Induced pluripotent stem cells model personalized variations in liver disease resulting from α1‐antitrypsin deficiency

In the classical form of α1‐antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1‐antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain‐of‐function, “proteotoxic” mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 62; no. 1; pp. 147 - 157
Main Authors Tafaleng, Edgar N., Chakraborty, Souvik, Han, Bing, Hale, Pamela, Wu, Wanquan, Soto‐Gutierrez, Alejandro, Feghali‐Bostwick, Carol A., Wilson, Andrew A., Kotton, Darrell N., Nagaya, Masaki, Strom, Stephen C., Roy‐Chowdhury, Jayanta, Stolz, Donna B., Perlmutter, David H., Fox, Ira J.
Format Journal Article
LanguageEnglish
Published United States 01.07.2015
Subjects
Online AccessGet full text
ISSN0270-9139
1527-3350
1527-3350
DOI10.1002/hep.27753

Cover

Abstract In the classical form of α1‐antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1‐antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain‐of‐function, “proteotoxic” mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation, others with the same genetic defect completely escape this clinical phenotype. We investigated whether induced pluripotent stem cells (iPSCs) from ATD individuals with or without SLD could model these personalized variations in hepatic disease phenotypes. Patient‐specific iPSCs were generated from ATD patients and a control and differentiated into hepatocyte‐like cells (iHeps) having many characteristics of hepatocytes. Pulse‐chase and endoglycosidase H analysis demonstrate that the iHeps recapitulate the abnormal accumulation and processing of the ATZ molecule, compared to the wild‐type AT molecule. Measurements of the fate of intracellular ATZ show a marked delay in the rate of ATZ degradation in iHeps from SLD patients, compared to those from no liver disease patients. Transmission electron microscopy showed dilated rough endoplasmic reticulum in iHeps from all individuals with ATD, not in controls, but globular inclusions that are partially covered with ribosomes were observed only in iHeps from individuals with SLD. Conclusion: iHeps model the individual disease phenotypes of ATD patients with more rapid degradation of misfolded ATZ and lack of globular inclusions in cells from patients who have escaped liver disease. The results support the concept that “proteostasis” mechanisms, such as intracellular degradation pathways, play a role in observed variations in clinical phenotype and show that iPSCs can potentially be used to facilitate predictions of disease susceptibility for more precise and timely application of therapeutic strategies. (Hepatology 2015;62:147‐157)
AbstractList In the classical form of α1-antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1-antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain-of-function, "proteotoxic" mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation, others with the same genetic defect completely escape this clinical phenotype. We investigated whether induced pluripotent stem cells (iPSCs) from ATD individuals with or without SLD could model these personalized variations in hepatic disease phenotypes. Patient-specific iPSCs were generated from ATD patients and a control and differentiated into hepatocyte-like cells (iHeps) having many characteristics of hepatocytes. Pulse-chase and endoglycosidase H analysis demonstrate that the iHeps recapitulate the abnormal accumulation and processing of the ATZ molecule, compared to the wild-type AT molecule. Measurements of the fate of intracellular ATZ show a marked delay in the rate of ATZ degradation in iHeps from SLD patients, compared to those from no liver disease patients. Transmission electron microscopy showed dilated rough endoplasmic reticulum in iHeps from all individuals with ATD, not in controls, but globular inclusions that are partially covered with ribosomes were observed only in iHeps from individuals with SLD.UNLABELLEDIn the classical form of α1-antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1-antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain-of-function, "proteotoxic" mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation, others with the same genetic defect completely escape this clinical phenotype. We investigated whether induced pluripotent stem cells (iPSCs) from ATD individuals with or without SLD could model these personalized variations in hepatic disease phenotypes. Patient-specific iPSCs were generated from ATD patients and a control and differentiated into hepatocyte-like cells (iHeps) having many characteristics of hepatocytes. Pulse-chase and endoglycosidase H analysis demonstrate that the iHeps recapitulate the abnormal accumulation and processing of the ATZ molecule, compared to the wild-type AT molecule. Measurements of the fate of intracellular ATZ show a marked delay in the rate of ATZ degradation in iHeps from SLD patients, compared to those from no liver disease patients. Transmission electron microscopy showed dilated rough endoplasmic reticulum in iHeps from all individuals with ATD, not in controls, but globular inclusions that are partially covered with ribosomes were observed only in iHeps from individuals with SLD.iHeps model the individual disease phenotypes of ATD patients with more rapid degradation of misfolded ATZ and lack of globular inclusions in cells from patients who have escaped liver disease. The results support the concept that "proteostasis" mechanisms, such as intracellular degradation pathways, play a role in observed variations in clinical phenotype and show that iPSCs can potentially be used to facilitate predictions of disease susceptibility for more precise and timely application of therapeutic strategies.CONCLUSIONiHeps model the individual disease phenotypes of ATD patients with more rapid degradation of misfolded ATZ and lack of globular inclusions in cells from patients who have escaped liver disease. The results support the concept that "proteostasis" mechanisms, such as intracellular degradation pathways, play a role in observed variations in clinical phenotype and show that iPSCs can potentially be used to facilitate predictions of disease susceptibility for more precise and timely application of therapeutic strategies.
In the classical form of α1-antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1-antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain-of-function, "proteotoxic" mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation, others with the same genetic defect completely escape this clinical phenotype. We investigated whether induced pluripotent stem cells (iPSCs) from ATD individuals with or without SLD could model these personalized variations in hepatic disease phenotypes. Patient-specific iPSCs were generated from ATD patients and a control and differentiated into hepatocyte-like cells (iHeps) having many characteristics of hepatocytes. Pulse-chase and endoglycosidase H analysis demonstrate that the iHeps recapitulate the abnormal accumulation and processing of the ATZ molecule, compared to the wild-type AT molecule. Measurements of the fate of intracellular ATZ show a marked delay in the rate of ATZ degradation in iHeps from SLD patients, compared to those from no liver disease patients. Transmission electron microscopy showed dilated rough endoplasmic reticulum in iHeps from all individuals with ATD, not in controls, but globular inclusions that are partially covered with ribosomes were observed only in iHeps from individuals with SLD. iHeps model the individual disease phenotypes of ATD patients with more rapid degradation of misfolded ATZ and lack of globular inclusions in cells from patients who have escaped liver disease. The results support the concept that "proteostasis" mechanisms, such as intracellular degradation pathways, play a role in observed variations in clinical phenotype and show that iPSCs can potentially be used to facilitate predictions of disease susceptibility for more precise and timely application of therapeutic strategies.
In the classical form of α1‐antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1‐antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain‐of‐function, “proteotoxic” mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation, others with the same genetic defect completely escape this clinical phenotype. We investigated whether induced pluripotent stem cells (iPSCs) from ATD individuals with or without SLD could model these personalized variations in hepatic disease phenotypes. Patient‐specific iPSCs were generated from ATD patients and a control and differentiated into hepatocyte‐like cells (iHeps) having many characteristics of hepatocytes. Pulse‐chase and endoglycosidase H analysis demonstrate that the iHeps recapitulate the abnormal accumulation and processing of the ATZ molecule, compared to the wild‐type AT molecule. Measurements of the fate of intracellular ATZ show a marked delay in the rate of ATZ degradation in iHeps from SLD patients, compared to those from no liver disease patients. Transmission electron microscopy showed dilated rough endoplasmic reticulum in iHeps from all individuals with ATD, not in controls, but globular inclusions that are partially covered with ribosomes were observed only in iHeps from individuals with SLD. Conclusion : iHeps model the individual disease phenotypes of ATD patients with more rapid degradation of misfolded ATZ and lack of globular inclusions in cells from patients who have escaped liver disease. The results support the concept that “proteostasis” mechanisms, such as intracellular degradation pathways, play a role in observed variations in clinical phenotype and show that iPSCs can potentially be used to facilitate predictions of disease susceptibility for more precise and timely application of therapeutic strategies. (H epatology 2015;62:147‐157)
In the classical form of α1‐antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1‐antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain‐of‐function, “proteotoxic” mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation, others with the same genetic defect completely escape this clinical phenotype. We investigated whether induced pluripotent stem cells (iPSCs) from ATD individuals with or without SLD could model these personalized variations in hepatic disease phenotypes. Patient‐specific iPSCs were generated from ATD patients and a control and differentiated into hepatocyte‐like cells (iHeps) having many characteristics of hepatocytes. Pulse‐chase and endoglycosidase H analysis demonstrate that the iHeps recapitulate the abnormal accumulation and processing of the ATZ molecule, compared to the wild‐type AT molecule. Measurements of the fate of intracellular ATZ show a marked delay in the rate of ATZ degradation in iHeps from SLD patients, compared to those from no liver disease patients. Transmission electron microscopy showed dilated rough endoplasmic reticulum in iHeps from all individuals with ATD, not in controls, but globular inclusions that are partially covered with ribosomes were observed only in iHeps from individuals with SLD. Conclusion: iHeps model the individual disease phenotypes of ATD patients with more rapid degradation of misfolded ATZ and lack of globular inclusions in cells from patients who have escaped liver disease. The results support the concept that “proteostasis” mechanisms, such as intracellular degradation pathways, play a role in observed variations in clinical phenotype and show that iPSCs can potentially be used to facilitate predictions of disease susceptibility for more precise and timely application of therapeutic strategies. (Hepatology 2015;62:147‐157)
Author Tafaleng, Edgar N.
Nagaya, Masaki
Stolz, Donna B.
Hale, Pamela
Perlmutter, David H.
Roy‐Chowdhury, Jayanta
Feghali‐Bostwick, Carol A.
Wilson, Andrew A.
Kotton, Darrell N.
Chakraborty, Souvik
Strom, Stephen C.
Wu, Wanquan
Fox, Ira J.
Soto‐Gutierrez, Alejandro
Han, Bing
Author_xml – sequence: 1
  givenname: Edgar N.
  orcidid: 0000-0003-3050-515X
  surname: Tafaleng
  fullname: Tafaleng, Edgar N.
  organization: Children's Hospital of Pittsburgh of UPMC
– sequence: 2
  givenname: Souvik
  surname: Chakraborty
  fullname: Chakraborty, Souvik
  organization: University of Pittsburgh School of Medicine
– sequence: 3
  givenname: Bing
  surname: Han
  fullname: Han, Bing
  organization: Children's Hospital of Pittsburgh of UPMC
– sequence: 4
  givenname: Pamela
  surname: Hale
  fullname: Hale, Pamela
  organization: University of Pittsburgh School of Medicine
– sequence: 5
  givenname: Wanquan
  surname: Wu
  fullname: Wu, Wanquan
  organization: Children's Hospital of Pittsburgh of UPMC
– sequence: 6
  givenname: Alejandro
  surname: Soto‐Gutierrez
  fullname: Soto‐Gutierrez, Alejandro
  organization: University of Pittsburgh School of Medicine
– sequence: 7
  givenname: Carol A.
  surname: Feghali‐Bostwick
  fullname: Feghali‐Bostwick, Carol A.
  organization: Medical University of South Carolina
– sequence: 8
  givenname: Andrew A.
  surname: Wilson
  fullname: Wilson, Andrew A.
  organization: Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center
– sequence: 9
  givenname: Darrell N.
  surname: Kotton
  fullname: Kotton, Darrell N.
  organization: Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center
– sequence: 10
  givenname: Masaki
  surname: Nagaya
  fullname: Nagaya, Masaki
  organization: University of Pittsburgh
– sequence: 11
  givenname: Stephen C.
  surname: Strom
  fullname: Strom, Stephen C.
  organization: Karolinska Institutet
– sequence: 12
  givenname: Jayanta
  surname: Roy‐Chowdhury
  fullname: Roy‐Chowdhury, Jayanta
  organization: Albert Einstein College of Medicine
– sequence: 13
  givenname: Donna B.
  surname: Stolz
  fullname: Stolz, Donna B.
  organization: University of Pittsburgh School of Medicine
– sequence: 14
  givenname: David H.
  surname: Perlmutter
  fullname: Perlmutter, David H.
  organization: University of Pittsburgh School of Medicine
– sequence: 15
  givenname: Ira J.
  surname: Fox
  fullname: Fox, Ira J.
  organization: University of Pittsburgh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25690322$$D View this record in MEDLINE/PubMed
BookMark eNp1kT1OHTEUhS0EgsdPwQYil6EY8M94fsoIQUBCggJqy8--kxh57IntAU2qLIGtsJEsgpUw8B4NSqpbnO8c6Z6zizZ98IDQISXHlBB28hOGY1bXgm-gBRWsLjgXZBMtCKtJ0VLe7qDdlO4JIW3Jmm20w0TVEs7YAk2X3owaDB7cGO0QMviMU4Yea3Au4T4YcHiAmIJXzv6eyQcVrco2-IStx84-QMTGJlAJcIQ0umz9D9zF0OO_z_Tlz5Py2eY4DWnGDXRWW_B62kdbnXIJDtZ3D92dn92eXhRX198vT79dFbqklBelqrmpqIaSQ80MW9ZEq4aKBkxVKcpmmXfARNl1pmpKbZba6E6Qmi8rWhLN99DXVe4Qw68RUpa9TW_PKQ9hTJJWLRVt1Qg-o1_W6Ljswcgh2l7FSX7UNQMnK0DHkFKETmqb37vIUVknKZFvg8h5EPk-yOw4-uT4CP0Xu05_tA6m_4Py4uxm5XgF7MeepQ
CitedBy_id crossref_primary_10_1016_j_jcmgh_2023_01_013
crossref_primary_10_1016_j_jhep_2018_05_028
crossref_primary_10_1080_25785826_2019_1657254
crossref_primary_10_1002_cld_896
crossref_primary_10_1007_s00595_020_02092_6
crossref_primary_10_1016_j_stem_2017_01_011
crossref_primary_10_1161_ATVBAHA_117_309199
crossref_primary_10_1016_j_addr_2020_05_002
crossref_primary_10_1053_j_gastro_2022_03_010
crossref_primary_10_1016_j_stemcr_2020_06_006
crossref_primary_10_1016_j_celrep_2022_111775
crossref_primary_10_1089_biores_2017_0013
crossref_primary_10_1097_MOG_0000000000000726
crossref_primary_10_1097_HEP_0000000000000865
crossref_primary_10_3390_cells8091051
crossref_primary_10_1007_s40139_016_0113_7
crossref_primary_10_1097_HEP_0000000000000343
crossref_primary_10_3389_fmed_2019_00265
crossref_primary_10_1371_journal_pone_0285783
crossref_primary_10_1038_s41598_019_44043_3
crossref_primary_10_1016_j_cmet_2019_06_017
crossref_primary_10_1021_acsami_7b13727
crossref_primary_10_1146_annurev_pathol_020117_043634
crossref_primary_10_1016_j_scr_2023_103171
crossref_primary_10_1016_j_jhep_2019_03_031
crossref_primary_10_1038_s41419_019_1967_5
crossref_primary_10_3389_fmed_2021_814496
crossref_primary_10_1016_j_ydbio_2016_06_036
crossref_primary_10_1055_a_1934_5404
crossref_primary_10_1016_j_jhep_2016_02_025
crossref_primary_10_1007_s00018_017_2713_8
crossref_primary_10_1007_s12072_019_10007_y
crossref_primary_10_1038_nrdp_2016_51
crossref_primary_10_1080_21678707_2019_1651640
crossref_primary_10_1056_NEJMra1910234
crossref_primary_10_1007_s40139_017_0147_5
crossref_primary_10_1097_MPG_0000000000001948
crossref_primary_10_1371_journal_pone_0179369
crossref_primary_10_3892_ijmm_2017_3190
crossref_primary_10_1371_journal_pone_0209748
crossref_primary_10_1038_s41575_020_00386_1
crossref_primary_10_1038_s41390_018_0064_2
crossref_primary_10_1002_jbm_b_33851
crossref_primary_10_3390_cells13121052
crossref_primary_10_1016_j_jhep_2021_11_022
crossref_primary_10_3390_ijms241411592
crossref_primary_10_1016_j_scr_2022_102763
crossref_primary_10_1007_s12072_016_9757_y
crossref_primary_10_1074_jbc_M116_734384
crossref_primary_10_1248_bpb_b18_00544
crossref_primary_10_3390_cells10123337
crossref_primary_10_1186_s12943_023_01873_0
crossref_primary_10_1016_j_stemcr_2016_07_016
crossref_primary_10_3389_fmed_2021_644594
crossref_primary_10_1002_adfm_201909553
crossref_primary_10_1074_jbc_M115_691253
crossref_primary_10_1002_hep_30288
Cites_doi 10.1016/j.cell.2014.03.007
10.1038/nbt1374
10.1053/j.gastro.2008.10.047
10.1038/nmeth.1591
10.1002/hep.23354
10.1038/nmeth.2089
10.1016/j.cgh.2011.12.028
10.1073/pnas.82.20.6918
10.1002/hep.23760
10.1038/298329a0
10.1002/hep.26237
10.1126/science.1141448
10.5966/sctm.2013-0017
10.1038/nature10424
10.1172/JCI43122
10.1002/hep.25871
10.1073/pnas.91.19.9014
10.1126/science.1190354
10.1038/255240a0
10.1074/jbc.M103703200
10.1126/science.1151526
10.1126/science.1172482
10.1016/j.cell.2007.11.019
10.1002/stem.495
10.1073/pnas.82.3.795
10.1038/cr.2009.107
ContentType Journal Article
Copyright 2015 by the American Association for the Study of Liver Diseases
2015 by the American Association for the Study of Liver Diseases.
Copyright_xml – notice: 2015 by the American Association for the Study of Liver Diseases
– notice: 2015 by the American Association for the Study of Liver Diseases.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/hep.27753
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 157
ExternalDocumentID 25690322
10_1002_hep_27753
HEP27753
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR000005
– fundername: NIDDK NIH HHS
  grantid: P01 DK096990
– fundername: NIDDK NIH HHS
  grantid: R01 DK100289
– fundername: NIDDK NIH HHS
  grantid: P30 DK041296
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANHP
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACLDA
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ABJNI
ACZKN
AFNMH
AGQPQ
AHQVU
CITATION
MEWTI
WXSBR
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
ADSXY
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4113-4a73d61ce43e72d2b70ca8158ed66a12a733fe254ffd684cdbcdcf5073b6140c3
IEDL.DBID DR2
ISSN 0270-9139
1527-3350
IngestDate Thu Sep 04 16:46:38 EDT 2025
Thu Apr 03 06:57:54 EDT 2025
Tue Jul 01 03:33:41 EDT 2025
Thu Apr 24 22:50:39 EDT 2025
Wed Jan 22 16:51:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2015 by the American Association for the Study of Liver Diseases.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4113-4a73d61ce43e72d2b70ca8158ed66a12a733fe254ffd684cdbcdcf5073b6140c3
Notes This work was supported, in part, by the National Institutes of Health (grant no.: PO1 DK096990), the Department of Defense (grant no.: W81XWH‐09‐1‐0658), and Children's Hospital of Pittsburgh of UPMC RAC Predoctoral Fellowship.
Potential conflict of interes: Dr. Fox owns stock in Regenerative Medical Solutions.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3050-515X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4482790
PMID 25690322
PQID 1691596853
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1691596853
pubmed_primary_25690322
crossref_citationtrail_10_1002_hep_27753
crossref_primary_10_1002_hep_27753
wiley_primary_10_1002_hep_27753_HEP27753
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2015
References 2011; 478
2010; 329
2013; 2
1976; 82
1983; 4
2010; 120
1975; 255
1985; 82
2011; 3
2012; 56
2012; 10
2009; 136
2011; 8
2014; 157
2001; 276
2012; 1
2013; 57
2010; 28
2007; 131
2008; 319
1982; 298
2008; 26
2014; 9
1994; 91
2009; 19
2010; 5
2007; 318
2010; 52
2009; 324
2010; 51
2012; 9
(hep27753-bib-0005-20241017) 2012; 10
(hep27753-bib-0020-20241017) 2013; 2
(hep27753-bib-0027-20241017) 2001; 276
(hep27753-bib-0016-20241017) 2010; 51
(hep27753-bib-0011-20241017) 2007; 318
(hep27753-bib-0014-20241017) 2009; 136
(hep27753-bib-0017-20241017) 2010; 120
(hep27753-bib-0031-20241017) 2014; 157
(hep27753-bib-0022-20241017) 2012; 1
(hep27753-bib-0024-20241017) 2010; 28
(hep27753-bib-0018-20241017) 2011; 478
(hep27753-bib-0009-20241017) 2010; 5
(hep27753-bib-0012-20241017) 2008; 26
(hep27753-bib-0010-20241017) 2007; 131
(hep27753-bib-0006-20241017) 1994; 91
(hep27753-bib-0030-20241017) 2010; 52
(hep27753-bib-0004-20241017) 2011; 3
(hep27753-bib-0025-20241017) 2012; 9
(hep27753-bib-0008-20241017) 2014; 9
(hep27753-bib-0015-20241017) 2009; 19
(hep27753-bib-0003-20241017) 1985; 82
(hep27753-bib-0021-20241017) 2012; 56
(hep27753-bib-0019-20241017) 2013; 57
(hep27753-bib-0029-20241017) 1983; 4
(hep27753-bib-0007-20241017) 2010; 329
(hep27753-bib-0002-20241017) 1982; 298
(hep27753-bib-0026-20241017) 1985; 82
(hep27753-bib-0013-20241017) 2009; 324
(hep27753-bib-0023-20241017) 2011; 8
(hep27753-bib-0001-20241017) 1975; 255
(hep27753-bib-0028-20241017) 1976; 82
(hep27753-bib-0032-20241017) 2008; 319
24286032 - Stem Cell Reports. 2013;1(5):451-63
8090762 - Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9014-8
23926210 - Stem Cells Transl Med. 2013 Sep;2(9):641-54
7045697 - Nature. 1982 Jul 22;298(5872):329-34
22200689 - Clin Gastroenterol Hepatol. 2012 Jun;10(6):575-80
20739751 - J Clin Invest. 2010 Sep;120(9):3127-36
18035408 - Cell. 2007 Nov 30;131(5):861-72
18276881 - Science. 2008 Feb 15;319(5865):916-9
19736565 - Cell Res. 2009 Nov;19(11):1233-42
18059259 - Nat Biotechnol. 2008 Jan;26(1):101-6
21460823 - Nat Methods. 2011 May;8(5):409-12
22930834 - Nat Methods. 2012 Jul;9(7):671-5
6332768 - Hepatology. 1984 Sep-Oct;4(5):937-45
21421920 - Cold Spring Harb Perspect Biol. 2011 Mar;3(3). pii: a005801. doi: 10.1101/cshperspect.a005801
21103396 - PLoS One. 2010;5(11):e15460
20715179 - Stem Cells. 2010 Oct;28(10):1728-40
3876562 - Proc Natl Acad Sci U S A. 1985 Oct;82(20):6918-21
20522742 - Science. 2010 Jul 9;329(5988):229-32
21993621 - Nature. 2011 Oct 20;478(7369):391-4
56137 - Am J Pathol. 1976 Feb;82(2):265-86
11577074 - J Biol Chem. 2001 Nov 30;276(48):44865-72
24679526 - Cell. 2014 Mar 27;157(1):52-64
19325077 - Science. 2009 May 8;324(5928):797-801
3871944 - Proc Natl Acad Sci U S A. 1985 Feb;82(3):795-9
1079921 - Nature. 1975 May 15;255(5505):240-1
18029452 - Science. 2007 Dec 21;318(5858):1917-20
19026649 - Gastroenterology. 2009 Mar;136(3):990-9
23325555 - Hepatology. 2013 Jun;57(6):2458-68
22653811 - Hepatology. 2012 Dec;56(6):2163-71
24498058 - PLoS One. 2014;9(1):e87260
19998274 - Hepatology. 2010 Jan;51(1):297-305
20583215 - Hepatology. 2010 Sep;52(3):1078-88
References_xml – volume: 3
  start-page: a005801
  year: 2011
  article-title: Hepatic fibrosis and carcinogenesis in alpha1‐antitrypsin deficiency: a prototype for chronic tissue damage in gain‐of‐function disorders
  publication-title: Cold Spring Harb Perspect Biol
– volume: 276
  start-page: 44865
  year: 2001
  end-page: 44872
  article-title: The proteasome participates in degradation of mutant alpha 1‐antitrypsin Z in the endoplasmic reticulum of hepatoma‐derived hepatocytes
  publication-title: J Biol Chem
– volume: 57
  start-page: 2458
  year: 2013
  end-page: 2468
  article-title: Efficient drug screening and gene correction for treating liver disease using patient‐specific stem cells
  publication-title: Hepatology
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
– volume: 52
  start-page: 1078
  year: 2010
  end-page: 1088
  article-title: A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha1‐antitrypsin deficiency
  publication-title: Hepatology
– volume: 319
  start-page: 916
  year: 2008
  end-page: 919
  article-title: Adapting proteostasis for disease intervention
  publication-title: Science
– volume: 318
  start-page: 1917
  year: 2007
  end-page: 1920
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
– volume: 28
  start-page: 1728
  year: 2010
  end-page: 1740
  article-title: Generation of transgene‐free lung disease‐specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette
  publication-title: Stem Cells
– volume: 91
  start-page: 9014
  year: 1994
  end-page: 9018
  article-title: A lag in intracellular degradation of mutant alpha 1‐antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1‐antitrypsin deficiency
  publication-title: Proc Natl Acad Sci U S A
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
– volume: 82
  start-page: 265
  year: 1976
  end-page: 286
  article-title: Fine structural observations of the liver in alpha‐1‐antitrypsin deficiency
  publication-title: Am J Pathol
– volume: 329
  start-page: 229
  year: 2010
  end-page: 232
  article-title: An autophagy‐enhancing drug promotes degradation of mutant alpha1‐antitrypsin Z and reduces hepatic fibrosis
  publication-title: Science
– volume: 4
  start-page: 937
  year: 1983
  end-page: 945
  article-title: Ultrastructural liver pathology in patients with minimal liver disease and alpha 1‐antitrypsin deficiency: a comparison between heterozygous and homozygous patients
  publication-title: Hepatology
– volume: 136
  start-page: 990
  year: 2009
  end-page: 999
  article-title: Differentiation and transplantation of human embryonic stem cell‐derived hepatocytes
  publication-title: Gastroenterology
– volume: 26
  start-page: 101
  year: 2008
  end-page: 106
  article-title: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts
  publication-title: Nat Biotechnol
– volume: 56
  start-page: 2163
  year: 2012
  end-page: 2171
  article-title: JD induced pluripotent stem cell‐derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia
  publication-title: Hepatology
– volume: 1
  start-page: 451
  year: 2012
  end-page: 463
  article-title: Induced pluripotent stem cell modeling of multisystemic, hereditary transthyretin amyloidosis
  publication-title: Stem Cell Reports
– volume: 478
  start-page: 391
  year: 2011
  end-page: 394
  article-title: Targeted gene correction of α1‐antitrypsin deficiency in induced pluripotent stem cells
  publication-title: Nature
– volume: 5
  start-page: e15460
  year: 2010
  article-title: Automated high‐content live animal drug screening using C
  publication-title: elegans expressing the aggregation prone serpin α1‐antitrypsin Z. PloS One
– volume: 10
  start-page: 575
  year: 2012
  end-page: 580
  article-title: Diagnosis and management of patients with α1‐antitrypsin (A1AT) deficiency
  publication-title: Clin Gastroenterol Hepatol
– volume: 157
  start-page: 52
  year: 2014
  end-page: 64
  article-title: Differential scales of protein quality control
  publication-title: Cell
– volume: 255
  start-page: 240
  year: 1975
  end-page: 241
  article-title: Molecular basis for the alpha1‐protease inhibitor deficiency
  publication-title: Nature
– volume: 8
  start-page: 409
  year: 2011
  end-page: 412
  article-title: A more efficient method to generate integration‐free human iPS cells
  publication-title: Nat Methods
– volume: 9
  start-page: e87260
  year: 2014
  article-title: Fluphenazine reduces proteotoxicity in C
  publication-title: elegans and mammalian models of alpha‐1‐antitrypsin deficiency. PLoS One
– volume: 120
  start-page: 3127
  year: 2010
  end-page: 3136
  article-title: Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells
  publication-title: J Clin Invest
– volume: 51
  start-page: 297
  year: 2010
  end-page: 305
  article-title: Highly efficient generation of human hepatocyte‐like cells from induced pluripotent stem cells
  publication-title: Hepatology
– volume: 82
  start-page: 6918
  year: 1985
  end-page: 6921
  article-title: The cellular defect in alpha 1‐proteinase inhibitor (alpha 1‐PI) deficiency is expressed in human monocytes and in injected with human liver mRNA
  publication-title: Proc Natl Acad Sci U S A
– volume: 19
  start-page: 1233
  year: 2009
  end-page: 1242
  article-title: Efficient generation of hepatocyte‐like cells from human induced pluripotent stem cells
  publication-title: Cell Res
– volume: 2
  start-page: 641
  year: 2013
  end-page: 654
  article-title: Sustained knockdown of a disease‐causing gene in patient‐specific induced pluripotent stem cells using lentiviral vector‐based gene therapy
  publication-title: Stem Cells Transl Med
– volume: 82
  start-page: 795
  year: 1985
  end-page: 799
  article-title: Expression of the alpha 1‐proteinase inhibitor gene in human monocytes and macrophages
  publication-title: Proc Natl Acad Sci U S A
– volume: 324
  start-page: 797
  year: 2009
  end-page: 801
  article-title: Human induced pluripotent stem cells free of vector and transgene sequences
  publication-title: Science
– volume: 298
  start-page: 329
  year: 1982
  end-page: 334
  article-title: Structure and variation of human alpha 1‐antitrypsin
  publication-title: Nature
– volume: 157
  start-page: 52
  year: 2014
  ident: hep27753-bib-0031-20241017
  article-title: Differential scales of protein quality control
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.007
– volume: 26
  start-page: 101
  year: 2008
  ident: hep27753-bib-0012-20241017
  article-title: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1374
– volume: 136
  start-page: 990
  year: 2009
  ident: hep27753-bib-0014-20241017
  article-title: Differentiation and transplantation of human embryonic stem cell‐derived hepatocytes
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.10.047
– volume: 8
  start-page: 409
  year: 2011
  ident: hep27753-bib-0023-20241017
  article-title: A more efficient method to generate integration‐free human iPS cells
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1591
– volume: 1
  start-page: 451
  year: 2012
  ident: hep27753-bib-0022-20241017
  article-title: Induced pluripotent stem cell modeling of multisystemic, hereditary transthyretin amyloidosis
  publication-title: Stem Cell Reports
– volume: 9
  start-page: e87260
  year: 2014
  ident: hep27753-bib-0008-20241017
  article-title: Fluphenazine reduces proteotoxicity in C
  publication-title: elegans and mammalian models of alpha‐1‐antitrypsin deficiency. PLoS One
– volume: 51
  start-page: 297
  year: 2010
  ident: hep27753-bib-0016-20241017
  article-title: Highly efficient generation of human hepatocyte‐like cells from induced pluripotent stem cells
  publication-title: Hepatology
  doi: 10.1002/hep.23354
– volume: 5
  start-page: e15460
  year: 2010
  ident: hep27753-bib-0009-20241017
  article-title: Automated high‐content live animal drug screening using C
  publication-title: elegans expressing the aggregation prone serpin α1‐antitrypsin Z. PloS One
– volume: 9
  start-page: 671
  year: 2012
  ident: hep27753-bib-0025-20241017
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2089
– volume: 10
  start-page: 575
  year: 2012
  ident: hep27753-bib-0005-20241017
  article-title: Diagnosis and management of patients with α1‐antitrypsin (A1AT) deficiency
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2011.12.028
– volume: 4
  start-page: 937
  year: 1983
  ident: hep27753-bib-0029-20241017
  article-title: Ultrastructural liver pathology in patients with minimal liver disease and alpha 1‐antitrypsin deficiency: a comparison between heterozygous and homozygous patients
  publication-title: Hepatology
– volume: 82
  start-page: 6918
  year: 1985
  ident: hep27753-bib-0026-20241017
  article-title: The cellular defect in alpha 1‐proteinase inhibitor (alpha 1‐PI) deficiency is expressed in human monocytes and in Xenopus oocytes injected with human liver mRNA
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.82.20.6918
– volume: 52
  start-page: 1078
  year: 2010
  ident: hep27753-bib-0030-20241017
  article-title: A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha1‐antitrypsin deficiency
  publication-title: Hepatology
  doi: 10.1002/hep.23760
– volume: 298
  start-page: 329
  year: 1982
  ident: hep27753-bib-0002-20241017
  article-title: Structure and variation of human alpha 1‐antitrypsin
  publication-title: Nature
  doi: 10.1038/298329a0
– volume: 57
  start-page: 2458
  year: 2013
  ident: hep27753-bib-0019-20241017
  article-title: Efficient drug screening and gene correction for treating liver disease using patient‐specific stem cells
  publication-title: Hepatology
  doi: 10.1002/hep.26237
– volume: 319
  start-page: 916
  year: 2008
  ident: hep27753-bib-0032-20241017
  article-title: Adapting proteostasis for disease intervention
  publication-title: Science
  doi: 10.1126/science.1141448
– volume: 2
  start-page: 641
  year: 2013
  ident: hep27753-bib-0020-20241017
  article-title: Sustained knockdown of a disease‐causing gene in patient‐specific induced pluripotent stem cells using lentiviral vector‐based gene therapy
  publication-title: Stem Cells Transl Med
  doi: 10.5966/sctm.2013-0017
– volume: 82
  start-page: 265
  year: 1976
  ident: hep27753-bib-0028-20241017
  article-title: Fine structural observations of the liver in alpha‐1‐antitrypsin deficiency
  publication-title: Am J Pathol
– volume: 478
  start-page: 391
  year: 2011
  ident: hep27753-bib-0018-20241017
  article-title: Targeted gene correction of α1‐antitrypsin deficiency in induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature10424
– volume: 120
  start-page: 3127
  year: 2010
  ident: hep27753-bib-0017-20241017
  article-title: Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells
  publication-title: J Clin Invest
  doi: 10.1172/JCI43122
– volume: 56
  start-page: 2163
  year: 2012
  ident: hep27753-bib-0021-20241017
  article-title: JD induced pluripotent stem cell‐derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia
  publication-title: Hepatology
  doi: 10.1002/hep.25871
– volume: 91
  start-page: 9014
  year: 1994
  ident: hep27753-bib-0006-20241017
  article-title: A lag in intracellular degradation of mutant alpha 1‐antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1‐antitrypsin deficiency
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.91.19.9014
– volume: 329
  start-page: 229
  year: 2010
  ident: hep27753-bib-0007-20241017
  article-title: An autophagy‐enhancing drug promotes degradation of mutant alpha1‐antitrypsin Z and reduces hepatic fibrosis
  publication-title: Science
  doi: 10.1126/science.1190354
– volume: 255
  start-page: 240
  year: 1975
  ident: hep27753-bib-0001-20241017
  article-title: Molecular basis for the alpha1‐protease inhibitor deficiency
  publication-title: Nature
  doi: 10.1038/255240a0
– volume: 276
  start-page: 44865
  year: 2001
  ident: hep27753-bib-0027-20241017
  article-title: The proteasome participates in degradation of mutant alpha 1‐antitrypsin Z in the endoplasmic reticulum of hepatoma‐derived hepatocytes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M103703200
– volume: 318
  start-page: 1917
  year: 2007
  ident: hep27753-bib-0011-20241017
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 324
  start-page: 797
  year: 2009
  ident: hep27753-bib-0013-20241017
  article-title: Human induced pluripotent stem cells free of vector and transgene sequences
  publication-title: Science
  doi: 10.1126/science.1172482
– volume: 131
  start-page: 861
  year: 2007
  ident: hep27753-bib-0010-20241017
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 28
  start-page: 1728
  year: 2010
  ident: hep27753-bib-0024-20241017
  article-title: Generation of transgene‐free lung disease‐specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette
  publication-title: Stem Cells
  doi: 10.1002/stem.495
– volume: 82
  start-page: 795
  year: 1985
  ident: hep27753-bib-0003-20241017
  article-title: Expression of the alpha 1‐proteinase inhibitor gene in human monocytes and macrophages
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.82.3.795
– volume: 19
  start-page: 1233
  year: 2009
  ident: hep27753-bib-0015-20241017
  article-title: Efficient generation of hepatocyte‐like cells from human induced pluripotent stem cells
  publication-title: Cell Res
  doi: 10.1038/cr.2009.107
– volume: 3
  start-page: a005801
  year: 2011
  ident: hep27753-bib-0004-20241017
  article-title: Hepatic fibrosis and carcinogenesis in alpha1‐antitrypsin deficiency: a prototype for chronic tissue damage in gain‐of‐function disorders
  publication-title: Cold Spring Harb Perspect Biol
– reference: 20583215 - Hepatology. 2010 Sep;52(3):1078-88
– reference: 20522742 - Science. 2010 Jul 9;329(5988):229-32
– reference: 24498058 - PLoS One. 2014;9(1):e87260
– reference: 19026649 - Gastroenterology. 2009 Mar;136(3):990-9
– reference: 18276881 - Science. 2008 Feb 15;319(5865):916-9
– reference: 23325555 - Hepatology. 2013 Jun;57(6):2458-68
– reference: 19736565 - Cell Res. 2009 Nov;19(11):1233-42
– reference: 1079921 - Nature. 1975 May 15;255(5505):240-1
– reference: 19998274 - Hepatology. 2010 Jan;51(1):297-305
– reference: 6332768 - Hepatology. 1984 Sep-Oct;4(5):937-45
– reference: 18059259 - Nat Biotechnol. 2008 Jan;26(1):101-6
– reference: 3871944 - Proc Natl Acad Sci U S A. 1985 Feb;82(3):795-9
– reference: 22653811 - Hepatology. 2012 Dec;56(6):2163-71
– reference: 22200689 - Clin Gastroenterol Hepatol. 2012 Jun;10(6):575-80
– reference: 56137 - Am J Pathol. 1976 Feb;82(2):265-86
– reference: 20739751 - J Clin Invest. 2010 Sep;120(9):3127-36
– reference: 20715179 - Stem Cells. 2010 Oct;28(10):1728-40
– reference: 21421920 - Cold Spring Harb Perspect Biol. 2011 Mar;3(3). pii: a005801. doi: 10.1101/cshperspect.a005801
– reference: 3876562 - Proc Natl Acad Sci U S A. 1985 Oct;82(20):6918-21
– reference: 7045697 - Nature. 1982 Jul 22;298(5872):329-34
– reference: 21460823 - Nat Methods. 2011 May;8(5):409-12
– reference: 8090762 - Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9014-8
– reference: 24286032 - Stem Cell Reports. 2013;1(5):451-63
– reference: 21993621 - Nature. 2011 Oct 20;478(7369):391-4
– reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72
– reference: 19325077 - Science. 2009 May 8;324(5928):797-801
– reference: 22930834 - Nat Methods. 2012 Jul;9(7):671-5
– reference: 21103396 - PLoS One. 2010;5(11):e15460
– reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20
– reference: 24679526 - Cell. 2014 Mar 27;157(1):52-64
– reference: 11577074 - J Biol Chem. 2001 Nov 30;276(48):44865-72
– reference: 23926210 - Stem Cells Transl Med. 2013 Sep;2(9):641-54
SSID ssj0009428
Score 2.4436507
Snippet In the classical form of α1‐antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1‐antitrypsin Z (ATZ) in hepatocytes causes...
In the classical form of α1-antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1-antitrypsin Z (ATZ) in hepatocytes causes...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 147
SubjectTerms alpha 1-Antitrypsin - metabolism
alpha 1-Antitrypsin Deficiency - complications
Cells, Cultured
Endoplasmic Reticulum, Rough - metabolism
Humans
Induced Pluripotent Stem Cells - metabolism
Liver Diseases - etiology
Liver Diseases - metabolism
Title Induced pluripotent stem cells model personalized variations in liver disease resulting from α1‐antitrypsin deficiency
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.27753
https://www.ncbi.nlm.nih.gov/pubmed/25690322
https://www.proquest.com/docview/1691596853
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhh5JL2iZ9bB9BKT304l1bkmWLnEIebFK2lNJADgGj1yahi9esdwvJqT-hfyV_JD-ivyQzfoWkCZTeDB4LWRqNvpFmviHkI2cazKLSgWUJC4QBh1VxoYNEg7slhEmYx2zk0Rc5PBKHx_HxEtlqc2FqfojuwA1XRmWvcYFrUw5uSUPPfNFnCaBtsL8Rl8ibv_vtljpKiaquKnhdId4uq5ZVKGSD7su7e9FfAPMuXq02nP2n5KTtah1n8qO_mJu-vbzH4vif__KMrDZAlG7XmvOcLPl8jTwZNVft6-QCi3pY72gxWYBhmQK2nlNkfaZ41l_SqoQOLVosfwmSP8Hvrg8A6XlOJxjxQZsLIApePYYu5qcUE1ro9VX059dvjTnCs4uiBHHnkcsCE0FfkKP9ve87w6Cp0xBYEUU8EDrhTkbWC-4T5phJQqvTKE69k1JHDF7zsQdPdDx2MhXWGevsGIAoNwAOQstfkuV8mvvXhCrhhYx1ahUAo9Co1GnJnTZp6EKrmOuRT-2MZbYhMcdaGpOspl9mGQxlVg1lj3zoRIuaueMhoc122jNYVziAOvfTRZkhiVCsZIoyr2p96JoBmKhCsITQm2pWH28_G-59rR7e_LvoW7ICqCyuY4LfkeX5bOHfA_KZmw1Q8YPPG5Wi3wDEEAN8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTtxAEC0RIhEuCVkIJJB0EIdcPNjdPbZbygWxaEgYhBBIXJDV2xDEyGMxM5HglE_gV_iRfES-JFVeBrFEinKz5HKr3dXLq-qqVwCrgmvcFpUOLE94IA0arEpIHSQazS0pTcI9ZSN39-LOkfx63D6egi9NLkzFDzFxuNHKKPdrWuDkkF67ZQ397osWTxBuP4GnEoEGmV6bB7fkUUqWlVXR7grpflk1vEIhX5t8evc0egAx7yLW8sjZfgEnTWerSJPz1nhkWvbqHo_j__7NHDyvsShbrybPS5jy-SuY6da37a_hkup6WO9Y0R_j3jJAeD1iRPzMyN0_ZGUVHVY0cP4KJX-g6V35ANlZzvoU9MHqOyCGhj1FL-anjHJa2K-b6PfPa01pwheXxRDFnSc6C8oFfQNH21uHG52gLtUQWBlFIpA6ES6OrJfCJ9xxk4RWp1E79S6OdcTxteh5NEZ7PRen0jpjne2hzoRBfBBaMQ_T-SD3C8CU9KhNnVqF2Cg0KnU6Fk6bNHShVdwtwudGZZmtecypnEY_qxiYeYZDmZVDuQgrE9GiIu94TOhTo_cMlxYNoM79YDzMiEeoreKUZN5WE2LSDCJFFeJmiL0p1fr39rPO1n758O7fRT_Cs85hdzfb3dn79h5mEaS1qxDhJZgeXYz9MgKhkflQzvc_yucGog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VIlW8cKcUChjEAy_ZJrbjxOpTBV0tl1YVolIfkCLf0iJW2ai7i9Q-9RP6K_wIH8GXdCaXrcpFQrxFysRyxvb4jD1zBuCl4AbNojaR4xmPpEWHVQtposyguyWlzXigbOSdXTXal-8O0oMl2OxzYVp-iMWBG62Mxl7TAq99uXFJGnoU6gHPEG1fg-tSIZIgRPTxkjtKy6awKrpdMV0v655WKOYbi0-vbka_IcyrgLXZcYa34HPf1zbQ5OtgPrMDd_oLjeN__sxtuNkhUbbVTp07sBSqu7Cy092134MTqurhgmf1eI6WZYLgesaI9pnRYf-UNTV0WN2D-VOU_IaOd3sCyL5UbEwhH6y7AWLo1lPsYnXIKKOF_fie_Dw7N5QkfHxST1HcByKzoEzQ-7A_3P70ehR1hRoiJ5NERNJkwqvEBSlCxj23WexMnqR58EqZhONrUQZ0RcvSq1w6b513JSJRYREdxE48gOVqUoWHwLQMUqUmdxqRUWx17o0S3tg89rHT3K_Bq37ECtexmFMxjXHR8i_zAlVZNKpcgxcL0bql7viT0PN-2AtcWKRAU4XJfFoQi1CqVU4yq-18WDSDOFHHaAqxN82o_r39YrS91zw8-nfRZ7Cy92ZYfHi7-_4x3ECElrbxweuwPDuehyeIgmb2aTPbLwDCyQVR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induced+pluripotent+stem+cells+model+personalized+variations+in+liver+disease+resulting+from+%CE%B11-antitrypsin+deficiency&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Tafaleng%2C+Edgar+N&rft.au=Chakraborty%2C+Souvik&rft.au=Han%2C+Bing&rft.au=Hale%2C+Pamela&rft.date=2015-07-01&rft.issn=1527-3350&rft.eissn=1527-3350&rft.volume=62&rft.issue=1&rft.spage=147&rft_id=info:doi/10.1002%2Fhep.27753&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon