Recent Progress in High‐efficiency Planar‐structure Perovskite Solar Cells

Lead halide perovskite owns charge diffusion length in micrometer range, which makes the planar‐structure solar cells possible. The simple and low‐temperature process of planar devices makes it very promising. The power conversion efficiency of planar perovskite solar cells has increased from 1.8% t...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 2; no. 2; pp. 93 - 106
Main Authors Zhao, Yang, Ye, Qiufeng, Chu, Zema, Gao, Feng, Zhang, Xingwang, You, Jingbi
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lead halide perovskite owns charge diffusion length in micrometer range, which makes the planar‐structure solar cells possible. The simple and low‐temperature process of planar devices makes it very promising. The power conversion efficiency of planar perovskite solar cells has increased from 1.8% to 23.7% in past several years, which can compete with the mesoporous structure counterpart. In this minireview, recent progress in high‐efficiency planar perovskite solar cells will be summarized. Efficiency progresses in planar perovskite solar cells
AbstractList Lead halide perovskite owns charge diffusion length in micrometer range, which makes the planar‐structure solar cells possible. The simple and low‐temperature process of planar devices makes it very promising. The power conversion efficiency of planar perovskite solar cells has increased from 1.8% to 23.7% in past several years, which can compete with the mesoporous structure counterpart. In this minireview, recent progress in high‐efficiency planar perovskite solar cells will be summarized.
Lead halide perovskite owns charge diffusion length in micrometer range, which makes the planar‐structure solar cells possible. The simple and low‐temperature process of planar devices makes it very promising. The power conversion efficiency of planar perovskite solar cells has increased from 1.8% to 23.7% in past several years, which can compete with the mesoporous structure counterpart. In this minireview, recent progress in high‐efficiency planar perovskite solar cells will be summarized. Efficiency progresses in planar perovskite solar cells
Author Gao, Feng
Zhang, Xingwang
Chu, Zema
Zhao, Yang
Ye, Qiufeng
You, Jingbi
Author_xml – sequence: 1
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Qiufeng
  surname: Ye
  fullname: Ye, Qiufeng
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Zema
  surname: Chu
  fullname: Chu, Zema
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Feng
  surname: Gao
  fullname: Gao, Feng
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Xingwang
  surname: Zhang
  fullname: Zhang, Xingwang
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Jingbi
  orcidid: 0000-0002-4651-9081
  surname: You
  fullname: You, Jingbi
  email: jyou@semi.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNp9kMtKw0AUhgdRsNZufIKAO6F1LkkmWUqpVqhavKyHyeRMnZpm6sxE6c5H8Bl9ElPjQkRcncPh-_8D3wHarW0NCB0RPCIY01OAFR0RimO6g3o04ckQsyTd_bHvo4H3S9zCmLCY5D10fQsK6hDNnV048D4ydTQ1i8ePt3fQ2igDtdpE80rW0rU3H1yjQuMgmoOzL_7JBIjubCVdNIaq8odoT8vKw-B79tHD-eR-PB3Obi4ux2ezoYoJocMsxgWDOOdKlyrnPC1LClkuU5XKhBRcg2YlZlxymUhegKSS5IQWkFOsmWSsj4673rWzzw34IJa2cXX7UtAkwznmmGctddJRylnvHWixdmYl3UYQLLbKxFaZ-FLWwvgXrEyQwdg6OGmqvyOki7yaCjb_lIvJ5Ip2mU95OIF-
CitedBy_id crossref_primary_10_1002_eem2_12063
crossref_primary_10_1016_j_mtener_2021_100847
crossref_primary_10_1016_j_jece_2024_114797
crossref_primary_10_1002_pssa_202200736
crossref_primary_10_1007_s12613_021_2316_0
crossref_primary_10_1002_solr_202300049
crossref_primary_10_1021_acs_jpcc_0c01121
crossref_primary_10_1021_acsnano_3c04601
crossref_primary_10_1016_j_jechem_2024_03_003
crossref_primary_10_1002_ese3_1724
crossref_primary_10_1002_smll_202204173
crossref_primary_10_1016_j_solener_2022_01_060
crossref_primary_10_1021_acs_jpcc_1c00176
crossref_primary_10_1039_D0TA01645D
crossref_primary_10_1080_10406638_2024_2317859
crossref_primary_10_1002_eem2_12296
crossref_primary_10_1002_inf2_12628
crossref_primary_10_1021_acsaem_1c04056
crossref_primary_10_2139_ssrn_4159234
crossref_primary_10_1063_5_0022007
crossref_primary_10_1002_solr_202300740
crossref_primary_10_1021_acsaem_1c00049
crossref_primary_10_3390_app9224850
crossref_primary_10_1364_PRJ_392996
crossref_primary_10_1002_solr_202400476
crossref_primary_10_3390_coatings10040410
crossref_primary_10_1002_smll_202302383
crossref_primary_10_1016_j_jechem_2020_04_027
crossref_primary_10_1002_adfm_202308021
crossref_primary_10_3390_ma14123295
crossref_primary_10_2174_0115734137286096240320075126
crossref_primary_10_1021_acs_chemrev_9b00780
crossref_primary_10_1016_j_nanoen_2021_106879
crossref_primary_10_1016_j_apsusc_2022_154908
crossref_primary_10_1002_eem2_12435
crossref_primary_10_1002_aenm_202002552
crossref_primary_10_1016_j_spmi_2020_106549
crossref_primary_10_1021_acsaem_1c03848
crossref_primary_10_1002_solr_202100401
crossref_primary_10_1039_C8CS01012A
crossref_primary_10_1002_eem2_12154
crossref_primary_10_1016_j_jpowsour_2021_229735
crossref_primary_10_1007_s40684_022_00421_3
crossref_primary_10_1002_eom2_12127
crossref_primary_10_1002_aenm_202200505
crossref_primary_10_3390_cryst13060961
crossref_primary_10_1039_D4TA01453G
crossref_primary_10_3390_polym13234162
crossref_primary_10_1002_adfm_202214271
crossref_primary_10_3390_ma15124300
Cites_doi 10.1039/C6EE02390H
10.1038/s41467-018-04028-8
10.1126/sciadv.1700106
10.1039/C7EE02685D
10.1002/solr.201800268
10.1038/nenergy.2016.148
10.1021/ja508758k
10.1002/adma.201401137
10.1126/science.1243982
10.1021/nn406020d
10.1039/C6TA10305G
10.1002/adma.200602903
10.1063/1.4891275
10.1002/adma.201703852
10.1038/nenergy.2016.177
10.1002/adfm.201706923
10.1021/jacs.5b01994
10.1002/adfm.201401872
10.1038/nenergy.2017.102
10.1021/ja809598r
10.1002/aenm.201401855
10.1021/jp502696w
10.1039/C9TA01319A
10.1038/nnano.2015.230
10.1038/nenergy.2015.1
10.1002/aenm.201501773
10.1126/science.aan2301
10.1002/adfm.201302090
10.1038/srep00591
10.1038/nphoton.2012.11
10.1021/ja411509g
10.1038/ncomms15684
10.1038/nenergy.2017.38
10.1126/science.1228604
10.1038/s41560-018-0153-9
10.1002/adma.201401775
10.1016/j.solmat.2015.09.018
10.1021/acsenergylett.8b00121
10.1002/aenm.201700118
10.1038/nmat4014
10.1126/science.aaa9272
10.1039/C8EE02172D
10.1038/nenergy.2016.142
10.1016/j.nanoen.2015.04.029
10.1063/1.4901510
10.1021/acs.chemrev.8b00539
10.1002/adma.201301327
10.1038/ncomms10228
10.1002/aenm.201803587
10.1039/C5EE00645G
10.1038/s41467-018-06317-8
10.1002/aenm.201700722
10.1039/C6EE03182J
10.1016/j.joule.2018.10.008
10.1039/C8TA05234D
10.1038/nenergy.2017.135
10.1038/s41467-018-05454-4
10.1126/science.1243167
10.1038/s41560-018-0200-6
10.1038/s41467-018-05760-x
10.1039/C3EE43707H
10.1039/C4EE01624F
10.1021/acsenergylett.6b00060
10.1002/solr.201800296
10.1126/science.aap9282
10.1021/acs.jpclett.7b03054
10.1016/j.scib.2018.05.003
10.1002/adma.201604048
10.1002/aenm.201703392
10.1039/C5TA01343G
10.1002/smll.201801154
10.1002/anie.201405183
10.1126/science.aad1015
10.1002/aenm.201703519
ContentType Journal Article
Copyright 2019 Zhengzhou University
Copyright_xml – notice: 2019 Zhengzhou University
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
DOI 10.1002/eem2.12042
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage 106
ExternalDocumentID 10_1002_eem2_12042
EEM212042
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61634001; 61574133
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
ID FETCH-LOGICAL-c4112-840b3e497cfdc9776dd2e89a6c6a51b7fef3d037a7a5a7bea2a1912be920f3a33
IEDL.DBID 24P
ISSN 2575-0356
IngestDate Mon Jun 30 12:01:33 EDT 2025
Tue Jul 01 01:03:04 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Wed Jan 22 16:40:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4112-840b3e497cfdc9776dd2e89a6c6a51b7fef3d037a7a5a7bea2a1912be920f3a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4651-9081
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12042
PQID 2580907078
PQPubID 5251211
PageCount 14
ParticipantIDs proquest_journals_2580907078
crossref_primary_10_1002_eem2_12042
crossref_citationtrail_10_1002_eem2_12042
wiley_primary_10_1002_eem2_12042_EEM212042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 8
2013; 25
2017; 2
2018; 360
2017; 3
2014; 26
2016; 144
2014; 24
2015; 348
2017; 355
2017; 356
2014; 136
2019; 363
2018; 6
2018; 9
2018; 8
2018; 3
2014; 2
2015; 137
2014; 13
2019; 119
2014; 8
2014; 7
2012; 338
2014; 53
2014; 118
2019; 7
2007; 19
2015; 15
2018; 28
2015; 5
2019; 3
1942; 2017
2015; 3
2013; 501
2013; 342
2018; 63
2017; 29
2009; 131
2015; 8
2016; 11
2015; 350
2014; 105
2016; 6
2016; 7
2012; 2
2016; 1
2016; 2
2017; 10
2019
2012; 6
2018; 11
2016; 28
2016; 9
2018; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Wang L. (e_1_2_8_81_1) 2019; 363
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Xie F. (e_1_2_8_27_1) 1942; 2017
Zhou Z. (e_1_2_8_56_1) 2017; 7
Jiang Q. (e_1_2_8_8_1) 2019
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
Liu M. (e_1_2_8_17_1) 2013; 501
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_69_1
Tan H. (e_1_2_8_36_1) 2017; 355
Chen W. (e_1_2_8_79_1) 2015; 350
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 105
  start-page: 183902
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 15684
  year: 2017
  publication-title: Nat. Commun.
– volume: 19
  start-page: 3187
  year: 2007
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1703852
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1703519
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 136
  start-page: 622
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 2
  start-page: 081510
  year: 2014
  publication-title: Apl. Mater.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 3
  start-page: 560
  year: 2018
  publication-title: Nat. Energy
– volume: 8
  start-page: 1674
  year: 2014
  publication-title: ACS Nano
– volume: 9
  start-page: 3880
  year: 2018
  publication-title: Nat. Commu.
– volume: 119
  start-page: 3036
  year: 2019
  publication-title: Chem. Rev.
– volume: 3
  start-page: 682
  year: 2018
  publication-title: Nat. Energy
– volume: 14
  start-page: 1801154
  year: 2018
  publication-title: Small
– volume: 5
  start-page: 1401855
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 15001
  year: 2016
  publication-title: Nat. Energy
– volume: 1
  start-page: 266
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 205
  year: 2019
  publication-title: Joule
– volume: 9
  start-page: 3128
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 17038
  year: 2017
  publication-title: Nat. Energy
– volume: 2
  start-page: 16177
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 1501773
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 10
  start-page: 2570
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 9128
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1703
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– year: 2019
  publication-title: Nat. Photonics
– volume: 2
  start-page: 17102
  year: 2017
  publication-title: Nat. Energy
– volume: 8
  start-page: 1703392
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 275
  year: 2015
  publication-title: Nano Energy.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 10718
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1706923
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 355
  start-page: 6326
  year: 2017
  publication-title: Science
– volume: 25
  start-page: 3727
  year: 2013
  publication-title: Adv. Mater.
– volume: 7
  start-page: 10228
  year: 2016
  publication-title: Nat. Commu.
– volume: 2017
  start-page: 10
  year: 1942
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 16148
  year: 2016
  publication-title: Nat. Energy
– volume: 342
  start-page: 6156
  year: 2013
  publication-title: Science
– volume: 6
  start-page: 16583
  year: 2018
  publication-title: J. Mater. Chem. A.
– volume: 26
  start-page: 6461
  year: 2014
  publication-title: Adv. Mater.
– volume: 118
  start-page: 9412
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 3021
  year: 2018
  publication-title: Nat. Communication
– volume: 8
  start-page: 2725
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 360
  start-page: 1442
  year: 2018
  publication-title: Science
– volume: 501
  start-page: 7467
  year: 2013
  publication-title: Nature
– volume: 6
  start-page: 153
  year: 2012
  publication-title: Nat. Photonics
– volume: 3
  start-page: 1800268
  year: 2019
  publication-title: Sol. RRL
– volume: 24
  start-page: 7102
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1700736
  year: 2017
  publication-title: Advance Energy Mater.
– volume: 53
  start-page: 9889
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1142
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 8078
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1700118
  year: 2017
  publication-title: Adv. Energy. Mater.
– volume: 136
  start-page: 17116
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1625
  year: 2018
  publication-title: Nat. Commun.
– start-page: 1803587
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 2934
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 17135
  year: 2017
  publication-title: Nat. Energy
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 350
  start-page: 944
  year: 2015
  publication-title: Science
– volume: 9
  start-page: 3239
  year: 2018
  publication-title: Nat. Commu.
– volume: 137
  start-page: 6730
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 4991
  year: 2014
  publication-title: Adv. Mater
– volume: 11
  start-page: 3463
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1700722
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 4756
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: e1700106
  year: 2017
  publication-title: Sci. Adv.
– volume: 3
  start-page: 1800296
  year: 2019
  publication-title: Sol. RRL.
– volume: 350
  start-page: 6263
  year: 2015
  publication-title: Science
– volume: 363
  start-page: 6426
  year: 2019
  publication-title: Science
– volume: 2
  start-page: 591
  year: 2012
  publication-title: Sci. Rep.
– volume: 3
  start-page: 647
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 75
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 16142
  year: 2016
  publication-title: Nat. Energy
– volume: 144
  start-page: 309
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 63
  start-page: 726
  year: 2018
  publication-title: Science Bulletin.
– volume: 10
  start-page: 621
  year: 2017
  publication-title: Ene. Environ. Sci
– ident: e_1_2_8_44_1
  doi: 10.1039/C6EE02390H
– ident: e_1_2_8_64_1
  doi: 10.1038/s41467-018-04028-8
– ident: e_1_2_8_78_1
  doi: 10.1126/sciadv.1700106
– ident: e_1_2_8_48_1
  doi: 10.1039/C7EE02685D
– ident: e_1_2_8_62_1
  doi: 10.1002/solr.201800268
– ident: e_1_2_8_11_1
  doi: 10.1038/nenergy.2016.148
– year: 2019
  ident: e_1_2_8_8_1
  publication-title: Nat. Photonics
– ident: e_1_2_8_61_1
  doi: 10.1021/ja508758k
– ident: e_1_2_8_72_1
  doi: 10.1002/adma.201401137
– ident: e_1_2_8_14_1
  doi: 10.1126/science.1243982
– ident: e_1_2_8_18_1
  doi: 10.1021/nn406020d
– volume: 355
  start-page: 6326
  year: 2017
  ident: e_1_2_8_36_1
  publication-title: Science
– ident: e_1_2_8_60_1
  doi: 10.1039/C6TA10305G
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.200602903
– ident: e_1_2_8_20_1
  doi: 10.1063/1.4891275
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201703852
– ident: e_1_2_8_38_1
  doi: 10.1038/nenergy.2016.177
– ident: e_1_2_8_74_1
  doi: 10.1002/adfm.201706923
– ident: e_1_2_8_40_1
  doi: 10.1021/jacs.5b01994
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.201401872
– ident: e_1_2_8_75_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_8_1_1
  doi: 10.1021/ja809598r
– ident: e_1_2_8_46_1
  doi: 10.1002/aenm.201401855
– volume: 2017
  start-page: 10
  year: 1942
  ident: e_1_2_8_27_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_26_1
  doi: 10.1021/jp502696w
– ident: e_1_2_8_29_1
  doi: 10.1039/C9TA01319A
– ident: e_1_2_8_50_1
  doi: 10.1038/nnano.2015.230
– ident: e_1_2_8_69_1
  doi: 10.1038/nenergy.2015.1
– ident: e_1_2_8_51_1
  doi: 10.1002/aenm.201501773
– volume: 7
  start-page: 1700736
  year: 2017
  ident: e_1_2_8_56_1
  publication-title: Advance Energy Mater.
– ident: e_1_2_8_9_1
– ident: e_1_2_8_6_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201302090
– ident: e_1_2_8_2_1
  doi: 10.1038/srep00591
– ident: e_1_2_8_45_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_8_21_1
  doi: 10.1021/ja411509g
– ident: e_1_2_8_83_1
  doi: 10.1038/ncomms15684
– ident: e_1_2_8_31_1
  doi: 10.1038/nenergy.2017.38
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1228604
– ident: e_1_2_8_12_1
  doi: 10.1038/s41560-018-0153-9
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201401775
– ident: e_1_2_8_52_1
  doi: 10.1016/j.solmat.2015.09.018
– ident: e_1_2_8_65_1
  doi: 10.1021/acsenergylett.8b00121
– ident: e_1_2_8_71_1
  doi: 10.1002/aenm.201700118
– ident: e_1_2_8_22_1
  doi: 10.1038/nmat4014
– ident: e_1_2_8_4_1
  doi: 10.1126/science.aaa9272
– volume: 350
  start-page: 6263
  year: 2015
  ident: e_1_2_8_79_1
  publication-title: Science
– ident: e_1_2_8_41_1
  doi: 10.1039/C8EE02172D
– ident: e_1_2_8_5_1
  doi: 10.1038/nenergy.2016.142
– volume: 363
  start-page: 6426
  year: 2019
  ident: e_1_2_8_81_1
  publication-title: Science
– ident: e_1_2_8_54_1
  doi: 10.1016/j.nanoen.2015.04.029
– ident: e_1_2_8_32_1
  doi: 10.1063/1.4901510
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.chemrev.8b00539
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201301327
– ident: e_1_2_8_77_1
  doi: 10.1038/ncomms10228
– ident: e_1_2_8_28_1
  doi: 10.1002/aenm.201803587
– ident: e_1_2_8_33_1
  doi: 10.1039/C5EE00645G
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-018-06317-8
– ident: e_1_2_8_49_1
  doi: 10.1002/aenm.201700722
– ident: e_1_2_8_70_1
  doi: 10.1039/C6EE03182J
– ident: e_1_2_8_80_1
  doi: 10.1016/j.joule.2018.10.008
– ident: e_1_2_8_53_1
  doi: 10.1039/C8TA05234D
– ident: e_1_2_8_66_1
  doi: 10.1038/nenergy.2017.135
– ident: e_1_2_8_67_1
  doi: 10.1038/s41467-018-05454-4
– ident: e_1_2_8_59_1
  doi: 10.1126/science.1243167
– ident: e_1_2_8_7_1
  doi: 10.1038/s41560-018-0200-6
– ident: e_1_2_8_39_1
  doi: 10.1038/s41467-018-05760-x
– ident: e_1_2_8_35_1
  doi: 10.1039/C3EE43707H
– ident: e_1_2_8_25_1
  doi: 10.1039/C4EE01624F
– ident: e_1_2_8_76_1
  doi: 10.1021/acsenergylett.6b00060
– ident: e_1_2_8_68_1
  doi: 10.1002/solr.201800296
– ident: e_1_2_8_55_1
  doi: 10.1126/science.aap9282
– ident: e_1_2_8_82_1
  doi: 10.1021/acs.jpclett.7b03054
– ident: e_1_2_8_24_1
  doi: 10.1016/j.scib.2018.05.003
– ident: e_1_2_8_42_1
  doi: 10.1002/adma.201604048
– ident: e_1_2_8_73_1
  doi: 10.1002/aenm.201703392
– ident: e_1_2_8_63_1
  doi: 10.1039/C5TA01343G
– ident: e_1_2_8_10_1
  doi: 10.1038/ncomms15684
– volume: 501
  start-page: 7467
  year: 2013
  ident: e_1_2_8_17_1
  publication-title: Nature
– ident: e_1_2_8_37_1
  doi: 10.1002/smll.201801154
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.201405183
– ident: e_1_2_8_57_1
  doi: 10.1126/science.aad1015
– ident: e_1_2_8_58_1
  doi: 10.1002/aenm.201703519
SSID ssj0002013419
Score 2.3307106
SecondaryResourceType review_article
Snippet Lead halide perovskite owns charge diffusion length in micrometer range, which makes the planar‐structure solar cells possible. The simple and low‐temperature...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms Diffusion length
Efficiency
Energy conversion efficiency
high efficiency
Lead compounds
Metal halides
perovskite solar cells
Perovskites
Photovoltaic cells
planar structure
Solar cells
Title Recent Progress in High‐efficiency Planar‐structure Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12042
https://www.proquest.com/docview/2580907078
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfD3C5eRFFxOkdALwp1XZK2C3gZY2MIGwOtDC8lvwrC7GRVz_4J_o3-Jb6kXacggrcSkhxeX_K-CXmfh9A5uIkymoNyUzr1WMpCr6e58hT4hgXCMeoQG5NpOI7ZzTyY19D1Ohem4ENUF252Zbj92i5wIfPOBhpqzBO56hJwui3UsLm1lpxP2Ky6YYHQZmFltrocaBLPp0FY8UlJZzP8Z0TayMzvYtVFm9Eu2illIu4X_3UP1Uy2j6ag8SBG4Jl9UwU7FH7MsH2n8fn-YRwJwqZRYluGSKygrUDDvq4MnpnV8i2397T41h5l8cAsFvkBikfDu8HYK-sheIqBLPLgLCapYTxSqVag20KtielxEapQBF0ZpSal2qeRiEQgImkEEXAaI9Jw4qdUUHqI6tkyM0cI6yDiSgYhVUKyrtScitQPJdXQomCqJrpY2yRRJSzc1qxYJAXmmCTWfomzXxOdVX2fC0TGr71aa9Mm5TLJExL0fO6AQ0106cz9xwzJcDgh7uv4P51P0DZ4Ai-ed7VQHWxvTkFIvMi285c2avTv44f4C4N_xcc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5aD3oRRcVq1YBeFNZuk2y2OUppqdqWgi30tuRvQahbadWzj-Az-iROstutggjeljCbw2Qm880w-QahCzATbY0A5KZNGrCU8aBphA402IYjhGPUU2z0B7w7ZneTaFL05ri3MDk_RFlwc57h72vn4K4gXV-xhlr7RK4bBKxuHW0wTmLnl4QNyxILxDbHVubGywEoCUIa8ZKglNRXv_8MSSuc-R2t-nDT2UHbBU7EN_nB7qI1m-2hAYA8CBJ46Jqq4IrCjxl2jRqf7x_WU0G4d5TYzSGSc1jLuWFf5xYP7Xz2tnCFWvzgclncstPpYh-NO-1RqxsUAxECzQAXBZCMKWqZiHVqNAA3bgyxTSG55jJqqDi1KTUhjWUsIxkrK4mEdIwoK0iYUknpAapks8weImyiWGgVcaqlYg1lBJVpyBU1sKJhqyq6XOok0QVbuBtaMU1ynmOSOP0lXn9VdF7KPuccGb9K1ZaqTQo_WSQkaobCMw5V0ZVX9x87JO12n_ivo_8In6HN7qjfS3q3g_tjtAVWIfJerxqqwDnYE0AVL-rU284XAK_HdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NSgMxEMdDbUG8iKJitWpALwprt8lutgEvpbbUj5aCrhQvS74WhLotrXr2EXxGn8TJ7narIIK3EEIOk5nMPyH5DUIn4CbKaA7KTenY8WKPOU3NlaPANywQzqMpYqM_YL3Qux75oxK6WPyFyfgQxYWbjYx0v7YBPtVxfQkNNeaZnDcION0KqlhMHvh0pfUQPobFHQskN4srs_XlQJU4LvVZQSgl9eUEP3PSUmh-l6tpvuluoPVcKOJWtrKbqGSSLTQAlQdZAg_tqyrYo_BTgu1Ljc_3D5OyIOxHSmwLEYkZ9GVw2NeZwUMzm7zN7U0tvrOHWdw24_F8G4Xdzn275-QVERzlgTBy4DQmqfF4oGKtQLkxrYlpcsEUE35DBrGJqXZpIALhi0AaQQScx4g0nLgxFZTuoHIyScwuwtoPuJI-o0pIryE1pyJ2maQaehRMVUWnC5tEKseF26oV4ygDHZPI2i9K7VdFx8XYaQbJ-HVUbWHaKA-UeUT8pstT5FAVnaXm_mOGqNPpk7S195_BR2h1eNmNbq8GN_toDZyCZ2-9aqgMy2AOQFW8yMPceb4A0JPIbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+High%E2%80%90efficiency+Planar%E2%80%90structure+Perovskite+Solar+Cells&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Zhao%2C+Yang&rft.au=Ye%2C+Qiufeng&rft.au=Chu%2C+Zema&rft.au=Gao%2C+Feng&rft.date=2019-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=2&rft.issue=2&rft.spage=93&rft.epage=106&rft_id=info:doi/10.1002%2Feem2.12042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon