Low‐Temperature Processed Carbon Electrode‐Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability
All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting mate...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 4; no. 1; pp. 95 - 102 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2575-0356 2575-0356 |
DOI | 10.1002/eem2.12089 |
Cover
Loading…
Abstract | All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting materials (HTMs). However, the difficulty to control the crystallinity process and the poor morphology leads to serious non‐radiative recombination, resulting in low VOC and power conversion efficiency (PCE). In this article, the crystal formation process of all‐inorganic perovskites is controlled with a facile composition engineering strategy. By bromide incorporation, high‐quality perovskite films with large grain and fewer grain boundaries are achieved. As‐prepared perovskite films demonstrate longer carrier lifetime, contributing to lower energy loss and better device performance. Fabricated carbon‐based HTM‐free PVSCs with CsPbI2.33Br0.67 perovskite realized champion PCE of 12.40%, superior to 8.80% of CsPbI3‐based devices, which is one of the highest efficiencies reported for the carbon‐based all‐inorganic PVSCs to date. The high VOC of 1.01 V and FF of 70.98% indicate the significance of this composition engineering method. Moreover, fabricated carbon‐based devices exhibit excellent stability, and unencapsulated device retains over 90% of its initial efficiency under continuous one sun illumination for 250 h in N2 atmosphere and keeps ~84% of its original value after stored in ambient environment with RH 15–20% for 200 h. This work provides a facile way to fabricate high‐performance and stable carbon‐based all‐inorganic PVSCs.
This article provides a facile composition engineering method to improve the performance and stability of carbon‐based all‐inorganic perovskite solar cells. By simply bromide incorporation, the morphology and crystallinity of perovskite film are improved, leading to the enhancement of power conversion efficiency to 12.40% with excellent stability, which is among the highest reported efficiencies. |
---|---|
AbstractList | All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting materials (HTMs). However, the difficulty to control the crystallinity process and the poor morphology leads to serious non‐radiative recombination, resulting in low VOC and power conversion efficiency (PCE). In this article, the crystal formation process of all‐inorganic perovskites is controlled with a facile composition engineering strategy. By bromide incorporation, high‐quality perovskite films with large grain and fewer grain boundaries are achieved. As‐prepared perovskite films demonstrate longer carrier lifetime, contributing to lower energy loss and better device performance. Fabricated carbon‐based HTM‐free PVSCs with CsPbI2.33Br0.67 perovskite realized champion PCE of 12.40%, superior to 8.80% of CsPbI3‐based devices, which is one of the highest efficiencies reported for the carbon‐based all‐inorganic PVSCs to date. The high VOC of 1.01 V and FF of 70.98% indicate the significance of this composition engineering method. Moreover, fabricated carbon‐based devices exhibit excellent stability, and unencapsulated device retains over 90% of its initial efficiency under continuous one sun illumination for 250 h in N2 atmosphere and keeps ~84% of its original value after stored in ambient environment with RH 15–20% for 200 h. This work provides a facile way to fabricate high‐performance and stable carbon‐based all‐inorganic PVSCs.
This article provides a facile composition engineering method to improve the performance and stability of carbon‐based all‐inorganic perovskite solar cells. By simply bromide incorporation, the morphology and crystallinity of perovskite film are improved, leading to the enhancement of power conversion efficiency to 12.40% with excellent stability, which is among the highest reported efficiencies. All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting materials (HTMs). However, the difficulty to control the crystallinity process and the poor morphology leads to serious non‐radiative recombination, resulting in low VOC and power conversion efficiency (PCE). In this article, the crystal formation process of all‐inorganic perovskites is controlled with a facile composition engineering strategy. By bromide incorporation, high‐quality perovskite films with large grain and fewer grain boundaries are achieved. As‐prepared perovskite films demonstrate longer carrier lifetime, contributing to lower energy loss and better device performance. Fabricated carbon‐based HTM‐free PVSCs with CsPbI2.33Br0.67 perovskite realized champion PCE of 12.40%, superior to 8.80% of CsPbI3‐based devices, which is one of the highest efficiencies reported for the carbon‐based all‐inorganic PVSCs to date. The high VOC of 1.01 V and FF of 70.98% indicate the significance of this composition engineering method. Moreover, fabricated carbon‐based devices exhibit excellent stability, and unencapsulated device retains over 90% of its initial efficiency under continuous one sun illumination for 250 h in N2 atmosphere and keeps ~84% of its original value after stored in ambient environment with RH 15–20% for 200 h. This work provides a facile way to fabricate high‐performance and stable carbon‐based all‐inorganic PVSCs. All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting materials (HTMs). However, the difficulty to control the crystallinity process and the poor morphology leads to serious non‐radiative recombination, resulting in low V OC and power conversion efficiency (PCE). In this article, the crystal formation process of all‐inorganic perovskites is controlled with a facile composition engineering strategy. By bromide incorporation, high‐quality perovskite films with large grain and fewer grain boundaries are achieved. As‐prepared perovskite films demonstrate longer carrier lifetime, contributing to lower energy loss and better device performance. Fabricated carbon‐based HTM‐free PVSCs with CsPbI 2.33 Br 0.67 perovskite realized champion PCE of 12.40%, superior to 8.80% of CsPbI 3 ‐based devices, which is one of the highest efficiencies reported for the carbon‐based all‐inorganic PVSCs to date. The high V OC of 1.01 V and FF of 70.98% indicate the significance of this composition engineering method. Moreover, fabricated carbon‐based devices exhibit excellent stability, and unencapsulated device retains over 90% of its initial efficiency under continuous one sun illumination for 250 h in N 2 atmosphere and keeps ~84% of its original value after stored in ambient environment with RH 15–20% for 200 h. This work provides a facile way to fabricate high‐performance and stable carbon‐based all‐inorganic PVSCs. |
Author | Liu, Tiantian Li, Zhen Qi, Feng Liu, Yizhe Li, Fengzhu Wu, Xin Zhu, Zonglong Deng, Xiang Zhang, Jie Wu, Shengfan |
Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0003-2513-1296 surname: Wu fullname: Wu, Xin organization: City University of Hong Kong – sequence: 2 givenname: Feng surname: Qi fullname: Qi, Feng organization: City University of Hong Kong – sequence: 3 givenname: Fengzhu surname: Li fullname: Li, Fengzhu organization: City University of Hong Kong – sequence: 4 givenname: Xiang surname: Deng fullname: Deng, Xiang organization: City University of Hong Kong – sequence: 5 givenname: Zhen surname: Li fullname: Li, Zhen organization: City University of Hong Kong – sequence: 6 givenname: Shengfan surname: Wu fullname: Wu, Shengfan organization: City University of Hong Kong – sequence: 7 givenname: Tiantian surname: Liu fullname: Liu, Tiantian organization: City University of Hong Kong – sequence: 8 givenname: Yizhe surname: Liu fullname: Liu, Yizhe organization: City University of Hong Kong – sequence: 9 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: City University of Hong Kong – sequence: 10 givenname: Zonglong surname: Zhu fullname: Zhu, Zonglong email: zonglzhu@cityu.edu.hk organization: City University of Hong Kong |
BookMark | eNp9kMFKAzEQhoMoWGsvPkHAm9CabHa32aOWVQsVC63nJZud2tQ0qUna0ptnTz6jT-LW9SAinmZgvu8f-E_QobEGEDqjpEcJiS4BllGPRoRnB6gVJf2kS1iSHv7Yj1HH-wWpYUJZTLMWehvZ7cfr-xSWK3AirB3gsbMSvIcKD4QrrcG5BhmcraAGr8X-MDTWPQmjJB6Dsxv_rALgidXC4QFo7fFWhTnOzVwYWePjuQ12Y3UQjTGzbrm_YGEqPAmiVFqF3Sk6mgntofM92-jxJp8O7rqjh9vh4GrUlTGlWbeUaUYylsQ0FoICB-gnKSshTUhJq4rLCghPI56ljLGSCio5h6QiNcV5BsDa6LzJXTn7sgYfioVdO1O_LKKEk4xwFqc1ddFQ0lnvHcyKlVNL4XYFJcW-7mJfd_FVdw2TX7BUQQRlTXBC6b8V2ihbpWH3T3iR5_dR43wCdZKXLg |
CitedBy_id | crossref_primary_10_1007_s10854_021_07563_1 crossref_primary_10_1002_eom2_12352 crossref_primary_10_1016_j_mtcomm_2024_110263 crossref_primary_10_1039_D2EE02543D crossref_primary_10_3389_fenrg_2024_1463024 crossref_primary_10_1016_j_xcrp_2023_101726 crossref_primary_10_1002_adma_202206387 crossref_primary_10_1016_j_cej_2022_137144 crossref_primary_10_1021_acsami_1c04806 crossref_primary_10_1021_acs_langmuir_2c00792 crossref_primary_10_7498_aps_73_20241439 crossref_primary_10_1002_adma_202410692 crossref_primary_10_1109_JPHOTOV_2022_3165770 crossref_primary_10_1002_adfm_202410605 crossref_primary_10_1002_adfm_202205870 crossref_primary_10_1039_D2RA05535J crossref_primary_10_1016_j_apsusc_2022_155175 crossref_primary_10_1016_j_jssc_2022_122891 crossref_primary_10_1002_solr_202300854 crossref_primary_10_1002_adma_202208431 crossref_primary_10_1002_adma_202312041 crossref_primary_10_1002_aenm_202400582 crossref_primary_10_1016_j_cej_2022_136781 crossref_primary_10_1002_adma_202204661 crossref_primary_10_1016_j_solener_2024_112989 crossref_primary_10_1002_advs_202412666 crossref_primary_10_1002_aenm_202201320 crossref_primary_10_1002_adma_202204380 crossref_primary_10_1002_adom_202301052 crossref_primary_10_1039_D0TA12286F crossref_primary_10_1002_aenm_202300700 |
Cites_doi | 10.1002/adfm.201900221 10.1002/aenm.201802080 10.1038/nphoton.2016.108 10.1016/j.joule.2017.11.006 10.1021/acs.jpclett.9b01822 10.1002/adma.201601745 10.1002/adma.201800455 10.1002/aenm.201902600 10.1016/j.nanoen.2018.08.012 10.1038/s41467-019-13909-5 10.1021/acsaem.9b01652 10.1021/acsenergylett.8b00820 10.1002/anie.201910800 10.1002/adma.201903448 10.1021/acsami.6b08771 10.1002/adfm.202000457 10.1002/aenm.201502458 10.1038/ncomms6757 10.3390/polym11010147 10.1039/C5TA06398A 10.1002/adma.201905143 10.1038/nphys3357 10.1016/j.jpowsour.2019.227389 10.1002/advs.201900462 10.1002/adma.201904735 10.1038/s41560-017-0067-y 10.1021/acsenergylett.7b00847 10.1039/C7RA08052B 10.1002/solr.201900254 10.1154/1.2135313 10.1016/j.isci.2019.04.025 10.1016/j.joule.2019.02.002 10.1039/C5EE03435C 10.1002/aenm.201800525 10.1039/C9CC00016J 10.1038/s41467-018-07882-8 10.1126/science.1243982 10.1038/s41467-020-15078-2 10.1002/aenm.201901685 10.1038/nenergy.2016.48 10.1002/aenm.201500328 10.1021/acsenergylett.6b00002 10.1016/j.nanoen.2016.02.033 10.1126/science.aav8680 10.1002/adfm.201601175 10.1021/acsenergylett.9b02338 10.1126/science.aad1818 10.1038/s41467-016-0009-6 10.1038/s41560-019-0382-6 10.1016/j.mattod.2014.07.007 10.1021/acsenergylett.9b00840 10.1021/nn401267s 10.1016/j.nanoen.2019.02.075 10.1002/aenm.201601165 10.1002/aenm.201800504 10.1016/j.nanoen.2015.04.025 10.1016/j.jcis.2019.07.084 |
ContentType | Journal Article |
Copyright | 2020 Zhengzhou University 2021 Zhengzhou University |
Copyright_xml | – notice: 2020 Zhengzhou University – notice: 2021 Zhengzhou University |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
DOI | 10.1002/eem2.12089 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | 102 |
ExternalDocumentID | 10_1002_eem2_12089 EEM212089 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province funderid: 2019A1515010761 – fundername: Innovation and Technology Fund funderid: GHP/021/18SZ; ITS/497/18FP – fundername: the Office of Naval Research funderid: N00014‐17‐1‐2201 – fundername: Research Grants Council of Hong Kong funderid: CityU 21301319 – fundername: Guangdong‐Hong Kong‐Macao joint laboratory of optoelectronic and magnetic functional materials funderid: 2019B121205002 – fundername: Guangdong Major Project of Basic and Applied Basic Research funderid: 2019B030302007 – fundername: City University of Hong Kong funderid: 9610421 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
ID | FETCH-LOGICAL-c4119-bc690935414aa1e8ee7563be650b1dd8cde0862896333b1a1c88e5d0756889ee3 |
IEDL.DBID | 24P |
ISSN | 2575-0356 |
IngestDate | Mon Jun 30 11:58:47 EDT 2025 Tue Jul 01 01:03:04 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Wed Jan 22 16:30:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4119-bc690935414aa1e8ee7563be650b1dd8cde0862896333b1a1c88e5d0756889ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2513-1296 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12089 |
PQID | 2580908346 |
PQPubID | 5251211 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2580908346 crossref_primary_10_1002_eem2_12089 crossref_citationtrail_10_1002_eem2_12089 wiley_primary_10_1002_eem2_12089_EEM212089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2015; 15 2017; 7 2017; 8 2019; 9 2019; 4 2015; 5 2019; 3 2017; 2 2019; 6 2015; 18 2019; 5 2015; 3 2019; 31 2019; 55 2019; 11 2019; 10 2015; 11 2019; 59 2019; 15 2019; 58 2016; 10 2013; 342 2005; 20 2020; 447 2020; 11 2013; 7 2019; 365 2015; 350 2016; 6 2018; 8 2014; 5 2018; 3 2016; 1 2018; 2 2020; 30 2019; 555 2019; 29 2018; 30 2018; 52 2016; 28 2016; 26 2016; 8 2016; 9 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 Chen Y. (e_1_2_7_30_1) 2019; 7 e_1_2_7_38_1 |
References_xml | – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 2 start-page: 168 year: 2018 publication-title: Joule – volume: 7 start-page: 4569 year: 2013 publication-title: ACS Nano – volume: 6 start-page: 1502458 year: 2016 publication-title: Adv. Energy Mater. – volume: 11 start-page: 177 year: 2020 publication-title: Nat. Commun. – volume: 5 start-page: 1500328 year: 2015 publication-title: Adv. Energy Mater. – volume: 59 start-page: 553 year: 2019 publication-title: Nano Energy – volume: 1 start-page: 1 year: 2016 publication-title: Nat. Energy – volume: 8 start-page: 34612 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 1 year: 2017 publication-title: Nat. Commun. – volume: 6 start-page: 1601165 year: 2016 publication-title: Adv. Energy Mater. – volume: 11 start-page: 1245 year: 2020 publication-title: Nat. Commun. – volume: 8 start-page: 1802080 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 start-page: 32 year: 2016 publication-title: ACS Energy Lett. – volume: 3 start-page: 401 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 5 start-page: 290 year: 2019 publication-title: ACS Energy Lett. – volume: 30 start-page: 2000457 year: 2020 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 147 year: 2019 publication-title: Polymers (Basel) – volume: 3 start-page: 68 year: 2018 publication-title: Nat. Energy – volume: 2 start-page: 2531 year: 2017 publication-title: ACS Energy Lett. – volume: 10 start-page: 521 year: 2016 publication-title: Nat. Photonics – volume: 15 start-page: 216 year: 2015 publication-title: Nano Energy – volume: 30 start-page: 1800455 year: 2018 publication-title: Adv. Mater. – volume: 447 start-page: 227389 year: 2020 publication-title: J. Power Sources – volume: 58 start-page: 16691 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1321 year: 2019 publication-title: ACS Energy Lett. – volume: 9 start-page: 1901685 year: 2019 publication-title: Adv. Energy Mater. – volume: 18 start-page: 65 year: 2015 publication-title: Mater. Today – volume: 555 start-page: 180 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 350 start-page: 1222 year: 2015 publication-title: Science – volume: 10 start-page: 4587 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 31 start-page: 1903448 year: 2019 publication-title: Adv. Mater. – volume: 26 start-page: 3508 year: 2016 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 962 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 start-page: 1902600 year: 2019 publication-title: Adv. Energy Mater. – volume: 31 start-page: 1904735 year: 2019 publication-title: Adv. Mater. – volume: 20 start-page: 366 year: 2005 publication-title: Powder Diffr. – volume: 7 start-page: 20201 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 365 start-page: 591 year: 2019 publication-title: Science – volume: 11 start-page: 582 year: 2015 publication-title: Nat. Phys. – volume: 6 start-page: 1900462 year: 2019 publication-title: Adv Sci (Weinh) – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 28 start-page: 10786 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 408 year: 2019 publication-title: Nat. Energy – volume: 3 start-page: 1900254 year: 2019 publication-title: Solar RRL – volume: 8 start-page: 1800504 year: 2018 publication-title: Adv. Energy Mater. – volume: 22 start-page: 328 year: 2016 publication-title: Nano Energy – volume: 8 start-page: 1800525 year: 2018 publication-title: Adv. Energy Mater. – volume: 55 start-page: 4315 year: 2019 publication-title: Chem. Commun. – volume: 15 start-page: 156 year: 2019 publication-title: iScience – volume: 7 start-page: 45478 year: 2017 publication-title: RSC Adv. – volume: 5 start-page: 1 year: 2014 publication-title: Nat. Commun. – volume: 3 start-page: 1824 year: 2018 publication-title: ACS Energy Lett. – volume: 3 start-page: 938 year: 2019 publication-title: Joule – volume: 3 start-page: 19688 year: 2015 publication-title: J. Mater. Chem. A – volume: 10 start-page: 1 year: 2019 publication-title: Nat. Commun. – volume: 29 start-page: 1900221 year: 2019 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 408 year: 2018 publication-title: Nano Energy – ident: e_1_2_7_16_1 doi: 10.1002/adfm.201900221 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.201802080 – ident: e_1_2_7_58_1 doi: 10.1038/nphoton.2016.108 – ident: e_1_2_7_20_1 doi: 10.1016/j.joule.2017.11.006 – ident: e_1_2_7_28_1 doi: 10.1021/acs.jpclett.9b01822 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201601745 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201800455 – ident: e_1_2_7_17_1 doi: 10.1002/aenm.201902600 – ident: e_1_2_7_26_1 doi: 10.1016/j.nanoen.2018.08.012 – ident: e_1_2_7_37_1 doi: 10.1038/s41467-019-13909-5 – ident: e_1_2_7_34_1 doi: 10.1021/acsaem.9b01652 – ident: e_1_2_7_33_1 doi: 10.1021/acsenergylett.8b00820 – ident: e_1_2_7_48_1 doi: 10.1002/anie.201910800 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201903448 – ident: e_1_2_7_54_1 doi: 10.1021/acsami.6b08771 – ident: e_1_2_7_41_1 doi: 10.1002/adfm.202000457 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201502458 – ident: e_1_2_7_5_1 doi: 10.1038/ncomms6757 – ident: e_1_2_7_53_1 doi: 10.1002/adma.201903448 – ident: e_1_2_7_55_1 doi: 10.3390/polym11010147 – ident: e_1_2_7_44_1 doi: 10.1039/C5TA06398A – ident: e_1_2_7_46_1 doi: 10.1002/adma.201905143 – volume: 7 start-page: 20201 year: 2019 ident: e_1_2_7_30_1 publication-title: J. Phys. Chem. Lett. – ident: e_1_2_7_8_1 doi: 10.1038/nphys3357 – ident: e_1_2_7_32_1 doi: 10.1016/j.jpowsour.2019.227389 – ident: e_1_2_7_51_1 doi: 10.1002/advs.201900462 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201904735 – ident: e_1_2_7_15_1 doi: 10.1038/s41560-017-0067-y – ident: e_1_2_7_52_1 doi: 10.1021/acsenergylett.7b00847 – ident: e_1_2_7_56_1 doi: 10.1039/C7RA08052B – ident: e_1_2_7_40_1 doi: 10.1002/solr.201900254 – ident: e_1_2_7_45_1 doi: 10.1154/1.2135313 – ident: e_1_2_7_36_1 doi: 10.1016/j.isci.2019.04.025 – ident: e_1_2_7_25_1 doi: 10.1016/j.joule.2019.02.002 – ident: e_1_2_7_9_1 doi: 10.1039/C5EE03435C – ident: e_1_2_7_7_1 doi: 10.1002/aenm.201800525 – ident: e_1_2_7_47_1 doi: 10.1039/C9CC00016J – ident: e_1_2_7_14_1 doi: 10.1038/s41467-018-07882-8 – ident: e_1_2_7_10_1 doi: 10.1126/science.1243982 – ident: e_1_2_7_50_1 doi: 10.1038/s41467-020-15078-2 – ident: e_1_2_7_27_1 doi: 10.1002/aenm.201901685 – ident: e_1_2_7_3_1 doi: 10.1038/nenergy.2016.48 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201500328 – ident: e_1_2_7_11_1 doi: 10.1021/acsenergylett.6b00002 – ident: e_1_2_7_49_1 doi: 10.1016/j.nanoen.2016.02.033 – ident: e_1_2_7_42_1 doi: 10.1126/science.aav8680 – ident: e_1_2_7_39_1 doi: 10.1002/adfm.201601175 – ident: e_1_2_7_24_1 doi: 10.1021/acsenergylett.9b02338 – ident: e_1_2_7_57_1 doi: 10.1126/science.aad1818 – ident: e_1_2_7_4_1 doi: 10.1038/s41467-016-0009-6 – ident: e_1_2_7_21_1 doi: 10.1038/s41560-019-0382-6 – ident: e_1_2_7_2_1 doi: 10.1016/j.mattod.2014.07.007 – ident: e_1_2_7_43_1 doi: 10.1021/acsenergylett.9b00840 – ident: e_1_2_7_59_1 doi: 10.1021/nn401267s – ident: e_1_2_7_23_1 doi: 10.1016/j.nanoen.2019.02.075 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201601165 – ident: e_1_2_7_31_1 doi: 10.1002/aenm.201800504 – ident: e_1_2_7_12_1 doi: 10.1016/j.nanoen.2015.04.025 – ident: e_1_2_7_35_1 doi: 10.1016/j.jcis.2019.07.084 |
SSID | ssj0002013419 |
Score | 2.330388 |
Snippet | All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 95 |
SubjectTerms | bromide incorporation Carbon Carrier lifetime Composition Energy conversion efficiency Energy dissipation Energy loss Grain boundaries high performance Hydrophobicity Morphology perovskite Perovskites Photovoltaic cells Photovoltaics Radiative recombination Recombination Solar cells stable Thermal stability VOCs Volatile organic compounds |
Title | Low‐Temperature Processed Carbon Electrode‐Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12089 https://www.proquest.com/docview/2580908346 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBX5uPQSUtrQTdMgaC8tuGtJli1BLunikJamLGS3hF6MJM-yh60d1tuW3HLOqb8xvyQa2ettoQR6M3jkg6TRPI1n3iPkjQYlpeEiAp3JyEcoGRkXm8iVOp7NrBVJ-BVz8SU9nyafruTVFjlZ98K0_BB9wg09I5zX6ODGNsMNaSjAd_6e8VjpbbKLvbW4y3ky7jMsPrQhWRmqy3lMEsVCpj0_KR9uhv8dkTYw80-wGqLN2T7Z62AiPW3X9SnZguoZuftc_7q__T0BD3VbKmTa1flDSUdmaeuK5q2sTQne8IPBFx-rVrnJ0TEs658NpmvpJd5o6QgWi4ZiKpbm1TzUAtDxvF7V_sxamXbEuq2AmqqkHpqGYtqb52R6lk9G51GnpRC5hDEdWeevwVqg6LcxDBRAJlNhwQM0y0qUMAK83Cjvj0JYZphTCmTpAUWqlAYQB2Snqit4QShkImWlFjNhWOKMtLPMGe6Q-o15vK4G5O16PgvXEY2j3sWiaCmSeYFzX4S5H5DXve11S6_xT6uj9bIUnYs1BZcq1h5AJumAvAtL9cgXijy_4OHp8H-MX5InHGtYQsrliOyslj_glQchK3sc9tox2T39Ov02fQCkJtsd |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLYGO7DLBBpo3WBY2i4gZcR2nNhHVgWVrUWVKBK3yHZexaEkU1uYduPMid_IL8HPSVuQpkncIuU5B9vP73svz99HyDcNSkrDRQQ6k5GPUDIyLjaRK3U8HlsrkvArZnCW9i6Sn5fysu3NwbswDT_EsuCGnhHOa3RwLEgfrVhDAa75d8ZjpdfI2yTlGSo38GS4LLH42IZsZSgv50FJFAuZLglK-dFq-MuQtMKZz9FqCDcnm-R9ixPpcbOwW-QNVB_Ifb_-83j3MAKPdRsuZNo2-kNJu2Zq64rmja5NCd7wh8EXp1Uj3eToEKb17QzrtfQcU1rahclkRrEWS_PqKjQD0OFVPa_9oTU3zYjFvQJqqpJ6bBq6af9uk4uTfNTtRa2YQuQSxnRknc-DtUDVb2MYKIBMpsKCR2iWlahhBJjdKO-QQlhmmFMKZOkRRaqUBhA7ZL2qK_hIKGQiZaUWY2FY4oy048wZ7pD7jXnArjrkYDGfhWuZxlHwYlI0HMm8wLkvwtx3yNel7e-GX-OfVruLZSlaH5sVXKpYewSZpB1yGJbqP18o8nzAw9On1xjvk43eaNAv-qdnvz6TdxwbWkL9ZZesz6c3sOcRydx-CfvuCZX53Ms |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSxwxFA5WQXoRi5WuP9qAvViYOkkmswl4addZtP5goQrehiTzBg_rjOyuijfPPfVv9C9pXmZ2t4II3gbmJYckL-_Ly8v3EfJVg5LScBGB7srIRygZGRebyBU6LktrRRKuYk7P0sOL5NelvFwg-9O3MA0_xCzhhp4R9mt08Jui3JuThgJc8--Mx0q_I0t424frmyeDWYbFhzYkK0N1OY9JoljIdMZPyvfmzZ9HpDnM_B-shmjTXyUrLUykP5p5_UAWoFojf07q-6fHv-fgoW5DhUzbOn8oaM-MbF3RrJG1KcAb_jT446hqlJscHcCovhtjupb-xhMt7cFwOKaYiqVZdRVqAejgqp7Ufs-amKbF9FkBNVVBPTQNxbQPH8lFPzvvHUatlkLkEsZ0ZJ0_BmuBot_GMFAAXZkKCx6gWVaghBHg4UZ5fxTCMsOcUiALDyhSpTSAWCeLVV3BJ0KhK1JWaFEKwxJnpC27znCH1G_M43XVIbvT8cxdSzSOehfDvKFI5jmOfR7GvkN2ZrY3Db3Gi1Zb02nJWxcb51yqWHsAmaQd8i1M1Ss95Fl2ysPXxluMv5DlwUE_Pzk6O94k7zmWs4TsyxZZnIxuYdvjkYn9HJbdP23B2_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90Temperature+Processed+Carbon+Electrode%E2%80%90Based+Inorganic+Perovskite+Solar+Cells+with+Enhanced+Photovoltaic+Performance+and+Stability&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Wu%2C+Xin&rft.au=Qi%2C+Feng&rft.au=Li%2C+Fengzhu&rft.au=Deng%2C+Xiang&rft.date=2021-01-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=4&rft.issue=1&rft.spage=95&rft.epage=102&rft_id=info:doi/10.1002%2Feem2.12089&rft.externalDBID=10.1002%252Feem2.12089&rft.externalDocID=EEM212089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon |