Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment

Clinical trials increasingly aim to retard disease progression during presymptomatic phases of Mild Cognitive Impairment (MCI) and thus recruiting study participants at high risk for developing MCI is critical for cost-effective prevention trials. However, accurately identifying those who are destin...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer disease and associated disorders Vol. 32; no. 1; p. 18
Main Authors Lin, Ming, Gong, Pinghua, Yang, Tao, Ye, Jieping, Albin, Roger L, Dodge, Hiroko H
Format Journal Article
LanguageEnglish
Published United States 01.01.2018
Online AccessGet more information

Cover

Loading…
Abstract Clinical trials increasingly aim to retard disease progression during presymptomatic phases of Mild Cognitive Impairment (MCI) and thus recruiting study participants at high risk for developing MCI is critical for cost-effective prevention trials. However, accurately identifying those who are destined to develop MCI is difficult. Collecting biomarkers is often expensive. We used only noninvasive clinical variables collected in the National Alzheimer's Coordinating Center (NACC) Uniform Data Sets version 2.0 and applied machine learning techniques to build a low-cost and accurate Mild Cognitive Impairment (MCI) conversion prediction calculator. Cross-validation and bootstrap were used to select as few variables as possible accurately predicting MCI conversion within 4 years. A total of 31,872 unique subjects, 748 clinical variables, and additional 128 derived variables in NACC data sets were used. About 15 noninvasive clinical variables are identified for predicting MCI/aMCI/naMCI converters, respectively. Over 75% Receiver Operating Characteristic Area Under the Curves (ROC AUC) was achieved. By bootstrap we created a simple spreadsheet calculator which estimates the probability of developing MCI within 4 years with a 95% confidence interval. We achieved reasonably high prediction accuracy using only clinical variables. The approach used here could be useful for study enrichment in preclinical trials where enrolling participants at risk of cognitive decline is critical for proving study efficacy, and also for developing a shorter assessment battery.
AbstractList Clinical trials increasingly aim to retard disease progression during presymptomatic phases of Mild Cognitive Impairment (MCI) and thus recruiting study participants at high risk for developing MCI is critical for cost-effective prevention trials. However, accurately identifying those who are destined to develop MCI is difficult. Collecting biomarkers is often expensive. We used only noninvasive clinical variables collected in the National Alzheimer's Coordinating Center (NACC) Uniform Data Sets version 2.0 and applied machine learning techniques to build a low-cost and accurate Mild Cognitive Impairment (MCI) conversion prediction calculator. Cross-validation and bootstrap were used to select as few variables as possible accurately predicting MCI conversion within 4 years. A total of 31,872 unique subjects, 748 clinical variables, and additional 128 derived variables in NACC data sets were used. About 15 noninvasive clinical variables are identified for predicting MCI/aMCI/naMCI converters, respectively. Over 75% Receiver Operating Characteristic Area Under the Curves (ROC AUC) was achieved. By bootstrap we created a simple spreadsheet calculator which estimates the probability of developing MCI within 4 years with a 95% confidence interval. We achieved reasonably high prediction accuracy using only clinical variables. The approach used here could be useful for study enrichment in preclinical trials where enrolling participants at risk of cognitive decline is critical for proving study efficacy, and also for developing a shorter assessment battery.
Author Gong, Pinghua
Dodge, Hiroko H
Ye, Jieping
Albin, Roger L
Yang, Tao
Lin, Ming
Author_xml – sequence: 1
  givenname: Ming
  surname: Lin
  fullname: Lin, Ming
  organization: Department of Computational Medicine and Bioinformatics
– sequence: 2
  givenname: Pinghua
  surname: Gong
  fullname: Gong, Pinghua
  organization: Department of Computational Medicine and Bioinformatics
– sequence: 3
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
  organization: Department of Computational Medicine and Bioinformatics
– sequence: 4
  givenname: Jieping
  surname: Ye
  fullname: Ye, Jieping
  organization: Department of Computational Medicine and Bioinformatics
– sequence: 5
  givenname: Roger L
  surname: Albin
  fullname: Albin, Roger L
  organization: Neurology Service & GRECC, VAAAHS, Ann Arbor, MI
– sequence: 6
  givenname: Hiroko H
  surname: Dodge
  fullname: Dodge, Hiroko H
  organization: Department of Neurology and Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29227306$$D View this record in MEDLINE/PubMed
BookMark eNpNT0tPwzAYixCIPeAfIJQ_0JFX05Zb6cZDmoDD0I5Tkn5Zg9q0SsNh_55pgIQPtmTZljxD5773gNANJQtKiuxuWy4X5D8Yy8_QlKZCJoKmcoJm4_h59DOekks0YQVjGSdyirYPbo-XKipcetUeojOqxeUwhF6ZBkYcexwbwK9lVZ1iI8R7XLra-T1-D2Ba50-VTXBHXvngTNOBj1fowqp2hOtfnaOPx9Wmek7Wb08vVblOjKA0TwppJBUy14wIZUGSGqy0Qok0o0oBtWDT2hDOQEtFhOBa8pzXuTYFA8M0m6Pbn93hS3dQ74bgOhUOu7-H7Bsx2lL-
CitedBy_id crossref_primary_10_1136_bmjopen_2019_032112
crossref_primary_10_3233_JAD_230208
crossref_primary_10_1007_s42979_023_02529_y
crossref_primary_10_3233_JAD_201447
crossref_primary_10_1001_jamanetworkopen_2021_36553
crossref_primary_10_1093_jamiaopen_ooab052
crossref_primary_10_3390_su132111587
crossref_primary_10_3390_brainsci12091149
crossref_primary_10_1093_jamia_ocae243
crossref_primary_10_1002_trc2_12103
crossref_primary_10_1097_WAD_0000000000000439
crossref_primary_10_1038_s41598_024_51985_w
crossref_primary_10_3389_fdgth_2021_714813
crossref_primary_10_1097_WAD_0000000000000619
crossref_primary_10_14283_jpad_2023_10
crossref_primary_10_1038_s43856_024_00437_7
crossref_primary_10_1111_psyg_12697
crossref_primary_10_1097_WAD_0000000000000279
crossref_primary_10_3233_JAD_200087
crossref_primary_10_1007_s11042_024_19425_z
crossref_primary_10_1016_j_neubiorev_2020_04_026
crossref_primary_10_1680_jmapl_21_00027
crossref_primary_10_3233_JAD_190302
crossref_primary_10_1093_arclin_acaa042
crossref_primary_10_1093_arclin_acaf015
ContentType Journal Article
DBID NPM
DOI 10.1097/WAD.0000000000000228
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1546-4156
ExternalDocumentID 29227306
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P50 AG047366
– fundername: NIA NIH HHS
  grantid: P50 AG005131
– fundername: NIA NIH HHS
  grantid: P30 AG019610
– fundername: NIA NIH HHS
  grantid: P50 AG005136
– fundername: NIA NIH HHS
  grantid: P50 AG008702
– fundername: NIA NIH HHS
  grantid: P50 AG023501
– fundername: NIA NIH HHS
  grantid: P50 AG047270
– fundername: NIA NIH HHS
  grantid: P50 AG005681
– fundername: NIA NIH HHS
  grantid: P30 AG008017
– fundername: NIA NIH HHS
  grantid: P30 AG028383
GroupedDBID ---
-~X
.GJ
.Z2
0R~
23M
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
8L-
AAAAV
AAHPQ
AAIQE
AAMTA
AARTV
AASCR
AAWTL
ABASU
ABBUW
ABDIG
ABIVO
ABJNI
ABVCZ
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFDTB
AFFNX
AFUWQ
AGINI
AHQNM
AHRYX
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BQLVK
BS7
BYPQX
C45
CS3
DIWNM
DUNZO
E.X
EBS
EEVPB
EJD
EX3
F2K
F2L
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IN~
IPNFZ
JF9
JG8
JK3
JK8
K-A
K8S
KD2
KMI
L-C
N9A
NPM
N~M
O9-
OAG
OAH
OCUKA
ODA
OJAPA
OL1
OLG
OLV
OLW
OLZ
OPUJH
OPX
ORVUJ
OUVQU
OVD
OVDNE
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
R58
RIG
RLZ
S4R
S4S
T8P
TEORI
TSPGW
V2I
VVN
W3M
WF8
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
ZGI
ZZMQN
ID FETCH-LOGICAL-c4118-96c61468b204afe60def6f4a4571aae1fef5dc032eb6a0443b6383d8bc92ec2b2
IngestDate Wed Feb 19 02:34:34 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4118-96c61468b204afe60def6f4a4571aae1fef5dc032eb6a0443b6383d8bc92ec2b2
PMID 29227306
ParticipantIDs pubmed_primary_29227306
PublicationCentury 2000
PublicationDate 2018 Jan-Mar
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018 Jan-Mar
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Alzheimer disease and associated disorders
PublicationTitleAlternate Alzheimer Dis Assoc Disord
PublicationYear 2018
SSID ssj0007350
Score 2.3446631
Snippet Clinical trials increasingly aim to retard disease progression during presymptomatic phases of Mild Cognitive Impairment (MCI) and thus recruiting study...
SourceID pubmed
SourceType Index Database
StartPage 18
Title Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment
URI https://www.ncbi.nlm.nih.gov/pubmed/29227306
Volume 32
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUKSIgLYt-RD1wDjuNs3EoBIQSIQxFwQnZs00jQVqJcuPPfjJckZRNLD1Zlp1Hl9zIeT2aeEdqRWSKUTMMg1DoPGIcmy_I4kCoSjBaShMIUJ59fJCdX7PQmvmm1Xseylp5HYrd4-bKu5D-oQh_gaqpk_4BsfVPogO-AL7SAMLS_wvigvAfYRtxJi7iodNuLhDvpBpvC2O507GVPysUBS1vIcgm2riqL7NqzO476YBR7dSpMpU378NJT5aM5Sdy9zHH6rh5W8FelF_CsvfOz0mfk-1XRyu87m3IJfb3neim49dHqLh80wVtLrFINq5_7mESYjcUklLejLAnM3nDc0DaBzJpQzmo6C_zJmDuR4Ov2oROZrD6UvrscJm74aAGmOQVnzAoY_DD6QWK7GppAE7DZMKenmpCPX87TKCZVzWWe7n31d4yitL_Fh92J9VK6c2jWby9w23FlHrVUfwFNn_sEikV0DZTBhgu4oQxuKINHAwyUwYYy2FNmHzvC4DHCYEsY3BBmCV0dH3U7J4E_WyMoGOwpgzwpElN1JyiBB1QlRCqdaMZZnIacq1ArHcuCRFSJhBPGIgGGOpKZKHKqCiroMprsD_pqFWEimOBc8ljrlOWKGKVSEgmTbhVKTdgaWnFTcjd0Aip31WStfzuygWYaXm2iKQ1PrNoC928kti08bwlFVx0
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Data+Analytical+Approaches+to+the+NACC+Dataset%3A+Aiding+Preclinical+Trial+Enrichment&rft.jtitle=Alzheimer+disease+and+associated+disorders&rft.au=Lin%2C+Ming&rft.au=Gong%2C+Pinghua&rft.au=Yang%2C+Tao&rft.au=Ye%2C+Jieping&rft.date=2018-01-01&rft.eissn=1546-4156&rft.volume=32&rft.issue=1&rft.spage=18&rft_id=info:doi/10.1097%2FWAD.0000000000000228&rft_id=info%3Apmid%2F29227306&rft_id=info%3Apmid%2F29227306&rft.externalDocID=29227306