Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow

Disentangling the relative response sensitivity of soil autotrophic (Ra) and heterotrophic respiration (Rh) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitiv...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 33; no. 11; pp. 2239 - 2253
Main Authors Wang, Jinsong, Song, Bing, Ma, Fangfang, Tian, Dashuan, Li, Yong, Yan, Tao, Quan, Quan, Zhang, Fangyue, Li, Zhaolei, Wang, Bingxue, Gao, Qiang, Chen, Weinan, Niu, Shuli
Format Journal Article
LanguageEnglish
Published London Wiley 01.11.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Disentangling the relative response sensitivity of soil autotrophic (Ra) and heterotrophic respiration (Rh) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitivities of Ra and Rh and relative contribution of Rh to soil respiration (Rs) with increasing N deposition remain elusive. A manipulative field experiment with multi‐level N addition rates was conducted over 3 years (2015–2017) in an alpine meadow to explore the relative impact of N enrichment on Ra and Rh and the response of Rh/Rs ratio to the gradient of N addition. Soil respiration components had different sensitivities to N enrichment, with Ra decreasing more than Rh, leading to a higher Rh/Rs ratio as a function of increasing N addition rates. Ra and Rh decreased nonlinearly as N addition rates increased, with a critical load of 8 g N m−2 year−1 above which N enrichment significantly inhibited them. Ra and Rh were controlled by different abiotic and biotic factors, and the regulation of controlling factors on soil respiration components varied over time. N‐induced reduction in the relative abundance of forb significantly affected Ra, and this effect was mainly evident in the second and third years. Nitrogen enrichment significantly changed Rh in the third year, and the decreased Rh under high doses of N addition could be attributed to the changes in microbial biomass C, soil substrate quality and microbial composition. Our study highlights the leading role of Ra in regulating Rs responses to N enrichment and the enhancement of Rh/Rs ratio with increasing N addition. We also emphasize that N‐induced shifts in plant community composition play a vital role in regulating Ra instead of Rh. The changing drivers of Ra and Rh with time suggests that long‐term experiments with multiple levels of N addition are further needed to test the nonlinear responses and underlying mechanisms of soil respiration components in face to aggravating N deposition. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
AbstractList Disentangling the relative response sensitivity of soil autotrophic (Ra) and heterotrophic respiration (Rh) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitivities of Ra and Rh and relative contribution of Rh to soil respiration (Rs) with increasing N deposition remain elusive.A manipulative field experiment with multi‐level N addition rates was conducted over 3 years (2015–2017) in an alpine meadow to explore the relative impact of N enrichment on Ra and Rh and the response of Rh/Rs ratio to the gradient of N addition.Soil respiration components had different sensitivities to N enrichment, with Ra decreasing more than Rh, leading to a higher Rh/Rs ratio as a function of increasing N addition rates. Ra and Rh decreased nonlinearly as N addition rates increased, with a critical load of 8 g N m−2 year−1 above which N enrichment significantly inhibited them. Ra and Rh were controlled by different abiotic and biotic factors, and the regulation of controlling factors on soil respiration components varied over time. N‐induced reduction in the relative abundance of forb significantly affected Ra, and this effect was mainly evident in the second and third years. Nitrogen enrichment significantly changed Rh in the third year, and the decreased Rh under high doses of N addition could be attributed to the changes in microbial biomass C, soil substrate quality and microbial composition.Our study highlights the leading role of Ra in regulating Rs responses to N enrichment and the enhancement of Rh/Rs ratio with increasing N addition. We also emphasize that N‐induced shifts in plant community composition play a vital role in regulating Ra instead of Rh. The changing drivers of Ra and Rh with time suggests that long‐term experiments with multiple levels of N addition are further needed to test the nonlinear responses and underlying mechanisms of soil respiration components in face to aggravating N deposition.A free Plain Language Summary can be found within the Supporting Information of this article.
Disentangling the relative response sensitivity of soil autotrophic (Rₐ) and heterotrophic respiration (Rₕ) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitivities of Rₐ and Rₕ and relative contribution of Rₕ to soil respiration (Rₛ) with increasing N deposition remain elusive. A manipulative field experiment with multi‐level N addition rates was conducted over 3 years (2015–2017) in an alpine meadow to explore the relative impact of N enrichment on Rₐ and Rₕ and the response of Rₕ/Rₛ ratio to the gradient of N addition. Soil respiration components had different sensitivities to N enrichment, with Rₐ decreasing more than Rₕ, leading to a higher Rₕ/Rₛ ratio as a function of increasing N addition rates. Rₐ and Rₕ decreased nonlinearly as N addition rates increased, with a critical load of 8 g N m⁻² year⁻¹ above which N enrichment significantly inhibited them. Rₐ and Rₕ were controlled by different abiotic and biotic factors, and the regulation of controlling factors on soil respiration components varied over time. N‐induced reduction in the relative abundance of forb significantly affected Rₐ, and this effect was mainly evident in the second and third years. Nitrogen enrichment significantly changed Rₕ in the third year, and the decreased Rₕ under high doses of N addition could be attributed to the changes in microbial biomass C, soil substrate quality and microbial composition. Our study highlights the leading role of Rₐ in regulating Rₛ responses to N enrichment and the enhancement of Rₕ/Rₛ ratio with increasing N addition. We also emphasize that N‐induced shifts in plant community composition play a vital role in regulating Rₐ instead of Rₕ. The changing drivers of Rₐ and Rₕ with time suggests that long‐term experiments with multiple levels of N addition are further needed to test the nonlinear responses and underlying mechanisms of soil respiration components in face to aggravating N deposition. A free Plain Language Summary can be found within the Supporting Information of this article.
Disentangling the relative response sensitivity of soil autotrophic ( R a ) and heterotrophic respiration ( R h ) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitivities of R a and R h and relative contribution of R h to soil respiration ( R s ) with increasing N deposition remain elusive. A manipulative field experiment with multi‐level N addition rates was conducted over 3 years (2015–2017) in an alpine meadow to explore the relative impact of N enrichment on R a and R h and the response of R h / R s ratio to the gradient of N addition. Soil respiration components had different sensitivities to N enrichment, with R a decreasing more than R h , leading to a higher R h / R s ratio as a function of increasing N addition rates. R a and R h decreased nonlinearly as N addition rates increased, with a critical load of 8 g N m −2  year −1 above which N enrichment significantly inhibited them. R a and R h were controlled by different abiotic and biotic factors, and the regulation of controlling factors on soil respiration components varied over time. N‐induced reduction in the relative abundance of forb significantly affected R a , and this effect was mainly evident in the second and third years. Nitrogen enrichment significantly changed R h in the third year, and the decreased R h under high doses of N addition could be attributed to the changes in microbial biomass C, soil substrate quality and microbial composition. Our study highlights the leading role of R a in regulating R s responses to N enrichment and the enhancement of R h / R s ratio with increasing N addition. We also emphasize that N‐induced shifts in plant community composition play a vital role in regulating R a instead of R h . The changing drivers of R a and R h with time suggests that long‐term experiments with multiple levels of N addition are further needed to test the nonlinear responses and underlying mechanisms of soil respiration components in face to aggravating N deposition. A free Plain Language Summary can be found within the Supporting Information of this article.
Disentangling the relative response sensitivity of soil autotrophic (Ra) and heterotrophic respiration (Rh) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitivities of Ra and Rh and relative contribution of Rh to soil respiration (Rs) with increasing N deposition remain elusive. A manipulative field experiment with multi‐level N addition rates was conducted over 3 years (2015–2017) in an alpine meadow to explore the relative impact of N enrichment on Ra and Rh and the response of Rh/Rs ratio to the gradient of N addition. Soil respiration components had different sensitivities to N enrichment, with Ra decreasing more than Rh, leading to a higher Rh/Rs ratio as a function of increasing N addition rates. Ra and Rh decreased nonlinearly as N addition rates increased, with a critical load of 8 g N m−2 year−1 above which N enrichment significantly inhibited them. Ra and Rh were controlled by different abiotic and biotic factors, and the regulation of controlling factors on soil respiration components varied over time. N‐induced reduction in the relative abundance of forb significantly affected Ra, and this effect was mainly evident in the second and third years. Nitrogen enrichment significantly changed Rh in the third year, and the decreased Rh under high doses of N addition could be attributed to the changes in microbial biomass C, soil substrate quality and microbial composition. Our study highlights the leading role of Ra in regulating Rs responses to N enrichment and the enhancement of Rh/Rs ratio with increasing N addition. We also emphasize that N‐induced shifts in plant community composition play a vital role in regulating Ra instead of Rh. The changing drivers of Ra and Rh with time suggests that long‐term experiments with multiple levels of N addition are further needed to test the nonlinear responses and underlying mechanisms of soil respiration components in face to aggravating N deposition. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
Author Wang, Jinsong
Zhang, Fangyue
Li, Zhaolei
Niu, Shuli
Wang, Bingxue
Li, Yong
Ma, Fangfang
Tian, Dashuan
Quan, Quan
Gao, Qiang
Chen, Weinan
Yan, Tao
Song, Bing
Author_xml – sequence: 1
  givenname: Jinsong
  surname: Wang
  fullname: Wang, Jinsong
– sequence: 2
  givenname: Bing
  surname: Song
  fullname: Song, Bing
– sequence: 3
  givenname: Fangfang
  surname: Ma
  fullname: Ma, Fangfang
– sequence: 4
  givenname: Dashuan
  surname: Tian
  fullname: Tian, Dashuan
– sequence: 5
  givenname: Yong
  surname: Li
  fullname: Li, Yong
– sequence: 6
  givenname: Tao
  surname: Yan
  fullname: Yan, Tao
– sequence: 7
  givenname: Quan
  surname: Quan
  fullname: Quan, Quan
– sequence: 8
  givenname: Fangyue
  surname: Zhang
  fullname: Zhang, Fangyue
– sequence: 9
  givenname: Zhaolei
  surname: Li
  fullname: Li, Zhaolei
– sequence: 10
  givenname: Bingxue
  surname: Wang
  fullname: Wang, Bingxue
– sequence: 11
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
– sequence: 12
  givenname: Weinan
  surname: Chen
  fullname: Chen, Weinan
– sequence: 13
  givenname: Shuli
  surname: Niu
  fullname: Niu, Shuli
BookMark eNqFkbtLLDEUxoMouD5qK2HAxmY0z5lsKYsvkHubax1i5sTNMpuMSUax9D83s-u1sDEEwsn3_U4O-Q7Qrg8eEDoh-IKUdUlYI2rKmbggjDO2g2bfN7tohmkzryVv2D46SGmFMZ4LSmfo44_LMTyDr3TXueyCryJ0o4FUpeD6UqTBRb0RnsZcOW8i6FTkvISi9kV6hcoEn6MrhskXbLWEDDGUzsPSmaKuhzKsn_BKl90PzkO1Bt2FtyO0Z3Wf4PjrPESPN9f_Fnf1w9_b-8XVQ204Iaw2zIhWtBZbq9uuBdOYJ91Ky7uGa9xwYg1jlLYYABPdydZo2XFtJWlBSwvsEJ1v-w4xvIyQslq7ZKDvtYcwJkU5xoIIzubFevbDugpj9GU6RRkhXFAuZXFdbl0mhpQiWDVEt9bxXRGspkjUFICaAlCbSAohfhDG5c3f5qhd_zv35np4_-0ZdXO9-M-dbrlVyiF-c1wKyfBcsk-NC6zn
CitedBy_id crossref_primary_10_1111_gcb_16869
crossref_primary_10_1016_j_agrformet_2021_108408
crossref_primary_10_1111_1365_2435_13925
crossref_primary_10_3390_agriculture14040596
crossref_primary_10_7717_peerj_17176
crossref_primary_10_1016_j_fecs_2022_100054
crossref_primary_10_7717_peerj_15276
crossref_primary_10_1002_ece3_70501
crossref_primary_10_1186_s13717_021_00338_w
crossref_primary_10_1016_j_soilbio_2022_108814
crossref_primary_10_1016_j_still_2022_105315
crossref_primary_10_1007_s11104_023_06162_9
crossref_primary_10_1016_j_apsoil_2021_104023
crossref_primary_10_1016_j_catena_2022_106207
crossref_primary_10_1016_j_catena_2022_106321
crossref_primary_10_1186_s40663_021_00313_z
crossref_primary_10_1016_j_scitotenv_2023_164071
crossref_primary_10_1016_j_apsoil_2024_105297
crossref_primary_10_3390_f13111860
crossref_primary_10_1007_s11368_023_03543_6
crossref_primary_10_1016_j_envpol_2020_115822
crossref_primary_10_1007_s42729_024_01852_4
crossref_primary_10_1016_j_envres_2023_116501
crossref_primary_10_1016_j_agrformet_2022_109200
crossref_primary_10_1016_j_scitotenv_2023_161428
crossref_primary_10_3390_agronomy14112468
crossref_primary_10_1016_j_scitotenv_2024_171170
crossref_primary_10_1016_j_catena_2024_108535
crossref_primary_10_1111_1365_2435_70033
crossref_primary_10_1016_j_envpol_2023_121848
crossref_primary_10_1007_s11104_024_07070_2
crossref_primary_10_1007_s11104_020_04749_0
crossref_primary_10_1016_j_catena_2021_106013
crossref_primary_10_1007_s10533_023_01014_1
crossref_primary_10_1016_j_scitotenv_2022_156469
crossref_primary_10_2139_ssrn_3949313
crossref_primary_10_3390_f13122064
crossref_primary_10_1111_1365_2435_13902
crossref_primary_10_1016_j_scitotenv_2020_144559
crossref_primary_10_1016_j_scitotenv_2023_164535
crossref_primary_10_1016_j_geosus_2023_05_002
crossref_primary_10_1016_j_catena_2021_105570
crossref_primary_10_3390_agronomy14061136
crossref_primary_10_1016_j_catena_2024_108320
crossref_primary_10_1111_1365_2435_13783
crossref_primary_10_3390_f12101427
crossref_primary_10_1007_s11104_024_06962_7
crossref_primary_10_1016_j_apsoil_2024_105393
crossref_primary_10_1016_j_scitotenv_2024_174423
crossref_primary_10_1016_j_geoderma_2023_116722
crossref_primary_10_1016_j_scitotenv_2023_168568
crossref_primary_10_1016_j_soilbio_2020_108107
crossref_primary_10_1029_2022JG006829
crossref_primary_10_1016_j_ecolind_2021_107710
crossref_primary_10_2139_ssrn_4049562
crossref_primary_10_3389_fenvs_2021_700768
crossref_primary_10_1029_2021JG006653
crossref_primary_10_3389_fpls_2022_829381
crossref_primary_10_1134_S1064229324602415
crossref_primary_10_1016_j_agrformet_2022_109155
crossref_primary_10_1016_j_scitotenv_2020_139003
crossref_primary_10_1093_aob_mcab032
crossref_primary_10_5194_bg_21_575_2024
crossref_primary_10_1016_j_agrformet_2024_110257
crossref_primary_10_3390_f11020235
crossref_primary_10_1186_s40663_021_00321_z
crossref_primary_10_3390_f10111038
Cites_doi 10.1111/j.1365-2486.2011.02423.x
10.5194/bg-14-3947-2017
10.1111/j.1365-2486.2009.01894.x
10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
10.1016/S0038-0717(01)00117-1
10.1111/j.1469-8137.2007.02204.x
10.1111/1365-2435.13338
10.1111/1365-2435.12525
10.1111/1365-2435.12914
10.1016/j.chemosphere.2012.02.077
10.1016/j.soilbio.2016.07.003
10.1016/j.soilbio.2017.05.024
10.1016/j.agrformet.2005.12.012
10.1016/j.soilbio.2014.04.013
10.1038/ngeo844
10.1111/ele.12826
10.1016/j.ejsobi.2018.01.005
10.1146/annurev.ecolsys.38.091206.095808
10.1038/s41396-018-0096-y
10.1111/j.1461-0248.2010.01482.x
10.1038/ncomms10541
10.1007/s00382-015-2830-8
10.1016/j.soilbio.2015.09.001
10.1111/j.1365-2486.2005.001033.x
10.1016/j.scitotenv.2018.06.014
10.1111/j.1469-8137.2012.04225.x
10.1111/gcb.12273
10.1016/j.agrformet.2016.08.007
10.1016/j.geoderma.2018.07.008
10.2307/2389824
10.1007/s10533-004-7112-1
10.1016/j.soilbio.2010.08.032
10.1016/j.scitotenv.2017.03.034
10.1029/2006JD007990
10.1111/geb.12508
10.1016/j.jaridenv.2018.01.017
10.1038/s41598-018-34969-5
10.1016/j.scitotenv.2017.06.028
10.1038/srep34786
10.1029/2003JD003951
10.1890/06-1847.1
10.1111/gcb.13253
10.1016/j.soilbio.2010.11.021
10.1111/j.1461-0248.2008.01230.x
10.1038/nature06592
10.1016/j.soilbio.2016.04.023
10.1111/j.1469-8137.2008.02488.x
10.1016/j.scitotenv.2017.03.082
10.1016/j.agrformet.2014.06.010
10.1111/j.1365-2486.2006.01153.x
10.1016/j.agrformet.2015.09.008
10.1111/2041-210X.12512
10.1016/j.soilbio.2016.03.008
10.1038/nature11917
10.1016/j.agrformet.2012.05.022
10.1111/j.1365-2389.2012.01433.x
10.1016/j.agrformet.2017.10.032
10.1016/0038-0717(87)90052-6
10.1890/05-1839
10.1016/j.soilbio.2018.02.003
10.1088/1748-9326/aa5ba6
10.1111/geb.12430
10.1023/A:1010933404324
10.1111/gcb.12490
10.1111/nph.12271
10.1016/j.scitotenv.2016.06.237
10.1038/nclimate3071
10.1016/j.soilbio.2005.08.020
10.1037/0033-2909.88.3.588
10.1111/1365-2435.13045
10.1073/pnas.1109326109
10.1073/pnas.1502956112
10.1016/j.agrformet.2019.03.019
10.1007/s10533-015-0123-2
10.1126/science.1136674
10.1038/s41586-018-0358-x
10.1023/A:1006244819642
10.1016/j.scitotenv.2018.03.080
ContentType Journal Article
Copyright 2019 The Authors. © 2019 British Ecological Society
2019 The Authors. Functional Ecology © 2019 British Ecological Society
Functional Ecology © 2019 British Ecological Society
Copyright_xml – notice: 2019 The Authors. © 2019 British Ecological Society
– notice: 2019 The Authors. Functional Ecology © 2019 British Ecological Society
– notice: Functional Ecology © 2019 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.13433
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
AGRICOLA
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 2253
ExternalDocumentID 10_1111_1365_2435_13433
FEC13433
48583098
Genre article
GrantInformation_xml – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDA23080302
– fundername: National Natural Science Foundation of China
  funderid: 31625006
– fundername: Chinese Postdoctoral Science Foundation
  funderid: 2017M620891
– fundername: Ministry of Science and Technology of China
  funderid: 2016YFC0501803
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTLG
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IX1
J0M
JBS
JENOY
JLS
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
2AX
31~
42X
53G
AAHHS
AAISJ
ABBHK
ABEFU
ABTAH
ABXSQ
ACCFJ
ACCMX
ACHIC
ADULT
ADZOD
AEEZP
AEQDE
AEUPB
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
CBGCD
COF
CUYZI
DEVKO
DOOOF
EJD
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
IPSME
JAAYA
JBMMH
JEB
JHFFW
JKQEH
JLXEF
JPM
JSODD
LW6
MVM
SA0
VOH
WRC
ZY4
AAYXX
ABSQW
AGUYK
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c4113-c3c5757f0ffa7d7ec6cba78f4d64a0641fc332270ee01ad87ca8d4af817ea8fe3
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:32:42 EDT 2025
Sun Jul 13 03:42:44 EDT 2025
Tue Jul 01 01:15:49 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
Wed Jan 22 16:39:12 EST 2025
Thu Jul 03 21:34:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4113-c3c5757f0ffa7d7ec6cba78f4d64a0641fc332270ee01ad87ca8d4af817ea8fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3425-7387
0000-0002-2394-2864
0000-0002-8202-6858
0000-0001-9146-8044
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13433
PQID 2311452488
PQPubID 1066355
PageCount 15
ParticipantIDs proquest_miscellaneous_2400515439
proquest_journals_2311452488
crossref_primary_10_1111_1365_2435_13433
crossref_citationtrail_10_1111_1365_2435_13433
wiley_primary_10_1111_1365_2435_13433_FEC13433
jstor_primary_48583098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191101
November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191101
  day: 1
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2018; 560
2018; 120
2010; 16
2010; 13
2018; 248
2000; 48
2018; 631–632
2006; 38
1980; 88
2018; 642
2016; 101
2016; 30
2018; 85
2017; 592
2017; 232
2011; 17
2001; 45
2017; 113
2007; 38
2014; 20
2013; 19
2018; 8
2017; 601–602
2007; 176
2018; 332
2013; 199
2005; 75
2016; 569–570
2015; 91
2010; 3
2012; 166–167
2018; 32
2019; 271
2016; 47
2012; 63
2017; 20
2006; 12
2017; 26
2019; 33
2015; 125
2016; 97
2008; 11
2004; 109
2008; 320
2017; 590–591
1987; 19
2015; 7
2014; 197
2012; 109
2016; 99
1994; 8
2018; 152
2016; 6
2007; 112
2012; 196
2015; 214–215
2016; 7
2010; 42
2002; 165
2017; 14
2015; 112
2017; 12
2006; 140
2019
2011; 43
2015
2013
2013; 494
2008; 179
2001; 33
2018; 12
2007; 88
2008; 451
2012; 88
2005; 11
2016; 25
2014; 75
2016; 22
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Wang J. (e_1_2_8_66_1) 2019
e_1_2_8_68_1
Archer E. (e_1_2_8_2_1) 2013
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_80_1
R Core Team (e_1_2_8_53_1) 2015
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 11
  start-page: 1745
  year: 2005
  end-page: 1753
  article-title: Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration
  publication-title: Global Change Biology
– volume: 232
  start-page: 66
  year: 2017
  end-page: 73
  article-title: N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young forest
  publication-title: Agricultural and Forest Meteorology
– volume: 88
  start-page: 2105
  year: 2007
  end-page: 2113
  article-title: Microbial nitrogen limitation increases decomposition
  publication-title: Ecology
– volume: 85
  start-page: 43
  year: 2018
  end-page: 52
  article-title: Rhizospheric, mycorrhizal and heterotrophic respiration in dry grasslands
  publication-title: European Journal of Soil Biology
– volume: 75
  start-page: 201
  year: 2005
  end-page: 215
  article-title: Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition
  publication-title: Biogeochemistry
– volume: 47
  start-page: 173
  year: 2016
  end-page: 190
  article-title: A model based investigation of the relative importance of CO ‐fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period
  publication-title: Climate Dynamics
– volume: 38
  start-page: 683
  year: 2007
  end-page: 712
  article-title: Terrestrial carbon‐cycle feedback to climate warming
  publication-title: Annual Review of Ecology Evolution and Systematics
– year: 2019
  article-title: Data from: Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow
  publication-title: Dryad Digital Repository
– volume: 32
  start-page: 1117
  year: 2018
  end-page: 1127
  article-title: Plant functional groups regulate soil respiration responses to nitrogen addition and mowing over a decade
  publication-title: Functional Ecology
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 320
  start-page: 889
  year: 2008
  end-page: 892
  article-title: Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions
  publication-title: Science
– volume: 140
  start-page: 193
  year: 2006
  end-page: 202
  article-title: Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique: Theory and practice
  publication-title: Agricultural and Forest Meteorology
– volume: 30
  start-page: 658
  year: 2016
  end-page: 669
  article-title: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long‐term nitrogen enrichment
  publication-title: Functional Ecology
– volume: 642
  start-page: 646
  year: 2018
  end-page: 655
  article-title: Strong root respiration response to nitrogen and phosphorus addition in nitrogen‐limited temperate forests
  publication-title: Science of the Total Environment
– volume: 99
  start-page: 54
  year: 2016
  end-page: 65
  article-title: Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils
  publication-title: Soil Biology and Biochemistry
– volume: 48
  start-page: 115
  year: 2000
  end-page: 146
  article-title: Separating root and soil microbial contributions to soil respiration: A review of methods and observations
  publication-title: Biogeochemistry
– volume: 19
  start-page: 3553
  year: 2013
  end-page: 3564
  article-title: Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual‐dominated prairie
  publication-title: Global Change Biology
– volume: 43
  start-page: 1621
  year: 2011
  end-page: 1625
  article-title: Use the misuse of PLFA measurements in soils
  publication-title: Soil Biology and Biochemistry
– volume: 592
  start-page: 565
  year: 2017
  end-page: 572
  article-title: Effects of warming and nitrogen deposition on CH , CO and N O emissions in alpine grassland ecosystems of the Qinghai‐Tibetan Plateau
  publication-title: Science of the Total Environment
– volume: 32
  start-page: 71
  year: 2018
  end-page: 82
  article-title: Soil and vegetation carbon turnover times from tropical to boreal forests
  publication-title: Functional Ecology
– volume: 88
  start-page: 140
  year: 2012
  end-page: 143
  article-title: Responses of CH , CO and N O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains
  publication-title: Chemosphere
– volume: 569–570
  start-page: 1466
  year: 2016
  end-page: 1477
  article-title: The responses of soil respiration to nitrogen addition in a temperate grassland in northern China
  publication-title: Science of the Total Environment
– volume: 214–215
  start-page: 506
  year: 2015
  end-page: 514
  article-title: Effects of warming, grazing/cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the Tibetan Plateau
  publication-title: Agricultural and Forest Meteorology
– volume: 332
  start-page: 37
  year: 2018
  end-page: 44
  article-title: Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition
  publication-title: Geoderma
– volume: 494
  start-page: 459
  year: 2013
  end-page: 462
  article-title: Enhanced nitrogen deposition over China
  publication-title: Nature
– volume: 38
  start-page: 425
  year: 2006
  end-page: 448
  article-title: Sources of CO efflux from soil and review of partitioning methods
  publication-title: Soil Biology and Biochemistry
– volume: 199
  start-page: 339
  year: 2013
  end-page: 351
  article-title: Ecosystem‐level controls on root‐rhizosphere respiration
  publication-title: New Phytologist
– volume: 112
  start-page: D22S05
  year: 2007
  article-title: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data
  publication-title: Journal of Geophysical Research‐Atmospheres
– volume: 248
  start-page: 449
  year: 2018
  end-page: 457
  article-title: Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi‐arid environment
  publication-title: Agricultural and Forest Meteorology
– volume: 33
  start-page: 1362
  year: 2019
  end-page: 1372
  article-title: The decline in plant biodiversity slows down soil carbon turnover under increasing nitrogen deposition in a temperate steppe
  publication-title: Functional Ecology
– volume: 88
  start-page: 588
  year: 1980
  end-page: 606
  article-title: Significance tests and goodness of fit in the analysis of covariance structures
  publication-title: Phychological Bulletin
– year: 2015
– volume: 16
  start-page: 144
  year: 2010
  end-page: 155
  article-title: Nitrogen effects on net ecosystem carbon exchange in a temperate steppe
  publication-title: Global Change Biology
– volume: 11
  start-page: 1111
  year: 2008
  end-page: 1120
  article-title: Nitrogen additions and microbial biomass: A meta‐analysis of ecosystem studies
  publication-title: Ecology Letters
– volume: 33
  start-page: 1915
  year: 2001
  end-page: 1925
  article-title: Photosynthesis controls of rhizosphere respiration and organic matter decomposition
  publication-title: Soil Biology and Biochemistry
– volume: 25
  start-page: 475
  year: 2016
  end-page: 488
  article-title: The effects of nitrogen enrichment on soil CO fluxes depending on temperature and soil properties
  publication-title: Global Ecology and Biogeography
– volume: 152
  start-page: 37
  year: 2018
  end-page: 44
  article-title: Nitrogen addition decreased soil respiration and its components in a long‐term fenced grassland on the Loess Plateau
  publication-title: Journal of Arid Environments
– volume: 166–167
  start-page: 32
  year: 2012
  end-page: 40
  article-title: Responses of soil respiration to N addition, burning and clipping in temperate semiarid grassland in northern China
  publication-title: Agricultural and Forest Meteorology
– volume: 631–632
  start-page: 619
  year: 2018
  end-page: 626
  article-title: Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems
  publication-title: Science of the Total Environment
– volume: 17
  start-page: 2936
  year: 2011
  end-page: 2944
  article-title: Plant community responses to nitrogen addition and increased precipitation: The importance of water availability and species traits
  publication-title: Global Change Biology
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  article-title: An extraction method for measuring soil microbial biomass‐C
  publication-title: Soil Biology and Biochemistry
– volume: 12
  start-page: 1817
  year: 2018
  end-page: 1825
  article-title: Global negative effects of nitrogen deposition on soil microbes
  publication-title: ISME Journal
– volume: 165
  start-page: 382
  year: 2002
  end-page: 396
  article-title: Review: Factors affecting rhizosphere priming effects
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 176
  start-page: 655
  year: 2007
  end-page: 664
  article-title: Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils
  publication-title: New Phytologist
– volume: 6
  start-page: 34786
  year: 2016
  article-title: Contrasting effects of nitrogen and phosphorus addition on soil respiration in an alpine grassland on the Qinghai‐Tibetan Plateau
  publication-title: Scientific Reports
– volume: 451
  start-page: 293
  year: 2008
  end-page: 296
  article-title: An Earth‐system perspective of the global nitrogen cycle
  publication-title: Nature
– volume: 109
  start-page: D12109
  year: 2004
  article-title: Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai‐Tibetan Plateau
  publication-title: Journal of Geophysical Research-Atmospheres
– volume: 125
  start-page: 203
  year: 2015
  end-page: 219
  article-title: Nitrogen addition changes grassland soil organic matter decomposition
  publication-title: Biogeochemistry
– volume: 113
  start-page: 26
  year: 2017
  end-page: 34
  article-title: Long‐term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow
  publication-title: Soil Biology and Biochemistry
– volume: 271
  start-page: 413
  year: 2019
  end-page: 421
  article-title: Changing precipitation exerts greater influence on soil heterotrophic than autotrophic respiration in a semiarid steppe
  publication-title: Agricultural and Forest Meteorology
– volume: 3
  start-page: 315
  year: 2010
  end-page: 322
  article-title: Reduction of forest soil respiration in response to nitrogen deposition
  publication-title: Nature Geoscience
– volume: 196
  start-page: 79
  year: 2012
  end-page: 91
  article-title: Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils
  publication-title: New Phytologist
– volume: 179
  start-page: 428
  year: 2008
  end-page: 439
  article-title: Global response patterns of terrestrial plant species to nitrogen addition
  publication-title: New Phytologist
– volume: 63
  start-page: 249
  year: 2012
  end-page: 260
  article-title: Partitioning of soil CO flux components in a temperate grassland ecosystem
  publication-title: European Journal of Soil Science
– volume: 13
  start-page: 819
  year: 2010
  end-page: 828
  article-title: A global perspective on belowground carbon dynamics under nitrogen enrichment
  publication-title: Ecology Letters
– volume: 97
  start-page: 168
  year: 2016
  end-page: 175
  article-title: Soil microbial carbon use efficiency and biomass turnover in a long‐term fertilization experiment in a temperate grassland
  publication-title: Soil Biology and Biochemistry
– volume: 14
  start-page: 3947
  year: 2017
  end-page: 3956
  article-title: Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: Patterns and causes
  publication-title: Biogeosciences
– volume: 560
  start-page: 80
  year: 2018
  end-page: 83
  article-title: Globally rising soil heterotrophic respiration over recent decades
  publication-title: Nature
– volume: 109
  start-page: 1159
  year: 2012
  end-page: 1164
  article-title: Microbial diversity determines the invasion of soil by a bacterial pathogen
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  start-page: 573
  year: 2015
  end-page: 579
  article-title: PiecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics
  publication-title: Methods in Ecology and Evolution
– volume: 22
  start-page: 3157
  year: 2016
  end-page: 3169
  article-title: Interactive effects of global change factors on soil respiration and its components: A meta‐analysis
  publication-title: Global Change Biology
– volume: 601–602
  start-page: 1389
  year: 2017
  end-page: 1399
  article-title: Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region
  publication-title: Science of the Total Environment
– volume: 12
  start-page: 1285
  year: 2006
  end-page: 1298
  article-title: Temperature and biomass influences on interannual changes in CO exchange in an alpine meadow on the Qinghai‐Tibetan Plateau
  publication-title: Global Change Biology
– volume: 7
  start-page: 10541
  issue: 1
  year: 2016
  article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems
  publication-title: Nature Communications
– volume: 42
  start-page: 2336
  year: 2010
  end-page: 2338
  article-title: Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied
  publication-title: Soil Biology and Biochemistry
– volume: 12
  start-page: 024018
  year: 2017
  article-title: Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe
  publication-title: Environmental Research Letters
– volume: 75
  start-page: 113
  year: 2014
  end-page: 123
  article-title: Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland
  publication-title: Soil Biology and Biochemistry
– volume: 120
  start-page: 126
  year: 2018
  end-page: 133
  article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition
  publication-title: Soil Biology and Biochemistry
– volume: 26
  start-page: 102
  year: 2017
  end-page: 114
  article-title: Global patterns of root dynamics under nitrogen enrichment
  publication-title: Global Ecology and Biogeography
– volume: 20
  start-page: 1295
  year: 2017
  end-page: 1305
  article-title: Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe
  publication-title: Ecology Letters
– volume: 91
  start-page: 160
  year: 2015
  end-page: 168
  article-title: Effects of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry
  publication-title: Soil Biology and Biochemistry
– volume: 8
  start-page: 315
  year: 1994
  end-page: 323
  article-title: On the temperature‐dependence of soil respiration
  publication-title: Functional Ecology
– volume: 6
  start-page: 751
  year: 2016
  end-page: 758
  article-title: Managing uncertainty in soil carbon feedbacks to climate change
  publication-title: Nature Climate Change
– volume: 88
  start-page: 1354
  year: 2007
  end-page: 1364
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
– volume: 590–591
  start-page: 729
  year: 2017
  end-page: 738
  article-title: Seasonal responses of soil respiration to warming and nitrogen addition in a semi‐arid alfalfa‐pasture of the Loess Plateau, China
  publication-title: Science of the Total Environment
– volume: 8
  start-page: 16546
  year: 2018
  article-title: Differential responses of heterotrophic and autotrophic respiration to nitrogen addition and precipitation changes in a Tibetan alpine steppe
  publication-title: Scientific Reports
– volume: 101
  start-page: 32
  year: 2016
  end-page: 43
  article-title: Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta‐analysis
  publication-title: Soil Biology and Biochemistry
– volume: 112
  start-page: 7033
  year: 2015
  end-page: 7038
  article-title: Biotic interactions mediate soil microbial feedbacks to climate change
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 20
  start-page: 2332
  year: 2014
  end-page: 2343
  article-title: Different responses of soil respiration and its components to nitrogen addition among biomes: A meta‐analysis
  publication-title: Global Change Biology
– year: 2013
– volume: 197
  start-page: 103
  year: 2014
  end-page: 110
  article-title: The effect of nitrogen addition on soil respiration from a nitrogen‐limited forest soil
  publication-title: Agricultural and Forest Meteorology
– ident: e_1_2_8_72_1
  doi: 10.1111/j.1365-2486.2011.02423.x
– ident: e_1_2_8_59_1
  doi: 10.5194/bg-14-3947-2017
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1365-2486.2009.01894.x
– ident: e_1_2_8_32_1
  doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
– ident: e_1_2_8_34_1
  doi: 10.1016/S0038-0717(01)00117-1
– ident: e_1_2_8_52_1
  doi: 10.1111/j.1469-8137.2007.02204.x
– ident: e_1_2_8_73_1
  doi: 10.1111/1365-2435.13338
– ident: e_1_2_8_7_1
  doi: 10.1111/1365-2435.12525
– ident: e_1_2_8_67_1
  doi: 10.1111/1365-2435.12914
– ident: e_1_2_8_38_1
  doi: 10.1016/j.chemosphere.2012.02.077
– ident: e_1_2_8_29_1
  doi: 10.1016/j.soilbio.2016.07.003
– volume-title: Estimate permutation p‐values for importance metrics
  year: 2013
  ident: e_1_2_8_2_1
– ident: e_1_2_8_22_1
  doi: 10.1016/j.soilbio.2017.05.024
– ident: e_1_2_8_27_1
  doi: 10.1016/j.agrformet.2005.12.012
– ident: e_1_2_8_76_1
  doi: 10.1016/j.soilbio.2014.04.013
– ident: e_1_2_8_26_1
  doi: 10.1038/ngeo844
– ident: e_1_2_8_11_1
  doi: 10.1111/ele.12826
– volume-title: R: A language and environment for statistical computing
  year: 2015
  ident: e_1_2_8_53_1
– ident: e_1_2_8_49_1
  doi: 10.1016/j.ejsobi.2018.01.005
– ident: e_1_2_8_45_1
  doi: 10.1146/annurev.ecolsys.38.091206.095808
– ident: e_1_2_8_77_1
  doi: 10.1038/s41396-018-0096-y
– ident: e_1_2_8_39_1
  doi: 10.1111/j.1461-0248.2010.01482.x
– ident: e_1_2_8_12_1
  doi: 10.1038/ncomms10541
– ident: e_1_2_8_13_1
  doi: 10.1007/s00382-015-2830-8
– ident: e_1_2_8_18_1
  doi: 10.1016/j.soilbio.2015.09.001
– year: 2019
  ident: e_1_2_8_66_1
  article-title: Data from: Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow
  publication-title: Dryad Digital Repository
– ident: e_1_2_8_48_1
  doi: 10.1111/j.1365-2486.2005.001033.x
– ident: e_1_2_8_74_1
  doi: 10.1016/j.scitotenv.2018.06.014
– ident: e_1_2_8_46_1
  doi: 10.1111/j.1469-8137.2012.04225.x
– ident: e_1_2_8_37_1
  doi: 10.1111/gcb.12273
– ident: e_1_2_8_68_1
  doi: 10.1016/j.agrformet.2016.08.007
– ident: e_1_2_8_40_1
  doi: 10.1016/j.geoderma.2018.07.008
– ident: e_1_2_8_42_1
  doi: 10.2307/2389824
– ident: e_1_2_8_58_1
  doi: 10.1007/s10533-004-7112-1
– ident: e_1_2_8_54_1
  doi: 10.1016/j.soilbio.2010.08.032
– ident: e_1_2_8_16_1
  doi: 10.1016/j.scitotenv.2017.03.034
– ident: e_1_2_8_43_1
  doi: 10.1029/2006JD007990
– ident: e_1_2_8_50_1
  doi: 10.1111/geb.12508
– ident: e_1_2_8_69_1
  doi: 10.1016/j.jaridenv.2018.01.017
– ident: e_1_2_8_36_1
  doi: 10.1038/s41598-018-34969-5
– ident: e_1_2_8_8_1
  doi: 10.1016/j.scitotenv.2017.06.028
– ident: e_1_2_8_55_1
  doi: 10.1038/srep34786
– ident: e_1_2_8_30_1
  doi: 10.1029/2003JD003951
– ident: e_1_2_8_9_1
  doi: 10.1890/06-1847.1
– ident: e_1_2_8_80_1
  doi: 10.1111/gcb.13253
– ident: e_1_2_8_19_1
  doi: 10.1016/j.soilbio.2010.11.021
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1461-0248.2008.01230.x
– ident: e_1_2_8_21_1
  doi: 10.1038/nature06592
– ident: e_1_2_8_56_1
  doi: 10.1016/j.soilbio.2016.04.023
– ident: e_1_2_8_70_1
  doi: 10.1111/j.1469-8137.2008.02488.x
– ident: e_1_2_8_78_1
  doi: 10.1016/j.scitotenv.2017.03.082
– ident: e_1_2_8_61_1
  doi: 10.1016/j.agrformet.2014.06.010
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1365-2486.2006.01153.x
– ident: e_1_2_8_82_1
  doi: 10.1016/j.agrformet.2015.09.008
– ident: e_1_2_8_35_1
  doi: 10.1111/2041-210X.12512
– ident: e_1_2_8_60_1
  doi: 10.1016/j.soilbio.2016.03.008
– ident: e_1_2_8_41_1
  doi: 10.1038/nature11917
– ident: e_1_2_8_28_1
  doi: 10.1016/j.agrformet.2012.05.022
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1365-2389.2012.01433.x
– ident: e_1_2_8_15_1
  doi: 10.1016/j.agrformet.2017.10.032
– ident: e_1_2_8_64_1
  doi: 10.1016/0038-0717(87)90052-6
– ident: e_1_2_8_17_1
  doi: 10.1890/05-1839
– ident: e_1_2_8_65_1
  doi: 10.1016/j.soilbio.2018.02.003
– ident: e_1_2_8_51_1
  doi: 10.1088/1748-9326/aa5ba6
– ident: e_1_2_8_79_1
  doi: 10.1111/geb.12430
– ident: e_1_2_8_6_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_81_1
  doi: 10.1111/gcb.12490
– ident: e_1_2_8_25_1
  doi: 10.1111/nph.12271
– ident: e_1_2_8_44_1
  doi: 10.1016/j.scitotenv.2016.06.237
– ident: e_1_2_8_5_1
  doi: 10.1038/nclimate3071
– ident: e_1_2_8_33_1
  doi: 10.1016/j.soilbio.2005.08.020
– ident: e_1_2_8_3_1
  doi: 10.1037/0033-2909.88.3.588
– ident: e_1_2_8_14_1
  doi: 10.1111/1365-2435.13045
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.1109326109
– ident: e_1_2_8_10_1
  doi: 10.1073/pnas.1502956112
– ident: e_1_2_8_75_1
  doi: 10.1016/j.agrformet.2019.03.019
– ident: e_1_2_8_57_1
  doi: 10.1007/s10533-015-0123-2
– ident: e_1_2_8_20_1
  doi: 10.1126/science.1136674
– ident: e_1_2_8_4_1
  doi: 10.1038/s41586-018-0358-x
– ident: e_1_2_8_23_1
  doi: 10.1023/A:1006244819642
– ident: e_1_2_8_71_1
  doi: 10.1016/j.scitotenv.2018.03.080
SSID ssj0009522
Score 2.5335166
Snippet Disentangling the relative response sensitivity of soil autotrophic (Ra) and heterotrophic respiration (Rh) to nitrogen (N) enrichment is pivotal for...
Disentangling the relative response sensitivity of soil autotrophic ( R a ) and heterotrophic respiration ( R h ) to nitrogen (N) enrichment is pivotal for...
Disentangling the relative response sensitivity of soil autotrophic (Rₐ) and heterotrophic respiration (Rₕ) to nitrogen (N) enrichment is pivotal for...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2239
SubjectTerms alpine meadows
Biotic factors
botanical composition
Community composition
Composition
critical load
Deposition
ECOSYSTEM ECOLOGY
Enrichment
field experimentation
forbs
long term experiments
Meadows
microbial biomass
Microorganisms
Nitrogen
nitrogen addition gradient
Nitrogen enrichment
nonlinear response
Plant communities
plant community composition
Relative abundance
Respiration
Sensitivity
Shelf life
soil
soil carbon
soil respiration
soil respiration components
Soil stability
soil substrate quality
soil temperature
Soils
Stability analysis
Substrates
Title Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow
URI https://www.jstor.org/stable/48583098
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13433
https://www.proquest.com/docview/2311452488
https://www.proquest.com/docview/2400515439
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBejUNil68dC03ZFhR56cbAs2VaOoySUQXsYLfRmJFmioZkdYmejve0_33uSnaaFUcbABzmSbFl6Hz9F74OQ8xS0ypilLlKlyyKhnYq0M0mkMpsphjsGjr7D1zfZ1Z34dp_21oToCxPiQ6z_cEPO8PIaGVzpZoPJg30WaPsR44JjvE_8BWHR92Qj7G44R0iycQSalnfBfdCW503_V3opmCa-Ap2b0NXrnuknovtRB5OTx9Gq1SPz_Cag43991i7Z6ZAp_RpIaY98sNU-2Q65Kp-gNDFdaTB5cY6DDp10aA7I75tZu6yBIilaKeGK0yVGhrUNberZHG7CsT5W6FVLZxVC1gaqAYXS4FXz01JvPd-l4aK1ow9osVPDkxcPM0PRBr6u4NXQnSq45gv4ZvoDaLX-9ZncTSe3l1dRl-IhMoIxHhluAC_mLnZO5WVuTWa0yqUTZSYUoCXmDAeRk8fWxkyVMjdKlkI5yXKrpLN8QLYqeOkhoQZ22wqWGPCPFULEGoplChBEuSRz0g3JqF_gwnTxzzENx7zo90E49QVOfeGnfkgu1h0WIfTH35sOPMWs2wmZSh6P5ZCc9CRUdMKhKQBSM5EmIDqH5GxdDWyNZzWqsvUK2giffQfgIozb08t7Yyimk0tfOPrXDsfkI8DAcfCwPCFb7XJlvwDUavWp56Y_IKUd2A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CIQQXvisKA4zEgUuqOHYS94hGqwJbD2iTdoscx9aqlaRqUhDc-M95z05LNwkhhJSDI9uJY7-Pn-P3AfAmRa0y5qmLdOWySJZOR6UzSaQzm2lOOwZBvsMn82x2Jj-ep-d7vjAhPsTuhxtxhpfXxOD0Q3qPy4OBFqr7ERdSiJtwi_J6U_z895-TvcC74SQhycYR6lrRh_cha55rD7iimYJx4hXYuQ9evfaZ3gezHXcwOrkcbbpyZH5cC-n4fx_2AO714JS9C9T0EG7Y-hHcDukqv2NpYvrSYPLbPw479AKifQw_54tu3SBRMjJUokVnawoOa1vWNosl3oSTfaooNx1b1IRaW6xGIMqCY81Xy7wBfZ-JizWOXZDRToNPXl0sDCMz-KbGV2N3pvFarvCj2Rck1-bbEzibTk6PZlGf5SEyknMRGWEQMuYudk7nVW5NZkqdKyerTGoETNwZgVInj62Nua5UbrSqpHaK51YrZ8UADmp86VNgBjfcGtcYIZCVUsYlFqsUUYh2SeaUG8Jou8KF6UOgUyaOZbHdCtHUFzT1hZ_6IbzddViF6B9_bjrwJLNrJ1WqRDxWQzjc0lDRy4e2QFTNZZqg9BzC6101cjYd1-jaNhtsI30CHkSMOG5PMH8bQzGdHPnCs3_t8AruzE5PjovjD_NPz-EuosJxcLg8hINuvbEvEHl15UvPWr8A_RMh9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Lb9MwGP8EQyAuvCsK2zASBy6p4thxnCPaWm08KoSYxC1yHFurVpKqSUFw4z_ns5103SSEEFIOjmwnjv09fo6_B8CrFLVKTlMbqcqKiJdWRaXVSaSEEYq6HQNzvsMf5uLkjL_9kg7WhM4XJsSH2P5wc5zh5bVj8FVld5g82Gehtp9Qxhm7Cbe4iHOXveH4U7ITdzccJCQij1DVsj66jzPmufaAK4op2CZeQZ272NUrn9l9KIdhB5uTi8mmKyf657WIjv_1XQ_gXg9NyZtASw_hhqkfwe2QrPIHlqa6L42ml95x2KEXD-1j-DVfdOsGSZI4MyW35GTtQsOalrTNYok34VzfVZSbjixqh1lbrEYYSoJbzTdDvPl8n4eLNJacO5OdBp-8Ol9o4ozgmxpfjd2Jwmu5wm8mX5FYm-9P4Gw2_Xx0EvU5HiLNKWWRZhoBY2Zja1VWZUYLXapMWl4JrhAuUasZypwsNiamqpKZVrLiykqaGSWtYSPYq_GlT4Fo3G4rXGIEQIZzHpdYrFLEIMomwko7hsmwwIXuA6C7PBzLYtgIuakv3NQXfurH8HrbYRVif_y56chTzLYdl6lkcS7HsD-QUNFLh7ZATE15mqDsHMPLbTXytTusUbVpNtiG-_Q7iBdx3J5e_jaGYjY98oVn_9rhBdz5eDwr3p_O3z2HuwgJ8-BtuQ973XpjDhB2deWhZ6zfcBUgow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+addition+reduces+soil+respiration+but+increases+the+relative+contribution+of+heterotrophic+component+in+an+alpine+meadow&rft.jtitle=Functional+ecology&rft.au=Wang%2C+Jinsong&rft.au=Song%2C+Bing&rft.au=Ma%2C+Fangfang&rft.au=Tian%2C+Dashuan&rft.date=2019-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=33&rft.issue=11&rft.spage=2239&rft.epage=2253&rft_id=info:doi/10.1111%2F1365-2435.13433&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon