Factors Shaping the Morphology in Sol‐Gel Derived Mesoporous Zinc Titanate Films: Unveiling the Role of Precursor Competition and Concentration

Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcinatio...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 11; no. 34
Main Authors Li, Yanan, Li, Nian, Harder, Constantin, Yin, Shanshan, Bulut, Yusuf, Vagias, Apostolos, Schneider, Peter M., Chen, Wei, Roth, Stephan V., Bandarenka, Aliaksandr S., Müller‐Buschbaum, Peter
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.12.2024
Wiley-VCH
Subjects
Online AccessGet full text
ISSN2196-7350
2196-7350
DOI10.1002/admi.202400215

Cover

Loading…
Abstract Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐block‐polyethylene oxide (PS‐b‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy. The influences of the hydrochloric acid contents (HCl), the ratios of the two precursors, and the solution concentration on film morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films are studied. An increase in HCl content inhibits the rate of precursor hydrolysis, enlarging the parameter window for the block copolymer templating.
AbstractList Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO 2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐ block ‐polyethylene oxide (PS‐ b ‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy.
Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐block‐polyethylene oxide (PS‐b‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy. The influences of the hydrochloric acid contents (HCl), the ratios of the two precursors, and the solution concentration on film morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films are studied. An increase in HCl content inhibits the rate of precursor hydrolysis, enlarging the parameter window for the block copolymer templating.
Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO 2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐ block ‐polyethylene oxide (PS‐ b ‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy.
Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐block‐polyethylene oxide (PS‐b‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy.
Abstract Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their photoelectric properties and specific surface area. The present work investigates the morphology of mesoporous zinc titanate films obtained by calcination of hybrid thin films containing polymer templates and precursor mixtures of zinc acetate dihydrate (ZAD) and titanium isopropoxide (TTIP). ZnO and TiO2 films are fabricated for reference. The influences of hydrochloric acid contents (HCl), the ratios of ZAD and TTIP, and the solution concentrations on the film morphologies are studied. The amphiphilic diblock copolymer, polystyrene‐block‐polyethylene oxide (PS‐b‐PEO), plays the role of a structure directing template, as it self‐assembles into micelles in a solvent‐acid mixture of N, N‐dimethylformamide (DMF) and HCl. Thin films are prepared with spin‐coating and subsequent calcination. Adjusting the ratio of TTIP and ZAD leads to the structure evolution from order to disorder in a film. It depends on the hydrolysis and condensation processes of the precursors, providing different time‐to‐growth processes to control the film morphologies. An increase in solution concentration enhances the surface coverage. As probed with grazing‐incidence small‐angle X‐ray scattering, the inner structures are larger than the surface structures seen in scanning electron microscopy.
Author Chen, Wei
Müller‐Buschbaum, Peter
Harder, Constantin
Schneider, Peter M.
Bandarenka, Aliaksandr S.
Yin, Shanshan
Bulut, Yusuf
Roth, Stephan V.
Li, Nian
Li, Yanan
Vagias, Apostolos
Author_xml – sequence: 1
  givenname: Yanan
  surname: Li
  fullname: Li, Yanan
  organization: Technical University of Munich
– sequence: 2
  givenname: Nian
  surname: Li
  fullname: Li, Nian
  organization: University of Electronic Science and Technology of China
– sequence: 3
  givenname: Constantin
  surname: Harder
  fullname: Harder, Constantin
  organization: Deutsches Elektronen‐Synchrotron DESY
– sequence: 4
  givenname: Shanshan
  surname: Yin
  fullname: Yin, Shanshan
  organization: School of Mathematics and Physics Jiangsu University of Technology
– sequence: 5
  givenname: Yusuf
  surname: Bulut
  fullname: Bulut, Yusuf
  organization: Deutsches Elektronen‐Synchrotron DESY
– sequence: 6
  givenname: Apostolos
  surname: Vagias
  fullname: Vagias, Apostolos
  organization: Institut Laue‐Langevin
– sequence: 7
  givenname: Peter M.
  surname: Schneider
  fullname: Schneider, Peter M.
  organization: Technical University of Munich
– sequence: 8
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Shenzhen Technology University
– sequence: 9
  givenname: Stephan V.
  surname: Roth
  fullname: Roth, Stephan V.
  organization: KTH Royal Institute of Technology
– sequence: 10
  givenname: Aliaksandr S.
  surname: Bandarenka
  fullname: Bandarenka, Aliaksandr S.
  organization: Technical University of Munich
– sequence: 11
  givenname: Peter
  orcidid: 0000-0002-9566-6088
  surname: Müller‐Buschbaum
  fullname: Müller‐Buschbaum, Peter
  email: muellerb@ph.tum.de
  organization: Technical University of Munich
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-365846$$DView record from Swedish Publication Index
BookMark eNqFkUFv0zAYhi00JEbZlbMlzil2nDgNt6qlo9IqENs4cLEc-3PrktrBTjb1xk-Av8gvwV1gghMn-3v1vs9n632Ozpx3gNBLSqaUkPy11Ac7zUlepIGWT9B5TmueVawkZ3_dn6GLGPeEEEpzms_YOfqxkqr3IeLrneys2-J-B3jjQ7fzrd8esXX42rc_v32_hBYvIdg70HgD0Xc--CHiz9YpfGN76WQPeGXbQ3yDb90d2PYP7aNvAXuDPwRQQ4g-4IU_dNDb3nqHpdNpdgpcH-RJeYGeGtlGuPh9TtDt6u3N4l129f5yvZhfZaqglGdaVkxXhEtiqqo0QBiTAKxuZjMjmTYVMM3LpJVVzipJleGNKWWhJK-VVopN0Hrkai_3ogv2IMNReGnFg-DDVsjQW9WCYFTRWtdNipGiqkxTEgNpKrXmnBuWWNnIivfQDc0_tKX9NH-gfel3gvFyVvDkfzX6u-C_DhB7sfdDcOm7aRcreJ7X6dUTNB1dKvgYA5hHLiXi1Lo4tS4eW0-BYgzc2xaO_3GL-XKzpoxz9gvFqLXL
Cites_doi 10.1021/la403901x
10.1039/b817093b
10.1039/C5CC04903B
10.1039/C5NJ00850F
10.1021/ma8018393
10.1021/ma061170k
10.1140/epje/e2004-00014-7
10.15330/pcss.21.2.300-311
10.1002/admt.201900993
10.1111/j.1151-2916.1961.tb13712.x
10.1016/j.jphotochemrev.2012.06.001
10.1007/s10971-008-1780-6
10.1016/j.apcata.2010.11.037
10.1038/s41467-018-05006-w
10.1038/s41929-023-00913-8
10.1039/c2cs35115c
10.1002/adfm.202311793
10.1039/C6RA03344J
10.1038/s41598-019-54025-0
10.1016/j.apcata.2015.02.013
10.1021/la302565s
10.1039/D0PY01404D
10.1126/science.272.5269.1777
10.1021/ma2018759
10.1107/S0909049512016895
10.1107/S1600576714019773
10.1039/C7TA10654H
10.1038/ncomms5606
10.1002/admi.201901565
10.1002/ange.201911796
10.1002/adma.200304906
10.1038/s41467-019-08525-2
10.1166/jnn.2016.11907
10.1016/B978-0-12-810499-6.00006-1
10.1021/acsami.2c05745
10.1021/acs.macromol.9b00531
10.1002/smtd.201900689
10.1039/C4CC08497G
10.1038/nphoton.2013.342
10.1021/ma971419l
10.1039/C6RA17556B
10.1016/j.ceramint.2015.12.024
10.1021/acs.iecr.5b01471
10.1038/s41598-023-31464-4
10.1021/nl1037962
10.1021/ja048820p
10.1002/adfm.202105644
10.1016/j.jallcom.2016.04.224
10.1038/srep05769
10.1111/j.1151-2916.1999.tb01855.x
10.1039/c1jm10407a
10.1126/sciadv.1700231
10.1038/s41528-023-00249-0
10.1039/C4NR02909G
10.1039/C4TA02031F
10.1021/cr2000465
10.1007/s13201-019-1138-y
10.1016/B978-0-12-813731-4.00008-4
10.1021/ma071442z
10.1002/admi.201900558
10.1021/acs.macromol.9b02760
10.1038/s41467-023-36977-0
10.1002/ejic.201300221
10.1021/acsami.9b18785
10.1016/j.jeurceramsoc.2009.09.031
10.1038/nature11936
10.1021/ja2120585
10.1063/1.4869784
10.1016/j.ensm.2021.11.023
10.1126/science.aad4424
10.1002/adma.200803827
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOA
DOI 10.1002/admi.202400215
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_31c19d9bdcc0477fb50febdc5dd666f3
oai_DiVA_org_kth_365846
10_1002_admi_202400215
ADMI1366
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12204318
– fundername: Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst: SolTech
– fundername: China Scholarship Council
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  funderid: 2021A1515110535
– fundername: Deutsche Forschungsgemeinschaft
  funderid: MU1487/32; IRTG2022; EXC2089/1–390776260
– fundername: Shenzhen Science and Technology Innovation Program
  funderid: RCYX20221008092908030; ZDSYS20200811143600001
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AIACR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BENPR
BGLVJ
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7S
MEWTI
MY~
M~E
O9-
P2W
PDBOC
PTHSS
R.K
ROL
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAYXX
ABJNI
ADMLS
AFPKN
AIURR
BFHJK
CITATION
EJD
PHGZM
PHGZT
SUPJJ
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
PQGLB
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
PUEGO
ID FETCH-LOGICAL-c4116-da73d706a0f775fe033aee39b88fa3df7e3d653ae57237a1cf6bf5a4ca69cdcc3
IEDL.DBID 24P
ISSN 2196-7350
IngestDate Wed Aug 27 01:29:53 EDT 2025
Thu Aug 21 06:52:28 EDT 2025
Fri Jul 25 11:52:05 EDT 2025
Tue Jul 01 00:39:55 EDT 2025
Wed Jan 22 17:12:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4116-da73d706a0f775fe033aee39b88fa3df7e3d653ae57237a1cf6bf5a4ca69cdcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9566-6088
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202400215
PQID 3134622972
PQPubID 2034582
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_31c19d9bdcc0477fb50febdc5dd666f3
swepub_primary_oai_DiVA_org_kth_365846
proquest_journals_3134622972
crossref_primary_10_1002_admi_202400215
wiley_primary_10_1002_admi_202400215_ADMI1366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2015 2011 2023 2014 2017 2011; 495 21 13 5 3 11
2013 2023 2018 2020 2022 2014 2016; 495 21 45 8 352
2015; 39
2019 2012; 3 112
2020 2020; 7 53
2020 2012; 11 45
2019; 52
2009 2014; 21 4
2019; 10
2020 2016; 10 6
2016 2015; 681 54
2004 1998; 16 31
2014; 47
2012; 19
2020; 12
2024; 34
2006 2007; 39 40
2014; 85
2012; 13
2016; 16
1961 2010 2015; 44 30 51
2003; 12
2012 1999 2004; 134 82 126
2018 2014; 6 6
2018; 9
2021; 31
2014; 2
2015 2009 2014; 51 5 30
2013; 2013
2020 2023; 5 7
2019 2020; 6 4
1996; 272
2008; 47
2016; 42
2022; 14
2012; 28
2008 2012; 41 41
2019 2016 2011; 131 6 393
2018 2019 2023 2023; 9 14 6
e_1_2_8_28_1
e_1_2_8_22_3
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_5
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_1_7
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_1_6
e_1_2_8_3_4
e_1_2_8_5_2
Valastro S. (e_1_2_8_1_2) 2023
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_32_2
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_4_6
e_1_2_8_4_5
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_16_2
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_35_1
Fotovvati B. (e_1_2_8_14_1) 2019; 3
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_12_1
e_1_2_8_31_3
e_1_2_8_33_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 41 41
  start-page: 9090 5969
  year: 2008 2012
  publication-title: Macromolecules Chem. Soc. Rev.
– volume: 10 6
  start-page: 49
  year: 2020 2016
  publication-title: Appl. Water Science RSC Adv.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 9169
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 495 21 45 8 352
  start-page: 215 6, 974 227 300 201 133
  year: 2013 2023 2018 2020 2022 2014 2016
  publication-title: Nature Nat. Sustain. Phys. Chem. Solid State Energy Storage Mater. Nat. Photonics Science
– volume: 7 53
  start-page: 5604
  year: 2020 2020
  publication-title: Adv. Mater. Interfaces Macromolecules
– volume: 272
  start-page: 1777
  year: 1996
  publication-title: Science
– volume: 39
  start-page: 7442
  year: 2015
  publication-title: New J. Chem.
– volume: 5 7
  start-page: 14
  year: 2020 2023
  publication-title: Adv. Mater. Technol. npj Flexible Electron.
– volume: 12
  start-page: 443
  year: 2003
  publication-title: Eur. Phys. J. E
– volume: 3 112
  start-page: 28 3057
  year: 2019 2012
  publication-title: J. Manuf. Mater. Process. Chem. Rev.
– volume: 13
  start-page: 169
  year: 2012
  publication-title: J. Photochem. Photobiol., C
– volume: 47
  start-page: 187
  year: 2008
  publication-title: J. Sol‐Gel Sci. Technol.
– volume: 85
  year: 2014
  publication-title: Rev. Sci. Instrum.
– volume: 44 30 51
  start-page: 493 947
  year: 1961 2010 2015
  publication-title: J. Am. Ceram. Soc. J. Eur. Ceram. Soc. Chem. Commun.
– volume: 16 31
  start-page: 226 3509
  year: 2004 1998
  publication-title: Adv. Mater. Macromolecules
– volume: 19
  start-page: 647
  year: 2012
  publication-title: J. Synchrotr. Radiat.
– volume: 131 6 393
  start-page: 153
  year: 2019 2016 2011
  publication-title: Angew. Chem. RSC Adv. Appl. Catal., A
– volume: 42
  start-page: 5094
  year: 2016
  publication-title: Ceram. Int.
– volume: 16
  start-page: 9568
  year: 2016
  publication-title: J. Nanosci. Nanotechnol.
– volume: 10
  start-page: 700
  year: 2019
  publication-title: Nat. Commun.
– volume: 11 45
  start-page: 7487 1483
  year: 2020 2012
  publication-title: Polym. Chem. Macromolecules
– volume: 9
  start-page: 2582
  year: 2018
  publication-title: Nat. Commun.
– volume: 6 6
  start-page: 4405
  year: 2018 2014
  publication-title: J. Mater. Chem. A Nanoscale
– volume: 47
  start-page: 1797
  year: 2014
  publication-title: J. Appl. Crystallogr.
– volume: 495 21 13 5 3 11
  start-page: 131 4200 4606 666
  year: 2015 2011 2023 2014 2017 2011
  publication-title: Appl. Catal., A J. Mater. Chem. Sci. Rep. Nat. Commun. Sci. Adv. Nano Lett.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 6 4
  year: 2019 2020
  publication-title: Adv. Mater. Interfaces Small Methods
– volume: 28
  year: 2012
  publication-title: Langmuir
– volume: 681 54
  start-page: 88 7226
  year: 2016 2015
  publication-title: J. Alloys Compd. Ind. Eng. Chem. Res.
– volume: 21 4
  start-page: 4087 5769
  year: 2009 2014
  publication-title: Adv. Mater. Sci. Rep.
– volume: 2013
  start-page: 3286
  year: 2013
  publication-title: Eur. J. Inorg. Chem.
– volume: 9 14 6
  start-page: 135 1410 185
  year: 2018 2019 2023 2023
  publication-title: Sci. Rep. Nat. Commun. Nat. Catal.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 4721
  year: 2019
  publication-title: Macromolecules
– volume: 134 82 126
  start-page: 4437 927 7790
  year: 2012 1999 2004
  publication-title: J. Am. Chem. Soc. J. Am. Ceram. Soc. J. Am. Chem. Soc.
– volume: 39 40
  start-page: 8473 8119
  year: 2006 2007
  publication-title: Macromolecules Macromolecules
– volume: 51 5 30
  start-page: 1230 1568 651
  year: 2015 2009 2014
  publication-title: Chem. Commun. Soft Matter Langmuir
– ident: e_1_2_8_22_3
  doi: 10.1021/la403901x
– ident: e_1_2_8_22_2
  doi: 10.1039/b817093b
– ident: e_1_2_8_7_3
  doi: 10.1039/C5CC04903B
– ident: e_1_2_8_29_1
  doi: 10.1039/C5NJ00850F
– ident: e_1_2_8_20_1
  doi: 10.1021/ma8018393
– ident: e_1_2_8_21_1
  doi: 10.1021/ma061170k
– ident: e_1_2_8_34_1
  doi: 10.1140/epje/e2004-00014-7
– ident: e_1_2_8_1_4
  doi: 10.15330/pcss.21.2.300-311
– ident: e_1_2_8_2_1
  doi: 10.1002/admt.201900993
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1151-2916.1961.tb13712.x
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jphotochemrev.2012.06.001
– ident: e_1_2_8_25_1
  doi: 10.1007/s10971-008-1780-6
– ident: e_1_2_8_5_3
  doi: 10.1016/j.apcata.2010.11.037
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467-018-05006-w
– ident: e_1_2_8_3_4
  doi: 10.1038/s41929-023-00913-8
– start-page: 6, 974
  year: 2023
  ident: e_1_2_8_1_2
  publication-title: Nat. Sustain.
– ident: e_1_2_8_20_2
  doi: 10.1039/c2cs35115c
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.202311793
– ident: e_1_2_8_30_2
  doi: 10.1039/C6RA03344J
– ident: e_1_2_8_3_2
  doi: 10.1038/s41598-019-54025-0
– ident: e_1_2_8_4_1
  doi: 10.1016/j.apcata.2015.02.013
– ident: e_1_2_8_19_1
  doi: 10.1021/la302565s
– ident: e_1_2_8_18_1
  doi: 10.1039/D0PY01404D
– ident: e_1_2_8_17_1
  doi: 10.1126/science.272.5269.1777
– ident: e_1_2_8_18_2
  doi: 10.1021/ma2018759
– ident: e_1_2_8_37_1
  doi: 10.1107/S0909049512016895
– ident: e_1_2_8_38_1
  doi: 10.1107/S1600576714019773
– ident: e_1_2_8_24_1
  doi: 10.1039/C7TA10654H
– ident: e_1_2_8_4_4
  doi: 10.1038/ncomms5606
– ident: e_1_2_8_32_1
  doi: 10.1002/admi.201901565
– ident: e_1_2_8_5_1
  doi: 10.1002/ange.201911796
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.200304906
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-019-08525-2
– ident: e_1_2_8_6_1
  doi: 10.1166/jnn.2016.11907
– volume: 3
  start-page: 28
  year: 2019
  ident: e_1_2_8_14_1
  publication-title: J. Manuf. Mater. Process.
– ident: e_1_2_8_3_1
  doi: 10.1016/B978-0-12-810499-6.00006-1
– ident: e_1_2_8_36_1
  doi: 10.1021/acsami.2c05745
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.macromol.9b00531
– ident: e_1_2_8_23_2
  doi: 10.1002/smtd.201900689
– ident: e_1_2_8_22_1
  doi: 10.1039/C4CC08497G
– ident: e_1_2_8_1_6
  doi: 10.1038/nphoton.2013.342
– ident: e_1_2_8_16_2
  doi: 10.1021/ma971419l
– ident: e_1_2_8_5_2
  doi: 10.1039/C6RA17556B
– ident: e_1_2_8_12_1
  doi: 10.1016/j.ceramint.2015.12.024
– ident: e_1_2_8_9_2
  doi: 10.1021/acs.iecr.5b01471
– ident: e_1_2_8_4_3
  doi: 10.1038/s41598-023-31464-4
– ident: e_1_2_8_4_6
  doi: 10.1021/nl1037962
– ident: e_1_2_8_31_3
  doi: 10.1021/ja048820p
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.202105644
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jallcom.2016.04.224
– ident: e_1_2_8_10_2
  doi: 10.1038/srep05769
– ident: e_1_2_8_31_2
  doi: 10.1111/j.1151-2916.1999.tb01855.x
– ident: e_1_2_8_4_2
  doi: 10.1039/c1jm10407a
– ident: e_1_2_8_4_5
  doi: 10.1126/sciadv.1700231
– ident: e_1_2_8_2_2
  doi: 10.1038/s41528-023-00249-0
– ident: e_1_2_8_24_2
  doi: 10.1039/C4NR02909G
– ident: e_1_2_8_28_1
  doi: 10.1039/C4TA02031F
– ident: e_1_2_8_14_2
  doi: 10.1021/cr2000465
– ident: e_1_2_8_30_1
  doi: 10.1007/s13201-019-1138-y
– ident: e_1_2_8_1_3
  doi: 10.1016/B978-0-12-813731-4.00008-4
– ident: e_1_2_8_21_2
  doi: 10.1021/ma071442z
– ident: e_1_2_8_23_1
  doi: 10.1002/admi.201900558
– ident: e_1_2_8_32_2
  doi: 10.1021/acs.macromol.9b02760
– ident: e_1_2_8_3_3
  doi: 10.1038/s41467-023-36977-0
– ident: e_1_2_8_26_1
  doi: 10.1002/ejic.201300221
– ident: e_1_2_8_8_1
  doi: 10.1021/acsami.9b18785
– ident: e_1_2_8_7_2
  doi: 10.1016/j.jeurceramsoc.2009.09.031
– ident: e_1_2_8_1_1
  doi: 10.1038/nature11936
– ident: e_1_2_8_31_1
  doi: 10.1021/ja2120585
– ident: e_1_2_8_39_1
  doi: 10.1063/1.4869784
– ident: e_1_2_8_1_5
  doi: 10.1016/j.ensm.2021.11.023
– ident: e_1_2_8_1_7
  doi: 10.1126/science.aad4424
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.200803827
SSID ssj0001121283
Score 2.3208857
Snippet Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their...
Abstract Zinc titanate films with mesoporous structures have widespread applications ranging from sensors to supercapacitors and bio‐devices owing to their...
SourceID doaj
swepub
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Block copolymers
calcination process
Dimethylformamide
film morphology evolution
Hydrochloric acid
Hydrogen chloride
mesoporous structure
Micelles
Mixtures
Morphology
Photoelectric effect
Photoelectricity
Polyethylene oxide
Polymer films
Polystyrene resins
Prepolymers
Roasting
sol-gel chemistry
Sol-gel processes
Thin films
Titanates
Titanium dioxide
Zinc acetate
Zinc compounds
Zinc oxide
zinc titanate
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpUpcEBQQgYJ8QHCKaseJnXBbuiwFaRGiXVRxsfypRqQJ2iw98xPgL_aXdGzvVrunXjjaSmzL8xK_GY3fIPSaWCCtTNc5kFWfg79R5EponZemsVrVVNl4fWz-hZ8sys_n1flWqa-QE5bkgdPGHTFqaGMbbY0hpRBeV8Q7aFXWAvP2UecTzrwtZypGVyj8kmu2UWkkxZGyly24gyFlsgg1cLdOoSjWv8swk2roLmGNJ87sIXqwpop4kpb4CN1z_QHajymbZnyM_s1SqRx8eqHCpScMVA7PB9i3GCnHbY9Ph-76z9-PrsNTANqVs3juxgEYN7j7-EfbG3zWAjkEuolnbXc5vsOL_sq13Wa0b0Pn8ODx12WIyo_DEh9Hmh3TvLDqLbT7lN4Zep6gxezD2fFJvi6wkJuSUp5bJZgVhCvihai8I4wp51ij69orZr1wzPIK-ipRMKGo8Vz7SpVG8caAQdhTtNcPvXuGcONsRTWnjhNXugJG1lyoUhtiSOOZztDbzYbLX0lHQybF5EIG08hb02TofbDH7VNB_zp2ACrkGhXyLlRk6HBjTbn-KEd4iQEWi0YUGXqTLLwzy7T9Pomz_FxdSBapWYbyiIA71iwn0_knyjh__j8W_wLdDyOnpJlDtLda_nYvgfqs9KuI8hveIQYF
  priority: 102
  providerName: Directory of Open Access Journals
Title Factors Shaping the Morphology in Sol‐Gel Derived Mesoporous Zinc Titanate Films: Unveiling the Role of Precursor Competition and Concentration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202400215
https://www.proquest.com/docview/3134622972
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-365846
https://doaj.org/article/31c19d9bdcc0477fb50febdc5dd666f3
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQq0pcUGlBBMrKBwSnqHac2Btu2263BWmrVdtFFZfIvzQiTarNtmceAV6RJ2Hs7G7JCXH0KLEtz4z9eTTzGaF3xABoZWoYA1h1Mdw3klgKpeJU50bJIZUmlI9Nz_nZPP18nV3_VcXf8UNsAm7eM8J-7R1cqvbwkTRUmtsS7nc-BzLxVebbvr7Ws-cn6ewxykJhaw5cnOCZPBYsI2vmRpIc9rvonUyBwL-POjsm0T6IDafQZBc9W8FHPOr0_Rw9sfUe2glpnLrdR78m3fM5-PJG-kIoDPAOTxtYyxA9x2WNL5vq94-fp7bCYzC-B2vw1LYNoPDmvsVfy1rjqxIAI0BQPCmr2_YjntcPtqzWvV00lcWNw7OFj9S3zQIfB-gdUr-wrA206y7l00teoPnk5Or4LF49uhDrlFIeGymYEYRL4oTInCWMSWtZroZDJ5lxwjLDM5BlImFCUu24cplMteS5Nlqzl2irbmr7CuHcmowqTi0nNrUJ9Ky4kKnSRJPcMRWhD-sFL-46bo2iY1FOCq-aYqOaCB15fWy-8pzYQdAsvhUrFysY1TQ3uYJJkFQIpzLiLLQyY-CO5liEDtbaLFaO2sJPDOwzyUUSofedhnujjMsvozDK9-VNwQJci1AcLOAfcy5G4-knyjh__Z_fv0FPvbDLmTlAW8vFvX0LyGepBsG4B2j76OR8djEI8YM_kdgCpQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYIL4ikCBXxAcIpqx4m96W3psmyhqSq6ixCXyM82Ik2qzbZnfgL8RX4JY2ez1Z4QR1t-yTNjfx7NfEboDTEAWpkaxQBWXQzvjSSWQqk41blRckSlCeljxTGfLdJP37IhmtDnwvT8EBuHm7eMcF57A_cO6b0b1lBpLip44PkgyMSnmd-GiYS3zSQ9uXGzUDibAxknmCaPBcvIQN1Ikr3tIbaupsDgvw07eyrRbRQbrqHpA3R_jR_xuBf4Q3TLNo_QnRDHqbvH6Pe0_z8Hn55LnwmFAd_hooXNDO5zXDX4tK3__Pz10dZ4Atp3bQ0ubNcCDG-vOvy9ajSeV4AYAYPiaVVfdPt40Vzbqh5G-9LWFrcOnyy9q75rl_ggYO8Q-4VlY6Dc9DGfvuYJWkw_zA9m8frXhVinlPLYSMGMIFwSJ0TmLGFMWstyNRo5yYwTlhmeQV0mEiYk1Y4rl8lUS55rozV7inaatrHPEM6tyaji1HJiU5vAyIoLmSpNNMkdUxF6N2x4edmTa5Q9jXJSetGUG9FE6L2Xx6aVJ8UOFe3yrFzbWMmoprnJFSyCpEI4lRFnoZQZA480xyK0O0izXFtqB50Y6E2SiyRCb3sJb80yqb6Owyw_VuclC3gtQnHQgH-suRxPikPKOH_-n-1fo7uzeXFUHh0ef36B7vkGfQDNLtpZLa_sS4BBK_UqKPpfTWEDgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQKxAXxK8ILeADglNUJ07sTW9Ll9ACW1W0qapeIv_SiDSpNtueeQR4RZ6EsZPdkhPiaMexLc-M_Xk08xmhN0QDaKVyEgJYtSHcN-JQcCnDRGVaikkktE8fmx-y_SL5dJae_ZXF3_NDrB1uzjL8fu0M_ErbnVvSUKEvK7jfuRjI2GWZbzqqPNDrzelpcV7c-lki2Jw9GyfYJgs5TcmKu5HEO-NORmeTp_Af486eS3QMY_05lD9EDwYAiae9xB-hO6Z5jO76QE7VPUG_8v4BHXx8IVwqFAaAh-ctrKb3n-Oqwcdt_fvHz4-mxjNQvxuj8dx0LeDw9rrD51Wj8EkFkBFAKM6r-rLbxUVzY6p61dvXtja4tfho4Xz1XbvAex58--AvLBoN5aYP-nQ1T1GRfzjZ2w-HZxdClUQRC7XgVHPCBLGcp9YQSoUxNJOTiRVUW26oZinUpTymXETKMmlTkSjBMqWVos_QRtM25jnCmdFpJFlkGDGJiaFnybhIpCKKZJbKAL1bLXh51bNrlD2Pclw60ZRr0QTovZPHupVjxfYV7eJbORhZSSMVZTqTMAmScG5lSqyBUqo13NIsDdD2SprlYKod_ERBQ-OMxwF620t4NMqsOp36Ub4vL0rqAVuAQq8B_5hzOZ3NDyLK2Iv_bP8a3Tua5eWXg8PPW-i--94H0GyjjeXi2rwEGLSUrwZN_wOjSgR6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+Shaping+the+Morphology+in+Sol%E2%80%90Gel+Derived+Mesoporous+Zinc+Titanate+Films%3A+Unveiling+the+Role+of+Precursor+Competition+and+Concentration&rft.jtitle=Advanced+materials+interfaces&rft.au=Li%2C+Yanan&rft.au=Li%2C+Nian&rft.au=Harder%2C+Constantin&rft.au=Yin%2C+Shanshan&rft.date=2024-12-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=11&rft.issue=34&rft_id=info:doi/10.1002%2Fadmi.202400215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_202400215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon