Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment
Clinical trials increasingly aim to retard disease progression during presymptomatic phases of Mild Cognitive Impairment (MCI) and thus recruiting study participants at high risk for developing MCI is critical for cost-effective prevention trials. However, accurately identifying those who are destin...
Saved in:
Published in | Alzheimer disease and associated disorders Vol. 32; no. 1; p. 18 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2018
|
Online Access | Get more information |
Cover
Loading…
Abstract | Clinical trials increasingly aim to retard disease progression during presymptomatic phases of Mild Cognitive Impairment (MCI) and thus recruiting study participants at high risk for developing MCI is critical for cost-effective prevention trials. However, accurately identifying those who are destined to develop MCI is difficult. Collecting biomarkers is often expensive.
We used only noninvasive clinical variables collected in the National Alzheimer's Coordinating Center (NACC) Uniform Data Sets version 2.0 and applied machine learning techniques to build a low-cost and accurate Mild Cognitive Impairment (MCI) conversion prediction calculator. Cross-validation and bootstrap were used to select as few variables as possible accurately predicting MCI conversion within 4 years.
A total of 31,872 unique subjects, 748 clinical variables, and additional 128 derived variables in NACC data sets were used. About 15 noninvasive clinical variables are identified for predicting MCI/aMCI/naMCI converters, respectively. Over 75% Receiver Operating Characteristic Area Under the Curves (ROC AUC) was achieved. By bootstrap we created a simple spreadsheet calculator which estimates the probability of developing MCI within 4 years with a 95% confidence interval.
We achieved reasonably high prediction accuracy using only clinical variables. The approach used here could be useful for study enrichment in preclinical trials where enrolling participants at risk of cognitive decline is critical for proving study efficacy, and also for developing a shorter assessment battery. |
---|---|
AbstractList | Clinical trials increasingly aim to retard disease progression during presymptomatic phases of Mild Cognitive Impairment (MCI) and thus recruiting study participants at high risk for developing MCI is critical for cost-effective prevention trials. However, accurately identifying those who are destined to develop MCI is difficult. Collecting biomarkers is often expensive.
We used only noninvasive clinical variables collected in the National Alzheimer's Coordinating Center (NACC) Uniform Data Sets version 2.0 and applied machine learning techniques to build a low-cost and accurate Mild Cognitive Impairment (MCI) conversion prediction calculator. Cross-validation and bootstrap were used to select as few variables as possible accurately predicting MCI conversion within 4 years.
A total of 31,872 unique subjects, 748 clinical variables, and additional 128 derived variables in NACC data sets were used. About 15 noninvasive clinical variables are identified for predicting MCI/aMCI/naMCI converters, respectively. Over 75% Receiver Operating Characteristic Area Under the Curves (ROC AUC) was achieved. By bootstrap we created a simple spreadsheet calculator which estimates the probability of developing MCI within 4 years with a 95% confidence interval.
We achieved reasonably high prediction accuracy using only clinical variables. The approach used here could be useful for study enrichment in preclinical trials where enrolling participants at risk of cognitive decline is critical for proving study efficacy, and also for developing a shorter assessment battery. |
Author | Gong, Pinghua Dodge, Hiroko H Ye, Jieping Albin, Roger L Yang, Tao Lin, Ming |
Author_xml | – sequence: 1 givenname: Ming surname: Lin fullname: Lin, Ming organization: Department of Computational Medicine and Bioinformatics – sequence: 2 givenname: Pinghua surname: Gong fullname: Gong, Pinghua organization: Department of Computational Medicine and Bioinformatics – sequence: 3 givenname: Tao surname: Yang fullname: Yang, Tao organization: Department of Computational Medicine and Bioinformatics – sequence: 4 givenname: Jieping surname: Ye fullname: Ye, Jieping organization: Department of Computational Medicine and Bioinformatics – sequence: 5 givenname: Roger L surname: Albin fullname: Albin, Roger L organization: Neurology Service & GRECC, VAAAHS, Ann Arbor, MI – sequence: 6 givenname: Hiroko H surname: Dodge fullname: Dodge, Hiroko H organization: Department of Neurology and Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29227306$$D View this record in MEDLINE/PubMed |
BookMark | eNpNT0tPwzAYixCIPeAfIJQ_0JFX05Zb6cZDmoDD0I5Tkn5Zg9q0SsNh_55pgIQPtmTZljxD5773gNANJQtKiuxuWy4X5D8Yy8_QlKZCJoKmcoJm4_h59DOekks0YQVjGSdyirYPbo-XKipcetUeojOqxeUwhF6ZBkYcexwbwK9lVZ1iI8R7XLra-T1-D2Ba50-VTXBHXvngTNOBj1fowqp2hOtfnaOPx9Wmek7Wb08vVblOjKA0TwppJBUy14wIZUGSGqy0Qok0o0oBtWDT2hDOQEtFhOBa8pzXuTYFA8M0m6Pbn93hS3dQ74bgOhUOu7-H7Bsx2lL- |
CitedBy_id | crossref_primary_10_1136_bmjopen_2019_032112 crossref_primary_10_3233_JAD_230208 crossref_primary_10_1007_s42979_023_02529_y crossref_primary_10_3233_JAD_201447 crossref_primary_10_1001_jamanetworkopen_2021_36553 crossref_primary_10_1093_jamiaopen_ooab052 crossref_primary_10_3390_su132111587 crossref_primary_10_3390_brainsci12091149 crossref_primary_10_1093_jamia_ocae243 crossref_primary_10_1002_trc2_12103 crossref_primary_10_1097_WAD_0000000000000439 crossref_primary_10_1038_s41598_024_51985_w crossref_primary_10_3389_fdgth_2021_714813 crossref_primary_10_1097_WAD_0000000000000619 crossref_primary_10_14283_jpad_2023_10 crossref_primary_10_1038_s43856_024_00437_7 crossref_primary_10_1111_psyg_12697 crossref_primary_10_1097_WAD_0000000000000279 crossref_primary_10_3233_JAD_200087 crossref_primary_10_1007_s11042_024_19425_z crossref_primary_10_1016_j_neubiorev_2020_04_026 crossref_primary_10_1680_jmapl_21_00027 crossref_primary_10_3233_JAD_190302 crossref_primary_10_1093_arclin_acaa042 crossref_primary_10_1093_arclin_acaf015 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1097/WAD.0000000000000228 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1546-4156 |
ExternalDocumentID | 29227306 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P50 AG047366 – fundername: NIA NIH HHS grantid: P50 AG005131 – fundername: NIA NIH HHS grantid: P30 AG019610 – fundername: NIA NIH HHS grantid: P50 AG005136 – fundername: NIA NIH HHS grantid: P50 AG008702 – fundername: NIA NIH HHS grantid: P50 AG023501 – fundername: NIA NIH HHS grantid: P50 AG047270 – fundername: NIA NIH HHS grantid: P50 AG005681 – fundername: NIA NIH HHS grantid: P30 AG008017 – fundername: NIA NIH HHS grantid: P30 AG028383 |
GroupedDBID | --- -~X .GJ .Z2 0R~ 23M 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 8L- AAAAV AAHPQ AAIQE AAMTA AARTV AASCR AAWTL ABASU ABBUW ABDIG ABIVO ABJNI ABVCZ ABXVJ ABZAD ACDDN ACEWG ACGFO ACGFS ACILI ACWDW ACWRI ACXJB ACXNZ ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFDTB AFFNX AFUWQ AGINI AHQNM AHRYX AHVBC AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BQLVK BS7 BYPQX C45 CS3 DIWNM DUNZO E.X EBS EEVPB EJD EX3 F2K F2L F5P FCALG FL- GNXGY GQDEL H0~ HLJTE HZ~ IKREB IN~ IPNFZ JF9 JG8 JK3 JK8 K-A K8S KD2 KMI L-C N9A NPM N~M O9- OAG OAH OCUKA ODA OJAPA OL1 OLG OLV OLW OLZ OPUJH OPX ORVUJ OUVQU OVD OVDNE OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P R58 RIG RLZ S4R S4S T8P TEORI TSPGW V2I VVN W3M WF8 WOQ WOW X3V X3W XXN XYM YFH ZGI ZZMQN |
ID | FETCH-LOGICAL-c4118-96c61468b204afe60def6f4a4571aae1fef5dc032eb6a0443b6383d8bc92ec2b2 |
IngestDate | Wed Feb 19 02:34:34 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4118-96c61468b204afe60def6f4a4571aae1fef5dc032eb6a0443b6383d8bc92ec2b2 |
PMID | 29227306 |
ParticipantIDs | pubmed_primary_29227306 |
PublicationCentury | 2000 |
PublicationDate | 2018 Jan-Mar |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018 Jan-Mar |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Alzheimer disease and associated disorders |
PublicationTitleAlternate | Alzheimer Dis Assoc Disord |
PublicationYear | 2018 |
SSID | ssj0007350 |
Score | 2.3446631 |
Snippet | Clinical trials increasingly aim to retard disease progression during presymptomatic phases of Mild Cognitive Impairment (MCI) and thus recruiting study... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 18 |
Title | Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29227306 |
Volume | 32 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUKSIgLYt-RD1wDjuNs3EoBIQSIQxFwQnZs00jQVqJcuPPfjJckZRNLD1Zlp1Hl9zIeT2aeEdqRWSKUTMMg1DoPGIcmy_I4kCoSjBaShMIUJ59fJCdX7PQmvmm1Xseylp5HYrd4-bKu5D-oQh_gaqpk_4BsfVPogO-AL7SAMLS_wvigvAfYRtxJi7iodNuLhDvpBpvC2O507GVPysUBS1vIcgm2riqL7NqzO476YBR7dSpMpU378NJT5aM5Sdy9zHH6rh5W8FelF_CsvfOz0mfk-1XRyu87m3IJfb3neim49dHqLh80wVtLrFINq5_7mESYjcUklLejLAnM3nDc0DaBzJpQzmo6C_zJmDuR4Ov2oROZrD6UvrscJm74aAGmOQVnzAoY_DD6QWK7GppAE7DZMKenmpCPX87TKCZVzWWe7n31d4yitL_Fh92J9VK6c2jWby9w23FlHrVUfwFNn_sEikV0DZTBhgu4oQxuKINHAwyUwYYy2FNmHzvC4DHCYEsY3BBmCV0dH3U7J4E_WyMoGOwpgzwpElN1JyiBB1QlRCqdaMZZnIacq1ArHcuCRFSJhBPGIgGGOpKZKHKqCiroMprsD_pqFWEimOBc8ljrlOWKGKVSEgmTbhVKTdgaWnFTcjd0Aip31WStfzuygWYaXm2iKQ1PrNoC928kti08bwlFVx0 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Data+Analytical+Approaches+to+the+NACC+Dataset%3A+Aiding+Preclinical+Trial+Enrichment&rft.jtitle=Alzheimer+disease+and+associated+disorders&rft.au=Lin%2C+Ming&rft.au=Gong%2C+Pinghua&rft.au=Yang%2C+Tao&rft.au=Ye%2C+Jieping&rft.date=2018-01-01&rft.eissn=1546-4156&rft.volume=32&rft.issue=1&rft.spage=18&rft_id=info:doi/10.1097%2FWAD.0000000000000228&rft_id=info%3Apmid%2F29227306&rft_id=info%3Apmid%2F29227306&rft.externalDocID=29227306 |