Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow
Disentangling the relative response sensitivity of soil autotrophic (Ra) and heterotrophic respiration (Rh) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitiv...
Saved in:
Published in | Functional ecology Vol. 33; no. 11; pp. 2239 - 2253 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.11.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Disentangling the relative response sensitivity of soil autotrophic (Ra) and heterotrophic respiration (Rh) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitivities of Ra and Rh and relative contribution of Rh to soil respiration (Rs) with increasing N deposition remain elusive.
A manipulative field experiment with multi‐level N addition rates was conducted over 3 years (2015–2017) in an alpine meadow to explore the relative impact of N enrichment on Ra and Rh and the response of Rh/Rs ratio to the gradient of N addition.
Soil respiration components had different sensitivities to N enrichment, with Ra decreasing more than Rh, leading to a higher Rh/Rs ratio as a function of increasing N addition rates. Ra and Rh decreased nonlinearly as N addition rates increased, with a critical load of 8 g N m−2 year−1 above which N enrichment significantly inhibited them. Ra and Rh were controlled by different abiotic and biotic factors, and the regulation of controlling factors on soil respiration components varied over time. N‐induced reduction in the relative abundance of forb significantly affected Ra, and this effect was mainly evident in the second and third years. Nitrogen enrichment significantly changed Rh in the third year, and the decreased Rh under high doses of N addition could be attributed to the changes in microbial biomass C, soil substrate quality and microbial composition.
Our study highlights the leading role of Ra in regulating Rs responses to N enrichment and the enhancement of Rh/Rs ratio with increasing N addition. We also emphasize that N‐induced shifts in plant community composition play a vital role in regulating Ra instead of Rh. The changing drivers of Ra and Rh with time suggests that long‐term experiments with multiple levels of N addition are further needed to test the nonlinear responses and underlying mechanisms of soil respiration components in face to aggravating N deposition.
A free Plain Language Summary can be found within the Supporting Information of this article.
A free Plain Language Summary can be found within the Supporting Information of this article. |
---|---|
AbstractList | Disentangling the relative response sensitivity of soil autotrophic (Ra) and heterotrophic respiration (Rh) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitivities of Ra and Rh and relative contribution of Rh to soil respiration (Rs) with increasing N deposition remain elusive.A manipulative field experiment with multi‐level N addition rates was conducted over 3 years (2015–2017) in an alpine meadow to explore the relative impact of N enrichment on Ra and Rh and the response of Rh/Rs ratio to the gradient of N addition.Soil respiration components had different sensitivities to N enrichment, with Ra decreasing more than Rh, leading to a higher Rh/Rs ratio as a function of increasing N addition rates. Ra and Rh decreased nonlinearly as N addition rates increased, with a critical load of 8 g N m−2 year−1 above which N enrichment significantly inhibited them. Ra and Rh were controlled by different abiotic and biotic factors, and the regulation of controlling factors on soil respiration components varied over time. N‐induced reduction in the relative abundance of forb significantly affected Ra, and this effect was mainly evident in the second and third years. Nitrogen enrichment significantly changed Rh in the third year, and the decreased Rh under high doses of N addition could be attributed to the changes in microbial biomass C, soil substrate quality and microbial composition.Our study highlights the leading role of Ra in regulating Rs responses to N enrichment and the enhancement of Rh/Rs ratio with increasing N addition. We also emphasize that N‐induced shifts in plant community composition play a vital role in regulating Ra instead of Rh. The changing drivers of Ra and Rh with time suggests that long‐term experiments with multiple levels of N addition are further needed to test the nonlinear responses and underlying mechanisms of soil respiration components in face to aggravating N deposition.A free Plain Language Summary can be found within the Supporting Information of this article. Disentangling the relative response sensitivity of soil autotrophic (Rₐ) and heterotrophic respiration (Rₕ) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitivities of Rₐ and Rₕ and relative contribution of Rₕ to soil respiration (Rₛ) with increasing N deposition remain elusive. A manipulative field experiment with multi‐level N addition rates was conducted over 3 years (2015–2017) in an alpine meadow to explore the relative impact of N enrichment on Rₐ and Rₕ and the response of Rₕ/Rₛ ratio to the gradient of N addition. Soil respiration components had different sensitivities to N enrichment, with Rₐ decreasing more than Rₕ, leading to a higher Rₕ/Rₛ ratio as a function of increasing N addition rates. Rₐ and Rₕ decreased nonlinearly as N addition rates increased, with a critical load of 8 g N m⁻² year⁻¹ above which N enrichment significantly inhibited them. Rₐ and Rₕ were controlled by different abiotic and biotic factors, and the regulation of controlling factors on soil respiration components varied over time. N‐induced reduction in the relative abundance of forb significantly affected Rₐ, and this effect was mainly evident in the second and third years. Nitrogen enrichment significantly changed Rₕ in the third year, and the decreased Rₕ under high doses of N addition could be attributed to the changes in microbial biomass C, soil substrate quality and microbial composition. Our study highlights the leading role of Rₐ in regulating Rₛ responses to N enrichment and the enhancement of Rₕ/Rₛ ratio with increasing N addition. We also emphasize that N‐induced shifts in plant community composition play a vital role in regulating Rₐ instead of Rₕ. The changing drivers of Rₐ and Rₕ with time suggests that long‐term experiments with multiple levels of N addition are further needed to test the nonlinear responses and underlying mechanisms of soil respiration components in face to aggravating N deposition. A free Plain Language Summary can be found within the Supporting Information of this article. Disentangling the relative response sensitivity of soil autotrophic ( R a ) and heterotrophic respiration ( R h ) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitivities of R a and R h and relative contribution of R h to soil respiration ( R s ) with increasing N deposition remain elusive. A manipulative field experiment with multi‐level N addition rates was conducted over 3 years (2015–2017) in an alpine meadow to explore the relative impact of N enrichment on R a and R h and the response of R h / R s ratio to the gradient of N addition. Soil respiration components had different sensitivities to N enrichment, with R a decreasing more than R h , leading to a higher R h / R s ratio as a function of increasing N addition rates. R a and R h decreased nonlinearly as N addition rates increased, with a critical load of 8 g N m −2 year −1 above which N enrichment significantly inhibited them. R a and R h were controlled by different abiotic and biotic factors, and the regulation of controlling factors on soil respiration components varied over time. N‐induced reduction in the relative abundance of forb significantly affected R a , and this effect was mainly evident in the second and third years. Nitrogen enrichment significantly changed R h in the third year, and the decreased R h under high doses of N addition could be attributed to the changes in microbial biomass C, soil substrate quality and microbial composition. Our study highlights the leading role of R a in regulating R s responses to N enrichment and the enhancement of R h / R s ratio with increasing N addition. We also emphasize that N‐induced shifts in plant community composition play a vital role in regulating R a instead of R h . The changing drivers of R a and R h with time suggests that long‐term experiments with multiple levels of N addition are further needed to test the nonlinear responses and underlying mechanisms of soil respiration components in face to aggravating N deposition. A free Plain Language Summary can be found within the Supporting Information of this article. Disentangling the relative response sensitivity of soil autotrophic (Ra) and heterotrophic respiration (Rh) to nitrogen (N) enrichment is pivotal for evaluating soil carbon (C) storage and stability in the scenario of intensified N deposition. However, the mechanisms underlying differential sensitivities of Ra and Rh and relative contribution of Rh to soil respiration (Rs) with increasing N deposition remain elusive. A manipulative field experiment with multi‐level N addition rates was conducted over 3 years (2015–2017) in an alpine meadow to explore the relative impact of N enrichment on Ra and Rh and the response of Rh/Rs ratio to the gradient of N addition. Soil respiration components had different sensitivities to N enrichment, with Ra decreasing more than Rh, leading to a higher Rh/Rs ratio as a function of increasing N addition rates. Ra and Rh decreased nonlinearly as N addition rates increased, with a critical load of 8 g N m−2 year−1 above which N enrichment significantly inhibited them. Ra and Rh were controlled by different abiotic and biotic factors, and the regulation of controlling factors on soil respiration components varied over time. N‐induced reduction in the relative abundance of forb significantly affected Ra, and this effect was mainly evident in the second and third years. Nitrogen enrichment significantly changed Rh in the third year, and the decreased Rh under high doses of N addition could be attributed to the changes in microbial biomass C, soil substrate quality and microbial composition. Our study highlights the leading role of Ra in regulating Rs responses to N enrichment and the enhancement of Rh/Rs ratio with increasing N addition. We also emphasize that N‐induced shifts in plant community composition play a vital role in regulating Ra instead of Rh. The changing drivers of Ra and Rh with time suggests that long‐term experiments with multiple levels of N addition are further needed to test the nonlinear responses and underlying mechanisms of soil respiration components in face to aggravating N deposition. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article. |
Author | Wang, Jinsong Zhang, Fangyue Li, Zhaolei Niu, Shuli Wang, Bingxue Li, Yong Ma, Fangfang Tian, Dashuan Quan, Quan Gao, Qiang Chen, Weinan Yan, Tao Song, Bing |
Author_xml | – sequence: 1 givenname: Jinsong surname: Wang fullname: Wang, Jinsong – sequence: 2 givenname: Bing surname: Song fullname: Song, Bing – sequence: 3 givenname: Fangfang surname: Ma fullname: Ma, Fangfang – sequence: 4 givenname: Dashuan surname: Tian fullname: Tian, Dashuan – sequence: 5 givenname: Yong surname: Li fullname: Li, Yong – sequence: 6 givenname: Tao surname: Yan fullname: Yan, Tao – sequence: 7 givenname: Quan surname: Quan fullname: Quan, Quan – sequence: 8 givenname: Fangyue surname: Zhang fullname: Zhang, Fangyue – sequence: 9 givenname: Zhaolei surname: Li fullname: Li, Zhaolei – sequence: 10 givenname: Bingxue surname: Wang fullname: Wang, Bingxue – sequence: 11 givenname: Qiang surname: Gao fullname: Gao, Qiang – sequence: 12 givenname: Weinan surname: Chen fullname: Chen, Weinan – sequence: 13 givenname: Shuli surname: Niu fullname: Niu, Shuli |
BookMark | eNqFkbtLLDEUxoMouD5qK2HAxmY0z5lsKYsvkHubax1i5sTNMpuMSUax9D83s-u1sDEEwsn3_U4O-Q7Qrg8eEDoh-IKUdUlYI2rKmbggjDO2g2bfN7tohmkzryVv2D46SGmFMZ4LSmfo44_LMTyDr3TXueyCryJ0o4FUpeD6UqTBRb0RnsZcOW8i6FTkvISi9kV6hcoEn6MrhskXbLWEDDGUzsPSmaKuhzKsn_BKl90PzkO1Bt2FtyO0Z3Wf4PjrPESPN9f_Fnf1w9_b-8XVQ204Iaw2zIhWtBZbq9uuBdOYJ91Ky7uGa9xwYg1jlLYYABPdydZo2XFtJWlBSwvsEJ1v-w4xvIyQslq7ZKDvtYcwJkU5xoIIzubFevbDugpj9GU6RRkhXFAuZXFdbl0mhpQiWDVEt9bxXRGspkjUFICaAlCbSAohfhDG5c3f5qhd_zv35np4_-0ZdXO9-M-dbrlVyiF-c1wKyfBcsk-NC6zn |
CitedBy_id | crossref_primary_10_1111_gcb_16869 crossref_primary_10_1016_j_agrformet_2021_108408 crossref_primary_10_1111_1365_2435_13925 crossref_primary_10_3390_agriculture14040596 crossref_primary_10_7717_peerj_17176 crossref_primary_10_1016_j_fecs_2022_100054 crossref_primary_10_7717_peerj_15276 crossref_primary_10_1002_ece3_70501 crossref_primary_10_1186_s13717_021_00338_w crossref_primary_10_1016_j_soilbio_2022_108814 crossref_primary_10_1016_j_still_2022_105315 crossref_primary_10_1007_s11104_023_06162_9 crossref_primary_10_1016_j_apsoil_2021_104023 crossref_primary_10_1016_j_catena_2022_106207 crossref_primary_10_1016_j_catena_2022_106321 crossref_primary_10_1186_s40663_021_00313_z crossref_primary_10_1016_j_scitotenv_2023_164071 crossref_primary_10_1016_j_apsoil_2024_105297 crossref_primary_10_3390_f13111860 crossref_primary_10_1007_s11368_023_03543_6 crossref_primary_10_1016_j_envpol_2020_115822 crossref_primary_10_1007_s42729_024_01852_4 crossref_primary_10_1016_j_envres_2023_116501 crossref_primary_10_1016_j_agrformet_2022_109200 crossref_primary_10_1016_j_scitotenv_2023_161428 crossref_primary_10_3390_agronomy14112468 crossref_primary_10_1016_j_scitotenv_2024_171170 crossref_primary_10_1016_j_catena_2024_108535 crossref_primary_10_1111_1365_2435_70033 crossref_primary_10_1016_j_envpol_2023_121848 crossref_primary_10_1007_s11104_024_07070_2 crossref_primary_10_1007_s11104_020_04749_0 crossref_primary_10_1016_j_catena_2021_106013 crossref_primary_10_1007_s10533_023_01014_1 crossref_primary_10_1016_j_scitotenv_2022_156469 crossref_primary_10_2139_ssrn_3949313 crossref_primary_10_3390_f13122064 crossref_primary_10_1111_1365_2435_13902 crossref_primary_10_1016_j_scitotenv_2020_144559 crossref_primary_10_1016_j_scitotenv_2023_164535 crossref_primary_10_1016_j_geosus_2023_05_002 crossref_primary_10_1016_j_catena_2021_105570 crossref_primary_10_3390_agronomy14061136 crossref_primary_10_1016_j_catena_2024_108320 crossref_primary_10_1111_1365_2435_13783 crossref_primary_10_3390_f12101427 crossref_primary_10_1007_s11104_024_06962_7 crossref_primary_10_1016_j_apsoil_2024_105393 crossref_primary_10_1016_j_scitotenv_2024_174423 crossref_primary_10_1016_j_geoderma_2023_116722 crossref_primary_10_1016_j_scitotenv_2023_168568 crossref_primary_10_1016_j_soilbio_2020_108107 crossref_primary_10_1029_2022JG006829 crossref_primary_10_1016_j_ecolind_2021_107710 crossref_primary_10_2139_ssrn_4049562 crossref_primary_10_3389_fenvs_2021_700768 crossref_primary_10_1029_2021JG006653 crossref_primary_10_3389_fpls_2022_829381 crossref_primary_10_1134_S1064229324602415 crossref_primary_10_1016_j_agrformet_2022_109155 crossref_primary_10_1016_j_scitotenv_2020_139003 crossref_primary_10_1093_aob_mcab032 crossref_primary_10_5194_bg_21_575_2024 crossref_primary_10_1016_j_agrformet_2024_110257 crossref_primary_10_3390_f11020235 crossref_primary_10_1186_s40663_021_00321_z crossref_primary_10_3390_f10111038 |
Cites_doi | 10.1111/j.1365-2486.2011.02423.x 10.5194/bg-14-3947-2017 10.1111/j.1365-2486.2009.01894.x 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-# 10.1016/S0038-0717(01)00117-1 10.1111/j.1469-8137.2007.02204.x 10.1111/1365-2435.13338 10.1111/1365-2435.12525 10.1111/1365-2435.12914 10.1016/j.chemosphere.2012.02.077 10.1016/j.soilbio.2016.07.003 10.1016/j.soilbio.2017.05.024 10.1016/j.agrformet.2005.12.012 10.1016/j.soilbio.2014.04.013 10.1038/ngeo844 10.1111/ele.12826 10.1016/j.ejsobi.2018.01.005 10.1146/annurev.ecolsys.38.091206.095808 10.1038/s41396-018-0096-y 10.1111/j.1461-0248.2010.01482.x 10.1038/ncomms10541 10.1007/s00382-015-2830-8 10.1016/j.soilbio.2015.09.001 10.1111/j.1365-2486.2005.001033.x 10.1016/j.scitotenv.2018.06.014 10.1111/j.1469-8137.2012.04225.x 10.1111/gcb.12273 10.1016/j.agrformet.2016.08.007 10.1016/j.geoderma.2018.07.008 10.2307/2389824 10.1007/s10533-004-7112-1 10.1016/j.soilbio.2010.08.032 10.1016/j.scitotenv.2017.03.034 10.1029/2006JD007990 10.1111/geb.12508 10.1016/j.jaridenv.2018.01.017 10.1038/s41598-018-34969-5 10.1016/j.scitotenv.2017.06.028 10.1038/srep34786 10.1029/2003JD003951 10.1890/06-1847.1 10.1111/gcb.13253 10.1016/j.soilbio.2010.11.021 10.1111/j.1461-0248.2008.01230.x 10.1038/nature06592 10.1016/j.soilbio.2016.04.023 10.1111/j.1469-8137.2008.02488.x 10.1016/j.scitotenv.2017.03.082 10.1016/j.agrformet.2014.06.010 10.1111/j.1365-2486.2006.01153.x 10.1016/j.agrformet.2015.09.008 10.1111/2041-210X.12512 10.1016/j.soilbio.2016.03.008 10.1038/nature11917 10.1016/j.agrformet.2012.05.022 10.1111/j.1365-2389.2012.01433.x 10.1016/j.agrformet.2017.10.032 10.1016/0038-0717(87)90052-6 10.1890/05-1839 10.1016/j.soilbio.2018.02.003 10.1088/1748-9326/aa5ba6 10.1111/geb.12430 10.1023/A:1010933404324 10.1111/gcb.12490 10.1111/nph.12271 10.1016/j.scitotenv.2016.06.237 10.1038/nclimate3071 10.1016/j.soilbio.2005.08.020 10.1037/0033-2909.88.3.588 10.1111/1365-2435.13045 10.1073/pnas.1109326109 10.1073/pnas.1502956112 10.1016/j.agrformet.2019.03.019 10.1007/s10533-015-0123-2 10.1126/science.1136674 10.1038/s41586-018-0358-x 10.1023/A:1006244819642 10.1016/j.scitotenv.2018.03.080 |
ContentType | Journal Article |
Copyright | 2019 The Authors. © 2019 British Ecological Society 2019 The Authors. Functional Ecology © 2019 British Ecological Society Functional Ecology © 2019 British Ecological Society |
Copyright_xml | – notice: 2019 The Authors. © 2019 British Ecological Society – notice: 2019 The Authors. Functional Ecology © 2019 British Ecological Society – notice: Functional Ecology © 2019 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.13433 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 2253 |
ExternalDocumentID | 10_1111_1365_2435_13433 FEC13433 48583098 |
Genre | article |
GrantInformation_xml | – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDA23080302 – fundername: National Natural Science Foundation of China funderid: 31625006 – fundername: Chinese Postdoctoral Science Foundation funderid: 2017M620891 – fundername: Ministry of Science and Technology of China funderid: 2016YFC0501803 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABTLG ACAHQ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IX1 J0M JBS JENOY JLS JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 2AX 31~ 42X 53G AAHHS AAISJ ABBHK ABEFU ABTAH ABXSQ ACCFJ ACCMX ACHIC ADULT ADZOD AEEZP AEQDE AEUPB AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG CBGCD COF CUYZI DEVKO DOOOF EJD ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU IPSME JAAYA JBMMH JEB JHFFW JKQEH JLXEF JPM JSODD LW6 MVM SA0 VOH WRC ZY4 AAYXX ABSQW AGUYK CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c4113-c3c5757f0ffa7d7ec6cba78f4d64a0641fc332270ee01ad87ca8d4af817ea8fe3 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:32:42 EDT 2025 Sun Jul 13 03:42:44 EDT 2025 Tue Jul 01 01:15:49 EDT 2025 Thu Apr 24 22:54:21 EDT 2025 Wed Jan 22 16:39:12 EST 2025 Thu Jul 03 21:34:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4113-c3c5757f0ffa7d7ec6cba78f4d64a0641fc332270ee01ad87ca8d4af817ea8fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3425-7387 0000-0002-2394-2864 0000-0002-8202-6858 0000-0001-9146-8044 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13433 |
PQID | 2311452488 |
PQPubID | 1066355 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2400515439 proquest_journals_2311452488 crossref_primary_10_1111_1365_2435_13433 crossref_citationtrail_10_1111_1365_2435_13433 wiley_primary_10_1111_1365_2435_13433_FEC13433 jstor_primary_48583098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191101 November 2019 2019-11-00 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 20191101 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2018; 560 2018; 120 2010; 16 2010; 13 2018; 248 2000; 48 2018; 631–632 2006; 38 1980; 88 2018; 642 2016; 101 2016; 30 2018; 85 2017; 592 2017; 232 2011; 17 2001; 45 2017; 113 2007; 38 2014; 20 2013; 19 2018; 8 2017; 601–602 2007; 176 2018; 332 2013; 199 2005; 75 2016; 569–570 2015; 91 2010; 3 2012; 166–167 2018; 32 2019; 271 2016; 47 2012; 63 2017; 20 2006; 12 2017; 26 2019; 33 2015; 125 2016; 97 2008; 11 2004; 109 2008; 320 2017; 590–591 1987; 19 2015; 7 2014; 197 2012; 109 2016; 99 1994; 8 2018; 152 2016; 6 2007; 112 2012; 196 2015; 214–215 2016; 7 2010; 42 2002; 165 2017; 14 2015; 112 2017; 12 2006; 140 2019 2011; 43 2015 2013 2013; 494 2008; 179 2001; 33 2018; 12 2007; 88 2008; 451 2012; 88 2005; 11 2016; 25 2014; 75 2016; 22 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Wang J. (e_1_2_8_66_1) 2019 e_1_2_8_68_1 Archer E. (e_1_2_8_2_1) 2013 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_80_1 R Core Team (e_1_2_8_53_1) 2015 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 11 start-page: 1745 year: 2005 end-page: 1753 article-title: Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration publication-title: Global Change Biology – volume: 232 start-page: 66 year: 2017 end-page: 73 article-title: N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young forest publication-title: Agricultural and Forest Meteorology – volume: 88 start-page: 2105 year: 2007 end-page: 2113 article-title: Microbial nitrogen limitation increases decomposition publication-title: Ecology – volume: 85 start-page: 43 year: 2018 end-page: 52 article-title: Rhizospheric, mycorrhizal and heterotrophic respiration in dry grasslands publication-title: European Journal of Soil Biology – volume: 75 start-page: 201 year: 2005 end-page: 215 article-title: Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition publication-title: Biogeochemistry – volume: 47 start-page: 173 year: 2016 end-page: 190 article-title: A model based investigation of the relative importance of CO ‐fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period publication-title: Climate Dynamics – volume: 38 start-page: 683 year: 2007 end-page: 712 article-title: Terrestrial carbon‐cycle feedback to climate warming publication-title: Annual Review of Ecology Evolution and Systematics – year: 2019 article-title: Data from: Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow publication-title: Dryad Digital Repository – volume: 32 start-page: 1117 year: 2018 end-page: 1127 article-title: Plant functional groups regulate soil respiration responses to nitrogen addition and mowing over a decade publication-title: Functional Ecology – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 320 start-page: 889 year: 2008 end-page: 892 article-title: Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions publication-title: Science – volume: 140 start-page: 193 year: 2006 end-page: 202 article-title: Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique: Theory and practice publication-title: Agricultural and Forest Meteorology – volume: 30 start-page: 658 year: 2016 end-page: 669 article-title: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long‐term nitrogen enrichment publication-title: Functional Ecology – volume: 642 start-page: 646 year: 2018 end-page: 655 article-title: Strong root respiration response to nitrogen and phosphorus addition in nitrogen‐limited temperate forests publication-title: Science of the Total Environment – volume: 99 start-page: 54 year: 2016 end-page: 65 article-title: Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils publication-title: Soil Biology and Biochemistry – volume: 48 start-page: 115 year: 2000 end-page: 146 article-title: Separating root and soil microbial contributions to soil respiration: A review of methods and observations publication-title: Biogeochemistry – volume: 19 start-page: 3553 year: 2013 end-page: 3564 article-title: Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual‐dominated prairie publication-title: Global Change Biology – volume: 43 start-page: 1621 year: 2011 end-page: 1625 article-title: Use the misuse of PLFA measurements in soils publication-title: Soil Biology and Biochemistry – volume: 592 start-page: 565 year: 2017 end-page: 572 article-title: Effects of warming and nitrogen deposition on CH , CO and N O emissions in alpine grassland ecosystems of the Qinghai‐Tibetan Plateau publication-title: Science of the Total Environment – volume: 32 start-page: 71 year: 2018 end-page: 82 article-title: Soil and vegetation carbon turnover times from tropical to boreal forests publication-title: Functional Ecology – volume: 88 start-page: 140 year: 2012 end-page: 143 article-title: Responses of CH , CO and N O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains publication-title: Chemosphere – volume: 569–570 start-page: 1466 year: 2016 end-page: 1477 article-title: The responses of soil respiration to nitrogen addition in a temperate grassland in northern China publication-title: Science of the Total Environment – volume: 214–215 start-page: 506 year: 2015 end-page: 514 article-title: Effects of warming, grazing/cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the Tibetan Plateau publication-title: Agricultural and Forest Meteorology – volume: 332 start-page: 37 year: 2018 end-page: 44 article-title: Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition publication-title: Geoderma – volume: 494 start-page: 459 year: 2013 end-page: 462 article-title: Enhanced nitrogen deposition over China publication-title: Nature – volume: 38 start-page: 425 year: 2006 end-page: 448 article-title: Sources of CO efflux from soil and review of partitioning methods publication-title: Soil Biology and Biochemistry – volume: 199 start-page: 339 year: 2013 end-page: 351 article-title: Ecosystem‐level controls on root‐rhizosphere respiration publication-title: New Phytologist – volume: 112 start-page: D22S05 year: 2007 article-title: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data publication-title: Journal of Geophysical Research‐Atmospheres – volume: 248 start-page: 449 year: 2018 end-page: 457 article-title: Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi‐arid environment publication-title: Agricultural and Forest Meteorology – volume: 33 start-page: 1362 year: 2019 end-page: 1372 article-title: The decline in plant biodiversity slows down soil carbon turnover under increasing nitrogen deposition in a temperate steppe publication-title: Functional Ecology – volume: 88 start-page: 588 year: 1980 end-page: 606 article-title: Significance tests and goodness of fit in the analysis of covariance structures publication-title: Phychological Bulletin – year: 2015 – volume: 16 start-page: 144 year: 2010 end-page: 155 article-title: Nitrogen effects on net ecosystem carbon exchange in a temperate steppe publication-title: Global Change Biology – volume: 11 start-page: 1111 year: 2008 end-page: 1120 article-title: Nitrogen additions and microbial biomass: A meta‐analysis of ecosystem studies publication-title: Ecology Letters – volume: 33 start-page: 1915 year: 2001 end-page: 1925 article-title: Photosynthesis controls of rhizosphere respiration and organic matter decomposition publication-title: Soil Biology and Biochemistry – volume: 25 start-page: 475 year: 2016 end-page: 488 article-title: The effects of nitrogen enrichment on soil CO fluxes depending on temperature and soil properties publication-title: Global Ecology and Biogeography – volume: 152 start-page: 37 year: 2018 end-page: 44 article-title: Nitrogen addition decreased soil respiration and its components in a long‐term fenced grassland on the Loess Plateau publication-title: Journal of Arid Environments – volume: 166–167 start-page: 32 year: 2012 end-page: 40 article-title: Responses of soil respiration to N addition, burning and clipping in temperate semiarid grassland in northern China publication-title: Agricultural and Forest Meteorology – volume: 631–632 start-page: 619 year: 2018 end-page: 626 article-title: Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems publication-title: Science of the Total Environment – volume: 17 start-page: 2936 year: 2011 end-page: 2944 article-title: Plant community responses to nitrogen addition and increased precipitation: The importance of water availability and species traits publication-title: Global Change Biology – volume: 19 start-page: 703 year: 1987 end-page: 707 article-title: An extraction method for measuring soil microbial biomass‐C publication-title: Soil Biology and Biochemistry – volume: 12 start-page: 1817 year: 2018 end-page: 1825 article-title: Global negative effects of nitrogen deposition on soil microbes publication-title: ISME Journal – volume: 165 start-page: 382 year: 2002 end-page: 396 article-title: Review: Factors affecting rhizosphere priming effects publication-title: Journal of Plant Nutrition and Soil Science – volume: 176 start-page: 655 year: 2007 end-page: 664 article-title: Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils publication-title: New Phytologist – volume: 6 start-page: 34786 year: 2016 article-title: Contrasting effects of nitrogen and phosphorus addition on soil respiration in an alpine grassland on the Qinghai‐Tibetan Plateau publication-title: Scientific Reports – volume: 451 start-page: 293 year: 2008 end-page: 296 article-title: An Earth‐system perspective of the global nitrogen cycle publication-title: Nature – volume: 109 start-page: D12109 year: 2004 article-title: Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai‐Tibetan Plateau publication-title: Journal of Geophysical Research-Atmospheres – volume: 125 start-page: 203 year: 2015 end-page: 219 article-title: Nitrogen addition changes grassland soil organic matter decomposition publication-title: Biogeochemistry – volume: 113 start-page: 26 year: 2017 end-page: 34 article-title: Long‐term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow publication-title: Soil Biology and Biochemistry – volume: 271 start-page: 413 year: 2019 end-page: 421 article-title: Changing precipitation exerts greater influence on soil heterotrophic than autotrophic respiration in a semiarid steppe publication-title: Agricultural and Forest Meteorology – volume: 3 start-page: 315 year: 2010 end-page: 322 article-title: Reduction of forest soil respiration in response to nitrogen deposition publication-title: Nature Geoscience – volume: 196 start-page: 79 year: 2012 end-page: 91 article-title: Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils publication-title: New Phytologist – volume: 179 start-page: 428 year: 2008 end-page: 439 article-title: Global response patterns of terrestrial plant species to nitrogen addition publication-title: New Phytologist – volume: 63 start-page: 249 year: 2012 end-page: 260 article-title: Partitioning of soil CO flux components in a temperate grassland ecosystem publication-title: European Journal of Soil Science – volume: 13 start-page: 819 year: 2010 end-page: 828 article-title: A global perspective on belowground carbon dynamics under nitrogen enrichment publication-title: Ecology Letters – volume: 97 start-page: 168 year: 2016 end-page: 175 article-title: Soil microbial carbon use efficiency and biomass turnover in a long‐term fertilization experiment in a temperate grassland publication-title: Soil Biology and Biochemistry – volume: 14 start-page: 3947 year: 2017 end-page: 3956 article-title: Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: Patterns and causes publication-title: Biogeosciences – volume: 560 start-page: 80 year: 2018 end-page: 83 article-title: Globally rising soil heterotrophic respiration over recent decades publication-title: Nature – volume: 109 start-page: 1159 year: 2012 end-page: 1164 article-title: Microbial diversity determines the invasion of soil by a bacterial pathogen publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 start-page: 573 year: 2015 end-page: 579 article-title: PiecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics publication-title: Methods in Ecology and Evolution – volume: 22 start-page: 3157 year: 2016 end-page: 3169 article-title: Interactive effects of global change factors on soil respiration and its components: A meta‐analysis publication-title: Global Change Biology – volume: 601–602 start-page: 1389 year: 2017 end-page: 1399 article-title: Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region publication-title: Science of the Total Environment – volume: 12 start-page: 1285 year: 2006 end-page: 1298 article-title: Temperature and biomass influences on interannual changes in CO exchange in an alpine meadow on the Qinghai‐Tibetan Plateau publication-title: Global Change Biology – volume: 7 start-page: 10541 issue: 1 year: 2016 article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems publication-title: Nature Communications – volume: 42 start-page: 2336 year: 2010 end-page: 2338 article-title: Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied publication-title: Soil Biology and Biochemistry – volume: 12 start-page: 024018 year: 2017 article-title: Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe publication-title: Environmental Research Letters – volume: 75 start-page: 113 year: 2014 end-page: 123 article-title: Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland publication-title: Soil Biology and Biochemistry – volume: 120 start-page: 126 year: 2018 end-page: 133 article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition publication-title: Soil Biology and Biochemistry – volume: 26 start-page: 102 year: 2017 end-page: 114 article-title: Global patterns of root dynamics under nitrogen enrichment publication-title: Global Ecology and Biogeography – volume: 20 start-page: 1295 year: 2017 end-page: 1305 article-title: Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe publication-title: Ecology Letters – volume: 91 start-page: 160 year: 2015 end-page: 168 article-title: Effects of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry publication-title: Soil Biology and Biochemistry – volume: 8 start-page: 315 year: 1994 end-page: 323 article-title: On the temperature‐dependence of soil respiration publication-title: Functional Ecology – volume: 6 start-page: 751 year: 2016 end-page: 758 article-title: Managing uncertainty in soil carbon feedbacks to climate change publication-title: Nature Climate Change – volume: 88 start-page: 1354 year: 2007 end-page: 1364 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology – volume: 590–591 start-page: 729 year: 2017 end-page: 738 article-title: Seasonal responses of soil respiration to warming and nitrogen addition in a semi‐arid alfalfa‐pasture of the Loess Plateau, China publication-title: Science of the Total Environment – volume: 8 start-page: 16546 year: 2018 article-title: Differential responses of heterotrophic and autotrophic respiration to nitrogen addition and precipitation changes in a Tibetan alpine steppe publication-title: Scientific Reports – volume: 101 start-page: 32 year: 2016 end-page: 43 article-title: Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta‐analysis publication-title: Soil Biology and Biochemistry – volume: 112 start-page: 7033 year: 2015 end-page: 7038 article-title: Biotic interactions mediate soil microbial feedbacks to climate change publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 20 start-page: 2332 year: 2014 end-page: 2343 article-title: Different responses of soil respiration and its components to nitrogen addition among biomes: A meta‐analysis publication-title: Global Change Biology – year: 2013 – volume: 197 start-page: 103 year: 2014 end-page: 110 article-title: The effect of nitrogen addition on soil respiration from a nitrogen‐limited forest soil publication-title: Agricultural and Forest Meteorology – ident: e_1_2_8_72_1 doi: 10.1111/j.1365-2486.2011.02423.x – ident: e_1_2_8_59_1 doi: 10.5194/bg-14-3947-2017 – ident: e_1_2_8_47_1 doi: 10.1111/j.1365-2486.2009.01894.x – ident: e_1_2_8_32_1 doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-# – ident: e_1_2_8_34_1 doi: 10.1016/S0038-0717(01)00117-1 – ident: e_1_2_8_52_1 doi: 10.1111/j.1469-8137.2007.02204.x – ident: e_1_2_8_73_1 doi: 10.1111/1365-2435.13338 – ident: e_1_2_8_7_1 doi: 10.1111/1365-2435.12525 – ident: e_1_2_8_67_1 doi: 10.1111/1365-2435.12914 – ident: e_1_2_8_38_1 doi: 10.1016/j.chemosphere.2012.02.077 – ident: e_1_2_8_29_1 doi: 10.1016/j.soilbio.2016.07.003 – volume-title: Estimate permutation p‐values for importance metrics year: 2013 ident: e_1_2_8_2_1 – ident: e_1_2_8_22_1 doi: 10.1016/j.soilbio.2017.05.024 – ident: e_1_2_8_27_1 doi: 10.1016/j.agrformet.2005.12.012 – ident: e_1_2_8_76_1 doi: 10.1016/j.soilbio.2014.04.013 – ident: e_1_2_8_26_1 doi: 10.1038/ngeo844 – ident: e_1_2_8_11_1 doi: 10.1111/ele.12826 – volume-title: R: A language and environment for statistical computing year: 2015 ident: e_1_2_8_53_1 – ident: e_1_2_8_49_1 doi: 10.1016/j.ejsobi.2018.01.005 – ident: e_1_2_8_45_1 doi: 10.1146/annurev.ecolsys.38.091206.095808 – ident: e_1_2_8_77_1 doi: 10.1038/s41396-018-0096-y – ident: e_1_2_8_39_1 doi: 10.1111/j.1461-0248.2010.01482.x – ident: e_1_2_8_12_1 doi: 10.1038/ncomms10541 – ident: e_1_2_8_13_1 doi: 10.1007/s00382-015-2830-8 – ident: e_1_2_8_18_1 doi: 10.1016/j.soilbio.2015.09.001 – year: 2019 ident: e_1_2_8_66_1 article-title: Data from: Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow publication-title: Dryad Digital Repository – ident: e_1_2_8_48_1 doi: 10.1111/j.1365-2486.2005.001033.x – ident: e_1_2_8_74_1 doi: 10.1016/j.scitotenv.2018.06.014 – ident: e_1_2_8_46_1 doi: 10.1111/j.1469-8137.2012.04225.x – ident: e_1_2_8_37_1 doi: 10.1111/gcb.12273 – ident: e_1_2_8_68_1 doi: 10.1016/j.agrformet.2016.08.007 – ident: e_1_2_8_40_1 doi: 10.1016/j.geoderma.2018.07.008 – ident: e_1_2_8_42_1 doi: 10.2307/2389824 – ident: e_1_2_8_58_1 doi: 10.1007/s10533-004-7112-1 – ident: e_1_2_8_54_1 doi: 10.1016/j.soilbio.2010.08.032 – ident: e_1_2_8_16_1 doi: 10.1016/j.scitotenv.2017.03.034 – ident: e_1_2_8_43_1 doi: 10.1029/2006JD007990 – ident: e_1_2_8_50_1 doi: 10.1111/geb.12508 – ident: e_1_2_8_69_1 doi: 10.1016/j.jaridenv.2018.01.017 – ident: e_1_2_8_36_1 doi: 10.1038/s41598-018-34969-5 – ident: e_1_2_8_8_1 doi: 10.1016/j.scitotenv.2017.06.028 – ident: e_1_2_8_55_1 doi: 10.1038/srep34786 – ident: e_1_2_8_30_1 doi: 10.1029/2003JD003951 – ident: e_1_2_8_9_1 doi: 10.1890/06-1847.1 – ident: e_1_2_8_80_1 doi: 10.1111/gcb.13253 – ident: e_1_2_8_19_1 doi: 10.1016/j.soilbio.2010.11.021 – ident: e_1_2_8_62_1 doi: 10.1111/j.1461-0248.2008.01230.x – ident: e_1_2_8_21_1 doi: 10.1038/nature06592 – ident: e_1_2_8_56_1 doi: 10.1016/j.soilbio.2016.04.023 – ident: e_1_2_8_70_1 doi: 10.1111/j.1469-8137.2008.02488.x – ident: e_1_2_8_78_1 doi: 10.1016/j.scitotenv.2017.03.082 – ident: e_1_2_8_61_1 doi: 10.1016/j.agrformet.2014.06.010 – ident: e_1_2_8_31_1 doi: 10.1111/j.1365-2486.2006.01153.x – ident: e_1_2_8_82_1 doi: 10.1016/j.agrformet.2015.09.008 – ident: e_1_2_8_35_1 doi: 10.1111/2041-210X.12512 – ident: e_1_2_8_60_1 doi: 10.1016/j.soilbio.2016.03.008 – ident: e_1_2_8_41_1 doi: 10.1038/nature11917 – ident: e_1_2_8_28_1 doi: 10.1016/j.agrformet.2012.05.022 – ident: e_1_2_8_24_1 doi: 10.1111/j.1365-2389.2012.01433.x – ident: e_1_2_8_15_1 doi: 10.1016/j.agrformet.2017.10.032 – ident: e_1_2_8_64_1 doi: 10.1016/0038-0717(87)90052-6 – ident: e_1_2_8_17_1 doi: 10.1890/05-1839 – ident: e_1_2_8_65_1 doi: 10.1016/j.soilbio.2018.02.003 – ident: e_1_2_8_51_1 doi: 10.1088/1748-9326/aa5ba6 – ident: e_1_2_8_79_1 doi: 10.1111/geb.12430 – ident: e_1_2_8_6_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_8_81_1 doi: 10.1111/gcb.12490 – ident: e_1_2_8_25_1 doi: 10.1111/nph.12271 – ident: e_1_2_8_44_1 doi: 10.1016/j.scitotenv.2016.06.237 – ident: e_1_2_8_5_1 doi: 10.1038/nclimate3071 – ident: e_1_2_8_33_1 doi: 10.1016/j.soilbio.2005.08.020 – ident: e_1_2_8_3_1 doi: 10.1037/0033-2909.88.3.588 – ident: e_1_2_8_14_1 doi: 10.1111/1365-2435.13045 – ident: e_1_2_8_63_1 doi: 10.1073/pnas.1109326109 – ident: e_1_2_8_10_1 doi: 10.1073/pnas.1502956112 – ident: e_1_2_8_75_1 doi: 10.1016/j.agrformet.2019.03.019 – ident: e_1_2_8_57_1 doi: 10.1007/s10533-015-0123-2 – ident: e_1_2_8_20_1 doi: 10.1126/science.1136674 – ident: e_1_2_8_4_1 doi: 10.1038/s41586-018-0358-x – ident: e_1_2_8_23_1 doi: 10.1023/A:1006244819642 – ident: e_1_2_8_71_1 doi: 10.1016/j.scitotenv.2018.03.080 |
SSID | ssj0009522 |
Score | 2.5335166 |
Snippet | Disentangling the relative response sensitivity of soil autotrophic (Ra) and heterotrophic respiration (Rh) to nitrogen (N) enrichment is pivotal for... Disentangling the relative response sensitivity of soil autotrophic ( R a ) and heterotrophic respiration ( R h ) to nitrogen (N) enrichment is pivotal for... Disentangling the relative response sensitivity of soil autotrophic (Rₐ) and heterotrophic respiration (Rₕ) to nitrogen (N) enrichment is pivotal for... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2239 |
SubjectTerms | alpine meadows Biotic factors botanical composition Community composition Composition critical load Deposition ECOSYSTEM ECOLOGY Enrichment field experimentation forbs long term experiments Meadows microbial biomass Microorganisms Nitrogen nitrogen addition gradient Nitrogen enrichment nonlinear response Plant communities plant community composition Relative abundance Respiration Sensitivity Shelf life soil soil carbon soil respiration soil respiration components Soil stability soil substrate quality soil temperature Soils Stability analysis Substrates |
Title | Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow |
URI | https://www.jstor.org/stable/48583098 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13433 https://www.proquest.com/docview/2311452488 https://www.proquest.com/docview/2400515439 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBejUNil68dC03ZFhR56cbAs2VaOoySUQXsYLfRmJFmioZkdYmejve0_33uSnaaFUcbABzmSbFl6Hz9F74OQ8xS0ypilLlKlyyKhnYq0M0mkMpsphjsGjr7D1zfZ1Z34dp_21oToCxPiQ6z_cEPO8PIaGVzpZoPJg30WaPsR44JjvE_8BWHR92Qj7G44R0iycQSalnfBfdCW503_V3opmCa-Ap2b0NXrnuknovtRB5OTx9Gq1SPz_Cag43991i7Z6ZAp_RpIaY98sNU-2Q65Kp-gNDFdaTB5cY6DDp10aA7I75tZu6yBIilaKeGK0yVGhrUNberZHG7CsT5W6FVLZxVC1gaqAYXS4FXz01JvPd-l4aK1ow9osVPDkxcPM0PRBr6u4NXQnSq45gv4ZvoDaLX-9ZncTSe3l1dRl-IhMoIxHhluAC_mLnZO5WVuTWa0yqUTZSYUoCXmDAeRk8fWxkyVMjdKlkI5yXKrpLN8QLYqeOkhoQZ22wqWGPCPFULEGoplChBEuSRz0g3JqF_gwnTxzzENx7zo90E49QVOfeGnfkgu1h0WIfTH35sOPMWs2wmZSh6P5ZCc9CRUdMKhKQBSM5EmIDqH5GxdDWyNZzWqsvUK2giffQfgIozb08t7Yyimk0tfOPrXDsfkI8DAcfCwPCFb7XJlvwDUavWp56Y_IKUd2A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CIQQXvisKA4zEgUuqOHYS94hGqwJbD2iTdoscx9aqlaRqUhDc-M95z05LNwkhhJSDI9uJY7-Pn-P3AfAmRa0y5qmLdOWySJZOR6UzSaQzm2lOOwZBvsMn82x2Jj-ep-d7vjAhPsTuhxtxhpfXxOD0Q3qPy4OBFqr7ERdSiJtwi_J6U_z895-TvcC74SQhycYR6lrRh_cha55rD7iimYJx4hXYuQ9evfaZ3gezHXcwOrkcbbpyZH5cC-n4fx_2AO714JS9C9T0EG7Y-hHcDukqv2NpYvrSYPLbPw479AKifQw_54tu3SBRMjJUokVnawoOa1vWNosl3oSTfaooNx1b1IRaW6xGIMqCY81Xy7wBfZ-JizWOXZDRToNPXl0sDCMz-KbGV2N3pvFarvCj2Rck1-bbEzibTk6PZlGf5SEyknMRGWEQMuYudk7nVW5NZkqdKyerTGoETNwZgVInj62Nua5UbrSqpHaK51YrZ8UADmp86VNgBjfcGtcYIZCVUsYlFqsUUYh2SeaUG8Jou8KF6UOgUyaOZbHdCtHUFzT1hZ_6IbzddViF6B9_bjrwJLNrJ1WqRDxWQzjc0lDRy4e2QFTNZZqg9BzC6101cjYd1-jaNhtsI30CHkSMOG5PMH8bQzGdHPnCs3_t8AruzE5PjovjD_NPz-EuosJxcLg8hINuvbEvEHl15UvPWr8A_RMh9A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Lb9MwGP8EQyAuvCsK2zASBy6p4thxnCPaWm08KoSYxC1yHFurVpKqSUFw4z_ns5103SSEEFIOjmwnjv09fo6_B8CrFLVKTlMbqcqKiJdWRaXVSaSEEYq6HQNzvsMf5uLkjL_9kg7WhM4XJsSH2P5wc5zh5bVj8FVld5g82Gehtp9Qxhm7Cbe4iHOXveH4U7ITdzccJCQij1DVsj66jzPmufaAK4op2CZeQZ272NUrn9l9KIdhB5uTi8mmKyf657WIjv_1XQ_gXg9NyZtASw_hhqkfwe2QrPIHlqa6L42ml95x2KEXD-1j-DVfdOsGSZI4MyW35GTtQsOalrTNYok34VzfVZSbjixqh1lbrEYYSoJbzTdDvPl8n4eLNJacO5OdBp-8Ol9o4ozgmxpfjd2Jwmu5wm8mX5FYm-9P4Gw2_Xx0EvU5HiLNKWWRZhoBY2Zja1VWZUYLXapMWl4JrhAuUasZypwsNiamqpKZVrLiykqaGSWtYSPYq_GlT4Fo3G4rXGIEQIZzHpdYrFLEIMomwko7hsmwwIXuA6C7PBzLYtgIuakv3NQXfurH8HrbYRVif_y56chTzLYdl6lkcS7HsD-QUNFLh7ZATE15mqDsHMPLbTXytTusUbVpNtiG-_Q7iBdx3J5e_jaGYjY98oVn_9rhBdz5eDwr3p_O3z2HuwgJ8-BtuQ973XpjDhB2deWhZ6zfcBUgow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+addition+reduces+soil+respiration+but+increases+the+relative+contribution+of+heterotrophic+component+in+an+alpine+meadow&rft.jtitle=Functional+ecology&rft.au=Wang%2C+Jinsong&rft.au=Song%2C+Bing&rft.au=Ma%2C+Fangfang&rft.au=Tian%2C+Dashuan&rft.date=2019-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=33&rft.issue=11&rft.spage=2239&rft.epage=2253&rft_id=info:doi/10.1111%2F1365-2435.13433&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |