqjR2Cr2gPHU2plioxNr8nA4AY-7TQkhNKCfLnNyFVjku_R4wJ7WSaNx8XCAEKNDAa2mFxccnNnGOt0E1KjN5IBenGhcj00SRvZigaUOaNrWm23A2F5vU7Bp_CeimP8y3YWJwBfhL9ID6j8SIHjenOCKUEwiRFNdtOGy61YRZPDVxV57jioA-7_7_33sCK72nh3tzf9O_O4BVukOhZqJ7CK3Z27s_QlAzy47DoP0EY1T0OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+savings+and+thermal+comfort+evaluation+of+a+novel+personal+conditioning+device&rft.jtitle=Energy+and+buildings&rft.au=Ling%2C+Jiazhen&rft.au=Dalgo%2C+Daniel+A.&rft.au=Zhu%2C+Shengwei&rft.au=Qiao%2C+Yiyuan&rft.date=2021-06-15&rft.pub=Elsevier&rft.issn=0378-7788&rft.volume=241&rft.issue=C&rft_id=info:doi/10.1016%2Fj.enbuild.2021.110917&rft.externalDocID=1782408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon