First Principle Material Genome Approach for All Solid‐State Batteries

Due to ever‐increasing concern about safety issues in using alkali metal ionic batteries, all solid‐state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high‐performance ASSBs lies in delivering ultra‐fast ionic conductors that are compatible with both alkali anodes...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 2; no. 4; pp. 234 - 250
Main Authors Xu, Hongjie, Yu, Yuran, Wang, Zhuo, Shao, Guosheng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to ever‐increasing concern about safety issues in using alkali metal ionic batteries, all solid‐state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high‐performance ASSBs lies in delivering ultra‐fast ionic conductors that are compatible with both alkali anodes and high‐voltage cathodes. Such a challenging task cannot be fulfilled, without solid understanding covering materials stability and properties, interfacial reactions, structural integrity, and electrochemical windows. Here in this work, we will review recent advances on fundamental modeling in the framework of material genome initiative based on the density functional theory (DFT), focusing on solid alkali batteries. Efforts are made in offering a dependable road chart to formulate competitive materials and construct “better” batteries. A summary of methods as an integrated material genome approach. The tasks for theoretical simulation/modeling are classified into two categories for the predictions of (A) thermodynamic and dynamic stability and (B) performance of SSE or ASSB.
AbstractList Due to ever‐increasing concern about safety issues in using alkali metal ionic batteries, all solid‐state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high‐performance ASSBs lies in delivering ultra‐fast ionic conductors that are compatible with both alkali anodes and high‐voltage cathodes. Such a challenging task cannot be fulfilled, without solid understanding covering materials stability and properties, interfacial reactions, structural integrity, and electrochemical windows. Here in this work, we will review recent advances on fundamental modeling in the framework of material genome initiative based on the density functional theory (DFT), focusing on solid alkali batteries. Efforts are made in offering a dependable road chart to formulate competitive materials and construct “better” batteries. A summary of methods as an integrated material genome approach. The tasks for theoretical simulation/modeling are classified into two categories for the predictions of (A) thermodynamic and dynamic stability and (B) performance of SSE or ASSB.
Due to ever‐increasing concern about safety issues in using alkali metal ionic batteries, all solid‐state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high‐performance ASSBs lies in delivering ultra‐fast ionic conductors that are compatible with both alkali anodes and high‐voltage cathodes. Such a challenging task cannot be fulfilled, without solid understanding covering materials stability and properties, interfacial reactions, structural integrity, and electrochemical windows. Here in this work, we will review recent advances on fundamental modeling in the framework of material genome initiative based on the density functional theory (DFT), focusing on solid alkali batteries. Efforts are made in offering a dependable road chart to formulate competitive materials and construct “better” batteries.
Author Xu, Hongjie
Shao, Guosheng
Yu, Yuran
Wang, Zhuo
Author_xml – sequence: 1
  givenname: Hongjie
  surname: Xu
  fullname: Xu, Hongjie
  organization: Zhengzhou Materials Genome Institute
– sequence: 2
  givenname: Yuran
  surname: Yu
  fullname: Yu, Yuran
  organization: Zhengzhou Materials Genome Institute
– sequence: 3
  givenname: Zhuo
  orcidid: 0000-0003-4436-9689
  surname: Wang
  fullname: Wang, Zhuo
  email: wangzh@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute
– sequence: 4
  givenname: Guosheng
  surname: Shao
  fullname: Shao, Guosheng
  email: gsshao@zzu.edu.cn
  organization: Zhengzhou Materials Genome Institute
BookMark eNp9kMtKAzEUhoNUsNZufIKAO2FqLpOZ6bKWXoQWheo6pJkEU9LJmEyR7nwEn9EnMeO4EBE35_yL7z-X_xz0KlcpAC4xGmGEyI1SezLCBDF6AvqE5SxBlGW9H_oMDEPYoQgjTFM87oPl3PjQwAdvKmlqq-BaNMobYeFCVW6v4KSuvRPyGWrn4cRauHHWlB9v75smkvBWNC2vwgU41cIGNfzuA_A0nz1Ol8nqfnE3nawSmWJMEyXKshBYbFlOM4EzWcaqJZNMl1rnZTmmMgoVRZqjTG-RpqwoUk2JzoWWdACuurnxrJeDCg3fuYOv4kpOWIHGGBUsi9R1R0nvQvBK89qbvfBHjhFvw-JtWPwrrAijX7A08TnjqsYLY_-24M7yaqw6_jOcz2Zr0nk-Ac8mfuE
CitedBy_id crossref_primary_10_1021_acs_jpcc_2c01622
crossref_primary_10_1016_j_seppur_2025_132491
crossref_primary_10_1002_ange_202304581
crossref_primary_10_1016_j_nanoen_2024_109361
crossref_primary_10_1016_j_cclet_2023_109173
crossref_primary_10_1002_eem2_12069
crossref_primary_10_1007_s41918_022_00167_1
crossref_primary_10_1002_adfm_202214430
crossref_primary_10_1016_j_surfin_2023_103128
crossref_primary_10_1016_j_ceramint_2021_08_159
crossref_primary_10_1002_adfm_202211640
crossref_primary_10_1016_j_ceramint_2024_04_261
crossref_primary_10_1039_D2RA06921K
crossref_primary_10_1039_D0CP00151A
crossref_primary_10_1016_j_nanoen_2020_105249
crossref_primary_10_1016_j_nanoen_2020_105407
crossref_primary_10_3390_su152215881
crossref_primary_10_1016_j_jechem_2020_11_008
crossref_primary_10_1016_j_ensm_2024_103807
crossref_primary_10_1039_D4DD00152D
crossref_primary_10_1002_batt_202000320
crossref_primary_10_1002_anie_202304581
crossref_primary_10_1016_j_cej_2023_142464
crossref_primary_10_1021_acsami_1c02050
crossref_primary_10_1002_adma_202302438
crossref_primary_10_1039_D1TA01796A
crossref_primary_10_1007_s40820_023_01053_1
crossref_primary_10_1016_j_nanoen_2022_106918
crossref_primary_10_1002_aesr_202000057
crossref_primary_10_1016_j_jpowsour_2023_232720
crossref_primary_10_1039_D0TA07469A
crossref_primary_10_1002_celc_202001527
crossref_primary_10_1039_D0TA00525H
crossref_primary_10_1021_acsami_1c03227
crossref_primary_10_1021_acs_jpclett_3c03012
crossref_primary_10_1021_acsomega_1c06793
crossref_primary_10_1002_adfm_202315512
crossref_primary_10_1002_eem2_12127
crossref_primary_10_1002_cey2_129
crossref_primary_10_1002_smll_202307923
crossref_primary_10_3390_app131910957
crossref_primary_10_1039_D1TA06338C
crossref_primary_10_1007_s41918_022_00143_9
crossref_primary_10_1002_celc_202101339
crossref_primary_10_1002_eem2_12362
crossref_primary_10_1007_s42243_024_01353_9
crossref_primary_10_1016_j_susc_2022_122064
crossref_primary_10_1016_j_ensm_2022_01_050
crossref_primary_10_1038_s41467_024_54317_8
crossref_primary_10_1039_C9TA13366F
crossref_primary_10_1016_j_jechem_2020_04_062
crossref_primary_10_12677_AAC_2022_124041
crossref_primary_10_1098_rsta_2019_0467
crossref_primary_10_3390_batteries10010025
crossref_primary_10_1039_D1TA02616J
crossref_primary_10_1039_D4MA00666F
crossref_primary_10_3390_ma17133094
crossref_primary_10_1016_j_jpowsour_2020_228040
crossref_primary_10_1016_j_ijhydene_2024_05_388
crossref_primary_10_1002_eem2_12272
crossref_primary_10_1088_1742_6596_2478_3_032077
crossref_primary_10_1021_acsnano_1c05536
crossref_primary_10_1016_j_rser_2021_111161
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1021_acsnano_1c07476
crossref_primary_10_1021_acsomega_2c04665
crossref_primary_10_1002_adts_202200569
crossref_primary_10_1021_acs_chemrev_0c00101
crossref_primary_10_1039_D1TA05849E
crossref_primary_10_1002_bte2_20220052
crossref_primary_10_1016_j_ceramint_2023_06_153
crossref_primary_10_1021_acs_chemmater_2c01925
crossref_primary_10_1002_advs_202201648
crossref_primary_10_1039_D3NR02271D
crossref_primary_10_1016_j_jcis_2024_07_200
crossref_primary_10_1039_D3CP02058D
crossref_primary_10_1016_j_ssi_2023_116170
crossref_primary_10_1021_acsami_2c12732
crossref_primary_10_1016_j_cej_2020_126991
crossref_primary_10_1021_acs_energyfuels_4c03193
Cites_doi 10.1039/C3TA15087A
10.1021/acs.inorgchem.8b01325
10.1016/j.jallcom.2018.12.121
10.1021/cm203303y
10.1016/j.mattod.2014.10.040
10.1103/PhysRevB.78.134106
10.1038/s41467-018-04949-4
10.1063/1.1323224
10.1038/ncomms11009
10.1016/j.jpowsour.2014.02.054
10.1039/C7TA08968F
10.1021/jacs.8b10282
10.1088/0370-1298/65/5/307
10.1039/C7TA08698A
10.1039/C7TA06986C
10.1016/j.jpowsour.2009.11.120
10.1002/anie.200703900
10.1039/c1ee01388b
10.1016/j.jpowsour.2013.09.051
10.1021/acs.jpclett.5b02352
10.1021/acsami.5b07517
10.1016/j.inoche.2014.08.036
10.1039/C8TA01050A
10.1103/PhysRevB.77.224115
10.1039/C8TA11151K
10.1002/anie.201601546
10.1002/aenm.201703012
10.1063/1.2210932
10.1021/jacs.9b01746
10.1016/j.jallcom.2009.03.038
10.1039/C7EE03083E
10.1039/C6CS00776G
10.1002/eem2.12017
10.1021/jacs.7b06327
10.1007/978-1-4615-2704-6
10.1016/j.electacta.2016.08.081
10.1111/j.1151-2916.1977.tb16094.x
10.1149/2.0061602jes
10.1002/advs.201600089
10.1111/jace.14285
10.1103/PhysRevB.90.224104
10.1039/C7EE00534B
10.1021/acs.chemmater.5b04013
10.1038/nmat3066
10.1039/C8TA10498K
10.1063/1.1329672
10.1016/j.joule.2018.12.019
10.1002/anie.201604158
10.1021/acsenergylett.9b00093
10.1002/aenm.201501294
10.1038/nnano.2017.16
10.1038/natrevmats.2016.103
10.1021/acs.nanolett.8b03902
10.1038/nenergy.2016.42
10.1039/c2ee02781j
10.1016/j.jpowsour.2015.06.002
10.1016/j.ceramint.2016.07.115
10.1016/j.actamat.2012.10.034
10.1103/PhysRevB.56.11593
10.1021/acsami.6b12071
10.1039/C8TA08412B
10.1021/acsenergylett.6b00593
10.1016/j.jpowsour.2016.01.002
10.1002/eem2.12015
10.1038/ncomms1843
10.1021/acsami.8b15121
10.1016/j.apsusc.2017.11.079
10.1021/acs.inorgchem.6b00444
10.1016/j.electacta.2016.10.052
10.1002/anie.201608924
10.1002/aenm.201601196
10.1016/j.jeurceramsoc.2019.04.045
10.1063/1.4944683
10.1103/PhysRevLett.78.4063
10.1038/s41560-018-0312-z
10.1016/j.jpowsour.2012.02.038
10.1016/j.jallcom.2016.07.264
10.1080/01418610008212076
10.1021/acs.chemmater.7b01116
10.1021/acs.chemmater.6b04990
10.1361/105497102770331596
10.1039/C7EE02555F
10.1038/nenergy.2016.30
10.1021/acsami.6b10119
10.1021/acsaem.9b00861
10.1039/C8TA07240J
10.1002/adma.201805574
10.1021/acsami.9b10160
10.1016/j.apsusc.2019.07.041
10.1002/aenm.201800035
10.1021/jp5012523
10.1021/acsami.6b09992
10.1021/acs.chemmater.6b00610
10.1016/j.jpowsour.2015.05.093
10.1515/znb-1989-0321
10.1021/acsami.6b06754
10.1021/acs.chemmater.6b02648
10.1002/adfm.201702887
10.1021/acs.jpcc.7b11849
10.1039/C5CP05722A
10.1126/science.1212741
10.1063/1.1564060
10.1016/j.jallcom.2017.12.021
10.1038/nmat4821
10.1039/C3EE43357A
10.1002/anie.200701144
10.1021/acs.chemmater.5b03854
10.1016/j.jpowsour.2017.02.042
10.1002/smtd.201700219
10.1063/1.4812323
10.1039/c3ee41728j
10.1039/c0ee00052c
10.1016/j.jallcom.2011.12.080
10.1103/PhysRevB.94.064105
10.1002/advs.201500359
10.1016/j.ensm.2018.02.017
10.1021/acsenergylett.7b01105
10.1246/cl.170836
10.1021/acs.chemmater.5b03656
10.1021/acs.chemmater.5b04082
10.1038/451652a
10.1016/j.joule.2019.02.006
10.1021/acs.chemrev.5b00563
10.1039/C8EE02617C
10.1002/adfm.201707533
10.1021/ja3110895
10.1039/C4CC05372A
10.1007/s11426-017-9164-2
10.1039/C8EE00907D
10.1016/j.jallcom.2016.03.009
10.1016/j.ssi.2012.09.014
10.1016/j.jpowsour.2018.04.022
10.1021/acsami.7b16176
10.1039/C9TA02166C
10.1002/ange.201903466
10.1016/j.joule.2018.07.028
10.1021/acs.chemmater.7b04096
10.1016/j.jpowsour.2012.02.031
10.1016/j.jpowsour.2018.02.062
10.1016/j.cpc.2006.07.020
10.1016/j.jascer.2013.03.005
10.1016/j.nanoen.2018.08.030
10.1002/admi.201600942
ContentType Journal Article
Copyright 2019 Zhengzhou University
Copyright_xml – notice: 2019 Zhengzhou University
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
DOI 10.1002/eem2.12053
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage 250
ExternalDocumentID 10_1002_eem2_12053
EEM212053
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51001091; 111174256; 91233101; 51602094; 51602290; 11274100
– fundername: Fundamental Research Program from the Ministry of Science and Technology of China
  funderid: 2014CB931704
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
ID FETCH-LOGICAL-c4113-eadd8a1ab5736a16cd6a1fc5c5fdff7dd93cdffedd94706fb0f35884f32f7afc3
IEDL.DBID 24P
ISSN 2575-0356
IngestDate Mon Jun 30 11:57:35 EDT 2025
Tue Jul 01 01:03:04 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Jan 22 16:37:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4113-eadd8a1ab5736a16cd6a1fc5c5fdff7dd93cdffedd94706fb0f35884f32f7afc3
Notes The first two authors contributed equally to this article.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4436-9689
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12053
PQID 2580910856
PQPubID 5251211
PageCount 17
ParticipantIDs proquest_journals_2580910856
crossref_primary_10_1002_eem2_12053
crossref_citationtrail_10_1002_eem2_12053
wiley_primary_10_1002_eem2_12053_EEM212053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 44
2013; 1
2016; 307
2019; 11
2013; 61
2019; 12
2006; 175
2013; 6
2014; 258
2018; 47
2018; 6
2018; 9
2018; 8
2018; 3
2018; 2
2018; 735
2018; 1
1997; 56
2016; 42
2016; 673
1803; 2018
2018; 30
2010; 195
2009; 481
2013; 230
2010; 3
2012; 24
2014; 247
2019; 7
2018; 28
2019; 4
2019; 3
1804; 2011
2017; 60
2000; 113
2019; 31
2019; 2
1994; 271
2019; 39
2014; 48
2016; 94
2016; 688
2011; 4
2017; 139
2016; 99
2016; 4
2018; 18
2016; 7
2016; 1
2016; 3
2017; 56
2008; 47
2000; 80
2016; 215
2018; 11
2016; 28
2018; 10
2016; 8
2018; 14
2012; 517
2017; 5
2017; 7
2018; 122
2017; 1
2017; 2
2003; 118
2017; 4
2017; 46
2008; 78
2016; 220
2011; 10
2008; 77
2012; 208
2010; 60
1952; 65
2015; 293
2014; 2
1945; 2018
2016; 116
2014; 50
2014; 7
2006; 124
2014; 118
2015; 163
2011; 334
2015; 6
2015; 17
2015; 5
2015; 16
2018; 382
2014; 90
2018; 140
2015; 18
2017; 27
2018; 389
2017; 29
2019; 141
2015; 7
2019; 781
2016; 55
1991; 2018
2015; 28
2012; 3
2015; 27
2018; 435
2017; 16
2002; 23
2017; 10
2017; 12
1997; 78
2013; 135
2019; 493
2008; 451
2012; 5
2018; 53
2007; 46
2017; 347
2019; 131
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Wu B. (e_1_2_8_125_1) 1803; 2018
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
Rao R. P. (e_1_2_8_92_1) 1804; 2011
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
Zhang Z. (e_1_2_8_46_1) 1945; 2018
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
Xu L. (e_1_2_8_52_1) 1991; 2018
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Lee S.‐M. (e_1_2_8_137_1) 2015; 16
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 5
  start-page: 21846
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 118
  start-page: 8207
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 27814
  year: 2016
  publication-title: Mater. Interfaces
– volume: 481
  start-page: 555
  year: 2009
  publication-title: J. Alloys Compd.
– volume: 118
  start-page: 8170
  year: 2014
  publication-title: J. Phys. Chem. B
– volume: 80
  start-page: 693
  year: 2000
  publication-title: Philos. Mag. A
– volume: 55
  start-page: 8551
  year: 2016
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 10
  start-page: 1150
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 116
  start-page: 140
  year: 2016
  publication-title: Chem. Rev.
– volume: 382
  start-page: 160
  year: 2018
  publication-title: J. Power Sources
– volume: 7
  start-page: 10483
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 17
  year: 2013
  publication-title: J. Asian Ceram. Soc.
– volume: 60
  start-page: 58
  year: 2010
  publication-title: J. Am. Ceram. Soc.
– volume: 17
  start-page: 32547
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 29
  start-page: 281
  year: 2017
  publication-title: Chem. Mater.
– volume: 163
  start-page: A67
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 42279
  year: 2018
  publication-title: Mater. Interfaces
– volume: 435
  start-page: 1150
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 2
  start-page: 462
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 195
  start-page: 2431
  year: 2010
  publication-title: J. Power Sources
– volume: 8
  start-page: 35298
  year: 2016
  publication-title: Mater. Interfaces
– volume: 28
  start-page: 2400
  year: 2016
  publication-title: Chem. Mater.
– volume: 2
  start-page: 16103
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 9
  start-page: 2906
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 5884
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 2625
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 113
  start-page: 9978
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 230
  start-page: 72
  year: 2013
  publication-title: Solid State Ion.
– volume: 11
  start-page: 31991
  year: 2019
  publication-title: Mater. Interfaces
– volume: 5
  start-page: 1501294
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 5993
  year: 2016
  publication-title: Inorg. Chem.
– volume: 1
  start-page: 16042
  year: 2016
  publication-title: Nat. Energy
– volume: 46
  start-page: 7778
  year: 2007
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 347
  start-page: 229
  year: 2017
  publication-title: J. Power Sources
– volume: 2011
  start-page: 208
  year: 1804
  publication-title: Phys. Status Solidi A
– volume: 30
  start-page: 163
  year: 2018
  publication-title: Chem. Mater.
– volume: 113
  start-page: 9901
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 50
  start-page: 11520
  year: 2014
  publication-title: Chem. Commun.
– volume: 124
  start-page: 244704
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 44
  start-page: 373
  year: 1989
  publication-title: Z. Naturforsch. B
– volume: 47
  start-page: 755
  year: 2008
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 3
  start-page: 1500359
  year: 2016
  publication-title: Adv. Sci.
– volume: 7
  start-page: 1053
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 10685
  year: 2018
  publication-title: Inorg. Chem.
– volume: 122
  start-page: 2589
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 56
  start-page: 11593
  year: 1997
  publication-title: Phys. Rev. B
– volume: 2018
  start-page: 2
  year: 1991
  publication-title: Joule
– volume: 10
  start-page: 682
  year: 2011
  publication-title: Nat. Mater.
– volume: 94
  start-page: 064105
  year: 2016
  publication-title: Phys. Rev. B
– volume: 141
  start-page: 5640
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1600089
  year: 2016
  publication-title: Adv Sci.
– volume: 735
  start-page: 2401
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 3
  start-page: 98
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 517
  start-page: 182
  year: 2012
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 5239
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1524
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 19231
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1703012
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 48
  start-page: 140
  year: 2014
  publication-title: Inorg. Chem. Commun.
– volume: 6
  start-page: 6830
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 28216
  year: 2016
  publication-title: ACS Appl. Mater. Inter.
– volume: 7
  start-page: 1601196
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 60
  start-page: 1508
  year: 2017
  publication-title: Sci. China Chem.
– volume: 78
  start-page: 134106
  year: 2008
  publication-title: Phys. Rev. B
– volume: 258
  start-page: 420
  year: 2014
  publication-title: J. Power Sources
– volume: 6
  start-page: 73
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 25229
  year: 2016
  publication-title: Mater. Interfaces
– volume: 47
  start-page: 13
  year: 2018
  publication-title: Chem. Lett.
– volume: 78
  start-page: 4063
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 187
  year: 2019
  publication-title: Nat. Energy
– volume: 2
  start-page: 6288
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  start-page: 8144
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 572
  year: 2017
  publication-title: Nat. Mater.
– volume: 99
  start-page: 2729
  year: 2016
  publication-title: J. Am. Ceram. Soc.
– volume: 293
  start-page: 941
  year: 2015
  publication-title: J. Power Sources
– volume: 23
  start-page: 348
  year: 2002
  publication-title: J. Phase Equilib.
– volume: 220
  start-page: 258
  year: 2016
  publication-title: Electrochim. Acta
– volume: 31
  start-page: 1805574
  year: 2019
  publication-title: Adv. Mater.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 77
  start-page: 224115
  year: 2008
  publication-title: Phys. Rev. B
– volume: 2018
  start-page: 11
  year: 1945
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1800035
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 7414
  year: 2018
  publication-title: Nano Lett.
– volume: 55
  start-page: 9634
  year: 2016
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 4
  start-page: 591
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 271
  year: 1994
– volume: 28
  start-page: 266
  year: 2015
  publication-title: Chem. Mater.
– volume: 61
  start-page: 759
  year: 2013
  publication-title: Acta Mater.
– volume: 39
  start-page: 3332
  year: 2019
  publication-title: J. Eur. Ceram. Soc.
– volume: 28
  start-page: 1707533
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 307
  start-page: 578
  year: 2016
  publication-title: J. Power Sources
– volume: 1
  start-page: 174
  year: 2018
  publication-title: Energy Environ. Mater.
– volume: 29
  start-page: 3883
  year: 2017
  publication-title: Chem. Mater.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 2018
  start-page: 11
  year: 1803
  publication-title: Energy Environ. Sci.
– volume: 65
  start-page: 349
  year: 1952
  publication-title: Proc. Phys. Soc. A
– volume: 6
  start-page: 3548
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1037
  year: 2019
  publication-title: Joule
– volume: 11
  start-page: 2142
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 293
  start-page: 735
  year: 2015
  publication-title: J. Power Sources
– volume: 1
  start-page: 148
  year: 2018
  publication-title: Energy Environ. Mater.
– volume: 1
  start-page: 1700219
  year: 2017
  publication-title: Small Methods
– volume: 18
  start-page: 252
  year: 2015
  publication-title: Mater. Today
– volume: 7
  start-page: 23685
  year: 2015
  publication-title: Mater. Interfaces
– volume: 389
  start-page: 198
  year: 2018
  publication-title: J. Power Sources
– volume: 175
  start-page: 713
  year: 2006
  publication-title: Comput. Phys. Commun.
– volume: 4
  start-page: 3287
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 100
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 46
  start-page: 3529
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 131
  start-page: 7884
  year: 2019
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 28
  start-page: 197
  year: 2015
  publication-title: Chem. Mater.
– volume: 12
  start-page: 938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 87
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 053102
  year: 2016
  publication-title: APL Mater.
– volume: 135
  start-page: 975
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 208
  start-page: 193
  year: 2012
  publication-title: J. Power Sources
– volume: 27
  start-page: 8318
  year: 2015
  publication-title: Chem. Mater.
– volume: 6
  start-page: 4599
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 247
  start-page: 975
  year: 2014
  publication-title: J. Power Sources
– volume: 2
  start-page: 5470
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 90
  start-page: 224104
  year: 2014
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 1747
  year: 2018
  publication-title: Joule
– volume: 53
  start-page: 168
  year: 2018
  publication-title: Nano Energy
– volume: 7
  start-page: 11009
  year: 2016
  publication-title: Nat. Commun.
– volume: 493
  start-page: 1326
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 527
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 15
  year: 2012
  publication-title: Chem. Mater.
– volume: 4
  start-page: 1600942
  year: 2017
  publication-title: Adv. Mater. Inter.
– volume: 1
  start-page: 16030
  year: 2016
  publication-title: Nat. Energy
– volume: 688
  start-page: 746
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 19843
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 5232
  year: 2017
  publication-title: Chem. Mater.
– volume: 781
  start-page: 1059
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 27
  start-page: 1702887
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 215
  start-page: 93
  year: 2016
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 856
  year: 2012
  publication-title: Nat. Commun.
– volume: 10
  start-page: 2556
  year: 2018
  publication-title: Mater. Interfaces
– volume: 139
  start-page: 10909
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 16330
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 1
  start-page: 011002
  year: 2013
  publication-title: APL Mater.
– volume: 16
  start-page: 49
  year: 2015
  publication-title: J. Ceram. Process. Res.
– volume: 673
  start-page: 295
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 3
  start-page: 1252
  year: 2019
  publication-title: Joule
– volume: 208
  start-page: 210
  year: 2012
  publication-title: J. Power Sources
– volume: 56
  start-page: 753
  year: 2017
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 28
  start-page: 252
  year: 2015
  publication-title: Chem. Mater.
– volume: 42
  start-page: 16055
  year: 2016
  publication-title: Ceram. Int.
– ident: e_1_2_8_100_1
  doi: 10.1039/C3TA15087A
– ident: e_1_2_8_120_1
  doi: 10.1021/acs.inorgchem.8b01325
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jallcom.2018.12.121
– ident: e_1_2_8_78_1
  doi: 10.1021/cm203303y
– ident: e_1_2_8_8_1
  doi: 10.1016/j.mattod.2014.10.040
– volume: 2011
  start-page: 208
  year: 1804
  ident: e_1_2_8_92_1
  publication-title: Phys. Status Solidi A
– ident: e_1_2_8_60_1
  doi: 10.1103/PhysRevB.78.134106
– ident: e_1_2_8_115_1
  doi: 10.1038/s41467-018-04949-4
– ident: e_1_2_8_68_1
  doi: 10.1063/1.1323224
– ident: e_1_2_8_135_1
  doi: 10.1038/ncomms11009
– ident: e_1_2_8_39_1
  doi: 10.1016/j.jpowsour.2014.02.054
– ident: e_1_2_8_63_1
  doi: 10.1039/C7TA08968F
– ident: e_1_2_8_96_1
  doi: 10.1021/jacs.8b10282
– ident: e_1_2_8_82_1
  doi: 10.1088/0370-1298/65/5/307
– ident: e_1_2_8_64_1
  doi: 10.1039/C7TA08698A
– ident: e_1_2_8_72_1
  doi: 10.1039/C7TA06986C
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jpowsour.2009.11.120
– ident: e_1_2_8_90_1
  doi: 10.1002/anie.200703900
– ident: e_1_2_8_3_1
  doi: 10.1039/c1ee01388b
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jpowsour.2013.09.051
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.jpclett.5b02352
– ident: e_1_2_8_98_1
  doi: 10.1021/acsami.5b07517
– ident: e_1_2_8_102_1
  doi: 10.1016/j.inoche.2014.08.036
– volume: 2018
  start-page: 11
  year: 1945
  ident: e_1_2_8_46_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_73_1
  doi: 10.1039/C8TA01050A
– ident: e_1_2_8_79_1
  doi: 10.1103/PhysRevB.77.224115
– ident: e_1_2_8_40_1
  doi: 10.1039/C8TA11151K
– ident: e_1_2_8_132_1
  doi: 10.1002/anie.201601546
– ident: e_1_2_8_44_1
  doi: 10.1002/aenm.201703012
– ident: e_1_2_8_57_1
  doi: 10.1063/1.2210932
– ident: e_1_2_8_110_1
  doi: 10.1021/jacs.9b01746
– ident: e_1_2_8_146_1
  doi: 10.1016/j.jallcom.2009.03.038
– ident: e_1_2_8_34_1
  doi: 10.1039/C7EE03083E
– ident: e_1_2_8_9_1
  doi: 10.1039/C6CS00776G
– ident: e_1_2_8_81_1
  doi: 10.1002/eem2.12017
– ident: e_1_2_8_95_1
  doi: 10.1021/jacs.7b06327
– ident: e_1_2_8_13_1
  doi: 10.1007/978-1-4615-2704-6
– volume: 2018
  start-page: 11
  year: 1803
  ident: e_1_2_8_125_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_141_1
  doi: 10.1016/j.electacta.2016.08.081
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1151-2916.1977.tb16094.x
– ident: e_1_2_8_84_1
  doi: 10.1149/2.0061602jes
– ident: e_1_2_8_131_1
  doi: 10.1002/advs.201600089
– ident: e_1_2_8_29_1
  doi: 10.1111/jace.14285
– ident: e_1_2_8_83_1
  doi: 10.1103/PhysRevB.90.224104
– ident: e_1_2_8_38_1
  doi: 10.1039/C7EE00534B
– ident: e_1_2_8_134_1
  doi: 10.1021/acs.chemmater.5b04013
– ident: e_1_2_8_86_1
  doi: 10.1038/nmat3066
– ident: e_1_2_8_97_1
  doi: 10.1039/C8TA10498K
– ident: e_1_2_8_67_1
  doi: 10.1063/1.1329672
– ident: e_1_2_8_99_1
  doi: 10.1016/j.joule.2018.12.019
– ident: e_1_2_8_37_1
  doi: 10.1002/anie.201604158
– ident: e_1_2_8_127_1
  doi: 10.1021/acsenergylett.9b00093
– ident: e_1_2_8_133_1
  doi: 10.1002/aenm.201501294
– ident: e_1_2_8_47_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_8_53_1
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_8_118_1
  doi: 10.1021/acs.nanolett.8b03902
– ident: e_1_2_8_89_1
  doi: 10.1038/nenergy.2016.42
– ident: e_1_2_8_4_1
  doi: 10.1039/c2ee02781j
– ident: e_1_2_8_103_1
  doi: 10.1016/j.jpowsour.2015.06.002
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ceramint.2016.07.115
– ident: e_1_2_8_11_1
  doi: 10.1016/j.actamat.2012.10.034
– ident: e_1_2_8_128_1
  doi: 10.1103/PhysRevB.56.11593
– ident: e_1_2_8_69_1
  doi: 10.1021/acsami.6b12071
– ident: e_1_2_8_74_1
  doi: 10.1039/C8TA08412B
– ident: e_1_2_8_142_1
  doi: 10.1021/acsenergylett.6b00593
– ident: e_1_2_8_147_1
  doi: 10.1016/j.jpowsour.2016.01.002
– ident: e_1_2_8_71_1
  doi: 10.1002/eem2.12015
– ident: e_1_2_8_36_1
  doi: 10.1038/ncomms1843
– ident: e_1_2_8_93_1
  doi: 10.1021/acsami.8b15121
– ident: e_1_2_8_17_1
  doi: 10.1016/j.apsusc.2017.11.079
– ident: e_1_2_8_107_1
  doi: 10.1021/acs.inorgchem.6b00444
– ident: e_1_2_8_15_1
  doi: 10.1016/j.electacta.2016.10.052
– ident: e_1_2_8_121_1
  doi: 10.1002/anie.201608924
– ident: e_1_2_8_22_1
  doi: 10.1002/aenm.201601196
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jeurceramsoc.2019.04.045
– ident: e_1_2_8_62_1
  doi: 10.1063/1.4944683
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRevLett.78.4063
– ident: e_1_2_8_20_1
  doi: 10.1038/s41560-018-0312-z
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jpowsour.2012.02.038
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jallcom.2016.07.264
– ident: e_1_2_8_109_1
  doi: 10.1080/01418610008212076
– ident: e_1_2_8_112_1
  doi: 10.1021/acs.chemmater.7b01116
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.chemmater.6b04990
– ident: e_1_2_8_80_1
  doi: 10.1361/105497102770331596
– ident: e_1_2_8_49_1
  doi: 10.1039/C7EE02555F
– ident: e_1_2_8_88_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_8_130_1
  doi: 10.1021/acsami.6b10119
– ident: e_1_2_8_108_1
  doi: 10.1021/acsaem.9b00861
– ident: e_1_2_8_75_1
  doi: 10.1039/C8TA07240J
– ident: e_1_2_8_116_1
  doi: 10.1002/adma.201805574
– ident: e_1_2_8_113_1
  doi: 10.1021/acsami.9b10160
– ident: e_1_2_8_35_1
  doi: 10.1016/j.apsusc.2019.07.041
– ident: e_1_2_8_45_1
  doi: 10.1002/aenm.201800035
– ident: e_1_2_8_66_1
  doi: 10.1021/jp5012523
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.6b09992
– ident: e_1_2_8_42_1
  doi: 10.1021/acs.chemmater.6b00610
– ident: e_1_2_8_94_1
  doi: 10.1016/j.jpowsour.2015.05.093
– ident: e_1_2_8_104_1
  doi: 10.1515/znb-1989-0321
– ident: e_1_2_8_21_1
  doi: 10.1021/acsami.6b06754
– ident: e_1_2_8_65_1
  doi: 10.1021/acs.chemmater.6b02648
– ident: e_1_2_8_54_1
  doi: 10.1002/adfm.201702887
– ident: e_1_2_8_70_1
  doi: 10.1021/acs.jpcc.7b11849
– ident: e_1_2_8_101_1
  doi: 10.1039/C5CP05722A
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1212741
– ident: e_1_2_8_77_1
  doi: 10.1063/1.1564060
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jallcom.2017.12.021
– ident: e_1_2_8_48_1
  doi: 10.1038/nmat4821
– ident: e_1_2_8_140_1
  doi: 10.1039/C3EE43357A
– ident: e_1_2_8_143_1
  doi: 10.1002/anie.200701144
– ident: e_1_2_8_145_1
  doi: 10.1021/acs.chemmater.5b03854
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jpowsour.2017.02.042
– ident: e_1_2_8_43_1
  doi: 10.1002/smtd.201700219
– ident: e_1_2_8_61_1
  doi: 10.1063/1.4812323
– ident: e_1_2_8_87_1
  doi: 10.1039/c3ee41728j
– ident: e_1_2_8_123_1
  doi: 10.1039/c0ee00052c
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jallcom.2011.12.080
– ident: e_1_2_8_85_1
  doi: 10.1103/PhysRevB.94.064105
– ident: e_1_2_8_106_1
  doi: 10.1002/advs.201500359
– ident: e_1_2_8_122_1
  doi: 10.1016/j.ensm.2018.02.017
– ident: e_1_2_8_50_1
  doi: 10.1021/acsenergylett.7b01105
– ident: e_1_2_8_136_1
  doi: 10.1246/cl.170836
– ident: e_1_2_8_148_1
  doi: 10.1021/acs.chemmater.5b03656
– ident: e_1_2_8_129_1
  doi: 10.1021/acs.chemmater.5b04082
– ident: e_1_2_8_1_1
  doi: 10.1038/451652a
– ident: e_1_2_8_6_1
  doi: 10.1016/j.joule.2019.02.006
– ident: e_1_2_8_76_1
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_8_119_1
  doi: 10.1039/C8EE02617C
– volume: 2018
  start-page: 2
  year: 1991
  ident: e_1_2_8_52_1
  publication-title: Joule
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.201707533
– ident: e_1_2_8_139_1
  doi: 10.1021/ja3110895
– ident: e_1_2_8_105_1
  doi: 10.1039/C4CC05372A
– ident: e_1_2_8_5_1
  doi: 10.1007/s11426-017-9164-2
– ident: e_1_2_8_114_1
  doi: 10.1039/C8EE00907D
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jallcom.2016.03.009
– ident: e_1_2_8_91_1
  doi: 10.1016/j.ssi.2012.09.014
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jpowsour.2018.04.022
– ident: e_1_2_8_126_1
  doi: 10.1021/acsami.7b16176
– ident: e_1_2_8_111_1
  doi: 10.1039/C9TA02166C
– ident: e_1_2_8_124_1
  doi: 10.1002/ange.201903466
– ident: e_1_2_8_14_1
  doi: 10.1016/j.joule.2018.07.028
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.chemmater.7b04096
– ident: e_1_2_8_144_1
  doi: 10.1016/j.jpowsour.2012.02.031
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jpowsour.2018.02.062
– ident: e_1_2_8_58_1
  doi: 10.1016/j.cpc.2006.07.020
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jascer.2013.03.005
– volume: 16
  start-page: 49
  year: 2015
  ident: e_1_2_8_137_1
  publication-title: J. Ceram. Process. Res.
– ident: e_1_2_8_117_1
  doi: 10.1016/j.nanoen.2018.08.030
– ident: e_1_2_8_138_1
  doi: 10.1002/admi.201600942
SSID ssj0002013419
Score 2.4187686
SecondaryResourceType review_article
Snippet Due to ever‐increasing concern about safety issues in using alkali metal ionic batteries, all solid‐state batteries (ASSBs) have attracted tremendous...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 234
SubjectTerms Alkali metals
all solid‐state batteries (ASSBs)
Batteries
Cathodes
Chemical reactions
Competitive materials
Conductors
Density functional theory
Electrochemistry
electrolytes
First principles
Genomes
Interface reactions
Interface stability
material genome method
Structural integrity
Title First Principle Material Genome Approach for All Solid‐State Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12053
https://www.proquest.com/docview/2580910856
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF5qe_EiiorVWhb0ohCbbHY3KXgJ0lqESkEjxUvYXyi0qdh69xF8Rp_E3c1PFUTwEuYwm4XZmcyXYecbAM5jRWOK_dDjhAsPI4a8vs-Z54dYUYljpFwdcnxPRym-m5JpA1xXvTAFP0RdcLOR4b7XNsAZX_U2pKFKLdBVgIwTbYGW7a21F_oQntQVFpPaLFmZnS5nMInZndCanxT1Nst_ZqQNzPwOVl22Ge6CnRImwqQ41z3QUPk-GA1nBqvBSVUfh2O2dg4Eb1W-XCiYlATh0CBRmMzn8GE5n8nP9w8HKWHBpWl-jQ9AOhw83oy8chKCJ3AQhJ45bhmzgHEShZQFVEjz1IIIoqXWkZT9UBhBGQFHPtXc16HtQNUh0hHTIjwEzXyZqyMAIxVohpREAhMsIjs-MohjwbFJ5QoL2gYXlTUyUdKE22kV86wgOEaZtVzmLNcGZ7XuS0GO8atWpzJqVgbIKkMktkglJmbDS2foP96QDQZj5KTj_yifgG3jA_3i8kkHNNevb-rUQIg17zpP6YJW8pQ-p1_-bcJl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PS8MwFA-6HfQiiop_pgb0olDXpkmaHYtsTl2H4CrDS0nTBAZdJzrvfgQ_o5_EJO06BRG8lHd4JOHlvbxfH8nvAXDGJGUUu76TklQ4GHHkdNyUO66PJc0wQ9LWIaMh7cf4dkzG1d0c8xam5IeoC24mMux5bQLcFKTbS9ZQKafo0kPai1ZB08Aa7dTN8DF-iusii85uhq_MNJjTsEQvgNCaohS1lwP8TEpLpPkdr9qE09sEGxVShGG5tVtgRRbboN-baLgG7xclchjxufUheC2L2VTCsOIIhxqMwjDP4cMsn2Sf7x8WVcKSTlP_He-AuNcdXfWdqhmCI7Dn-Y7e8Yxxj6ck8Cn3qMj0VwkiiMqUCrKs4wstSC3gwKUqdZVvHqEqH6mAK-HvgkYxK-QegIH0FEcyQwITLALTQdJjTKRYZ3OJBd0H5wtrJKJiCjcNK_Kk5DhGibFcYi23D05r3eeSH-NXrdbCqEkVI68JIsyAFUb0hBfW0H-MkHS7EbLSwX-UT8BafxQNksHN8O4QrGt_6JR3UVqgMX95k0caUczT48pvvgA-UcXi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qC-JFFBWrVRf0ohCb7CspeAnaWB8tBa0ULyHZBxTStGi9-xP8jf4Sd_OqgghewhyGXfh2JvNlyH4DwIknmceIja2YxtwiKEJWx44jy8ZEMkE8JLM-ZH_AeiNyO6bjGrgo78Lk-hBVw81kRva-Ngk-F6q9FA2VcorOHaSDaAU0qC5Ldh00_KfR86jqsejiZuTKzHw5zUr0_pRVCqWovVzgZ01aEs3vdDWrN8EGWC-IIvTzk90ENZlugV4w0WwNDssOOexHiyyE4LVMZ1MJ_UIiHGouCv0kgQ-zZCI-3z8yUglzNU39cbwNRkH38bJnFbMQLE4cB1v6wIUXOVFMXcwih3Ghn4pTTpVQyhWig7k2pDaIazMV2wqbO6gKI-VGiuMdUE9nqdwF0JWOipAUiBNKuGsGSDqex2Oii7kknDXBaYlGyAuhcDOvIglziWMUGuTCDLkmOK5857k8xq9erRLUsEiR1xBRz3AVj-oNzzKg_1gh7Hb7KLP2_uN8BFaHV0F4fzO42wdrOhw6-Z8oLVBfvLzJA80nFvFhETZfILLFAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+Principle+Material+Genome+Approach+for+All+Solid%E2%80%90State+Batteries&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Xu%2C+Hongjie&rft.au=Yu%2C+Yuran&rft.au=Wang%2C+Zhuo&rft.au=Shao%2C+Guosheng&rft.date=2019-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=2&rft.issue=4&rft.spage=234&rft.epage=250&rft_id=info:doi/10.1002%2Feem2.12053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon