Low‐Temperature Processed Carbon Electrode‐Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability

All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting mate...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 4; no. 1; pp. 95 - 102
Main Authors Wu, Xin, Qi, Feng, Li, Fengzhu, Deng, Xiang, Li, Zhen, Wu, Shengfan, Liu, Tiantian, Liu, Yizhe, Zhang, Jie, Zhu, Zonglong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text
ISSN2575-0356
2575-0356
DOI10.1002/eem2.12089

Cover

Loading…
Abstract All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting materials (HTMs). However, the difficulty to control the crystallinity process and the poor morphology leads to serious non‐radiative recombination, resulting in low VOC and power conversion efficiency (PCE). In this article, the crystal formation process of all‐inorganic perovskites is controlled with a facile composition engineering strategy. By bromide incorporation, high‐quality perovskite films with large grain and fewer grain boundaries are achieved. As‐prepared perovskite films demonstrate longer carrier lifetime, contributing to lower energy loss and better device performance. Fabricated carbon‐based HTM‐free PVSCs with CsPbI2.33Br0.67 perovskite realized champion PCE of 12.40%, superior to 8.80% of CsPbI3‐based devices, which is one of the highest efficiencies reported for the carbon‐based all‐inorganic PVSCs to date. The high VOC of 1.01 V and FF of 70.98% indicate the significance of this composition engineering method. Moreover, fabricated carbon‐based devices exhibit excellent stability, and unencapsulated device retains over 90% of its initial efficiency under continuous one sun illumination for 250 h in N2 atmosphere and keeps ~84% of its original value after stored in ambient environment with RH 15–20% for 200 h. This work provides a facile way to fabricate high‐performance and stable carbon‐based all‐inorganic PVSCs. This article provides a facile composition engineering method to improve the performance and stability of carbon‐based all‐inorganic perovskite solar cells. By simply bromide incorporation, the morphology and crystallinity of perovskite film are improved, leading to the enhancement of power conversion efficiency to 12.40% with excellent stability, which is among the highest reported efficiencies.
AbstractList All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting materials (HTMs). However, the difficulty to control the crystallinity process and the poor morphology leads to serious non‐radiative recombination, resulting in low VOC and power conversion efficiency (PCE). In this article, the crystal formation process of all‐inorganic perovskites is controlled with a facile composition engineering strategy. By bromide incorporation, high‐quality perovskite films with large grain and fewer grain boundaries are achieved. As‐prepared perovskite films demonstrate longer carrier lifetime, contributing to lower energy loss and better device performance. Fabricated carbon‐based HTM‐free PVSCs with CsPbI2.33Br0.67 perovskite realized champion PCE of 12.40%, superior to 8.80% of CsPbI3‐based devices, which is one of the highest efficiencies reported for the carbon‐based all‐inorganic PVSCs to date. The high VOC of 1.01 V and FF of 70.98% indicate the significance of this composition engineering method. Moreover, fabricated carbon‐based devices exhibit excellent stability, and unencapsulated device retains over 90% of its initial efficiency under continuous one sun illumination for 250 h in N2 atmosphere and keeps ~84% of its original value after stored in ambient environment with RH 15–20% for 200 h. This work provides a facile way to fabricate high‐performance and stable carbon‐based all‐inorganic PVSCs. This article provides a facile composition engineering method to improve the performance and stability of carbon‐based all‐inorganic perovskite solar cells. By simply bromide incorporation, the morphology and crystallinity of perovskite film are improved, leading to the enhancement of power conversion efficiency to 12.40% with excellent stability, which is among the highest reported efficiencies.
All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting materials (HTMs). However, the difficulty to control the crystallinity process and the poor morphology leads to serious non‐radiative recombination, resulting in low VOC and power conversion efficiency (PCE). In this article, the crystal formation process of all‐inorganic perovskites is controlled with a facile composition engineering strategy. By bromide incorporation, high‐quality perovskite films with large grain and fewer grain boundaries are achieved. As‐prepared perovskite films demonstrate longer carrier lifetime, contributing to lower energy loss and better device performance. Fabricated carbon‐based HTM‐free PVSCs with CsPbI2.33Br0.67 perovskite realized champion PCE of 12.40%, superior to 8.80% of CsPbI3‐based devices, which is one of the highest efficiencies reported for the carbon‐based all‐inorganic PVSCs to date. The high VOC of 1.01 V and FF of 70.98% indicate the significance of this composition engineering method. Moreover, fabricated carbon‐based devices exhibit excellent stability, and unencapsulated device retains over 90% of its initial efficiency under continuous one sun illumination for 250 h in N2 atmosphere and keeps ~84% of its original value after stored in ambient environment with RH 15–20% for 200 h. This work provides a facile way to fabricate high‐performance and stable carbon‐based all‐inorganic PVSCs.
All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to demonstrate excellent long‐term operational stability due to the hydrophobicity of carbon materials and the abandon of organic hole‐transporting materials (HTMs). However, the difficulty to control the crystallinity process and the poor morphology leads to serious non‐radiative recombination, resulting in low V OC and power conversion efficiency (PCE). In this article, the crystal formation process of all‐inorganic perovskites is controlled with a facile composition engineering strategy. By bromide incorporation, high‐quality perovskite films with large grain and fewer grain boundaries are achieved. As‐prepared perovskite films demonstrate longer carrier lifetime, contributing to lower energy loss and better device performance. Fabricated carbon‐based HTM‐free PVSCs with CsPbI 2.33 Br 0.67 perovskite realized champion PCE of 12.40%, superior to 8.80% of CsPbI 3 ‐based devices, which is one of the highest efficiencies reported for the carbon‐based all‐inorganic PVSCs to date. The high V OC of 1.01 V and FF of 70.98% indicate the significance of this composition engineering method. Moreover, fabricated carbon‐based devices exhibit excellent stability, and unencapsulated device retains over 90% of its initial efficiency under continuous one sun illumination for 250 h in N 2 atmosphere and keeps ~84% of its original value after stored in ambient environment with RH 15–20% for 200 h. This work provides a facile way to fabricate high‐performance and stable carbon‐based all‐inorganic PVSCs.
Author Liu, Tiantian
Li, Zhen
Qi, Feng
Liu, Yizhe
Li, Fengzhu
Wu, Xin
Zhu, Zonglong
Deng, Xiang
Zhang, Jie
Wu, Shengfan
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0003-2513-1296
  surname: Wu
  fullname: Wu, Xin
  organization: City University of Hong Kong
– sequence: 2
  givenname: Feng
  surname: Qi
  fullname: Qi, Feng
  organization: City University of Hong Kong
– sequence: 3
  givenname: Fengzhu
  surname: Li
  fullname: Li, Fengzhu
  organization: City University of Hong Kong
– sequence: 4
  givenname: Xiang
  surname: Deng
  fullname: Deng, Xiang
  organization: City University of Hong Kong
– sequence: 5
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: City University of Hong Kong
– sequence: 6
  givenname: Shengfan
  surname: Wu
  fullname: Wu, Shengfan
  organization: City University of Hong Kong
– sequence: 7
  givenname: Tiantian
  surname: Liu
  fullname: Liu, Tiantian
  organization: City University of Hong Kong
– sequence: 8
  givenname: Yizhe
  surname: Liu
  fullname: Liu, Yizhe
  organization: City University of Hong Kong
– sequence: 9
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: City University of Hong Kong
– sequence: 10
  givenname: Zonglong
  surname: Zhu
  fullname: Zhu, Zonglong
  email: zonglzhu@cityu.edu.hk
  organization: City University of Hong Kong
BookMark eNp9kMFKAzEQhoMoWGsvPkHAm9CabHa32aOWVQsVC63nJZud2tQ0qUna0ptnTz6jT-LW9SAinmZgvu8f-E_QobEGEDqjpEcJiS4BllGPRoRnB6gVJf2kS1iSHv7Yj1HH-wWpYUJZTLMWehvZ7cfr-xSWK3AirB3gsbMSvIcKD4QrrcG5BhmcraAGr8X-MDTWPQmjJB6Dsxv_rALgidXC4QFo7fFWhTnOzVwYWePjuQ12Y3UQjTGzbrm_YGEqPAmiVFqF3Sk6mgntofM92-jxJp8O7rqjh9vh4GrUlTGlWbeUaUYylsQ0FoICB-gnKSshTUhJq4rLCghPI56ljLGSCio5h6QiNcV5BsDa6LzJXTn7sgYfioVdO1O_LKKEk4xwFqc1ddFQ0lnvHcyKlVNL4XYFJcW-7mJfd_FVdw2TX7BUQQRlTXBC6b8V2ihbpWH3T3iR5_dR43wCdZKXLg
CitedBy_id crossref_primary_10_1007_s10854_021_07563_1
crossref_primary_10_1002_eom2_12352
crossref_primary_10_1016_j_mtcomm_2024_110263
crossref_primary_10_1039_D2EE02543D
crossref_primary_10_3389_fenrg_2024_1463024
crossref_primary_10_1016_j_xcrp_2023_101726
crossref_primary_10_1002_adma_202206387
crossref_primary_10_1016_j_cej_2022_137144
crossref_primary_10_1021_acsami_1c04806
crossref_primary_10_1021_acs_langmuir_2c00792
crossref_primary_10_7498_aps_73_20241439
crossref_primary_10_1002_adma_202410692
crossref_primary_10_1109_JPHOTOV_2022_3165770
crossref_primary_10_1002_adfm_202410605
crossref_primary_10_1002_adfm_202205870
crossref_primary_10_1039_D2RA05535J
crossref_primary_10_1016_j_apsusc_2022_155175
crossref_primary_10_1016_j_jssc_2022_122891
crossref_primary_10_1002_solr_202300854
crossref_primary_10_1002_adma_202208431
crossref_primary_10_1002_adma_202312041
crossref_primary_10_1002_aenm_202400582
crossref_primary_10_1016_j_cej_2022_136781
crossref_primary_10_1002_adma_202204661
crossref_primary_10_1016_j_solener_2024_112989
crossref_primary_10_1002_advs_202412666
crossref_primary_10_1002_aenm_202201320
crossref_primary_10_1002_adma_202204380
crossref_primary_10_1002_adom_202301052
crossref_primary_10_1039_D0TA12286F
crossref_primary_10_1002_aenm_202300700
Cites_doi 10.1002/adfm.201900221
10.1002/aenm.201802080
10.1038/nphoton.2016.108
10.1016/j.joule.2017.11.006
10.1021/acs.jpclett.9b01822
10.1002/adma.201601745
10.1002/adma.201800455
10.1002/aenm.201902600
10.1016/j.nanoen.2018.08.012
10.1038/s41467-019-13909-5
10.1021/acsaem.9b01652
10.1021/acsenergylett.8b00820
10.1002/anie.201910800
10.1002/adma.201903448
10.1021/acsami.6b08771
10.1002/adfm.202000457
10.1002/aenm.201502458
10.1038/ncomms6757
10.3390/polym11010147
10.1039/C5TA06398A
10.1002/adma.201905143
10.1038/nphys3357
10.1016/j.jpowsour.2019.227389
10.1002/advs.201900462
10.1002/adma.201904735
10.1038/s41560-017-0067-y
10.1021/acsenergylett.7b00847
10.1039/C7RA08052B
10.1002/solr.201900254
10.1154/1.2135313
10.1016/j.isci.2019.04.025
10.1016/j.joule.2019.02.002
10.1039/C5EE03435C
10.1002/aenm.201800525
10.1039/C9CC00016J
10.1038/s41467-018-07882-8
10.1126/science.1243982
10.1038/s41467-020-15078-2
10.1002/aenm.201901685
10.1038/nenergy.2016.48
10.1002/aenm.201500328
10.1021/acsenergylett.6b00002
10.1016/j.nanoen.2016.02.033
10.1126/science.aav8680
10.1002/adfm.201601175
10.1021/acsenergylett.9b02338
10.1126/science.aad1818
10.1038/s41467-016-0009-6
10.1038/s41560-019-0382-6
10.1016/j.mattod.2014.07.007
10.1021/acsenergylett.9b00840
10.1021/nn401267s
10.1016/j.nanoen.2019.02.075
10.1002/aenm.201601165
10.1002/aenm.201800504
10.1016/j.nanoen.2015.04.025
10.1016/j.jcis.2019.07.084
ContentType Journal Article
Copyright 2020 Zhengzhou University
2021 Zhengzhou University
Copyright_xml – notice: 2020 Zhengzhou University
– notice: 2021 Zhengzhou University
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
DOI 10.1002/eem2.12089
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage 102
ExternalDocumentID 10_1002_eem2_12089
EEM212089
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  funderid: 2019A1515010761
– fundername: Innovation and Technology Fund
  funderid: GHP/021/18SZ; ITS/497/18FP
– fundername: the Office of Naval Research
  funderid: N00014‐17‐1‐2201
– fundername: Research Grants Council of Hong Kong
  funderid: CityU 21301319
– fundername: Guangdong‐Hong Kong‐Macao joint laboratory of optoelectronic and magnetic functional materials
  funderid: 2019B121205002
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  funderid: 2019B030302007
– fundername: City University of Hong Kong
  funderid: 9610421
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
ID FETCH-LOGICAL-c4119-bc690935414aa1e8ee7563be650b1dd8cde0862896333b1a1c88e5d0756889ee3
IEDL.DBID 24P
ISSN 2575-0356
IngestDate Mon Jun 30 11:58:47 EDT 2025
Tue Jul 01 01:03:04 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Wed Jan 22 16:30:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4119-bc690935414aa1e8ee7563be650b1dd8cde0862896333b1a1c88e5d0756889ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2513-1296
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12089
PQID 2580908346
PQPubID 5251211
PageCount 8
ParticipantIDs proquest_journals_2580908346
crossref_primary_10_1002_eem2_12089
crossref_citationtrail_10_1002_eem2_12089
wiley_primary_10_1002_eem2_12089_EEM212089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2015; 15
2017; 7
2017; 8
2019; 9
2019; 4
2015; 5
2019; 3
2017; 2
2019; 6
2015; 18
2019; 5
2015; 3
2019; 31
2019; 55
2019; 11
2019; 10
2015; 11
2019; 59
2019; 15
2019; 58
2016; 10
2013; 342
2005; 20
2020; 447
2020; 11
2013; 7
2019; 365
2015; 350
2016; 6
2018; 8
2014; 5
2018; 3
2016; 1
2018; 2
2020; 30
2019; 555
2019; 29
2018; 30
2018; 52
2016; 28
2016; 26
2016; 8
2016; 9
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
Chen Y. (e_1_2_7_30_1) 2019; 7
e_1_2_7_38_1
References_xml – volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 2
  start-page: 168
  year: 2018
  publication-title: Joule
– volume: 7
  start-page: 4569
  year: 2013
  publication-title: ACS Nano
– volume: 6
  start-page: 1502458
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 177
  year: 2020
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1500328
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 59
  start-page: 553
  year: 2019
  publication-title: Nano Energy
– volume: 1
  start-page: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  start-page: 34612
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 1
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1601165
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 1245
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1802080
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 32
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 401
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  start-page: 290
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 30
  start-page: 2000457
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 147
  year: 2019
  publication-title: Polymers (Basel)
– volume: 3
  start-page: 68
  year: 2018
  publication-title: Nat. Energy
– volume: 2
  start-page: 2531
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 521
  year: 2016
  publication-title: Nat. Photonics
– volume: 15
  start-page: 216
  year: 2015
  publication-title: Nano Energy
– volume: 30
  start-page: 1800455
  year: 2018
  publication-title: Adv. Mater.
– volume: 447
  start-page: 227389
  year: 2020
  publication-title: J. Power Sources
– volume: 58
  start-page: 16691
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 1321
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 1901685
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 65
  year: 2015
  publication-title: Mater. Today
– volume: 555
  start-page: 180
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 350
  start-page: 1222
  year: 2015
  publication-title: Science
– volume: 10
  start-page: 4587
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 31
  start-page: 1903448
  year: 2019
  publication-title: Adv. Mater.
– volume: 26
  start-page: 3508
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 962
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 1902600
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 1904735
  year: 2019
  publication-title: Adv. Mater.
– volume: 20
  start-page: 366
  year: 2005
  publication-title: Powder Diffr.
– volume: 7
  start-page: 20201
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 365
  start-page: 591
  year: 2019
  publication-title: Science
– volume: 11
  start-page: 582
  year: 2015
  publication-title: Nat. Phys.
– volume: 6
  start-page: 1900462
  year: 2019
  publication-title: Adv Sci (Weinh)
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 28
  start-page: 10786
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 408
  year: 2019
  publication-title: Nat. Energy
– volume: 3
  start-page: 1900254
  year: 2019
  publication-title: Solar RRL
– volume: 8
  start-page: 1800504
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 22
  start-page: 328
  year: 2016
  publication-title: Nano Energy
– volume: 8
  start-page: 1800525
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 4315
  year: 2019
  publication-title: Chem. Commun.
– volume: 15
  start-page: 156
  year: 2019
  publication-title: iScience
– volume: 7
  start-page: 45478
  year: 2017
  publication-title: RSC Adv.
– volume: 5
  start-page: 1
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1824
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 938
  year: 2019
  publication-title: Joule
– volume: 3
  start-page: 19688
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1
  year: 2019
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1900221
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 408
  year: 2018
  publication-title: Nano Energy
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.201900221
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.201802080
– ident: e_1_2_7_58_1
  doi: 10.1038/nphoton.2016.108
– ident: e_1_2_7_20_1
  doi: 10.1016/j.joule.2017.11.006
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.jpclett.9b01822
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201601745
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201800455
– ident: e_1_2_7_17_1
  doi: 10.1002/aenm.201902600
– ident: e_1_2_7_26_1
  doi: 10.1016/j.nanoen.2018.08.012
– ident: e_1_2_7_37_1
  doi: 10.1038/s41467-019-13909-5
– ident: e_1_2_7_34_1
  doi: 10.1021/acsaem.9b01652
– ident: e_1_2_7_33_1
  doi: 10.1021/acsenergylett.8b00820
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.201910800
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201903448
– ident: e_1_2_7_54_1
  doi: 10.1021/acsami.6b08771
– ident: e_1_2_7_41_1
  doi: 10.1002/adfm.202000457
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201502458
– ident: e_1_2_7_5_1
  doi: 10.1038/ncomms6757
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.201903448
– ident: e_1_2_7_55_1
  doi: 10.3390/polym11010147
– ident: e_1_2_7_44_1
  doi: 10.1039/C5TA06398A
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201905143
– volume: 7
  start-page: 20201
  year: 2019
  ident: e_1_2_7_30_1
  publication-title: J. Phys. Chem. Lett.
– ident: e_1_2_7_8_1
  doi: 10.1038/nphys3357
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jpowsour.2019.227389
– ident: e_1_2_7_51_1
  doi: 10.1002/advs.201900462
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201904735
– ident: e_1_2_7_15_1
  doi: 10.1038/s41560-017-0067-y
– ident: e_1_2_7_52_1
  doi: 10.1021/acsenergylett.7b00847
– ident: e_1_2_7_56_1
  doi: 10.1039/C7RA08052B
– ident: e_1_2_7_40_1
  doi: 10.1002/solr.201900254
– ident: e_1_2_7_45_1
  doi: 10.1154/1.2135313
– ident: e_1_2_7_36_1
  doi: 10.1016/j.isci.2019.04.025
– ident: e_1_2_7_25_1
  doi: 10.1016/j.joule.2019.02.002
– ident: e_1_2_7_9_1
  doi: 10.1039/C5EE03435C
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.201800525
– ident: e_1_2_7_47_1
  doi: 10.1039/C9CC00016J
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-018-07882-8
– ident: e_1_2_7_10_1
  doi: 10.1126/science.1243982
– ident: e_1_2_7_50_1
  doi: 10.1038/s41467-020-15078-2
– ident: e_1_2_7_27_1
  doi: 10.1002/aenm.201901685
– ident: e_1_2_7_3_1
  doi: 10.1038/nenergy.2016.48
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201500328
– ident: e_1_2_7_11_1
  doi: 10.1021/acsenergylett.6b00002
– ident: e_1_2_7_49_1
  doi: 10.1016/j.nanoen.2016.02.033
– ident: e_1_2_7_42_1
  doi: 10.1126/science.aav8680
– ident: e_1_2_7_39_1
  doi: 10.1002/adfm.201601175
– ident: e_1_2_7_24_1
  doi: 10.1021/acsenergylett.9b02338
– ident: e_1_2_7_57_1
  doi: 10.1126/science.aad1818
– ident: e_1_2_7_4_1
  doi: 10.1038/s41467-016-0009-6
– ident: e_1_2_7_21_1
  doi: 10.1038/s41560-019-0382-6
– ident: e_1_2_7_2_1
  doi: 10.1016/j.mattod.2014.07.007
– ident: e_1_2_7_43_1
  doi: 10.1021/acsenergylett.9b00840
– ident: e_1_2_7_59_1
  doi: 10.1021/nn401267s
– ident: e_1_2_7_23_1
  doi: 10.1016/j.nanoen.2019.02.075
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201601165
– ident: e_1_2_7_31_1
  doi: 10.1002/aenm.201800504
– ident: e_1_2_7_12_1
  doi: 10.1016/j.nanoen.2015.04.025
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jcis.2019.07.084
SSID ssj0002013419
Score 2.330388
Snippet All‐inorganic perovskite solar cells (PVSCs) have drawn widespread attention for its superior thermal stability. Carbon‐based devices are promising to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms bromide incorporation
Carbon
Carrier lifetime
Composition
Energy conversion efficiency
Energy dissipation
Energy loss
Grain boundaries
high performance
Hydrophobicity
Morphology
perovskite
Perovskites
Photovoltaic cells
Photovoltaics
Radiative recombination
Recombination
Solar cells
stable
Thermal stability
VOCs
Volatile organic compounds
Title Low‐Temperature Processed Carbon Electrode‐Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12089
https://www.proquest.com/docview/2580908346
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBX5uPQSUtrQTdMgaC8tuGtJli1BLunikJamLGS3hF6MJM-yh60d1tuW3HLOqb8xvyQa2ettoQR6M3jkg6TRPI1n3iPkjQYlpeEiAp3JyEcoGRkXm8iVOp7NrBVJ-BVz8SU9nyafruTVFjlZ98K0_BB9wg09I5zX6ODGNsMNaSjAd_6e8VjpbbKLvbW4y3ky7jMsPrQhWRmqy3lMEsVCpj0_KR9uhv8dkTYw80-wGqLN2T7Z62AiPW3X9SnZguoZuftc_7q__T0BD3VbKmTa1flDSUdmaeuK5q2sTQne8IPBFx-rVrnJ0TEs658NpmvpJd5o6QgWi4ZiKpbm1TzUAtDxvF7V_sxamXbEuq2AmqqkHpqGYtqb52R6lk9G51GnpRC5hDEdWeevwVqg6LcxDBRAJlNhwQM0y0qUMAK83Cjvj0JYZphTCmTpAUWqlAYQB2Snqit4QShkImWlFjNhWOKMtLPMGe6Q-o15vK4G5O16PgvXEY2j3sWiaCmSeYFzX4S5H5DXve11S6_xT6uj9bIUnYs1BZcq1h5AJumAvAtL9cgXijy_4OHp8H-MX5InHGtYQsrliOyslj_glQchK3sc9tox2T39Ov02fQCkJtsd
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLYGO7DLBBpo3WBY2i4gZcR2nNhHVgWVrUWVKBK3yHZexaEkU1uYduPMid_IL8HPSVuQpkncIuU5B9vP73svz99HyDcNSkrDRQQ6k5GPUDIyLjaRK3U8HlsrkvArZnCW9i6Sn5fysu3NwbswDT_EsuCGnhHOa3RwLEgfrVhDAa75d8ZjpdfI2yTlGSo38GS4LLH42IZsZSgv50FJFAuZLglK-dFq-MuQtMKZz9FqCDcnm-R9ixPpcbOwW-QNVB_Ifb_-83j3MAKPdRsuZNo2-kNJu2Zq64rmja5NCd7wh8EXp1Uj3eToEKb17QzrtfQcU1rahclkRrEWS_PqKjQD0OFVPa_9oTU3zYjFvQJqqpJ6bBq6af9uk4uTfNTtRa2YQuQSxnRknc-DtUDVb2MYKIBMpsKCR2iWlahhBJjdKO-QQlhmmFMKZOkRRaqUBhA7ZL2qK_hIKGQiZaUWY2FY4oy048wZ7pD7jXnArjrkYDGfhWuZxlHwYlI0HMm8wLkvwtx3yNel7e-GX-OfVruLZSlaH5sVXKpYewSZpB1yGJbqP18o8nzAw9On1xjvk43eaNAv-qdnvz6TdxwbWkL9ZZesz6c3sOcRydx-CfvuCZX53Ms
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSxwxFA5WQXoRi5WuP9qAvViYOkkmswl4addZtP5goQrehiTzBg_rjOyuijfPPfVv9C9pXmZ2t4II3gbmJYckL-_Ly8v3EfJVg5LScBGB7srIRygZGRebyBU6LktrRRKuYk7P0sOL5NelvFwg-9O3MA0_xCzhhp4R9mt08Jui3JuThgJc8--Mx0q_I0t424frmyeDWYbFhzYkK0N1OY9JoljIdMZPyvfmzZ9HpDnM_B-shmjTXyUrLUykP5p5_UAWoFojf07q-6fHv-fgoW5DhUzbOn8oaM-MbF3RrJG1KcAb_jT446hqlJscHcCovhtjupb-xhMt7cFwOKaYiqVZdRVqAejgqp7Ufs-amKbF9FkBNVVBPTQNxbQPH8lFPzvvHUatlkLkEsZ0ZJ0_BmuBot_GMFAAXZkKCx6gWVaghBHg4UZ5fxTCMsOcUiALDyhSpTSAWCeLVV3BJ0KhK1JWaFEKwxJnpC27znCH1G_M43XVIbvT8cxdSzSOehfDvKFI5jmOfR7GvkN2ZrY3Db3Gi1Zb02nJWxcb51yqWHsAmaQd8i1M1Ss95Fl2ysPXxluMv5DlwUE_Pzk6O94k7zmWs4TsyxZZnIxuYdvjkYn9HJbdP23B2_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90Temperature+Processed+Carbon+Electrode%E2%80%90Based+Inorganic+Perovskite+Solar+Cells+with+Enhanced+Photovoltaic+Performance+and+Stability&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Wu%2C+Xin&rft.au=Qi%2C+Feng&rft.au=Li%2C+Fengzhu&rft.au=Deng%2C+Xiang&rft.date=2021-01-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=4&rft.issue=1&rft.spage=95&rft.epage=102&rft_id=info:doi/10.1002%2Feem2.12089&rft.externalDBID=10.1002%252Feem2.12089&rft.externalDocID=EEM212089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon