Stable and Fast Lithium–Sulfur Battery Achieved by Rational Design of Multifunctional Separator

Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li‐S battery always causes low Coulombic efficiency, capacity f...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 2; no. 3; pp. 216 - 224
Main Authors Song, Chengwei, Peng, Chengxin, Bian, Zihao, Dong, Fei, Xu, Hongyi, Yang, Junhe, Zheng, Shiyou
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li‐S battery always causes low Coulombic efficiency, capacity fading, and hindering its practical commercialization. Herein, a dual‐functional PEI@MWCNTs‐CB/MWCNTs/PP (briefly denoted as PMS) separator is assembled through Langmuir–Blodgett–Scooping (LBS) technique for improvement of Li‐S battery performance, that is, rational integrating conductive MWCNTs multilayer on a routine PP separator with polyethyleneimine (PEI) polymer. Owing to “proton‐sponge”‐based PEI feature with the abundant amino/imine groups and branched structures, the PMS separator can provide strong affinity to immobilize the negatively charged polysulfides via electrostatic interaction. Simultaneously, incorporated with the conductive MWCNTs multilayers for the electron transportation, the Li‐S cells assembled with PMS separators achieve exceptional high delivery capacity, good rate performance (~550 mAh g−1 at a current density of 9 A g−1), and stable cycling retention (retention of 84.5% at a current density of 1 A g−1) even over 120 cycles, especially in the case of high‐loading sulfur cathode (80 wt% of S content). This multifunctional separator with dual‐structural architectures via self‐assembly LBS method paves new avenues to develop high‐performance Li‐S batteries. The PEI@MWCNTs‐CB/MWCNTs/PP (PMS) separator retards polysulfides shuttling via chemisorption and physisorption. And, it achieves an extraordinary rate performance and cycling retention, which paves a new avenue to develop high‐performance Li‐S batteries.
AbstractList Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li‐S battery always causes low Coulombic efficiency, capacity fading, and hindering its practical commercialization. Herein, a dual‐functional PEI@MWCNTs‐CB/MWCNTs/PP (briefly denoted as PMS) separator is assembled through Langmuir–Blodgett–Scooping (LBS) technique for improvement of Li‐S battery performance, that is, rational integrating conductive MWCNTs multilayer on a routine PP separator with polyethyleneimine (PEI) polymer. Owing to “proton‐sponge”‐based PEI feature with the abundant amino/imine groups and branched structures, the PMS separator can provide strong affinity to immobilize the negatively charged polysulfides via electrostatic interaction. Simultaneously, incorporated with the conductive MWCNTs multilayers for the electron transportation, the Li‐S cells assembled with PMS separators achieve exceptional high delivery capacity, good rate performance (~550 mAh g−1 at a current density of 9 A g−1), and stable cycling retention (retention of 84.5% at a current density of 1 A g−1) even over 120 cycles, especially in the case of high‐loading sulfur cathode (80 wt% of S content). This multifunctional separator with dual‐structural architectures via self‐assembly LBS method paves new avenues to develop high‐performance Li‐S batteries. The PEI@MWCNTs‐CB/MWCNTs/PP (PMS) separator retards polysulfides shuttling via chemisorption and physisorption. And, it achieves an extraordinary rate performance and cycling retention, which paves a new avenue to develop high‐performance Li‐S batteries.
Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li‐S battery always causes low Coulombic efficiency, capacity fading, and hindering its practical commercialization. Herein, a dual‐functional PEI@MWCNTs‐CB/MWCNTs/PP (briefly denoted as PMS) separator is assembled through Langmuir–Blodgett–Scooping (LBS) technique for improvement of Li‐S battery performance, that is, rational integrating conductive MWCNTs multilayer on a routine PP separator with polyethyleneimine (PEI) polymer. Owing to “proton‐sponge”‐based PEI feature with the abundant amino/imine groups and branched structures, the PMS separator can provide strong affinity to immobilize the negatively charged polysulfides via electrostatic interaction. Simultaneously, incorporated with the conductive MWCNTs multilayers for the electron transportation, the Li‐S cells assembled with PMS separators achieve exceptional high delivery capacity, good rate performance (~550 mAh g −1 at a current density of 9 A g −1 ), and stable cycling retention (retention of 84.5% at a current density of 1 A g −1 ) even over 120 cycles, especially in the case of high‐loading sulfur cathode (80 wt% of S content). This multifunctional separator with dual‐structural architectures via self‐assembly LBS method paves new avenues to develop high‐performance Li‐S batteries.
Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li‐S battery always causes low Coulombic efficiency, capacity fading, and hindering its practical commercialization. Herein, a dual‐functional PEI@MWCNTs‐CB/MWCNTs/PP (briefly denoted as PMS) separator is assembled through Langmuir–Blodgett–Scooping (LBS) technique for improvement of Li‐S battery performance, that is, rational integrating conductive MWCNTs multilayer on a routine PP separator with polyethyleneimine (PEI) polymer. Owing to “proton‐sponge”‐based PEI feature with the abundant amino/imine groups and branched structures, the PMS separator can provide strong affinity to immobilize the negatively charged polysulfides via electrostatic interaction. Simultaneously, incorporated with the conductive MWCNTs multilayers for the electron transportation, the Li‐S cells assembled with PMS separators achieve exceptional high delivery capacity, good rate performance (~550 mAh g−1 at a current density of 9 A g−1), and stable cycling retention (retention of 84.5% at a current density of 1 A g−1) even over 120 cycles, especially in the case of high‐loading sulfur cathode (80 wt% of S content). This multifunctional separator with dual‐structural architectures via self‐assembly LBS method paves new avenues to develop high‐performance Li‐S batteries.
Author Peng, Chengxin
Song, Chengwei
Yang, Junhe
Bian, Zihao
Zheng, Shiyou
Xu, Hongyi
Dong, Fei
Author_xml – sequence: 1
  givenname: Chengwei
  surname: Song
  fullname: Song, Chengwei
  organization: University of Shanghai for Science and Technology
– sequence: 2
  givenname: Chengxin
  surname: Peng
  fullname: Peng, Chengxin
  organization: Guizhou Meiling Power Sources Co. Ltd
– sequence: 3
  givenname: Zihao
  surname: Bian
  fullname: Bian, Zihao
  organization: University of Shanghai for Science and Technology
– sequence: 4
  givenname: Fei
  surname: Dong
  fullname: Dong, Fei
  organization: University of Shanghai for Science and Technology
– sequence: 5
  givenname: Hongyi
  surname: Xu
  fullname: Xu, Hongyi
  organization: University of Shanghai for Science and Technology
– sequence: 6
  givenname: Junhe
  surname: Yang
  fullname: Yang, Junhe
  email: jhyang@usst.edu.cn
  organization: University of Shanghai for Science and Technology
– sequence: 7
  givenname: Shiyou
  orcidid: 0000-0002-6614-9567
  surname: Zheng
  fullname: Zheng, Shiyou
  email: syzheng@usst.edu.cn
  organization: University of Shanghai for Science and Technology
BookMark eNp9kE1OwzAQhS1UJErphhNYYofUYjtxfpaltIDUConC2nKSMXWVJsV2QNlxB27ISUiaLhBCrOZJ873RvHeKekVZAELnlIwpIewKYMvGlBEvOEJ9xkM-Ih4Pej_0CRpauyENTKjn07iP5MrJJAcsiwzPpXV4od1aV9uvj89VlavK4GvpHJgaT9K1hjfIcFLjR-l0Wcgc34DVLwUuFV5WudOqKtLDZgU7aaQrzRk6VjK3MDzMAXqez56md6PFw-39dLIYpT6lwYiGHpdRkITAKWl1ylUQZ4p5DCiQjGXgR1TSVHEScZU2OUMuVcwCxRLqcW-ALrq7O1O-VmCd2JSVaV6xgvGIxCT0eUuRjkpNaa0BJVLt9mmckToXlIi2S9F2KfZdNpbLX5ad0Vtp6r9h2sHvOof6H1LMZkvWeb4BR_aGFQ
CitedBy_id crossref_primary_10_1016_j_ensm_2024_103232
crossref_primary_10_1038_s41467_021_27866_5
crossref_primary_10_1039_D0SE00620C
crossref_primary_10_1002_advs_202103798
crossref_primary_10_1016_j_apsusc_2022_153683
crossref_primary_10_1016_j_mseb_2023_117002
crossref_primary_10_1016_j_cej_2024_150872
crossref_primary_10_1002_smll_202107368
crossref_primary_10_1088_2631_7990_acded2
crossref_primary_10_1002_adfm_202200302
crossref_primary_10_1016_j_eng_2021_02_025
crossref_primary_10_1021_acsami_2c15812
crossref_primary_10_1002_eem2_12412
crossref_primary_10_1002_smll_202104613
crossref_primary_10_1016_j_matchemphys_2022_127182
crossref_primary_10_1149_1945_7111_abc4c0
crossref_primary_10_1016_j_apsusc_2023_156348
crossref_primary_10_3390_polym15040993
crossref_primary_10_1021_accountsmr_1c00198
crossref_primary_10_3390_membranes12080790
crossref_primary_10_1021_acsaem_9b02502
crossref_primary_10_1002_eem2_12073
crossref_primary_10_1002_sus2_110
crossref_primary_10_1002_eom2_12182
crossref_primary_10_1002_adfm_202211978
crossref_primary_10_1039_D2CC00535B
crossref_primary_10_1016_j_cej_2024_150301
crossref_primary_10_1002_adma_202004959
crossref_primary_10_1002_eem2_12090
crossref_primary_10_1016_j_mtcomm_2022_104403
crossref_primary_10_1016_j_mtnano_2022_100231
crossref_primary_10_1021_acsami_1c19064
crossref_primary_10_1016_j_gee_2022_03_006
crossref_primary_10_1007_s40820_020_00510_5
crossref_primary_10_1016_j_cej_2020_127044
crossref_primary_10_1002_eem2_12308
Cites_doi 10.1002/admi.201600450
10.1149/1.1806394
10.1016/j.electacta.2017.03.199
10.1021/nl200658a
10.1039/c2ee22238h
10.1021/acsnano.6b07603
10.1039/C7SC01961K
10.1002/adma.201606817
10.1002/anie.201100637
10.1038/s41467-018-03116-z
10.1038/nenergy.2016.94
10.1016/j.electacta.2015.10.009
10.1039/C7TA01352C
10.1021/acsami.8b07663
10.1002/adma.201603401
10.1021/nl5020475
10.1002/aenm.201801778
10.1016/j.jallcom.2014.04.073
10.1021/jacs.7b06973
10.1016/j.jpowsour.2017.07.047
10.1038/am.2017.51
10.1002/batt.201800145
10.1039/C7TA06657K
10.1016/j.nanoen.2016.10.049
10.1002/aenm.201601250
10.1039/C6RA23943A
10.1002/advs.201500268
10.1002/adfm.201304156
10.1002/eem2.12021
10.1038/ncomms2163
10.1016/j.cej.2017.03.022
10.1016/j.jpowsour.2008.03.026
10.1016/j.nanoen.2016.12.002
10.1126/science.aad0832
10.1002/anie.201410174
10.1002/eem2.12003
10.1016/j.cej.2018.07.063
10.1002/adma.201804271
10.1016/j.ensm.2017.05.009
10.1016/j.matlet.2017.12.069
10.1021/nn507178a
10.1002/adma.201103392
10.1039/C7TA10887G
10.1016/j.jpowsour.2013.07.002
10.1039/C8TA05508D
10.1002/adfm.201602264
10.1002/adma.201603835
10.1007/s10008-014-2710-x
10.1021/acs.nanolett.6b04610
10.1002/anie.201809907
10.1038/ncomms6682
10.1021/nn404601h
10.1038/nmat2460
10.1002/aenm.201702485
10.1002/adma.201602172
10.1073/pnas.1615837114
10.1002/chem.201801925
10.1039/C3EE42223B
10.1016/j.nanoen.2016.06.036
10.1021/ja409508q
10.1002/aenm.201500408
10.1002/cssc.201700743
ContentType Journal Article
Copyright 2019 Zhengzhou University
Copyright_xml – notice: 2019 Zhengzhou University
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
DOI 10.1002/eem2.12036
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage 224
ExternalDocumentID 10_1002_eem2_12036
EEM212036
Genre article
GrantInformation_xml – fundername: Shanghai Pujiang Program
  funderid: 18PJ1409000
– fundername: Innovation Program of Shanghai Municipal Education Commission
  funderid: 2019-01-07-00-07-E00015
– fundername: Opening Project of State Key Laboratory of Advanced Chemical Power Sources
  funderid: SKL-ACPS-C-23
– fundername: Program of Shanghai Subject Chief Scientist
  funderid: 17XD1403000
– fundername: National Natural Science Foundation of China
  funderid: 21875141; 51671135
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
ID FETCH-LOGICAL-c4116-1735a86b7e510735ac5f69df232e1e0d2de481a1cf5085fc12075af926f2b1353
IEDL.DBID 24P
ISSN 2575-0356
IngestDate Mon Jun 30 12:07:03 EDT 2025
Thu Apr 24 23:12:11 EDT 2025
Tue Jul 01 01:03:04 EDT 2025
Wed Jan 22 16:41:09 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4116-1735a86b7e510735ac5f69df232e1e0d2de481a1cf5085fc12075af926f2b1353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6614-9567
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12036
PQID 2580907455
PQPubID 5251211
PageCount 9
ParticipantIDs proquest_journals_2580907455
crossref_citationtrail_10_1002_eem2_12036
crossref_primary_10_1002_eem2_12036
wiley_primary_10_1002_eem2_12036_EEM212036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 182
2017; 8
2016; 30
2011; 11
2014; 24
2013; 7
2017; 114
2017; 9
2008; 184
2017; 237
2018; 6
2018; 9
2017; 31
2018; 8
2018; 215
2014; 608
2018; 1
2014; 14
2018; 30
1803; 2017
2017; 362
2017; 320
2012; 24
2014; 7
2016; 351
2014; 245
2015; 6
2015; 5
2015; 19
2019; 2
2015; 54
2017; 29
2015; 9
2017; 139
2018; 24
2016; 6
2018; 352
2012; 3
2016; 1
2016; 3
2017; 17
2017; 11
2004; 151
2017; 10
2011; 50
2013; 135
2009; 8
2016; 28
2018; 10
2016; 26
2012; 5
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
Pang Y. (e_1_2_7_6_1) 2019; 2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Chen M. (e_1_2_7_28_1) 1803; 2017
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 114
  start-page: 840
  year: 2017
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 31
  start-page: 568
  year: 2017
  publication-title: Nano Energy
– volume: 8
  start-page: 6619
  year: 2017
  publication-title: Chem. Sci.
– volume: 28
  start-page: 9797
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1500408
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 3610
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 20
  year: 2018
  publication-title: Energy Environm. Mater.
– volume: 362
  start-page: 243
  year: 2017
  publication-title: J. Power Sources
– volume: 8
  start-page: 1801778
  year: 2018
  publication-title: Adv. Energy. Mater.
– volume: 184
  start-page: 444
  year: 2008
  publication-title: J. Power Sources
– volume: 26
  start-page: 722
  year: 2016
  publication-title: Nano Energy
– volume: 2
  start-page: 1537
  year: 2019
  publication-title: Energy Mater.
– volume: 57
  start-page: 16072
  year: 2018
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 17
  start-page: 538
  year: 2017
  publication-title: Nano Lett.
– volume: 24
  start-page: 4156
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 347
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1601250
  year: 2016
  publication-title: Adv. Energy. Mater.
– volume: 3
  start-page: 1500268
  year: 2016
  publication-title: Adv. Sci.
– volume: 6
  start-page: 17186
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 1176
  year: 2012
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1606817
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2697
  year: 2017
  publication-title: ACS Nano
– volume: 10
  start-page: 2758
  year: 2017
  publication-title: Chemsuschem
– volume: 10
  start-page: 26274
  year: 2018
  publication-title: ACS. Appl. Mater. Interfaces
– volume: 151
  start-page: e1969
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 608
  start-page: 220
  year: 2014
  publication-title: J. Alloy. Comp.
– volume: 9
  start-page: 3002
  year: 2015
  publication-title: ACS Nano
– volume: 1
  start-page: 16094
  year: 2016
  publication-title: Nat. Energy
– volume: 182
  start-page: 884
  year: 2015
  publication-title: Electrochim. Acta
– volume: 237
  start-page: 78
  year: 2017
  publication-title: Electrochim. Acta
– volume: 215
  start-page: 91
  year: 2018
  publication-title: Mater. Lett.
– volume: 5
  start-page: 12506
  year: 2017
  publication-title: J. Mater. Chem. A.
– volume: 1
  start-page: 196
  year: 2018
  publication-title: Energy Environ. Mater.
– volume: 135
  start-page: 16736
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: e1804271
  year: 2018
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1603835
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 5682
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1166
  year: 2012
  publication-title: Nat. Commun.
– volume: 5
  start-page: 21435
  year: 2017
  publication-title: J. Mater. Chem. A.
– volume: 320
  start-page: 178
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 26
  start-page: 7164
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 4821
  year: 2014
  publication-title: Nano Lett.
– volume: 9
  start-page: e375
  year: 2017
  publication-title: NPG Asia Mater.
– volume: 9
  start-page: 705
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 7
  start-page: 10995
  year: 2013
  publication-title: ACS Nano
– volume: 3
  start-page: 1600450
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 8848
  year: 2012
  publication-title: Energ. Environ. Sci.
– volume: 139
  start-page: 12710
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 2017
  start-page: 10
  year: 1803
  publication-title: Chemsuschem
– volume: 54
  start-page: 3907
  year: 2015
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 19
  start-page: 1143
  year: 2015
  publication-title: J. Solid. State. Electr.
– volume: 50
  start-page: 5904
  year: 2011
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 2
  start-page: 1
  year: 2019
  publication-title: Batter. Supercaps
– volume: 8
  start-page: 153
  year: 2017
  publication-title: Energy Storage Materials
– volume: 8
  start-page: 1702485
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 700
  year: 2016
  publication-title: Nano Energy
– volume: 245
  start-page: 529
  year: 2014
  publication-title: J. Power Sources
– volume: 6
  start-page: 104591
  year: 2016
  publication-title: RSC Adv.
– volume: 24
  start-page: 11193
  year: 2018
  publication-title: Chem. Eur. J.
– volume: 28
  start-page: 9551
  year: 2016
  publication-title: Adv. Mater.
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science
– volume: 352
  start-page: 695
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 2644
  year: 2011
  publication-title: Nano Lett.
– ident: e_1_2_7_37_1
  doi: 10.1002/admi.201600450
– ident: e_1_2_7_4_1
  doi: 10.1149/1.1806394
– ident: e_1_2_7_17_1
  doi: 10.1016/j.electacta.2017.03.199
– ident: e_1_2_7_61_1
  doi: 10.1021/nl200658a
– ident: e_1_2_7_57_1
  doi: 10.1039/c2ee22238h
– ident: e_1_2_7_40_1
  doi: 10.1021/acsnano.6b07603
– ident: e_1_2_7_41_1
  doi: 10.1039/C7SC01961K
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.201606817
– ident: e_1_2_7_63_1
  doi: 10.1002/anie.201100637
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-018-03116-z
– ident: e_1_2_7_51_1
  doi: 10.1038/nenergy.2016.94
– ident: e_1_2_7_58_1
  doi: 10.1016/j.electacta.2015.10.009
– ident: e_1_2_7_42_1
  doi: 10.1039/C7TA01352C
– ident: e_1_2_7_43_1
  doi: 10.1021/acsami.8b07663
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.201603401
– ident: e_1_2_7_7_1
  doi: 10.1021/nl5020475
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.201801778
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jallcom.2014.04.073
– ident: e_1_2_7_10_1
  doi: 10.1021/jacs.7b06973
– ident: e_1_2_7_34_1
  doi: 10.1016/j.jpowsour.2017.07.047
– ident: e_1_2_7_47_1
  doi: 10.1038/am.2017.51
– ident: e_1_2_7_12_1
  doi: 10.1002/batt.201800145
– ident: e_1_2_7_15_1
  doi: 10.1039/C7TA06657K
– ident: e_1_2_7_27_1
  doi: 10.1016/j.nanoen.2016.10.049
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201601250
– ident: e_1_2_7_18_1
  doi: 10.1039/C6RA23943A
– ident: e_1_2_7_39_1
  doi: 10.1002/advs.201500268
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.201304156
– ident: e_1_2_7_54_1
  doi: 10.1002/eem2.12021
– ident: e_1_2_7_33_1
  doi: 10.1038/ncomms2163
– ident: e_1_2_7_35_1
  doi: 10.1016/j.cej.2017.03.022
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jpowsour.2008.03.026
– ident: e_1_2_7_56_1
  doi: 10.1016/j.nanoen.2016.12.002
– ident: e_1_2_7_62_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.201410174
– ident: e_1_2_7_32_1
  doi: 10.1002/eem2.12003
– ident: e_1_2_7_46_1
  doi: 10.1016/j.cej.2018.07.063
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201804271
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ensm.2017.05.009
– ident: e_1_2_7_36_1
  doi: 10.1016/j.matlet.2017.12.069
– ident: e_1_2_7_53_1
  doi: 10.1021/nn507178a
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201103392
– ident: e_1_2_7_3_1
  doi: 10.1039/C7TA10887G
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jpowsour.2013.07.002
– ident: e_1_2_7_26_1
  doi: 10.1039/C8TA05508D
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.201602264
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201603835
– volume: 2
  start-page: 1537
  year: 2019
  ident: e_1_2_7_6_1
  publication-title: Energy Mater.
– ident: e_1_2_7_16_1
  doi: 10.1007/s10008-014-2710-x
– ident: e_1_2_7_65_1
  doi: 10.1021/acs.nanolett.6b04610
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.201809907
– ident: e_1_2_7_22_1
  doi: 10.1038/ncomms6682
– ident: e_1_2_7_13_1
  doi: 10.1021/nn404601h
– ident: e_1_2_7_60_1
  doi: 10.1038/nmat2460
– ident: e_1_2_7_31_1
  doi: 10.1002/aenm.201702485
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.201602172
– volume: 2017
  start-page: 10
  year: 1803
  ident: e_1_2_7_28_1
  publication-title: Chemsuschem
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.1615837114
– ident: e_1_2_7_30_1
  doi: 10.1002/chem.201801925
– ident: e_1_2_7_52_1
  doi: 10.1039/C3EE42223B
– ident: e_1_2_7_19_1
  doi: 10.1016/j.nanoen.2016.06.036
– ident: e_1_2_7_55_1
  doi: 10.1021/ja409508q
– ident: e_1_2_7_64_1
  doi: 10.1002/aenm.201500408
– ident: e_1_2_7_59_1
  doi: 10.1002/cssc.201700743
SSID ssj0002013419
Score 2.2810118
Snippet Lithium–sulfur (Li‐S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 216
SubjectTerms Commercialization
Current density
Electric vehicles
Electrostatic properties
electrostatic shield
Flux density
Langmuir-Blodgett films
Lithium
Lithium sulfur batteries
Li‐S battery
Multilayers
Polyethyleneimine
Polymers
Polysulfides
Retention
self‐assembly
separator
Separators
Sulfur
Title Stable and Fast Lithium–Sulfur Battery Achieved by Rational Design of Multifunctional Separator
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12036
https://www.proquest.com/docview/2580907455
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA9zvvgiiorTOQL6olDXZkmbgS9DN4Y4EWdl-FKa5sIG-yNbJ-zN7-A39JOYpN2mIIJvgV4Lvdz1fnfN_Q6hM1cKJqGuHJ38EIcq6jt1LqnjxkQxxeKgBqY00Ln32yG97bFeAV0te2EyfohVwc14hv1eGwePxay6Jg0FGJFLz_xH20CbprfWMOcT-rCqsOjQZsjKzHQ5jUkct8b8FT8pqa5v_xmR1jDzO1i10aa1g7ZzmIgb2b7uogKM91CskaEYAtbJP27FsxTfDdL-YD76fP_ozodqPsUZW-YCN5L-AN5AYrHAj3m5D9_Ywxp4orDtujURLb_SBcsAPpnuo7DVfLpuO_mIBCehnuc7XlBjMfdFANq3zDphyq9LpXESeOBKIoFyL_YSpYEYU4l-4YDFqk58RYQZeXGAiuPJGA4RBkY4SJVwGVAqBHCT6Wk8kHBtbBRqJXS-VFOU5PzhZozFMMqYj0lkVBpZlZbQ6Ur2NWPN-FWqvNR2lHvOLCKMuyZhZ6yELuwO_PGEqNnsELs6-o_wMdrSxpEfFSujYjqdw4nGFqmoWBOqoM3Gc_gSfgH15Mqk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF60HvQiiorVqgt6UYhNNrv5ORZtqdoWsS30FpLsLC30R9pE6M138A19Enc3aaoggreFTAKZncl8M5n9BqErk0eMgy8MmfwQgwrqGL7HqWGGRDDBQtcGVRpod5xmnz4O2CDvzVFnYTJ-iKLgpjxDf6-Vg6uCdHXNGgowIbeW-pG2ibaoQ1zll4Q-FyUWGdsUW5kaLydBiWHazCkISkl1ffvPkLTGmd_Rqg43jT20m-NEXMs2dh9twPQAhRIaRmPAMvvHjXCR4NYoGY7Syef7Rzcdi3SOM7rMJa7FwxG8AcfREr_k9T58r7s18ExgfexWhbT8Shc0Bfhsfoj6jXrvrmnkMxKMmFqWY1iuzULPiVyQzqXWMROOz4UESmCByQkH6lmhFQuJxJiI5Qu7LBQ-cQSJ1MyLI1SazqZwjDAw4gEXscddSqMIPJXqSUAQe9LaKNhldL1SUxDnBOJqjsU4yKiPSaBUGmiVltFlIfua0Wb8KlVZaTvIXWcREOaZKmNnrIxu9A788YSgXm8TvTr5j_AF2m722q2g9dB5OkU70lDyvrEKKiXzFM4k0Eiic21OX5BjzFI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA9zA_FFFBWnUwP6olDXpknbgS_DbUzdhjgnw5fSJhc22D-2Vdib38Fv6CcxabtNQQTfAjkCvdz1fndJfofQhSlCJqAkDZX8EINK6hglT1DDDIhkkgWuDbo00Gw59Q6977JuBt0s38Ik_BCrgpv2jPh_rR18ImRxTRoKMCTXlj5H20A5TZOnbDpXfum8dlY1FhXcNF2Z7i-nUIlh2sxZMZSS4nqBnzFpDTS_w9U43tR20HYKFHE52dldlIHRHgoUNgwHgFX6j2vBbI4b_XmvHw0_3z_a0UBGU5zwZS5wmff68AYChwv8lBb8cCW-roHHEsfvbnVMS2faEHOAj6f7qFOrPt_WjbRJgsGpZTmG5dos8JzQBeVdesyZdEpCKqQEFpiCCKCeFVhcKijGJFcf7LJAlogjSaibXhyg7Gg8gkOEgREPhOSecCkNQ_B0rqcQAfeUuVGw8-hyqSafpwziupHFwE-4j4mvVerHKs2j85XsJOHN-FWqsNS2n_rOzCfMM3XKzlgeXcU78McKfrXaJPHo6D_CZ2jzsVLzG3eth2O0pewkvTdWQNn5NIITBTTm4WlqT19trM1K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+and+Fast+Lithium%E2%80%93Sulfur+Battery+Achieved+by+Rational+Design+of+Multifunctional+Separator&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Song%2C+Chengwei&rft.au=Peng%2C+Chengxin&rft.au=Bian%2C+Zihao&rft.au=Dong%2C+Fei&rft.date=2019-09-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=2&rft.issue=3&rft.spage=216&rft.epage=224&rft_id=info:doi/10.1002%2Feem2.12036&rft.externalDBID=10.1002%252Feem2.12036&rft.externalDocID=EEM212036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon