Factors Shaping the Morphology in Sol‐Gel Derived Mesoporous Zinc Titanate Films: Unveiling the Role of Precursor Competition and Concentration
Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcinatio...
Saved in:
Published in | Advanced materials interfaces Vol. 11; no. 34 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.12.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 2196-7350 2196-7350 |
DOI | 10.1002/admi.202400215 |
Cover
Loading…
Abstract | Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐block‐polyethylene oxide (PS‐b‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy.
The influences of the hydrochloric acid contents (HCl), the ratios of the two precursors, and the solution concentration on film morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films are studied. An increase in HCl content inhibits the rate of precursor hydrolysis, enlarging the parameter window for the block copolymer templating. |
---|---|
AbstractList | Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO 2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐ block ‐polyethylene oxide (PS‐ b ‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy. Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐block‐polyethylene oxide (PS‐b‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy. The influences of the hydrochloric acid contents (HCl), the ratios of the two precursors, and the solution concentration on film morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films are studied. An increase in HCl content inhibits the rate of precursor hydrolysis, enlarging the parameter window for the block copolymer templating. Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO 2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐ block ‐polyethylene oxide (PS‐ b ‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy. Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐block‐polyethylene oxide (PS‐b‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy. Abstract Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐block‐polyethylene oxide (PS‐b‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy. |
Author | Chen, Wei Müller‐Buschbaum, Peter Harder, Constantin Schneider, Peter M. Bandarenka, Aliaksandr S. Yin, Shanshan Bulut, Yusuf Roth, Stephan V. Li, Nian Li, Yanan Vagias, Apostolos |
Author_xml | – sequence: 1 givenname: Yanan surname: Li fullname: Li, Yanan organization: Technical University of Munich – sequence: 2 givenname: Nian surname: Li fullname: Li, Nian organization: University of Electronic Science and Technology of China – sequence: 3 givenname: Constantin surname: Harder fullname: Harder, Constantin organization: Deutsches Elektronen‐Synchrotron DESY – sequence: 4 givenname: Shanshan surname: Yin fullname: Yin, Shanshan organization: School of Mathematics and Physics Jiangsu University of Technology – sequence: 5 givenname: Yusuf surname: Bulut fullname: Bulut, Yusuf organization: Deutsches Elektronen‐Synchrotron DESY – sequence: 6 givenname: Apostolos surname: Vagias fullname: Vagias, Apostolos organization: Institut Laue‐Langevin – sequence: 7 givenname: Peter M. surname: Schneider fullname: Schneider, Peter M. organization: Technical University of Munich – sequence: 8 givenname: Wei surname: Chen fullname: Chen, Wei organization: Shenzhen Technology University – sequence: 9 givenname: Stephan V. surname: Roth fullname: Roth, Stephan V. organization: KTH Royal Institute of Technology – sequence: 10 givenname: Aliaksandr S. surname: Bandarenka fullname: Bandarenka, Aliaksandr S. organization: Technical University of Munich – sequence: 11 givenname: Peter orcidid: 0000-0002-9566-6088 surname: Müller‐Buschbaum fullname: Müller‐Buschbaum, Peter email: muellerb@ph.tum.de organization: Technical University of Munich |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-365846$$DView record from Swedish Publication Index |
BookMark | eNqFkUFv0zAYhi00JEbZlbMlzil2nDgNt6qlo9IqENs4cLEc-3PrktrBTjb1xk-Av8gvwV1gghMn-3v1vs9n632Ozpx3gNBLSqaUkPy11Ac7zUlepIGWT9B5TmueVawkZ3_dn6GLGPeEEEpzms_YOfqxkqr3IeLrneys2-J-B3jjQ7fzrd8esXX42rc_v32_hBYvIdg70HgD0Xc--CHiz9YpfGN76WQPeGXbQ3yDb90d2PYP7aNvAXuDPwRQQ4g-4IU_dNDb3nqHpdNpdgpcH-RJeYGeGtlGuPh9TtDt6u3N4l129f5yvZhfZaqglGdaVkxXhEtiqqo0QBiTAKxuZjMjmTYVMM3LpJVVzipJleGNKWWhJK-VVopN0Hrkai_3ogv2IMNReGnFg-DDVsjQW9WCYFTRWtdNipGiqkxTEgNpKrXmnBuWWNnIivfQDc0_tKX9NH-gfel3gvFyVvDkfzX6u-C_DhB7sfdDcOm7aRcreJ7X6dUTNB1dKvgYA5hHLiXi1Lo4tS4eW0-BYgzc2xaO_3GL-XKzpoxz9gvFqLXL |
Cites_doi | 10.1021/la403901x 10.1039/b817093b 10.1039/C5CC04903B 10.1039/C5NJ00850F 10.1021/ma8018393 10.1021/ma061170k 10.1140/epje/e2004-00014-7 10.15330/pcss.21.2.300-311 10.1002/admt.201900993 10.1111/j.1151-2916.1961.tb13712.x 10.1016/j.jphotochemrev.2012.06.001 10.1007/s10971-008-1780-6 10.1016/j.apcata.2010.11.037 10.1038/s41467-018-05006-w 10.1038/s41929-023-00913-8 10.1039/c2cs35115c 10.1002/adfm.202311793 10.1039/C6RA03344J 10.1038/s41598-019-54025-0 10.1016/j.apcata.2015.02.013 10.1021/la302565s 10.1039/D0PY01404D 10.1126/science.272.5269.1777 10.1021/ma2018759 10.1107/S0909049512016895 10.1107/S1600576714019773 10.1039/C7TA10654H 10.1038/ncomms5606 10.1002/admi.201901565 10.1002/ange.201911796 10.1002/adma.200304906 10.1038/s41467-019-08525-2 10.1166/jnn.2016.11907 10.1016/B978-0-12-810499-6.00006-1 10.1021/acsami.2c05745 10.1021/acs.macromol.9b00531 10.1002/smtd.201900689 10.1039/C4CC08497G 10.1038/nphoton.2013.342 10.1021/ma971419l 10.1039/C6RA17556B 10.1016/j.ceramint.2015.12.024 10.1021/acs.iecr.5b01471 10.1038/s41598-023-31464-4 10.1021/nl1037962 10.1021/ja048820p 10.1002/adfm.202105644 10.1016/j.jallcom.2016.04.224 10.1038/srep05769 10.1111/j.1151-2916.1999.tb01855.x 10.1039/c1jm10407a 10.1126/sciadv.1700231 10.1038/s41528-023-00249-0 10.1039/C4NR02909G 10.1039/C4TA02031F 10.1021/cr2000465 10.1007/s13201-019-1138-y 10.1016/B978-0-12-813731-4.00008-4 10.1021/ma071442z 10.1002/admi.201900558 10.1021/acs.macromol.9b02760 10.1038/s41467-023-36977-0 10.1002/ejic.201300221 10.1021/acsami.9b18785 10.1016/j.jeurceramsoc.2009.09.031 10.1038/nature11936 10.1021/ja2120585 10.1063/1.4869784 10.1016/j.ensm.2021.11.023 10.1126/science.aad4424 10.1002/adma.200803827 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M ADTPV AFDQA AOWAS D8T D8V ZZAVC DOA |
DOI | 10.1002/admi.202400215 |
DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_31c19d9bdcc0477fb50febdc5dd666f3 oai_DiVA_org_kth_365846 10_1002_admi_202400215 ADMI1366 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12204318 – fundername: Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst: SolTech – fundername: China Scholarship Council – fundername: Basic and Applied Basic Research Foundation of Guangdong Province funderid: 2021A1515110535 – fundername: Deutsche Forschungsgemeinschaft funderid: MU1487/32; IRTG2022; EXC2089/1–390776260 – fundername: Shenzhen Science and Technology Innovation Program funderid: RCYX20221008092908030; ZDSYS20200811143600001 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFKRA AIACR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BENPR BGLVJ BMXJE BRXPI CCPQU DCZOG DPXWK EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7S MEWTI MY~ M~E O9- P2W PDBOC PTHSS R.K ROL WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAYXX ABJNI ADMLS AFPKN AIURR BFHJK CITATION EJD PHGZM PHGZT SUPJJ 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M PQGLB ADTPV AFDQA AOWAS D8T D8V ZZAVC PUEGO |
ID | FETCH-LOGICAL-c4116-da73d706a0f775fe033aee39b88fa3df7e3d653ae57237a1cf6bf5a4ca69cdcc3 |
IEDL.DBID | 24P |
ISSN | 2196-7350 |
IngestDate | Wed Aug 27 01:29:53 EDT 2025 Thu Aug 21 06:52:28 EDT 2025 Fri Jul 25 11:52:05 EDT 2025 Tue Jul 01 00:39:55 EDT 2025 Wed Jan 22 17:12:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4116-da73d706a0f775fe033aee39b88fa3df7e3d653ae57237a1cf6bf5a4ca69cdcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9566-6088 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202400215 |
PQID | 3134622972 |
PQPubID | 2034582 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31c19d9bdcc0477fb50febdc5dd666f3 swepub_primary_oai_DiVA_org_kth_365846 proquest_journals_3134622972 crossref_primary_10_1002_admi_202400215 wiley_primary_10_1002_admi_202400215_ADMI1366 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2015 2011 2023 2014 2017 2011; 495 21 13 5 3 11 2013 2023 2018 2020 2022 2014 2016; 495 21 45 8 352 2015; 39 2019 2012; 3 112 2020 2020; 7 53 2020 2012; 11 45 2019; 52 2009 2014; 21 4 2019; 10 2020 2016; 10 6 2016 2015; 681 54 2004 1998; 16 31 2014; 47 2012; 19 2020; 12 2024; 34 2006 2007; 39 40 2014; 85 2012; 13 2016; 16 1961 2010 2015; 44 30 51 2003; 12 2012 1999 2004; 134 82 126 2018 2014; 6 6 2018; 9 2021; 31 2014; 2 2015 2009 2014; 51 5 30 2013; 2013 2020 2023; 5 7 2019 2020; 6 4 1996; 272 2008; 47 2016; 42 2022; 14 2012; 28 2008 2012; 41 41 2019 2016 2011; 131 6 393 2018 2019 2023 2023; 9 14 6 e_1_2_8_28_1 e_1_2_8_22_3 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_5 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_1_7 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_1_6 e_1_2_8_3_4 e_1_2_8_5_2 Valastro S. (e_1_2_8_1_2) 2023 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_32_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_4_6 e_1_2_8_4_5 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_16_2 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_18_2 e_1_2_8_35_1 Fotovvati B. (e_1_2_8_14_1) 2019; 3 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_12_1 e_1_2_8_31_3 e_1_2_8_33_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 41 41 start-page: 9090 5969 year: 2008 2012 publication-title: Macromolecules Chem. Soc. Rev. – volume: 10 6 start-page: 49 year: 2020 2016 publication-title: Appl. Water Science RSC Adv. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 12 start-page: 9169 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 495 21 45 8 352 start-page: 215 6, 974 227 300 201 133 year: 2013 2023 2018 2020 2022 2014 2016 publication-title: Nature Nat. Sustain. Phys. Chem. Solid State Energy Storage Mater. Nat. Photonics Science – volume: 7 53 start-page: 5604 year: 2020 2020 publication-title: Adv. Mater. Interfaces Macromolecules – volume: 272 start-page: 1777 year: 1996 publication-title: Science – volume: 39 start-page: 7442 year: 2015 publication-title: New J. Chem. – volume: 5 7 start-page: 14 year: 2020 2023 publication-title: Adv. Mater. Technol. npj Flexible Electron. – volume: 12 start-page: 443 year: 2003 publication-title: Eur. Phys. J. E – volume: 3 112 start-page: 28 3057 year: 2019 2012 publication-title: J. Manuf. Mater. Process. Chem. Rev. – volume: 13 start-page: 169 year: 2012 publication-title: J. Photochem. Photobiol., C – volume: 47 start-page: 187 year: 2008 publication-title: J. Sol‐Gel Sci. Technol. – volume: 85 year: 2014 publication-title: Rev. Sci. Instrum. – volume: 44 30 51 start-page: 493 947 year: 1961 2010 2015 publication-title: J. Am. Ceram. Soc. J. Eur. Ceram. Soc. Chem. Commun. – volume: 16 31 start-page: 226 3509 year: 2004 1998 publication-title: Adv. Mater. Macromolecules – volume: 19 start-page: 647 year: 2012 publication-title: J. Synchrotr. Radiat. – volume: 131 6 393 start-page: 153 year: 2019 2016 2011 publication-title: Angew. Chem. RSC Adv. Appl. Catal., A – volume: 42 start-page: 5094 year: 2016 publication-title: Ceram. Int. – volume: 16 start-page: 9568 year: 2016 publication-title: J. Nanosci. Nanotechnol. – volume: 10 start-page: 700 year: 2019 publication-title: Nat. Commun. – volume: 11 45 start-page: 7487 1483 year: 2020 2012 publication-title: Polym. Chem. Macromolecules – volume: 9 start-page: 2582 year: 2018 publication-title: Nat. Commun. – volume: 6 6 start-page: 4405 year: 2018 2014 publication-title: J. Mater. Chem. A Nanoscale – volume: 47 start-page: 1797 year: 2014 publication-title: J. Appl. Crystallogr. – volume: 495 21 13 5 3 11 start-page: 131 4200 4606 666 year: 2015 2011 2023 2014 2017 2011 publication-title: Appl. Catal., A J. Mater. Chem. Sci. Rep. Nat. Commun. Sci. Adv. Nano Lett. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 6 4 year: 2019 2020 publication-title: Adv. Mater. Interfaces Small Methods – volume: 28 year: 2012 publication-title: Langmuir – volume: 681 54 start-page: 88 7226 year: 2016 2015 publication-title: J. Alloys Compd. Ind. Eng. Chem. Res. – volume: 21 4 start-page: 4087 5769 year: 2009 2014 publication-title: Adv. Mater. Sci. Rep. – volume: 2013 start-page: 3286 year: 2013 publication-title: Eur. J. Inorg. Chem. – volume: 9 14 6 start-page: 135 1410 185 year: 2018 2019 2023 2023 publication-title: Sci. Rep. Nat. Commun. Nat. Catal. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 4721 year: 2019 publication-title: Macromolecules – volume: 134 82 126 start-page: 4437 927 7790 year: 2012 1999 2004 publication-title: J. Am. Chem. Soc. J. Am. Ceram. Soc. J. Am. Chem. Soc. – volume: 39 40 start-page: 8473 8119 year: 2006 2007 publication-title: Macromolecules Macromolecules – volume: 51 5 30 start-page: 1230 1568 651 year: 2015 2009 2014 publication-title: Chem. Commun. Soft Matter Langmuir – ident: e_1_2_8_22_3 doi: 10.1021/la403901x – ident: e_1_2_8_22_2 doi: 10.1039/b817093b – ident: e_1_2_8_7_3 doi: 10.1039/C5CC04903B – ident: e_1_2_8_29_1 doi: 10.1039/C5NJ00850F – ident: e_1_2_8_20_1 doi: 10.1021/ma8018393 – ident: e_1_2_8_21_1 doi: 10.1021/ma061170k – ident: e_1_2_8_34_1 doi: 10.1140/epje/e2004-00014-7 – ident: e_1_2_8_1_4 doi: 10.15330/pcss.21.2.300-311 – ident: e_1_2_8_2_1 doi: 10.1002/admt.201900993 – ident: e_1_2_8_7_1 doi: 10.1111/j.1151-2916.1961.tb13712.x – ident: e_1_2_8_11_1 doi: 10.1016/j.jphotochemrev.2012.06.001 – ident: e_1_2_8_25_1 doi: 10.1007/s10971-008-1780-6 – ident: e_1_2_8_5_3 doi: 10.1016/j.apcata.2010.11.037 – ident: e_1_2_8_15_1 doi: 10.1038/s41467-018-05006-w – ident: e_1_2_8_3_4 doi: 10.1038/s41929-023-00913-8 – start-page: 6, 974 year: 2023 ident: e_1_2_8_1_2 publication-title: Nat. Sustain. – ident: e_1_2_8_20_2 doi: 10.1039/c2cs35115c – ident: e_1_2_8_27_1 doi: 10.1002/adfm.202311793 – ident: e_1_2_8_30_2 doi: 10.1039/C6RA03344J – ident: e_1_2_8_3_2 doi: 10.1038/s41598-019-54025-0 – ident: e_1_2_8_4_1 doi: 10.1016/j.apcata.2015.02.013 – ident: e_1_2_8_19_1 doi: 10.1021/la302565s – ident: e_1_2_8_18_1 doi: 10.1039/D0PY01404D – ident: e_1_2_8_17_1 doi: 10.1126/science.272.5269.1777 – ident: e_1_2_8_18_2 doi: 10.1021/ma2018759 – ident: e_1_2_8_37_1 doi: 10.1107/S0909049512016895 – ident: e_1_2_8_38_1 doi: 10.1107/S1600576714019773 – ident: e_1_2_8_24_1 doi: 10.1039/C7TA10654H – ident: e_1_2_8_4_4 doi: 10.1038/ncomms5606 – ident: e_1_2_8_32_1 doi: 10.1002/admi.201901565 – ident: e_1_2_8_5_1 doi: 10.1002/ange.201911796 – ident: e_1_2_8_16_1 doi: 10.1002/adma.200304906 – ident: e_1_2_8_13_1 doi: 10.1038/s41467-019-08525-2 – ident: e_1_2_8_6_1 doi: 10.1166/jnn.2016.11907 – volume: 3 start-page: 28 year: 2019 ident: e_1_2_8_14_1 publication-title: J. Manuf. Mater. Process. – ident: e_1_2_8_3_1 doi: 10.1016/B978-0-12-810499-6.00006-1 – ident: e_1_2_8_36_1 doi: 10.1021/acsami.2c05745 – ident: e_1_2_8_35_1 doi: 10.1021/acs.macromol.9b00531 – ident: e_1_2_8_23_2 doi: 10.1002/smtd.201900689 – ident: e_1_2_8_22_1 doi: 10.1039/C4CC08497G – ident: e_1_2_8_1_6 doi: 10.1038/nphoton.2013.342 – ident: e_1_2_8_16_2 doi: 10.1021/ma971419l – ident: e_1_2_8_5_2 doi: 10.1039/C6RA17556B – ident: e_1_2_8_12_1 doi: 10.1016/j.ceramint.2015.12.024 – ident: e_1_2_8_9_2 doi: 10.1021/acs.iecr.5b01471 – ident: e_1_2_8_4_3 doi: 10.1038/s41598-023-31464-4 – ident: e_1_2_8_4_6 doi: 10.1021/nl1037962 – ident: e_1_2_8_31_3 doi: 10.1021/ja048820p – ident: e_1_2_8_33_1 doi: 10.1002/adfm.202105644 – ident: e_1_2_8_9_1 doi: 10.1016/j.jallcom.2016.04.224 – ident: e_1_2_8_10_2 doi: 10.1038/srep05769 – ident: e_1_2_8_31_2 doi: 10.1111/j.1151-2916.1999.tb01855.x – ident: e_1_2_8_4_2 doi: 10.1039/c1jm10407a – ident: e_1_2_8_4_5 doi: 10.1126/sciadv.1700231 – ident: e_1_2_8_2_2 doi: 10.1038/s41528-023-00249-0 – ident: e_1_2_8_24_2 doi: 10.1039/C4NR02909G – ident: e_1_2_8_28_1 doi: 10.1039/C4TA02031F – ident: e_1_2_8_14_2 doi: 10.1021/cr2000465 – ident: e_1_2_8_30_1 doi: 10.1007/s13201-019-1138-y – ident: e_1_2_8_1_3 doi: 10.1016/B978-0-12-813731-4.00008-4 – ident: e_1_2_8_21_2 doi: 10.1021/ma071442z – ident: e_1_2_8_23_1 doi: 10.1002/admi.201900558 – ident: e_1_2_8_32_2 doi: 10.1021/acs.macromol.9b02760 – ident: e_1_2_8_3_3 doi: 10.1038/s41467-023-36977-0 – ident: e_1_2_8_26_1 doi: 10.1002/ejic.201300221 – ident: e_1_2_8_8_1 doi: 10.1021/acsami.9b18785 – ident: e_1_2_8_7_2 doi: 10.1016/j.jeurceramsoc.2009.09.031 – ident: e_1_2_8_1_1 doi: 10.1038/nature11936 – ident: e_1_2_8_31_1 doi: 10.1021/ja2120585 – ident: e_1_2_8_39_1 doi: 10.1063/1.4869784 – ident: e_1_2_8_1_5 doi: 10.1016/j.ensm.2021.11.023 – ident: e_1_2_8_1_7 doi: 10.1126/science.aad4424 – ident: e_1_2_8_10_1 doi: 10.1002/adma.200803827 |
SSID | ssj0001121283 |
Score | 2.3208857 |
Snippet | Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their... Abstract Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their... |
SourceID | doaj swepub proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | Block copolymers calcination process Dimethylformamide film morphology evolution Hydrochloric acid Hydrogen chloride mesoporous structure Micelles Mixtures Morphology Photoelectric effect Photoelectricity Polyethylene oxide Polymer films Polystyrene resins Prepolymers Roasting sol-gel chemistry Sol-gel processes Thin films Titanates Titanium dioxide Zinc acetate Zinc compounds Zinc oxide zinc titanate |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpUpcEBQQgYJ8QHCKaseJnXBbuiwFaRGiXVRxsfypRqQJ2iw98xPgL_aXdGzvVrunXjjaSmzL8xK_GY3fIPSaWCCtTNc5kFWfg79R5EponZemsVrVVNl4fWz-hZ8sys_n1flWqa-QE5bkgdPGHTFqaGMbbY0hpRBeV8Q7aFXWAvP2UecTzrwtZypGVyj8kmu2UWkkxZGyly24gyFlsgg1cLdOoSjWv8swk2roLmGNJ87sIXqwpop4kpb4CN1z_QHajymbZnyM_s1SqRx8eqHCpScMVA7PB9i3GCnHbY9Ph-76z9-PrsNTANqVs3juxgEYN7j7-EfbG3zWAjkEuolnbXc5vsOL_sq13Wa0b0Pn8ODx12WIyo_DEh9Hmh3TvLDqLbT7lN4Zep6gxezD2fFJvi6wkJuSUp5bJZgVhCvihai8I4wp51ij69orZr1wzPIK-ipRMKGo8Vz7SpVG8caAQdhTtNcPvXuGcONsRTWnjhNXugJG1lyoUhtiSOOZztDbzYbLX0lHQybF5EIG08hb02TofbDH7VNB_zp2ACrkGhXyLlRk6HBjTbn-KEd4iQEWi0YUGXqTLLwzy7T9Pomz_FxdSBapWYbyiIA71iwn0_knyjh__j8W_wLdDyOnpJlDtLda_nYvgfqs9KuI8hveIQYF priority: 102 providerName: Directory of Open Access Journals |
Title | Factors Shaping the Morphology in Sol‐Gel Derived Mesoporous Zinc Titanate Films: Unveiling the Role of Precursor Competition and Concentration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202400215 https://www.proquest.com/docview/3134622972 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-365846 https://doaj.org/article/31c19d9bdcc0477fb50febdc5dd666f3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQq0pcUGlBBMrKBwSnqHac2Btu2263BWmrVdtFFZfIvzQiTarNtmceAV6RJ2Hs7G7JCXH0KLEtz4z9eTTzGaF3xABoZWoYA1h1Mdw3klgKpeJU50bJIZUmlI9Nz_nZPP18nV3_VcXf8UNsAm7eM8J-7R1cqvbwkTRUmtsS7nc-BzLxVebbvr7Ws-cn6ewxykJhaw5cnOCZPBYsI2vmRpIc9rvonUyBwL-POjsm0T6IDafQZBc9W8FHPOr0_Rw9sfUe2glpnLrdR78m3fM5-PJG-kIoDPAOTxtYyxA9x2WNL5vq94-fp7bCYzC-B2vw1LYNoPDmvsVfy1rjqxIAI0BQPCmr2_YjntcPtqzWvV00lcWNw7OFj9S3zQIfB-gdUr-wrA206y7l00teoPnk5Or4LF49uhDrlFIeGymYEYRL4oTInCWMSWtZroZDJ5lxwjLDM5BlImFCUu24cplMteS5Nlqzl2irbmr7CuHcmowqTi0nNrUJ9Ky4kKnSRJPcMRWhD-sFL-46bo2iY1FOCq-aYqOaCB15fWy-8pzYQdAsvhUrFysY1TQ3uYJJkFQIpzLiLLQyY-CO5liEDtbaLFaO2sJPDOwzyUUSofedhnujjMsvozDK9-VNwQJci1AcLOAfcy5G4-knyjh__Z_fv0FPvbDLmTlAW8vFvX0LyGepBsG4B2j76OR8djEI8YM_kdgCpQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYIL4ikCBXxAcIpqx4m96W3psmyhqSq6ixCXyM82Ik2qzbZnfgL8RX4JY2ez1Z4QR1t-yTNjfx7NfEboDTEAWpkaxQBWXQzvjSSWQqk41blRckSlCeljxTGfLdJP37IhmtDnwvT8EBuHm7eMcF57A_cO6b0b1lBpLip44PkgyMSnmd-GiYS3zSQ9uXGzUDibAxknmCaPBcvIQN1Ikr3tIbaupsDgvw07eyrRbRQbrqHpA3R_jR_xuBf4Q3TLNo_QnRDHqbvH6Pe0_z8Hn55LnwmFAd_hooXNDO5zXDX4tK3__Pz10dZ4Atp3bQ0ubNcCDG-vOvy9ajSeV4AYAYPiaVVfdPt40Vzbqh5G-9LWFrcOnyy9q75rl_ggYO8Q-4VlY6Dc9DGfvuYJWkw_zA9m8frXhVinlPLYSMGMIFwSJ0TmLGFMWstyNRo5yYwTlhmeQV0mEiYk1Y4rl8lUS55rozV7inaatrHPEM6tyaji1HJiU5vAyIoLmSpNNMkdUxF6N2x4edmTa5Q9jXJSetGUG9FE6L2Xx6aVJ8UOFe3yrFzbWMmoprnJFSyCpEI4lRFnoZQZA480xyK0O0izXFtqB50Y6E2SiyRCb3sJb80yqb6Owyw_VuclC3gtQnHQgH-suRxPikPKOH_-n-1fo7uzeXFUHh0ef36B7vkGfQDNLtpZLa_sS4BBK_UqKPpfTWEDgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQKxAXxK8ILeADglNUJ07sTW9Ll9ACW1W0qapeIv_SiDSpNtueeQR4RZ6EsZPdkhPiaMexLc-M_Xk08xmhN0QDaKVyEgJYtSHcN-JQcCnDRGVaikkktE8fmx-y_SL5dJae_ZXF3_NDrB1uzjL8fu0M_ErbnVvSUKEvK7jfuRjI2GWZbzqqPNDrzelpcV7c-lki2Jw9GyfYJgs5TcmKu5HEO-NORmeTp_Af486eS3QMY_05lD9EDwYAiae9xB-hO6Z5jO76QE7VPUG_8v4BHXx8IVwqFAaAh-ctrKb3n-Oqwcdt_fvHz4-mxjNQvxuj8dx0LeDw9rrD51Wj8EkFkBFAKM6r-rLbxUVzY6p61dvXtja4tfho4Xz1XbvAex58--AvLBoN5aYP-nQ1T1GRfzjZ2w-HZxdClUQRC7XgVHPCBLGcp9YQSoUxNJOTiRVUW26oZinUpTymXETKMmlTkSjBMqWVos_QRtM25jnCmdFpJFlkGDGJiaFnybhIpCKKZJbKAL1bLXh51bNrlD2Pclw60ZRr0QTovZPHupVjxfYV7eJbORhZSSMVZTqTMAmScG5lSqyBUqo13NIsDdD2SprlYKod_ERBQ-OMxwF620t4NMqsOp36Ub4vL0rqAVuAQq8B_5hzOZ3NDyLK2Iv_bP8a3Tua5eWXg8PPW-i--94H0GyjjeXi2rwEGLSUrwZN_wOjSgR6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+Shaping+the+Morphology+in+Sol%E2%80%90Gel+Derived+Mesoporous+Zinc+Titanate+Films%3A+Unveiling+the+Role+of+Precursor+Competition+and+Concentration&rft.jtitle=Advanced+materials+interfaces&rft.au=Li%2C+Yanan&rft.au=Li%2C+Nian&rft.au=Harder%2C+Constantin&rft.au=Yin%2C+Shanshan&rft.date=2024-12-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=11&rft.issue=34&rft_id=info:doi/10.1002%2Fadmi.202400215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_202400215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |