Stable and Fast Lithium–Sulfur Battery Achieved by Rational Design of Multifunctional Separator
Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li‐S battery always causes low Coulombic efficiency, capacity f...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 2; no. 3; pp. 216 - 224 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li‐S battery always causes low Coulombic efficiency, capacity fading, and hindering its practical commercialization. Herein, a dual‐functional PEI@MWCNTs‐CB/MWCNTs/PP (briefly denoted as PMS) separator is assembled through Langmuir–Blodgett–Scooping (LBS) technique for improvement of Li‐S battery performance, that is, rational integrating conductive MWCNTs multilayer on a routine PP separator with polyethyleneimine (PEI) polymer. Owing to “proton‐sponge”‐based PEI feature with the abundant amino/imine groups and branched structures, the PMS separator can provide strong affinity to immobilize the negatively charged polysulfides via electrostatic interaction. Simultaneously, incorporated with the conductive MWCNTs multilayers for the electron transportation, the Li‐S cells assembled with PMS separators achieve exceptional high delivery capacity, good rate performance (~550 mAh g−1 at a current density of 9 A g−1), and stable cycling retention (retention of 84.5% at a current density of 1 A g−1) even over 120 cycles, especially in the case of high‐loading sulfur cathode (80 wt% of S content). This multifunctional separator with dual‐structural architectures via self‐assembly LBS method paves new avenues to develop high‐performance Li‐S batteries.
The PEI@MWCNTs‐CB/MWCNTs/PP (PMS) separator retards polysulfides shuttling via chemisorption and physisorption. And, it achieves an extraordinary rate performance and cycling retention, which paves a new avenue to develop high‐performance Li‐S batteries. |
---|---|
AbstractList | Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li‐S battery always causes low Coulombic efficiency, capacity fading, and hindering its practical commercialization. Herein, a dual‐functional PEI@MWCNTs‐CB/MWCNTs/PP (briefly denoted as PMS) separator is assembled through Langmuir–Blodgett–Scooping (LBS) technique for improvement of Li‐S battery performance, that is, rational integrating conductive MWCNTs multilayer on a routine PP separator with polyethyleneimine (PEI) polymer. Owing to “proton‐sponge”‐based PEI feature with the abundant amino/imine groups and branched structures, the PMS separator can provide strong affinity to immobilize the negatively charged polysulfides via electrostatic interaction. Simultaneously, incorporated with the conductive MWCNTs multilayers for the electron transportation, the Li‐S cells assembled with PMS separators achieve exceptional high delivery capacity, good rate performance (~550 mAh g−1 at a current density of 9 A g−1), and stable cycling retention (retention of 84.5% at a current density of 1 A g−1) even over 120 cycles, especially in the case of high‐loading sulfur cathode (80 wt% of S content). This multifunctional separator with dual‐structural architectures via self‐assembly LBS method paves new avenues to develop high‐performance Li‐S batteries.
The PEI@MWCNTs‐CB/MWCNTs/PP (PMS) separator retards polysulfides shuttling via chemisorption and physisorption. And, it achieves an extraordinary rate performance and cycling retention, which paves a new avenue to develop high‐performance Li‐S batteries. Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li‐S battery always causes low Coulombic efficiency, capacity fading, and hindering its practical commercialization. Herein, a dual‐functional PEI@MWCNTs‐CB/MWCNTs/PP (briefly denoted as PMS) separator is assembled through Langmuir–Blodgett–Scooping (LBS) technique for improvement of Li‐S battery performance, that is, rational integrating conductive MWCNTs multilayer on a routine PP separator with polyethyleneimine (PEI) polymer. Owing to “proton‐sponge”‐based PEI feature with the abundant amino/imine groups and branched structures, the PMS separator can provide strong affinity to immobilize the negatively charged polysulfides via electrostatic interaction. Simultaneously, incorporated with the conductive MWCNTs multilayers for the electron transportation, the Li‐S cells assembled with PMS separators achieve exceptional high delivery capacity, good rate performance (~550 mAh g −1 at a current density of 9 A g −1 ), and stable cycling retention (retention of 84.5% at a current density of 1 A g −1 ) even over 120 cycles, especially in the case of high‐loading sulfur cathode (80 wt% of S content). This multifunctional separator with dual‐structural architectures via self‐assembly LBS method paves new avenues to develop high‐performance Li‐S batteries. Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li‐S battery always causes low Coulombic efficiency, capacity fading, and hindering its practical commercialization. Herein, a dual‐functional PEI@MWCNTs‐CB/MWCNTs/PP (briefly denoted as PMS) separator is assembled through Langmuir–Blodgett–Scooping (LBS) technique for improvement of Li‐S battery performance, that is, rational integrating conductive MWCNTs multilayer on a routine PP separator with polyethyleneimine (PEI) polymer. Owing to “proton‐sponge”‐based PEI feature with the abundant amino/imine groups and branched structures, the PMS separator can provide strong affinity to immobilize the negatively charged polysulfides via electrostatic interaction. Simultaneously, incorporated with the conductive MWCNTs multilayers for the electron transportation, the Li‐S cells assembled with PMS separators achieve exceptional high delivery capacity, good rate performance (~550 mAh g−1 at a current density of 9 A g−1), and stable cycling retention (retention of 84.5% at a current density of 1 A g−1) even over 120 cycles, especially in the case of high‐loading sulfur cathode (80 wt% of S content). This multifunctional separator with dual‐structural architectures via self‐assembly LBS method paves new avenues to develop high‐performance Li‐S batteries. |
Author | Peng, Chengxin Song, Chengwei Yang, Junhe Bian, Zihao Zheng, Shiyou Xu, Hongyi Dong, Fei |
Author_xml | – sequence: 1 givenname: Chengwei surname: Song fullname: Song, Chengwei organization: University of Shanghai for Science and Technology – sequence: 2 givenname: Chengxin surname: Peng fullname: Peng, Chengxin organization: Guizhou Meiling Power Sources Co. Ltd – sequence: 3 givenname: Zihao surname: Bian fullname: Bian, Zihao organization: University of Shanghai for Science and Technology – sequence: 4 givenname: Fei surname: Dong fullname: Dong, Fei organization: University of Shanghai for Science and Technology – sequence: 5 givenname: Hongyi surname: Xu fullname: Xu, Hongyi organization: University of Shanghai for Science and Technology – sequence: 6 givenname: Junhe surname: Yang fullname: Yang, Junhe email: jhyang@usst.edu.cn organization: University of Shanghai for Science and Technology – sequence: 7 givenname: Shiyou orcidid: 0000-0002-6614-9567 surname: Zheng fullname: Zheng, Shiyou email: syzheng@usst.edu.cn organization: University of Shanghai for Science and Technology |
BookMark | eNp9kE1OwzAQhS1UJErphhNYYofUYjtxfpaltIDUConC2nKSMXWVJsV2QNlxB27ISUiaLhBCrOZJ873RvHeKekVZAELnlIwpIewKYMvGlBEvOEJ9xkM-Ih4Pej_0CRpauyENTKjn07iP5MrJJAcsiwzPpXV4od1aV9uvj89VlavK4GvpHJgaT9K1hjfIcFLjR-l0Wcgc34DVLwUuFV5WudOqKtLDZgU7aaQrzRk6VjK3MDzMAXqez56md6PFw-39dLIYpT6lwYiGHpdRkITAKWl1ylUQZ4p5DCiQjGXgR1TSVHEScZU2OUMuVcwCxRLqcW-ALrq7O1O-VmCd2JSVaV6xgvGIxCT0eUuRjkpNaa0BJVLt9mmckToXlIi2S9F2KfZdNpbLX5ad0Vtp6r9h2sHvOof6H1LMZkvWeb4BR_aGFQ |
CitedBy_id | crossref_primary_10_1016_j_ensm_2024_103232 crossref_primary_10_1038_s41467_021_27866_5 crossref_primary_10_1039_D0SE00620C crossref_primary_10_1002_advs_202103798 crossref_primary_10_1016_j_apsusc_2022_153683 crossref_primary_10_1016_j_mseb_2023_117002 crossref_primary_10_1016_j_cej_2024_150872 crossref_primary_10_1002_smll_202107368 crossref_primary_10_1088_2631_7990_acded2 crossref_primary_10_1002_adfm_202200302 crossref_primary_10_1016_j_eng_2021_02_025 crossref_primary_10_1021_acsami_2c15812 crossref_primary_10_1002_eem2_12412 crossref_primary_10_1002_smll_202104613 crossref_primary_10_1016_j_matchemphys_2022_127182 crossref_primary_10_1149_1945_7111_abc4c0 crossref_primary_10_1016_j_apsusc_2023_156348 crossref_primary_10_3390_polym15040993 crossref_primary_10_1021_accountsmr_1c00198 crossref_primary_10_3390_membranes12080790 crossref_primary_10_1021_acsaem_9b02502 crossref_primary_10_1002_eem2_12073 crossref_primary_10_1002_sus2_110 crossref_primary_10_1002_eom2_12182 crossref_primary_10_1002_adfm_202211978 crossref_primary_10_1039_D2CC00535B crossref_primary_10_1016_j_cej_2024_150301 crossref_primary_10_1002_adma_202004959 crossref_primary_10_1002_eem2_12090 crossref_primary_10_1016_j_mtcomm_2022_104403 crossref_primary_10_1016_j_mtnano_2022_100231 crossref_primary_10_1021_acsami_1c19064 crossref_primary_10_1016_j_gee_2022_03_006 crossref_primary_10_1007_s40820_020_00510_5 crossref_primary_10_1016_j_cej_2020_127044 crossref_primary_10_1002_eem2_12308 |
Cites_doi | 10.1002/admi.201600450 10.1149/1.1806394 10.1016/j.electacta.2017.03.199 10.1021/nl200658a 10.1039/c2ee22238h 10.1021/acsnano.6b07603 10.1039/C7SC01961K 10.1002/adma.201606817 10.1002/anie.201100637 10.1038/s41467-018-03116-z 10.1038/nenergy.2016.94 10.1016/j.electacta.2015.10.009 10.1039/C7TA01352C 10.1021/acsami.8b07663 10.1002/adma.201603401 10.1021/nl5020475 10.1002/aenm.201801778 10.1016/j.jallcom.2014.04.073 10.1021/jacs.7b06973 10.1016/j.jpowsour.2017.07.047 10.1038/am.2017.51 10.1002/batt.201800145 10.1039/C7TA06657K 10.1016/j.nanoen.2016.10.049 10.1002/aenm.201601250 10.1039/C6RA23943A 10.1002/advs.201500268 10.1002/adfm.201304156 10.1002/eem2.12021 10.1038/ncomms2163 10.1016/j.cej.2017.03.022 10.1016/j.jpowsour.2008.03.026 10.1016/j.nanoen.2016.12.002 10.1126/science.aad0832 10.1002/anie.201410174 10.1002/eem2.12003 10.1016/j.cej.2018.07.063 10.1002/adma.201804271 10.1016/j.ensm.2017.05.009 10.1016/j.matlet.2017.12.069 10.1021/nn507178a 10.1002/adma.201103392 10.1039/C7TA10887G 10.1016/j.jpowsour.2013.07.002 10.1039/C8TA05508D 10.1002/adfm.201602264 10.1002/adma.201603835 10.1007/s10008-014-2710-x 10.1021/acs.nanolett.6b04610 10.1002/anie.201809907 10.1038/ncomms6682 10.1021/nn404601h 10.1038/nmat2460 10.1002/aenm.201702485 10.1002/adma.201602172 10.1073/pnas.1615837114 10.1002/chem.201801925 10.1039/C3EE42223B 10.1016/j.nanoen.2016.06.036 10.1021/ja409508q 10.1002/aenm.201500408 10.1002/cssc.201700743 |
ContentType | Journal Article |
Copyright | 2019 Zhengzhou University |
Copyright_xml | – notice: 2019 Zhengzhou University |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
DOI | 10.1002/eem2.12036 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | 224 |
ExternalDocumentID | 10_1002_eem2_12036 EEM212036 |
Genre | article |
GrantInformation_xml | – fundername: Shanghai Pujiang Program funderid: 18PJ1409000 – fundername: Innovation Program of Shanghai Municipal Education Commission funderid: 2019-01-07-00-07-E00015 – fundername: Opening Project of State Key Laboratory of Advanced Chemical Power Sources funderid: SKL-ACPS-C-23 – fundername: Program of Shanghai Subject Chief Scientist funderid: 17XD1403000 – fundername: National Natural Science Foundation of China funderid: 21875141; 51671135 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
ID | FETCH-LOGICAL-c4116-1735a86b7e510735ac5f69df232e1e0d2de481a1cf5085fc12075af926f2b1353 |
IEDL.DBID | 24P |
ISSN | 2575-0356 |
IngestDate | Mon Jun 30 12:07:03 EDT 2025 Thu Apr 24 23:12:11 EDT 2025 Tue Jul 01 01:03:04 EDT 2025 Wed Jan 22 16:41:09 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4116-1735a86b7e510735ac5f69df232e1e0d2de481a1cf5085fc12075af926f2b1353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6614-9567 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12036 |
PQID | 2580907455 |
PQPubID | 5251211 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2580907455 crossref_citationtrail_10_1002_eem2_12036 crossref_primary_10_1002_eem2_12036 wiley_primary_10_1002_eem2_12036_EEM212036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 182 2017; 8 2016; 30 2011; 11 2014; 24 2013; 7 2017; 114 2017; 9 2008; 184 2017; 237 2018; 6 2018; 9 2017; 31 2018; 8 2018; 215 2014; 608 2018; 1 2014; 14 2018; 30 1803; 2017 2017; 362 2017; 320 2012; 24 2014; 7 2016; 351 2014; 245 2015; 6 2015; 5 2015; 19 2019; 2 2015; 54 2017; 29 2015; 9 2017; 139 2018; 24 2016; 6 2018; 352 2012; 3 2016; 1 2016; 3 2017; 17 2017; 11 2004; 151 2017; 10 2011; 50 2013; 135 2009; 8 2016; 28 2018; 10 2016; 26 2012; 5 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 Pang Y. (e_1_2_7_6_1) 2019; 2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Chen M. (e_1_2_7_28_1) 1803; 2017 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 114 start-page: 840 year: 2017 publication-title: Proc. Natl Acad. Sci. USA – volume: 31 start-page: 568 year: 2017 publication-title: Nano Energy – volume: 8 start-page: 6619 year: 2017 publication-title: Chem. Sci. – volume: 28 start-page: 9797 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 1500408 year: 2015 publication-title: Adv. Energy Mater. – volume: 6 start-page: 3610 year: 2018 publication-title: J. Mater. Chem. A – volume: 1 start-page: 20 year: 2018 publication-title: Energy Environm. Mater. – volume: 362 start-page: 243 year: 2017 publication-title: J. Power Sources – volume: 8 start-page: 1801778 year: 2018 publication-title: Adv. Energy. Mater. – volume: 184 start-page: 444 year: 2008 publication-title: J. Power Sources – volume: 26 start-page: 722 year: 2016 publication-title: Nano Energy – volume: 2 start-page: 1537 year: 2019 publication-title: Energy Mater. – volume: 57 start-page: 16072 year: 2018 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 17 start-page: 538 year: 2017 publication-title: Nano Lett. – volume: 24 start-page: 4156 year: 2014 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 347 year: 2014 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1601250 year: 2016 publication-title: Adv. Energy. Mater. – volume: 3 start-page: 1500268 year: 2016 publication-title: Adv. Sci. – volume: 6 start-page: 17186 year: 2018 publication-title: J. Mater. Chem. A – volume: 24 start-page: 1176 year: 2012 publication-title: Adv. Mater. – volume: 29 start-page: 1606817 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 2697 year: 2017 publication-title: ACS Nano – volume: 10 start-page: 2758 year: 2017 publication-title: Chemsuschem – volume: 10 start-page: 26274 year: 2018 publication-title: ACS. Appl. Mater. Interfaces – volume: 151 start-page: e1969 year: 2004 publication-title: J. Electrochem. Soc. – volume: 608 start-page: 220 year: 2014 publication-title: J. Alloy. Comp. – volume: 9 start-page: 3002 year: 2015 publication-title: ACS Nano – volume: 1 start-page: 16094 year: 2016 publication-title: Nat. Energy – volume: 182 start-page: 884 year: 2015 publication-title: Electrochim. Acta – volume: 237 start-page: 78 year: 2017 publication-title: Electrochim. Acta – volume: 215 start-page: 91 year: 2018 publication-title: Mater. Lett. – volume: 5 start-page: 12506 year: 2017 publication-title: J. Mater. Chem. A. – volume: 1 start-page: 196 year: 2018 publication-title: Energy Environ. Mater. – volume: 135 start-page: 16736 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: e1804271 year: 2018 publication-title: Adv. Mater. – volume: 29 start-page: 1603835 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 5682 year: 2015 publication-title: Nat. Commun. – volume: 3 start-page: 1166 year: 2012 publication-title: Nat. Commun. – volume: 5 start-page: 21435 year: 2017 publication-title: J. Mater. Chem. A. – volume: 320 start-page: 178 year: 2017 publication-title: Chem. Eng. J. – volume: 26 start-page: 7164 year: 2016 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 4821 year: 2014 publication-title: Nano Lett. – volume: 9 start-page: e375 year: 2017 publication-title: NPG Asia Mater. – volume: 9 start-page: 705 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 7 start-page: 10995 year: 2013 publication-title: ACS Nano – volume: 3 start-page: 1600450 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 5 start-page: 8848 year: 2012 publication-title: Energ. Environ. Sci. – volume: 139 start-page: 12710 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 2017 start-page: 10 year: 1803 publication-title: Chemsuschem – volume: 54 start-page: 3907 year: 2015 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 19 start-page: 1143 year: 2015 publication-title: J. Solid. State. Electr. – volume: 50 start-page: 5904 year: 2011 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 2 start-page: 1 year: 2019 publication-title: Batter. Supercaps – volume: 8 start-page: 153 year: 2017 publication-title: Energy Storage Materials – volume: 8 start-page: 1702485 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 start-page: 700 year: 2016 publication-title: Nano Energy – volume: 245 start-page: 529 year: 2014 publication-title: J. Power Sources – volume: 6 start-page: 104591 year: 2016 publication-title: RSC Adv. – volume: 24 start-page: 11193 year: 2018 publication-title: Chem. Eur. J. – volume: 28 start-page: 9551 year: 2016 publication-title: Adv. Mater. – volume: 351 start-page: 361 year: 2016 publication-title: Science – volume: 352 start-page: 695 year: 2018 publication-title: Chem. Eng. J. – volume: 11 start-page: 2644 year: 2011 publication-title: Nano Lett. – ident: e_1_2_7_37_1 doi: 10.1002/admi.201600450 – ident: e_1_2_7_4_1 doi: 10.1149/1.1806394 – ident: e_1_2_7_17_1 doi: 10.1016/j.electacta.2017.03.199 – ident: e_1_2_7_61_1 doi: 10.1021/nl200658a – ident: e_1_2_7_57_1 doi: 10.1039/c2ee22238h – ident: e_1_2_7_40_1 doi: 10.1021/acsnano.6b07603 – ident: e_1_2_7_41_1 doi: 10.1039/C7SC01961K – ident: e_1_2_7_44_1 doi: 10.1002/adma.201606817 – ident: e_1_2_7_63_1 doi: 10.1002/anie.201100637 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-018-03116-z – ident: e_1_2_7_51_1 doi: 10.1038/nenergy.2016.94 – ident: e_1_2_7_58_1 doi: 10.1016/j.electacta.2015.10.009 – ident: e_1_2_7_42_1 doi: 10.1039/C7TA01352C – ident: e_1_2_7_43_1 doi: 10.1021/acsami.8b07663 – ident: e_1_2_7_45_1 doi: 10.1002/adma.201603401 – ident: e_1_2_7_7_1 doi: 10.1021/nl5020475 – ident: e_1_2_7_49_1 doi: 10.1002/aenm.201801778 – ident: e_1_2_7_11_1 doi: 10.1016/j.jallcom.2014.04.073 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.7b06973 – ident: e_1_2_7_34_1 doi: 10.1016/j.jpowsour.2017.07.047 – ident: e_1_2_7_47_1 doi: 10.1038/am.2017.51 – ident: e_1_2_7_12_1 doi: 10.1002/batt.201800145 – ident: e_1_2_7_15_1 doi: 10.1039/C7TA06657K – ident: e_1_2_7_27_1 doi: 10.1016/j.nanoen.2016.10.049 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201601250 – ident: e_1_2_7_18_1 doi: 10.1039/C6RA23943A – ident: e_1_2_7_39_1 doi: 10.1002/advs.201500268 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.201304156 – ident: e_1_2_7_54_1 doi: 10.1002/eem2.12021 – ident: e_1_2_7_33_1 doi: 10.1038/ncomms2163 – ident: e_1_2_7_35_1 doi: 10.1016/j.cej.2017.03.022 – ident: e_1_2_7_2_1 doi: 10.1016/j.jpowsour.2008.03.026 – ident: e_1_2_7_56_1 doi: 10.1016/j.nanoen.2016.12.002 – ident: e_1_2_7_62_1 doi: 10.1126/science.aad0832 – ident: e_1_2_7_29_1 doi: 10.1002/anie.201410174 – ident: e_1_2_7_32_1 doi: 10.1002/eem2.12003 – ident: e_1_2_7_46_1 doi: 10.1016/j.cej.2018.07.063 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201804271 – ident: e_1_2_7_38_1 doi: 10.1016/j.ensm.2017.05.009 – ident: e_1_2_7_36_1 doi: 10.1016/j.matlet.2017.12.069 – ident: e_1_2_7_53_1 doi: 10.1021/nn507178a – ident: e_1_2_7_5_1 doi: 10.1002/adma.201103392 – ident: e_1_2_7_3_1 doi: 10.1039/C7TA10887G – ident: e_1_2_7_8_1 doi: 10.1016/j.jpowsour.2013.07.002 – ident: e_1_2_7_26_1 doi: 10.1039/C8TA05508D – ident: e_1_2_7_23_1 doi: 10.1002/adfm.201602264 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201603835 – volume: 2 start-page: 1537 year: 2019 ident: e_1_2_7_6_1 publication-title: Energy Mater. – ident: e_1_2_7_16_1 doi: 10.1007/s10008-014-2710-x – ident: e_1_2_7_65_1 doi: 10.1021/acs.nanolett.6b04610 – ident: e_1_2_7_50_1 doi: 10.1002/anie.201809907 – ident: e_1_2_7_22_1 doi: 10.1038/ncomms6682 – ident: e_1_2_7_13_1 doi: 10.1021/nn404601h – ident: e_1_2_7_60_1 doi: 10.1038/nmat2460 – ident: e_1_2_7_31_1 doi: 10.1002/aenm.201702485 – ident: e_1_2_7_48_1 doi: 10.1002/adma.201602172 – volume: 2017 start-page: 10 year: 1803 ident: e_1_2_7_28_1 publication-title: Chemsuschem – ident: e_1_2_7_24_1 doi: 10.1073/pnas.1615837114 – ident: e_1_2_7_30_1 doi: 10.1002/chem.201801925 – ident: e_1_2_7_52_1 doi: 10.1039/C3EE42223B – ident: e_1_2_7_19_1 doi: 10.1016/j.nanoen.2016.06.036 – ident: e_1_2_7_55_1 doi: 10.1021/ja409508q – ident: e_1_2_7_64_1 doi: 10.1002/aenm.201500408 – ident: e_1_2_7_59_1 doi: 10.1002/cssc.201700743 |
SSID | ssj0002013419 |
Score | 2.2810118 |
Snippet | Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 216 |
SubjectTerms | Commercialization Current density Electric vehicles Electrostatic properties electrostatic shield Flux density Langmuir-Blodgett films Lithium Lithium sulfur batteries Li‐S battery Multilayers Polyethyleneimine Polymers Polysulfides Retention self‐assembly separator Separators Sulfur |
Title | Stable and Fast Lithium–Sulfur Battery Achieved by Rational Design of Multifunctional Separator |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12036 https://www.proquest.com/docview/2580907455 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA9zvvgiiorTOQL6olDXZkmbgS9DN4Y4EWdl-FKa5sIG-yNbJ-zN7-A39JOYpN2mIIJvgV4Lvdz1fnfN_Q6hM1cKJqGuHJ38EIcq6jt1LqnjxkQxxeKgBqY00Ln32yG97bFeAV0te2EyfohVwc14hv1eGwePxay6Jg0FGJFLz_xH20CbprfWMOcT-rCqsOjQZsjKzHQ5jUkct8b8FT8pqa5v_xmR1jDzO1i10aa1g7ZzmIgb2b7uogKM91CskaEYAtbJP27FsxTfDdL-YD76fP_ozodqPsUZW-YCN5L-AN5AYrHAj3m5D9_Ywxp4orDtujURLb_SBcsAPpnuo7DVfLpuO_mIBCehnuc7XlBjMfdFANq3zDphyq9LpXESeOBKIoFyL_YSpYEYU4l-4YDFqk58RYQZeXGAiuPJGA4RBkY4SJVwGVAqBHCT6Wk8kHBtbBRqJXS-VFOU5PzhZozFMMqYj0lkVBpZlZbQ6Ur2NWPN-FWqvNR2lHvOLCKMuyZhZ6yELuwO_PGEqNnsELs6-o_wMdrSxpEfFSujYjqdw4nGFqmoWBOqoM3Gc_gSfgH15Mqk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF60HvQiiorVqgt6UYhNNrv5ORZtqdoWsS30FpLsLC30R9pE6M138A19Enc3aaoggreFTAKZncl8M5n9BqErk0eMgy8MmfwQgwrqGL7HqWGGRDDBQtcGVRpod5xmnz4O2CDvzVFnYTJ-iKLgpjxDf6-Vg6uCdHXNGgowIbeW-pG2ibaoQ1zll4Q-FyUWGdsUW5kaLydBiWHazCkISkl1ffvPkLTGmd_Rqg43jT20m-NEXMs2dh9twPQAhRIaRmPAMvvHjXCR4NYoGY7Syef7Rzcdi3SOM7rMJa7FwxG8AcfREr_k9T58r7s18ExgfexWhbT8Shc0Bfhsfoj6jXrvrmnkMxKMmFqWY1iuzULPiVyQzqXWMROOz4UESmCByQkH6lmhFQuJxJiI5Qu7LBQ-cQSJ1MyLI1SazqZwjDAw4gEXscddSqMIPJXqSUAQe9LaKNhldL1SUxDnBOJqjsU4yKiPSaBUGmiVltFlIfua0Wb8KlVZaTvIXWcREOaZKmNnrIxu9A788YSgXm8TvTr5j_AF2m722q2g9dB5OkU70lDyvrEKKiXzFM4k0Eiic21OX5BjzFI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA9zA_FFFBWnUwP6olDXpknbgS_DbUzdhjgnw5fSJhc22D-2Vdib38Fv6CcxabtNQQTfAjkCvdz1fndJfofQhSlCJqAkDZX8EINK6hglT1DDDIhkkgWuDbo00Gw59Q6977JuBt0s38Ik_BCrgpv2jPh_rR18ImRxTRoKMCTXlj5H20A5TZOnbDpXfum8dlY1FhXcNF2Z7i-nUIlh2sxZMZSS4nqBnzFpDTS_w9U43tR20HYKFHE52dldlIHRHgoUNgwHgFX6j2vBbI4b_XmvHw0_3z_a0UBGU5zwZS5wmff68AYChwv8lBb8cCW-roHHEsfvbnVMS2faEHOAj6f7qFOrPt_WjbRJgsGpZTmG5dos8JzQBeVdesyZdEpCKqQEFpiCCKCeFVhcKijGJFcf7LJAlogjSaibXhyg7Gg8gkOEgREPhOSecCkNQ_B0rqcQAfeUuVGw8-hyqSafpwziupHFwE-4j4mvVerHKs2j85XsJOHN-FWqsNS2n_rOzCfMM3XKzlgeXcU78McKfrXaJPHo6D_CZ2jzsVLzG3eth2O0pewkvTdWQNn5NIITBTTm4WlqT19trM1K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+and+Fast+Lithium%E2%80%93Sulfur+Battery+Achieved+by+Rational+Design+of+Multifunctional+Separator&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Song%2C+Chengwei&rft.au=Peng%2C+Chengxin&rft.au=Bian%2C+Zihao&rft.au=Dong%2C+Fei&rft.date=2019-09-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=2&rft.issue=3&rft.spage=216&rft.epage=224&rft_id=info:doi/10.1002%2Feem2.12036&rft.externalDBID=10.1002%252Feem2.12036&rft.externalDocID=EEM212036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon |