First Principle Material Genome Approach for All Solid‐State Batteries
Due to ever‐increasing concern about safety issues in using alkali metal ionic batteries, all solid‐state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high‐performance ASSBs lies in delivering ultra‐fast ionic conductors that are compatible with both alkali anodes...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 2; no. 4; pp. 234 - 250 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to ever‐increasing concern about safety issues in using alkali metal ionic batteries, all solid‐state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high‐performance ASSBs lies in delivering ultra‐fast ionic conductors that are compatible with both alkali anodes and high‐voltage cathodes. Such a challenging task cannot be fulfilled, without solid understanding covering materials stability and properties, interfacial reactions, structural integrity, and electrochemical windows. Here in this work, we will review recent advances on fundamental modeling in the framework of material genome initiative based on the density functional theory (DFT), focusing on solid alkali batteries. Efforts are made in offering a dependable road chart to formulate competitive materials and construct “better” batteries.
A summary of methods as an integrated material genome approach. The tasks for theoretical simulation/modeling are classified into two categories for the predictions of (A) thermodynamic and dynamic stability and (B) performance of SSE or ASSB. |
---|---|
AbstractList | Due to ever‐increasing concern about safety issues in using alkali metal ionic batteries, all solid‐state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high‐performance ASSBs lies in delivering ultra‐fast ionic conductors that are compatible with both alkali anodes and high‐voltage cathodes. Such a challenging task cannot be fulfilled, without solid understanding covering materials stability and properties, interfacial reactions, structural integrity, and electrochemical windows. Here in this work, we will review recent advances on fundamental modeling in the framework of material genome initiative based on the density functional theory (DFT), focusing on solid alkali batteries. Efforts are made in offering a dependable road chart to formulate competitive materials and construct “better” batteries.
A summary of methods as an integrated material genome approach. The tasks for theoretical simulation/modeling are classified into two categories for the predictions of (A) thermodynamic and dynamic stability and (B) performance of SSE or ASSB. Due to ever‐increasing concern about safety issues in using alkali metal ionic batteries, all solid‐state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high‐performance ASSBs lies in delivering ultra‐fast ionic conductors that are compatible with both alkali anodes and high‐voltage cathodes. Such a challenging task cannot be fulfilled, without solid understanding covering materials stability and properties, interfacial reactions, structural integrity, and electrochemical windows. Here in this work, we will review recent advances on fundamental modeling in the framework of material genome initiative based on the density functional theory (DFT), focusing on solid alkali batteries. Efforts are made in offering a dependable road chart to formulate competitive materials and construct “better” batteries. |
Author | Xu, Hongjie Shao, Guosheng Yu, Yuran Wang, Zhuo |
Author_xml | – sequence: 1 givenname: Hongjie surname: Xu fullname: Xu, Hongjie organization: Zhengzhou Materials Genome Institute – sequence: 2 givenname: Yuran surname: Yu fullname: Yu, Yuran organization: Zhengzhou Materials Genome Institute – sequence: 3 givenname: Zhuo orcidid: 0000-0003-4436-9689 surname: Wang fullname: Wang, Zhuo email: wangzh@zzu.edu.cn organization: Zhengzhou Materials Genome Institute – sequence: 4 givenname: Guosheng surname: Shao fullname: Shao, Guosheng email: gsshao@zzu.edu.cn organization: Zhengzhou Materials Genome Institute |
BookMark | eNp9kMtKAzEUhoNUsNZufIKAO2FqLpOZ6bKWXoQWheo6pJkEU9LJmEyR7nwEn9EnMeO4EBE35_yL7z-X_xz0KlcpAC4xGmGEyI1SezLCBDF6AvqE5SxBlGW9H_oMDEPYoQgjTFM87oPl3PjQwAdvKmlqq-BaNMobYeFCVW6v4KSuvRPyGWrn4cRauHHWlB9v75smkvBWNC2vwgU41cIGNfzuA_A0nz1Ol8nqfnE3nawSmWJMEyXKshBYbFlOM4EzWcaqJZNMl1rnZTmmMgoVRZqjTG-RpqwoUk2JzoWWdACuurnxrJeDCg3fuYOv4kpOWIHGGBUsi9R1R0nvQvBK89qbvfBHjhFvw-JtWPwrrAijX7A08TnjqsYLY_-24M7yaqw6_jOcz2Zr0nk-Ac8mfuE |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_2c01622 crossref_primary_10_1016_j_seppur_2025_132491 crossref_primary_10_1002_ange_202304581 crossref_primary_10_1016_j_nanoen_2024_109361 crossref_primary_10_1016_j_cclet_2023_109173 crossref_primary_10_1002_eem2_12069 crossref_primary_10_1007_s41918_022_00167_1 crossref_primary_10_1002_adfm_202214430 crossref_primary_10_1016_j_surfin_2023_103128 crossref_primary_10_1016_j_ceramint_2021_08_159 crossref_primary_10_1002_adfm_202211640 crossref_primary_10_1016_j_ceramint_2024_04_261 crossref_primary_10_1039_D2RA06921K crossref_primary_10_1039_D0CP00151A crossref_primary_10_1016_j_nanoen_2020_105249 crossref_primary_10_1016_j_nanoen_2020_105407 crossref_primary_10_3390_su152215881 crossref_primary_10_1016_j_jechem_2020_11_008 crossref_primary_10_1016_j_ensm_2024_103807 crossref_primary_10_1039_D4DD00152D crossref_primary_10_1002_batt_202000320 crossref_primary_10_1002_anie_202304581 crossref_primary_10_1016_j_cej_2023_142464 crossref_primary_10_1021_acsami_1c02050 crossref_primary_10_1002_adma_202302438 crossref_primary_10_1039_D1TA01796A crossref_primary_10_1007_s40820_023_01053_1 crossref_primary_10_1016_j_nanoen_2022_106918 crossref_primary_10_1002_aesr_202000057 crossref_primary_10_1016_j_jpowsour_2023_232720 crossref_primary_10_1039_D0TA07469A crossref_primary_10_1002_celc_202001527 crossref_primary_10_1039_D0TA00525H crossref_primary_10_1021_acsami_1c03227 crossref_primary_10_1021_acs_jpclett_3c03012 crossref_primary_10_1021_acsomega_1c06793 crossref_primary_10_1002_adfm_202315512 crossref_primary_10_1002_eem2_12127 crossref_primary_10_1002_cey2_129 crossref_primary_10_1002_smll_202307923 crossref_primary_10_3390_app131910957 crossref_primary_10_1039_D1TA06338C crossref_primary_10_1007_s41918_022_00143_9 crossref_primary_10_1002_celc_202101339 crossref_primary_10_1002_eem2_12362 crossref_primary_10_1007_s42243_024_01353_9 crossref_primary_10_1016_j_susc_2022_122064 crossref_primary_10_1016_j_ensm_2022_01_050 crossref_primary_10_1038_s41467_024_54317_8 crossref_primary_10_1039_C9TA13366F crossref_primary_10_1016_j_jechem_2020_04_062 crossref_primary_10_12677_AAC_2022_124041 crossref_primary_10_1098_rsta_2019_0467 crossref_primary_10_3390_batteries10010025 crossref_primary_10_1039_D1TA02616J crossref_primary_10_1039_D4MA00666F crossref_primary_10_3390_ma17133094 crossref_primary_10_1016_j_jpowsour_2020_228040 crossref_primary_10_1016_j_ijhydene_2024_05_388 crossref_primary_10_1002_eem2_12272 crossref_primary_10_1088_1742_6596_2478_3_032077 crossref_primary_10_1021_acsnano_1c05536 crossref_primary_10_1016_j_rser_2021_111161 crossref_primary_10_1002_eom2_12283 crossref_primary_10_1021_acsnano_1c07476 crossref_primary_10_1021_acsomega_2c04665 crossref_primary_10_1002_adts_202200569 crossref_primary_10_1021_acs_chemrev_0c00101 crossref_primary_10_1039_D1TA05849E crossref_primary_10_1002_bte2_20220052 crossref_primary_10_1016_j_ceramint_2023_06_153 crossref_primary_10_1021_acs_chemmater_2c01925 crossref_primary_10_1002_advs_202201648 crossref_primary_10_1039_D3NR02271D crossref_primary_10_1016_j_jcis_2024_07_200 crossref_primary_10_1039_D3CP02058D crossref_primary_10_1016_j_ssi_2023_116170 crossref_primary_10_1021_acsami_2c12732 crossref_primary_10_1016_j_cej_2020_126991 crossref_primary_10_1021_acs_energyfuels_4c03193 |
Cites_doi | 10.1039/C3TA15087A 10.1021/acs.inorgchem.8b01325 10.1016/j.jallcom.2018.12.121 10.1021/cm203303y 10.1016/j.mattod.2014.10.040 10.1103/PhysRevB.78.134106 10.1038/s41467-018-04949-4 10.1063/1.1323224 10.1038/ncomms11009 10.1016/j.jpowsour.2014.02.054 10.1039/C7TA08968F 10.1021/jacs.8b10282 10.1088/0370-1298/65/5/307 10.1039/C7TA08698A 10.1039/C7TA06986C 10.1016/j.jpowsour.2009.11.120 10.1002/anie.200703900 10.1039/c1ee01388b 10.1016/j.jpowsour.2013.09.051 10.1021/acs.jpclett.5b02352 10.1021/acsami.5b07517 10.1016/j.inoche.2014.08.036 10.1039/C8TA01050A 10.1103/PhysRevB.77.224115 10.1039/C8TA11151K 10.1002/anie.201601546 10.1002/aenm.201703012 10.1063/1.2210932 10.1021/jacs.9b01746 10.1016/j.jallcom.2009.03.038 10.1039/C7EE03083E 10.1039/C6CS00776G 10.1002/eem2.12017 10.1021/jacs.7b06327 10.1007/978-1-4615-2704-6 10.1016/j.electacta.2016.08.081 10.1111/j.1151-2916.1977.tb16094.x 10.1149/2.0061602jes 10.1002/advs.201600089 10.1111/jace.14285 10.1103/PhysRevB.90.224104 10.1039/C7EE00534B 10.1021/acs.chemmater.5b04013 10.1038/nmat3066 10.1039/C8TA10498K 10.1063/1.1329672 10.1016/j.joule.2018.12.019 10.1002/anie.201604158 10.1021/acsenergylett.9b00093 10.1002/aenm.201501294 10.1038/nnano.2017.16 10.1038/natrevmats.2016.103 10.1021/acs.nanolett.8b03902 10.1038/nenergy.2016.42 10.1039/c2ee02781j 10.1016/j.jpowsour.2015.06.002 10.1016/j.ceramint.2016.07.115 10.1016/j.actamat.2012.10.034 10.1103/PhysRevB.56.11593 10.1021/acsami.6b12071 10.1039/C8TA08412B 10.1021/acsenergylett.6b00593 10.1016/j.jpowsour.2016.01.002 10.1002/eem2.12015 10.1038/ncomms1843 10.1021/acsami.8b15121 10.1016/j.apsusc.2017.11.079 10.1021/acs.inorgchem.6b00444 10.1016/j.electacta.2016.10.052 10.1002/anie.201608924 10.1002/aenm.201601196 10.1016/j.jeurceramsoc.2019.04.045 10.1063/1.4944683 10.1103/PhysRevLett.78.4063 10.1038/s41560-018-0312-z 10.1016/j.jpowsour.2012.02.038 10.1016/j.jallcom.2016.07.264 10.1080/01418610008212076 10.1021/acs.chemmater.7b01116 10.1021/acs.chemmater.6b04990 10.1361/105497102770331596 10.1039/C7EE02555F 10.1038/nenergy.2016.30 10.1021/acsami.6b10119 10.1021/acsaem.9b00861 10.1039/C8TA07240J 10.1002/adma.201805574 10.1021/acsami.9b10160 10.1016/j.apsusc.2019.07.041 10.1002/aenm.201800035 10.1021/jp5012523 10.1021/acsami.6b09992 10.1021/acs.chemmater.6b00610 10.1016/j.jpowsour.2015.05.093 10.1515/znb-1989-0321 10.1021/acsami.6b06754 10.1021/acs.chemmater.6b02648 10.1002/adfm.201702887 10.1021/acs.jpcc.7b11849 10.1039/C5CP05722A 10.1126/science.1212741 10.1063/1.1564060 10.1016/j.jallcom.2017.12.021 10.1038/nmat4821 10.1039/C3EE43357A 10.1002/anie.200701144 10.1021/acs.chemmater.5b03854 10.1016/j.jpowsour.2017.02.042 10.1002/smtd.201700219 10.1063/1.4812323 10.1039/c3ee41728j 10.1039/c0ee00052c 10.1016/j.jallcom.2011.12.080 10.1103/PhysRevB.94.064105 10.1002/advs.201500359 10.1016/j.ensm.2018.02.017 10.1021/acsenergylett.7b01105 10.1246/cl.170836 10.1021/acs.chemmater.5b03656 10.1021/acs.chemmater.5b04082 10.1038/451652a 10.1016/j.joule.2019.02.006 10.1021/acs.chemrev.5b00563 10.1039/C8EE02617C 10.1002/adfm.201707533 10.1021/ja3110895 10.1039/C4CC05372A 10.1007/s11426-017-9164-2 10.1039/C8EE00907D 10.1016/j.jallcom.2016.03.009 10.1016/j.ssi.2012.09.014 10.1016/j.jpowsour.2018.04.022 10.1021/acsami.7b16176 10.1039/C9TA02166C 10.1002/ange.201903466 10.1016/j.joule.2018.07.028 10.1021/acs.chemmater.7b04096 10.1016/j.jpowsour.2012.02.031 10.1016/j.jpowsour.2018.02.062 10.1016/j.cpc.2006.07.020 10.1016/j.jascer.2013.03.005 10.1016/j.nanoen.2018.08.030 10.1002/admi.201600942 |
ContentType | Journal Article |
Copyright | 2019 Zhengzhou University |
Copyright_xml | – notice: 2019 Zhengzhou University |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
DOI | 10.1002/eem2.12053 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | 250 |
ExternalDocumentID | 10_1002_eem2_12053 EEM212053 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51001091; 111174256; 91233101; 51602094; 51602290; 11274100 – fundername: Fundamental Research Program from the Ministry of Science and Technology of China funderid: 2014CB931704 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
ID | FETCH-LOGICAL-c4113-eadd8a1ab5736a16cd6a1fc5c5fdff7dd93cdffedd94706fb0f35884f32f7afc3 |
IEDL.DBID | 24P |
ISSN | 2575-0356 |
IngestDate | Mon Jun 30 11:57:35 EDT 2025 Tue Jul 01 01:03:04 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Wed Jan 22 16:37:22 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4113-eadd8a1ab5736a16cd6a1fc5c5fdff7dd93cdffedd94706fb0f35884f32f7afc3 |
Notes | The first two authors contributed equally to this article. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4436-9689 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12053 |
PQID | 2580910856 |
PQPubID | 5251211 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2580910856 crossref_primary_10_1002_eem2_12053 crossref_citationtrail_10_1002_eem2_12053 wiley_primary_10_1002_eem2_12053_EEM212053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1989; 44 2013; 1 2016; 307 2019; 11 2013; 61 2019; 12 2006; 175 2013; 6 2014; 258 2018; 47 2018; 6 2018; 9 2018; 8 2018; 3 2018; 2 2018; 735 2018; 1 1997; 56 2016; 42 2016; 673 1803; 2018 2018; 30 2010; 195 2009; 481 2013; 230 2010; 3 2012; 24 2014; 247 2019; 7 2018; 28 2019; 4 2019; 3 1804; 2011 2017; 60 2000; 113 2019; 31 2019; 2 1994; 271 2019; 39 2014; 48 2016; 94 2016; 688 2011; 4 2017; 139 2016; 99 2016; 4 2018; 18 2016; 7 2016; 1 2016; 3 2017; 56 2008; 47 2000; 80 2016; 215 2018; 11 2016; 28 2018; 10 2016; 8 2018; 14 2012; 517 2017; 5 2017; 7 2018; 122 2017; 1 2017; 2 2003; 118 2017; 4 2017; 46 2008; 78 2016; 220 2011; 10 2008; 77 2012; 208 2010; 60 1952; 65 2015; 293 2014; 2 1945; 2018 2016; 116 2014; 50 2014; 7 2006; 124 2014; 118 2015; 163 2011; 334 2015; 6 2015; 17 2015; 5 2015; 16 2018; 382 2014; 90 2018; 140 2015; 18 2017; 27 2018; 389 2017; 29 2019; 141 2015; 7 2019; 781 2016; 55 1991; 2018 2015; 28 2012; 3 2015; 27 2018; 435 2017; 16 2002; 23 2017; 10 2017; 12 1997; 78 2013; 135 2019; 493 2008; 451 2012; 5 2018; 53 2007; 46 2017; 347 2019; 131 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Wu B. (e_1_2_8_125_1) 1803; 2018 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 Rao R. P. (e_1_2_8_92_1) 1804; 2011 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 Zhang Z. (e_1_2_8_46_1) 1945; 2018 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 Xu L. (e_1_2_8_52_1) 1991; 2018 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Lee S.‐M. (e_1_2_8_137_1) 2015; 16 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 5 start-page: 21846 year: 2017 publication-title: J. Mater. Chem. A – volume: 118 start-page: 8207 year: 2003 publication-title: J. Chem. Phys. – volume: 8 start-page: 27814 year: 2016 publication-title: Mater. Interfaces – volume: 481 start-page: 555 year: 2009 publication-title: J. Alloys Compd. – volume: 118 start-page: 8170 year: 2014 publication-title: J. Phys. Chem. B – volume: 80 start-page: 693 year: 2000 publication-title: Philos. Mag. A – volume: 55 start-page: 8551 year: 2016 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 10 start-page: 1150 year: 2017 publication-title: Energy Environ. Sci. – volume: 116 start-page: 140 year: 2016 publication-title: Chem. Rev. – volume: 382 start-page: 160 year: 2018 publication-title: J. Power Sources – volume: 7 start-page: 10483 year: 2019 publication-title: J. Mater. Chem. A – volume: 1 start-page: 17 year: 2013 publication-title: J. Asian Ceram. Soc. – volume: 60 start-page: 58 year: 2010 publication-title: J. Am. Ceram. Soc. – volume: 17 start-page: 32547 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 29 start-page: 281 year: 2017 publication-title: Chem. Mater. – volume: 163 start-page: A67 year: 2015 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 42279 year: 2018 publication-title: Mater. Interfaces – volume: 435 start-page: 1150 year: 2018 publication-title: Appl. Surf. Sci. – volume: 2 start-page: 462 year: 2017 publication-title: ACS Energy Lett. – volume: 195 start-page: 2431 year: 2010 publication-title: J. Power Sources – volume: 8 start-page: 35298 year: 2016 publication-title: Mater. Interfaces – volume: 28 start-page: 2400 year: 2016 publication-title: Chem. Mater. – volume: 2 start-page: 16103 year: 2017 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 2906 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 5884 year: 2012 publication-title: Energy Environ. Sci. – volume: 6 start-page: 2625 year: 2018 publication-title: J. Mater. Chem. A – volume: 113 start-page: 9978 year: 2000 publication-title: J. Chem. Phys. – volume: 230 start-page: 72 year: 2013 publication-title: Solid State Ion. – volume: 11 start-page: 31991 year: 2019 publication-title: Mater. Interfaces – volume: 5 start-page: 1501294 year: 2015 publication-title: Adv. Energy Mater. – volume: 55 start-page: 5993 year: 2016 publication-title: Inorg. Chem. – volume: 1 start-page: 16042 year: 2016 publication-title: Nat. Energy – volume: 46 start-page: 7778 year: 2007 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 347 start-page: 229 year: 2017 publication-title: J. Power Sources – volume: 2011 start-page: 208 year: 1804 publication-title: Phys. Status Solidi A – volume: 30 start-page: 163 year: 2018 publication-title: Chem. Mater. – volume: 113 start-page: 9901 year: 2000 publication-title: J. Chem. Phys. – volume: 50 start-page: 11520 year: 2014 publication-title: Chem. Commun. – volume: 124 start-page: 244704 year: 2006 publication-title: J. Chem. Phys. – volume: 44 start-page: 373 year: 1989 publication-title: Z. Naturforsch. B – volume: 47 start-page: 755 year: 2008 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 3 start-page: 1500359 year: 2016 publication-title: Adv. Sci. – volume: 7 start-page: 1053 year: 2014 publication-title: Energy Environ. Sci. – volume: 57 start-page: 10685 year: 2018 publication-title: Inorg. Chem. – volume: 122 start-page: 2589 year: 2018 publication-title: J. Phys. Chem. C – volume: 56 start-page: 11593 year: 1997 publication-title: Phys. Rev. B – volume: 2018 start-page: 2 year: 1991 publication-title: Joule – volume: 10 start-page: 682 year: 2011 publication-title: Nat. Mater. – volume: 94 start-page: 064105 year: 2016 publication-title: Phys. Rev. B – volume: 141 start-page: 5640 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1600089 year: 2016 publication-title: Adv Sci. – volume: 735 start-page: 2401 year: 2018 publication-title: J. Alloys Compd. – volume: 3 start-page: 98 year: 2018 publication-title: ACS Energy Lett. – volume: 517 start-page: 182 year: 2012 publication-title: J. Alloys Compd. – volume: 7 start-page: 5239 year: 2019 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1524 year: 2010 publication-title: Energy Environ. Sci. – volume: 6 start-page: 19231 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1703012 year: 2018 publication-title: Adv. Energy Mater. – volume: 48 start-page: 140 year: 2014 publication-title: Inorg. Chem. Commun. – volume: 6 start-page: 6830 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 start-page: 28216 year: 2016 publication-title: ACS Appl. Mater. Inter. – volume: 7 start-page: 1601196 year: 2017 publication-title: Adv. Energy Mater. – volume: 60 start-page: 1508 year: 2017 publication-title: Sci. China Chem. – volume: 78 start-page: 134106 year: 2008 publication-title: Phys. Rev. B – volume: 258 start-page: 420 year: 2014 publication-title: J. Power Sources – volume: 6 start-page: 73 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 start-page: 25229 year: 2016 publication-title: Mater. Interfaces – volume: 47 start-page: 13 year: 2018 publication-title: Chem. Lett. – volume: 78 start-page: 4063 year: 1997 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 187 year: 2019 publication-title: Nat. Energy – volume: 2 start-page: 6288 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 7 start-page: 8144 year: 2019 publication-title: J. Mater. Chem. A – volume: 16 start-page: 572 year: 2017 publication-title: Nat. Mater. – volume: 99 start-page: 2729 year: 2016 publication-title: J. Am. Ceram. Soc. – volume: 293 start-page: 941 year: 2015 publication-title: J. Power Sources – volume: 23 start-page: 348 year: 2002 publication-title: J. Phase Equilib. – volume: 220 start-page: 258 year: 2016 publication-title: Electrochim. Acta – volume: 31 start-page: 1805574 year: 2019 publication-title: Adv. Mater. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 77 start-page: 224115 year: 2008 publication-title: Phys. Rev. B – volume: 2018 start-page: 11 year: 1945 publication-title: Energy Environ. Sci. – volume: 8 start-page: 1800035 year: 2018 publication-title: Adv. Energy Mater. – volume: 18 start-page: 7414 year: 2018 publication-title: Nano Lett. – volume: 55 start-page: 9634 year: 2016 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 4 start-page: 591 year: 2019 publication-title: ACS Energy Lett. – volume: 271 year: 1994 – volume: 28 start-page: 266 year: 2015 publication-title: Chem. Mater. – volume: 61 start-page: 759 year: 2013 publication-title: Acta Mater. – volume: 39 start-page: 3332 year: 2019 publication-title: J. Eur. Ceram. Soc. – volume: 28 start-page: 1707533 year: 2018 publication-title: Adv. Funct. Mater. – volume: 307 start-page: 578 year: 2016 publication-title: J. Power Sources – volume: 1 start-page: 174 year: 2018 publication-title: Energy Environ. Mater. – volume: 29 start-page: 3883 year: 2017 publication-title: Chem. Mater. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 2018 start-page: 11 year: 1803 publication-title: Energy Environ. Sci. – volume: 65 start-page: 349 year: 1952 publication-title: Proc. Phys. Soc. A – volume: 6 start-page: 3548 year: 2013 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1037 year: 2019 publication-title: Joule – volume: 11 start-page: 2142 year: 2018 publication-title: Energy Environ. Sci. – volume: 293 start-page: 735 year: 2015 publication-title: J. Power Sources – volume: 1 start-page: 148 year: 2018 publication-title: Energy Environ. Mater. – volume: 1 start-page: 1700219 year: 2017 publication-title: Small Methods – volume: 18 start-page: 252 year: 2015 publication-title: Mater. Today – volume: 7 start-page: 23685 year: 2015 publication-title: Mater. Interfaces – volume: 389 start-page: 198 year: 2018 publication-title: J. Power Sources – volume: 175 start-page: 713 year: 2006 publication-title: Comput. Phys. Commun. – volume: 4 start-page: 3287 year: 2011 publication-title: Energy Environ. Sci. – volume: 14 start-page: 100 year: 2018 publication-title: Energy Storage Mater. – volume: 46 start-page: 3529 year: 2017 publication-title: Chem. Soc. Rev. – volume: 131 start-page: 7884 year: 2019 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 28 start-page: 197 year: 2015 publication-title: Chem. Mater. – volume: 12 start-page: 938 year: 2019 publication-title: Energy Environ. Sci. – volume: 11 start-page: 87 year: 2018 publication-title: Energy Environ. Sci. – volume: 4 start-page: 053102 year: 2016 publication-title: APL Mater. – volume: 135 start-page: 975 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 208 start-page: 193 year: 2012 publication-title: J. Power Sources – volume: 27 start-page: 8318 year: 2015 publication-title: Chem. Mater. – volume: 6 start-page: 4599 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 247 start-page: 975 year: 2014 publication-title: J. Power Sources – volume: 2 start-page: 5470 year: 2014 publication-title: J. Mater. Chem. A – volume: 90 start-page: 224104 year: 2014 publication-title: Phys. Rev. B – volume: 2 start-page: 1747 year: 2018 publication-title: Joule – volume: 53 start-page: 168 year: 2018 publication-title: Nano Energy – volume: 7 start-page: 11009 year: 2016 publication-title: Nat. Commun. – volume: 493 start-page: 1326 year: 2019 publication-title: Appl. Surf. Sci. – volume: 11 start-page: 527 year: 2018 publication-title: Energy Environ. Sci. – volume: 24 start-page: 15 year: 2012 publication-title: Chem. Mater. – volume: 4 start-page: 1600942 year: 2017 publication-title: Adv. Mater. Inter. – volume: 1 start-page: 16030 year: 2016 publication-title: Nat. Energy – volume: 688 start-page: 746 year: 2016 publication-title: J. Alloys Compd. – volume: 6 start-page: 19843 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 start-page: 5232 year: 2017 publication-title: Chem. Mater. – volume: 781 start-page: 1059 year: 2019 publication-title: J. Alloys Compd. – volume: 27 start-page: 1702887 year: 2017 publication-title: Adv. Funct. Mater. – volume: 215 start-page: 93 year: 2016 publication-title: Electrochim. Acta – volume: 3 start-page: 856 year: 2012 publication-title: Nat. Commun. – volume: 10 start-page: 2556 year: 2018 publication-title: Mater. Interfaces – volume: 139 start-page: 10909 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 16330 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 1 start-page: 011002 year: 2013 publication-title: APL Mater. – volume: 16 start-page: 49 year: 2015 publication-title: J. Ceram. Process. Res. – volume: 673 start-page: 295 year: 2016 publication-title: J. Alloys Compd. – volume: 3 start-page: 1252 year: 2019 publication-title: Joule – volume: 208 start-page: 210 year: 2012 publication-title: J. Power Sources – volume: 56 start-page: 753 year: 2017 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 28 start-page: 252 year: 2015 publication-title: Chem. Mater. – volume: 42 start-page: 16055 year: 2016 publication-title: Ceram. Int. – ident: e_1_2_8_100_1 doi: 10.1039/C3TA15087A – ident: e_1_2_8_120_1 doi: 10.1021/acs.inorgchem.8b01325 – ident: e_1_2_8_16_1 doi: 10.1016/j.jallcom.2018.12.121 – ident: e_1_2_8_78_1 doi: 10.1021/cm203303y – ident: e_1_2_8_8_1 doi: 10.1016/j.mattod.2014.10.040 – volume: 2011 start-page: 208 year: 1804 ident: e_1_2_8_92_1 publication-title: Phys. Status Solidi A – ident: e_1_2_8_60_1 doi: 10.1103/PhysRevB.78.134106 – ident: e_1_2_8_115_1 doi: 10.1038/s41467-018-04949-4 – ident: e_1_2_8_68_1 doi: 10.1063/1.1323224 – ident: e_1_2_8_135_1 doi: 10.1038/ncomms11009 – ident: e_1_2_8_39_1 doi: 10.1016/j.jpowsour.2014.02.054 – ident: e_1_2_8_63_1 doi: 10.1039/C7TA08968F – ident: e_1_2_8_96_1 doi: 10.1021/jacs.8b10282 – ident: e_1_2_8_82_1 doi: 10.1088/0370-1298/65/5/307 – ident: e_1_2_8_64_1 doi: 10.1039/C7TA08698A – ident: e_1_2_8_72_1 doi: 10.1039/C7TA06986C – ident: e_1_2_8_25_1 doi: 10.1016/j.jpowsour.2009.11.120 – ident: e_1_2_8_90_1 doi: 10.1002/anie.200703900 – ident: e_1_2_8_3_1 doi: 10.1039/c1ee01388b – ident: e_1_2_8_24_1 doi: 10.1016/j.jpowsour.2013.09.051 – ident: e_1_2_8_51_1 doi: 10.1021/acs.jpclett.5b02352 – ident: e_1_2_8_98_1 doi: 10.1021/acsami.5b07517 – ident: e_1_2_8_102_1 doi: 10.1016/j.inoche.2014.08.036 – volume: 2018 start-page: 11 year: 1945 ident: e_1_2_8_46_1 publication-title: Energy Environ. Sci. – ident: e_1_2_8_73_1 doi: 10.1039/C8TA01050A – ident: e_1_2_8_79_1 doi: 10.1103/PhysRevB.77.224115 – ident: e_1_2_8_40_1 doi: 10.1039/C8TA11151K – ident: e_1_2_8_132_1 doi: 10.1002/anie.201601546 – ident: e_1_2_8_44_1 doi: 10.1002/aenm.201703012 – ident: e_1_2_8_57_1 doi: 10.1063/1.2210932 – ident: e_1_2_8_110_1 doi: 10.1021/jacs.9b01746 – ident: e_1_2_8_146_1 doi: 10.1016/j.jallcom.2009.03.038 – ident: e_1_2_8_34_1 doi: 10.1039/C7EE03083E – ident: e_1_2_8_9_1 doi: 10.1039/C6CS00776G – ident: e_1_2_8_81_1 doi: 10.1002/eem2.12017 – ident: e_1_2_8_95_1 doi: 10.1021/jacs.7b06327 – ident: e_1_2_8_13_1 doi: 10.1007/978-1-4615-2704-6 – volume: 2018 start-page: 11 year: 1803 ident: e_1_2_8_125_1 publication-title: Energy Environ. Sci. – ident: e_1_2_8_141_1 doi: 10.1016/j.electacta.2016.08.081 – ident: e_1_2_8_31_1 doi: 10.1111/j.1151-2916.1977.tb16094.x – ident: e_1_2_8_84_1 doi: 10.1149/2.0061602jes – ident: e_1_2_8_131_1 doi: 10.1002/advs.201600089 – ident: e_1_2_8_29_1 doi: 10.1111/jace.14285 – ident: e_1_2_8_83_1 doi: 10.1103/PhysRevB.90.224104 – ident: e_1_2_8_38_1 doi: 10.1039/C7EE00534B – ident: e_1_2_8_134_1 doi: 10.1021/acs.chemmater.5b04013 – ident: e_1_2_8_86_1 doi: 10.1038/nmat3066 – ident: e_1_2_8_97_1 doi: 10.1039/C8TA10498K – ident: e_1_2_8_67_1 doi: 10.1063/1.1329672 – ident: e_1_2_8_99_1 doi: 10.1016/j.joule.2018.12.019 – ident: e_1_2_8_37_1 doi: 10.1002/anie.201604158 – ident: e_1_2_8_127_1 doi: 10.1021/acsenergylett.9b00093 – ident: e_1_2_8_133_1 doi: 10.1002/aenm.201501294 – ident: e_1_2_8_47_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_8_53_1 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_8_118_1 doi: 10.1021/acs.nanolett.8b03902 – ident: e_1_2_8_89_1 doi: 10.1038/nenergy.2016.42 – ident: e_1_2_8_4_1 doi: 10.1039/c2ee02781j – ident: e_1_2_8_103_1 doi: 10.1016/j.jpowsour.2015.06.002 – ident: e_1_2_8_26_1 doi: 10.1016/j.ceramint.2016.07.115 – ident: e_1_2_8_11_1 doi: 10.1016/j.actamat.2012.10.034 – ident: e_1_2_8_128_1 doi: 10.1103/PhysRevB.56.11593 – ident: e_1_2_8_69_1 doi: 10.1021/acsami.6b12071 – ident: e_1_2_8_74_1 doi: 10.1039/C8TA08412B – ident: e_1_2_8_142_1 doi: 10.1021/acsenergylett.6b00593 – ident: e_1_2_8_147_1 doi: 10.1016/j.jpowsour.2016.01.002 – ident: e_1_2_8_71_1 doi: 10.1002/eem2.12015 – ident: e_1_2_8_36_1 doi: 10.1038/ncomms1843 – ident: e_1_2_8_93_1 doi: 10.1021/acsami.8b15121 – ident: e_1_2_8_17_1 doi: 10.1016/j.apsusc.2017.11.079 – ident: e_1_2_8_107_1 doi: 10.1021/acs.inorgchem.6b00444 – ident: e_1_2_8_15_1 doi: 10.1016/j.electacta.2016.10.052 – ident: e_1_2_8_121_1 doi: 10.1002/anie.201608924 – ident: e_1_2_8_22_1 doi: 10.1002/aenm.201601196 – ident: e_1_2_8_30_1 doi: 10.1016/j.jeurceramsoc.2019.04.045 – ident: e_1_2_8_62_1 doi: 10.1063/1.4944683 – ident: e_1_2_8_59_1 doi: 10.1103/PhysRevLett.78.4063 – ident: e_1_2_8_20_1 doi: 10.1038/s41560-018-0312-z – ident: e_1_2_8_12_1 doi: 10.1016/j.jpowsour.2012.02.038 – ident: e_1_2_8_27_1 doi: 10.1016/j.jallcom.2016.07.264 – ident: e_1_2_8_109_1 doi: 10.1080/01418610008212076 – ident: e_1_2_8_112_1 doi: 10.1021/acs.chemmater.7b01116 – ident: e_1_2_8_41_1 doi: 10.1021/acs.chemmater.6b04990 – ident: e_1_2_8_80_1 doi: 10.1361/105497102770331596 – ident: e_1_2_8_49_1 doi: 10.1039/C7EE02555F – ident: e_1_2_8_88_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_8_130_1 doi: 10.1021/acsami.6b10119 – ident: e_1_2_8_108_1 doi: 10.1021/acsaem.9b00861 – ident: e_1_2_8_75_1 doi: 10.1039/C8TA07240J – ident: e_1_2_8_116_1 doi: 10.1002/adma.201805574 – ident: e_1_2_8_113_1 doi: 10.1021/acsami.9b10160 – ident: e_1_2_8_35_1 doi: 10.1016/j.apsusc.2019.07.041 – ident: e_1_2_8_45_1 doi: 10.1002/aenm.201800035 – ident: e_1_2_8_66_1 doi: 10.1021/jp5012523 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.6b09992 – ident: e_1_2_8_42_1 doi: 10.1021/acs.chemmater.6b00610 – ident: e_1_2_8_94_1 doi: 10.1016/j.jpowsour.2015.05.093 – ident: e_1_2_8_104_1 doi: 10.1515/znb-1989-0321 – ident: e_1_2_8_21_1 doi: 10.1021/acsami.6b06754 – ident: e_1_2_8_65_1 doi: 10.1021/acs.chemmater.6b02648 – ident: e_1_2_8_54_1 doi: 10.1002/adfm.201702887 – ident: e_1_2_8_70_1 doi: 10.1021/acs.jpcc.7b11849 – ident: e_1_2_8_101_1 doi: 10.1039/C5CP05722A – ident: e_1_2_8_2_1 doi: 10.1126/science.1212741 – ident: e_1_2_8_77_1 doi: 10.1063/1.1564060 – ident: e_1_2_8_18_1 doi: 10.1016/j.jallcom.2017.12.021 – ident: e_1_2_8_48_1 doi: 10.1038/nmat4821 – ident: e_1_2_8_140_1 doi: 10.1039/C3EE43357A – ident: e_1_2_8_143_1 doi: 10.1002/anie.200701144 – ident: e_1_2_8_145_1 doi: 10.1021/acs.chemmater.5b03854 – ident: e_1_2_8_33_1 doi: 10.1016/j.jpowsour.2017.02.042 – ident: e_1_2_8_43_1 doi: 10.1002/smtd.201700219 – ident: e_1_2_8_61_1 doi: 10.1063/1.4812323 – ident: e_1_2_8_87_1 doi: 10.1039/c3ee41728j – ident: e_1_2_8_123_1 doi: 10.1039/c0ee00052c – ident: e_1_2_8_32_1 doi: 10.1016/j.jallcom.2011.12.080 – ident: e_1_2_8_85_1 doi: 10.1103/PhysRevB.94.064105 – ident: e_1_2_8_106_1 doi: 10.1002/advs.201500359 – ident: e_1_2_8_122_1 doi: 10.1016/j.ensm.2018.02.017 – ident: e_1_2_8_50_1 doi: 10.1021/acsenergylett.7b01105 – ident: e_1_2_8_136_1 doi: 10.1246/cl.170836 – ident: e_1_2_8_148_1 doi: 10.1021/acs.chemmater.5b03656 – ident: e_1_2_8_129_1 doi: 10.1021/acs.chemmater.5b04082 – ident: e_1_2_8_1_1 doi: 10.1038/451652a – ident: e_1_2_8_6_1 doi: 10.1016/j.joule.2019.02.006 – ident: e_1_2_8_76_1 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_8_119_1 doi: 10.1039/C8EE02617C – volume: 2018 start-page: 2 year: 1991 ident: e_1_2_8_52_1 publication-title: Joule – ident: e_1_2_8_55_1 doi: 10.1002/adfm.201707533 – ident: e_1_2_8_139_1 doi: 10.1021/ja3110895 – ident: e_1_2_8_105_1 doi: 10.1039/C4CC05372A – ident: e_1_2_8_5_1 doi: 10.1007/s11426-017-9164-2 – ident: e_1_2_8_114_1 doi: 10.1039/C8EE00907D – ident: e_1_2_8_28_1 doi: 10.1016/j.jallcom.2016.03.009 – ident: e_1_2_8_91_1 doi: 10.1016/j.ssi.2012.09.014 – ident: e_1_2_8_7_1 doi: 10.1016/j.jpowsour.2018.04.022 – ident: e_1_2_8_126_1 doi: 10.1021/acsami.7b16176 – ident: e_1_2_8_111_1 doi: 10.1039/C9TA02166C – ident: e_1_2_8_124_1 doi: 10.1002/ange.201903466 – ident: e_1_2_8_14_1 doi: 10.1016/j.joule.2018.07.028 – ident: e_1_2_8_56_1 doi: 10.1021/acs.chemmater.7b04096 – ident: e_1_2_8_144_1 doi: 10.1016/j.jpowsour.2012.02.031 – ident: e_1_2_8_19_1 doi: 10.1016/j.jpowsour.2018.02.062 – ident: e_1_2_8_58_1 doi: 10.1016/j.cpc.2006.07.020 – ident: e_1_2_8_10_1 doi: 10.1016/j.jascer.2013.03.005 – volume: 16 start-page: 49 year: 2015 ident: e_1_2_8_137_1 publication-title: J. Ceram. Process. Res. – ident: e_1_2_8_117_1 doi: 10.1016/j.nanoen.2018.08.030 – ident: e_1_2_8_138_1 doi: 10.1002/admi.201600942 |
SSID | ssj0002013419 |
Score | 2.4187686 |
SecondaryResourceType | review_article |
Snippet | Due to ever‐increasing concern about safety issues in using alkali metal ionic batteries, all solid‐state batteries (ASSBs) have attracted tremendous... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 234 |
SubjectTerms | Alkali metals all solid‐state batteries (ASSBs) Batteries Cathodes Chemical reactions Competitive materials Conductors Density functional theory Electrochemistry electrolytes First principles Genomes Interface reactions Interface stability material genome method Structural integrity |
Title | First Principle Material Genome Approach for All Solid‐State Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12053 https://www.proquest.com/docview/2580910856 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF5qe_EiiorVWhb0ohCbbHY3KXgJ0lqESkEjxUvYXyi0qdh69xF8Rp_E3c1PFUTwEuYwm4XZmcyXYecbAM5jRWOK_dDjhAsPI4a8vs-Z54dYUYljpFwdcnxPRym-m5JpA1xXvTAFP0RdcLOR4b7XNsAZX_U2pKFKLdBVgIwTbYGW7a21F_oQntQVFpPaLFmZnS5nMInZndCanxT1Nst_ZqQNzPwOVl22Ge6CnRImwqQ41z3QUPk-GA1nBqvBSVUfh2O2dg4Eb1W-XCiYlATh0CBRmMzn8GE5n8nP9w8HKWHBpWl-jQ9AOhw83oy8chKCJ3AQhJ45bhmzgHEShZQFVEjz1IIIoqXWkZT9UBhBGQFHPtXc16HtQNUh0hHTIjwEzXyZqyMAIxVohpREAhMsIjs-MohjwbFJ5QoL2gYXlTUyUdKE22kV86wgOEaZtVzmLNcGZ7XuS0GO8atWpzJqVgbIKkMktkglJmbDS2foP96QDQZj5KTj_yifgG3jA_3i8kkHNNevb-rUQIg17zpP6YJW8pQ-p1_-bcJl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PS8MwFA-6HfQiiop_pgb0olDXpkmaHYtsTl2H4CrDS0nTBAZdJzrvfgQ_o5_EJO06BRG8lHd4JOHlvbxfH8nvAXDGJGUUu76TklQ4GHHkdNyUO66PJc0wQ9LWIaMh7cf4dkzG1d0c8xam5IeoC24mMux5bQLcFKTbS9ZQKafo0kPai1ZB08Aa7dTN8DF-iusii85uhq_MNJjTsEQvgNCaohS1lwP8TEpLpPkdr9qE09sEGxVShGG5tVtgRRbboN-baLgG7xclchjxufUheC2L2VTCsOIIhxqMwjDP4cMsn2Sf7x8WVcKSTlP_He-AuNcdXfWdqhmCI7Dn-Y7e8Yxxj6ck8Cn3qMj0VwkiiMqUCrKs4wstSC3gwKUqdZVvHqEqH6mAK-HvgkYxK-QegIH0FEcyQwITLALTQdJjTKRYZ3OJBd0H5wtrJKJiCjcNK_Kk5DhGibFcYi23D05r3eeSH-NXrdbCqEkVI68JIsyAFUb0hBfW0H-MkHS7EbLSwX-UT8BafxQNksHN8O4QrGt_6JR3UVqgMX95k0caUczT48pvvgA-UcXi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qC-JFFBWrVRf0ohCb7CspeAnaWB8tBa0ULyHZBxTStGi9-xP8jf4Sd_OqgghewhyGXfh2JvNlyH4DwIknmceIja2YxtwiKEJWx44jy8ZEMkE8JLM-ZH_AeiNyO6bjGrgo78Lk-hBVw81kRva-Ngk-F6q9FA2VcorOHaSDaAU0qC5Ldh00_KfR86jqsejiZuTKzHw5zUr0_pRVCqWovVzgZ01aEs3vdDWrN8EGWC-IIvTzk90ENZlugV4w0WwNDssOOexHiyyE4LVMZ1MJ_UIiHGouCv0kgQ-zZCI-3z8yUglzNU39cbwNRkH38bJnFbMQLE4cB1v6wIUXOVFMXcwih3Ghn4pTTpVQyhWig7k2pDaIazMV2wqbO6gKI-VGiuMdUE9nqdwF0JWOipAUiBNKuGsGSDqex2Oii7kknDXBaYlGyAuhcDOvIglziWMUGuTCDLkmOK5857k8xq9erRLUsEiR1xBRz3AVj-oNzzKg_1gh7Hb7KLP2_uN8BFaHV0F4fzO42wdrOhw6-Z8oLVBfvLzJA80nFvFhETZfILLFAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+Principle+Material+Genome+Approach+for+All+Solid%E2%80%90State+Batteries&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Xu%2C+Hongjie&rft.au=Yu%2C+Yuran&rft.au=Wang%2C+Zhuo&rft.au=Shao%2C+Guosheng&rft.date=2019-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=2&rft.issue=4&rft.spage=234&rft.epage=250&rft_id=info:doi/10.1002%2Feem2.12053&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon |