Recent Progress in High‐efficiency Planar‐structure Perovskite Solar Cells
Lead halide perovskite owns charge diffusion length in micrometer range, which makes the planar‐structure solar cells possible. The simple and low‐temperature process of planar devices makes it very promising. The power conversion efficiency of planar perovskite solar cells has increased from 1.8% t...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 2; no. 2; pp. 93 - 106 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lead halide perovskite owns charge diffusion length in micrometer range, which makes the planar‐structure solar cells possible. The simple and low‐temperature process of planar devices makes it very promising. The power conversion efficiency of planar perovskite solar cells has increased from 1.8% to 23.7% in past several years, which can compete with the mesoporous structure counterpart. In this minireview, recent progress in high‐efficiency planar perovskite solar cells will be summarized.
Efficiency progresses in planar perovskite solar cells |
---|---|
AbstractList | Lead halide perovskite owns charge diffusion length in micrometer range, which makes the planar‐structure solar cells possible. The simple and low‐temperature process of planar devices makes it very promising. The power conversion efficiency of planar perovskite solar cells has increased from 1.8% to 23.7% in past several years, which can compete with the mesoporous structure counterpart. In this minireview, recent progress in high‐efficiency planar perovskite solar cells will be summarized. Lead halide perovskite owns charge diffusion length in micrometer range, which makes the planar‐structure solar cells possible. The simple and low‐temperature process of planar devices makes it very promising. The power conversion efficiency of planar perovskite solar cells has increased from 1.8% to 23.7% in past several years, which can compete with the mesoporous structure counterpart. In this minireview, recent progress in high‐efficiency planar perovskite solar cells will be summarized. Efficiency progresses in planar perovskite solar cells |
Author | Gao, Feng Zhang, Xingwang Chu, Zema Zhao, Yang Ye, Qiufeng You, Jingbi |
Author_xml | – sequence: 1 givenname: Yang surname: Zhao fullname: Zhao, Yang organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Qiufeng surname: Ye fullname: Ye, Qiufeng organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Zema surname: Chu fullname: Chu, Zema organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Feng surname: Gao fullname: Gao, Feng organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Xingwang surname: Zhang fullname: Zhang, Xingwang organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Jingbi orcidid: 0000-0002-4651-9081 surname: You fullname: You, Jingbi email: jyou@semi.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNp9kMtKw0AUhgdRsNZufIKAO6F1LkkmWUqpVqhavKyHyeRMnZpm6sxE6c5H8Bl9ElPjQkRcncPh-_8D3wHarW0NCB0RPCIY01OAFR0RimO6g3o04ckQsyTd_bHvo4H3S9zCmLCY5D10fQsK6hDNnV048D4ydTQ1i8ePt3fQ2igDtdpE80rW0rU3H1yjQuMgmoOzL_7JBIjubCVdNIaq8odoT8vKw-B79tHD-eR-PB3Obi4ux2ezoYoJocMsxgWDOOdKlyrnPC1LClkuU5XKhBRcg2YlZlxymUhegKSS5IQWkFOsmWSsj4673rWzzw34IJa2cXX7UtAkwznmmGctddJRylnvHWixdmYl3UYQLLbKxFaZ-FLWwvgXrEyQwdg6OGmqvyOki7yaCjb_lIvJ5Ip2mU95OIF- |
CitedBy_id | crossref_primary_10_1002_eem2_12063 crossref_primary_10_1016_j_mtener_2021_100847 crossref_primary_10_1016_j_jece_2024_114797 crossref_primary_10_1002_pssa_202200736 crossref_primary_10_1007_s12613_021_2316_0 crossref_primary_10_1002_solr_202300049 crossref_primary_10_1021_acs_jpcc_0c01121 crossref_primary_10_1021_acsnano_3c04601 crossref_primary_10_1016_j_jechem_2024_03_003 crossref_primary_10_1002_ese3_1724 crossref_primary_10_1002_smll_202204173 crossref_primary_10_1016_j_solener_2022_01_060 crossref_primary_10_1021_acs_jpcc_1c00176 crossref_primary_10_1039_D0TA01645D crossref_primary_10_1080_10406638_2024_2317859 crossref_primary_10_1002_eem2_12296 crossref_primary_10_1002_inf2_12628 crossref_primary_10_1021_acsaem_1c04056 crossref_primary_10_2139_ssrn_4159234 crossref_primary_10_1063_5_0022007 crossref_primary_10_1002_solr_202300740 crossref_primary_10_1021_acsaem_1c00049 crossref_primary_10_3390_app9224850 crossref_primary_10_1364_PRJ_392996 crossref_primary_10_1002_solr_202400476 crossref_primary_10_3390_coatings10040410 crossref_primary_10_1002_smll_202302383 crossref_primary_10_1016_j_jechem_2020_04_027 crossref_primary_10_1002_adfm_202308021 crossref_primary_10_3390_ma14123295 crossref_primary_10_2174_0115734137286096240320075126 crossref_primary_10_1021_acs_chemrev_9b00780 crossref_primary_10_1016_j_nanoen_2021_106879 crossref_primary_10_1016_j_apsusc_2022_154908 crossref_primary_10_1002_eem2_12435 crossref_primary_10_1002_aenm_202002552 crossref_primary_10_1016_j_spmi_2020_106549 crossref_primary_10_1021_acsaem_1c03848 crossref_primary_10_1002_solr_202100401 crossref_primary_10_1039_C8CS01012A crossref_primary_10_1002_eem2_12154 crossref_primary_10_1016_j_jpowsour_2021_229735 crossref_primary_10_1007_s40684_022_00421_3 crossref_primary_10_1002_eom2_12127 crossref_primary_10_1002_aenm_202200505 crossref_primary_10_3390_cryst13060961 crossref_primary_10_1039_D4TA01453G crossref_primary_10_3390_polym13234162 crossref_primary_10_1002_adfm_202214271 crossref_primary_10_3390_ma15124300 |
Cites_doi | 10.1039/C6EE02390H 10.1038/s41467-018-04028-8 10.1126/sciadv.1700106 10.1039/C7EE02685D 10.1002/solr.201800268 10.1038/nenergy.2016.148 10.1021/ja508758k 10.1002/adma.201401137 10.1126/science.1243982 10.1021/nn406020d 10.1039/C6TA10305G 10.1002/adma.200602903 10.1063/1.4891275 10.1002/adma.201703852 10.1038/nenergy.2016.177 10.1002/adfm.201706923 10.1021/jacs.5b01994 10.1002/adfm.201401872 10.1038/nenergy.2017.102 10.1021/ja809598r 10.1002/aenm.201401855 10.1021/jp502696w 10.1039/C9TA01319A 10.1038/nnano.2015.230 10.1038/nenergy.2015.1 10.1002/aenm.201501773 10.1126/science.aan2301 10.1002/adfm.201302090 10.1038/srep00591 10.1038/nphoton.2012.11 10.1021/ja411509g 10.1038/ncomms15684 10.1038/nenergy.2017.38 10.1126/science.1228604 10.1038/s41560-018-0153-9 10.1002/adma.201401775 10.1016/j.solmat.2015.09.018 10.1021/acsenergylett.8b00121 10.1002/aenm.201700118 10.1038/nmat4014 10.1126/science.aaa9272 10.1039/C8EE02172D 10.1038/nenergy.2016.142 10.1016/j.nanoen.2015.04.029 10.1063/1.4901510 10.1021/acs.chemrev.8b00539 10.1002/adma.201301327 10.1038/ncomms10228 10.1002/aenm.201803587 10.1039/C5EE00645G 10.1038/s41467-018-06317-8 10.1002/aenm.201700722 10.1039/C6EE03182J 10.1016/j.joule.2018.10.008 10.1039/C8TA05234D 10.1038/nenergy.2017.135 10.1038/s41467-018-05454-4 10.1126/science.1243167 10.1038/s41560-018-0200-6 10.1038/s41467-018-05760-x 10.1039/C3EE43707H 10.1039/C4EE01624F 10.1021/acsenergylett.6b00060 10.1002/solr.201800296 10.1126/science.aap9282 10.1021/acs.jpclett.7b03054 10.1016/j.scib.2018.05.003 10.1002/adma.201604048 10.1002/aenm.201703392 10.1039/C5TA01343G 10.1002/smll.201801154 10.1002/anie.201405183 10.1126/science.aad1015 10.1002/aenm.201703519 |
ContentType | Journal Article |
Copyright | 2019 Zhengzhou University |
Copyright_xml | – notice: 2019 Zhengzhou University |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
DOI | 10.1002/eem2.12042 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | 106 |
ExternalDocumentID | 10_1002_eem2_12042 EEM212042 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61634001; 61574133 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
ID | FETCH-LOGICAL-c4112-840b3e497cfdc9776dd2e89a6c6a51b7fef3d037a7a5a7bea2a1912be920f3a33 |
IEDL.DBID | 24P |
ISSN | 2575-0356 |
IngestDate | Mon Jun 30 12:01:33 EDT 2025 Tue Jul 01 01:03:04 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 Wed Jan 22 16:40:01 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4112-840b3e497cfdc9776dd2e89a6c6a51b7fef3d037a7a5a7bea2a1912be920f3a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4651-9081 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12042 |
PQID | 2580907078 |
PQPubID | 5251211 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2580907078 crossref_primary_10_1002_eem2_12042 crossref_citationtrail_10_1002_eem2_12042 wiley_primary_10_1002_eem2_12042_EEM212042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2017; 8 2013; 25 2017; 2 2018; 360 2017; 3 2014; 26 2016; 144 2014; 24 2015; 348 2017; 355 2017; 356 2014; 136 2019; 363 2018; 6 2018; 9 2018; 8 2018; 3 2014; 2 2015; 137 2014; 13 2019; 119 2014; 8 2014; 7 2012; 338 2014; 53 2014; 118 2019; 7 2007; 19 2015; 15 2018; 28 2015; 5 2019; 3 1942; 2017 2015; 3 2013; 501 2013; 342 2018; 63 2017; 29 2009; 131 2015; 8 2016; 11 2015; 350 2014; 105 2016; 6 2016; 7 2012; 2 2016; 1 2016; 2 2017; 10 2019 2012; 6 2018; 11 2016; 28 2016; 9 2018; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Wang L. (e_1_2_8_81_1) 2019; 363 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Xie F. (e_1_2_8_27_1) 1942; 2017 Zhou Z. (e_1_2_8_56_1) 2017; 7 Jiang Q. (e_1_2_8_8_1) 2019 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 Liu M. (e_1_2_8_17_1) 2013; 501 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_69_1 Tan H. (e_1_2_8_36_1) 2017; 355 Chen W. (e_1_2_8_79_1) 2015; 350 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 105 start-page: 183902 year: 2014 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 15684 year: 2017 publication-title: Nat. Commun. – volume: 19 start-page: 3187 year: 2007 publication-title: Adv. Mater. – volume: 24 start-page: 1 year: 2014 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1703852 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 1703519 year: 2018 publication-title: Adv. Energy Mater. – volume: 136 start-page: 622 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 2 start-page: 081510 year: 2014 publication-title: Apl. Mater. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 3 start-page: 560 year: 2018 publication-title: Nat. Energy – volume: 8 start-page: 1674 year: 2014 publication-title: ACS Nano – volume: 9 start-page: 3880 year: 2018 publication-title: Nat. Commu. – volume: 119 start-page: 3036 year: 2019 publication-title: Chem. Rev. – volume: 3 start-page: 682 year: 2018 publication-title: Nat. Energy – volume: 14 start-page: 1801154 year: 2018 publication-title: Small – volume: 5 start-page: 1401855 year: 2015 publication-title: Adv. Energy Mater. – volume: 1 start-page: 15001 year: 2016 publication-title: Nat. Energy – volume: 1 start-page: 266 year: 2016 publication-title: ACS Energy Lett. – volume: 3 start-page: 205 year: 2019 publication-title: Joule – volume: 9 start-page: 3128 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 start-page: 17038 year: 2017 publication-title: Nat. Energy – volume: 2 start-page: 16177 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 1501773 year: 2016 publication-title: Adv. Energy Mater. – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 10 start-page: 2570 year: 2017 publication-title: Energy Environ. Sci. – volume: 3 start-page: 9128 year: 2015 publication-title: J. Mater. Chem. A – volume: 9 start-page: 1703 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 342 start-page: 344 year: 2013 publication-title: Science – year: 2019 publication-title: Nat. Photonics – volume: 2 start-page: 17102 year: 2017 publication-title: Nat. Energy – volume: 8 start-page: 1703392 year: 2018 publication-title: Adv. Energy Mater. – volume: 15 start-page: 275 year: 2015 publication-title: Nano Energy. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 10718 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 1706923 year: 2018 publication-title: Adv. Funct. Mater. – volume: 355 start-page: 6326 year: 2017 publication-title: Science – volume: 25 start-page: 3727 year: 2013 publication-title: Adv. Mater. – volume: 7 start-page: 10228 year: 2016 publication-title: Nat. Commu. – volume: 2017 start-page: 10 year: 1942 publication-title: Energy Environ. Sci. – volume: 1 start-page: 16148 year: 2016 publication-title: Nat. Energy – volume: 342 start-page: 6156 year: 2013 publication-title: Science – volume: 6 start-page: 16583 year: 2018 publication-title: J. Mater. Chem. A. – volume: 26 start-page: 6461 year: 2014 publication-title: Adv. Mater. – volume: 118 start-page: 9412 year: 2014 publication-title: J. Phys. Chem. C – volume: 9 start-page: 3021 year: 2018 publication-title: Nat. Communication – volume: 8 start-page: 2725 year: 2015 publication-title: Energy Environ. Sci. – volume: 360 start-page: 1442 year: 2018 publication-title: Science – volume: 501 start-page: 7467 year: 2013 publication-title: Nature – volume: 6 start-page: 153 year: 2012 publication-title: Nat. Photonics – volume: 3 start-page: 1800268 year: 2019 publication-title: Sol. RRL – volume: 24 start-page: 7102 year: 2014 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1700736 year: 2017 publication-title: Advance Energy Mater. – volume: 53 start-page: 9889 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 1142 year: 2014 publication-title: Energy Environ. Sci. – volume: 7 start-page: 8078 year: 2019 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1700118 year: 2017 publication-title: Adv. Energy. Mater. – volume: 136 start-page: 17116 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1625 year: 2018 publication-title: Nat. Commun. – start-page: 1803587 year: 2019 publication-title: Adv. Energy Mater. – volume: 7 start-page: 2934 year: 2014 publication-title: Energy Environ. Sci. – volume: 2 start-page: 17135 year: 2017 publication-title: Nat. Energy – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 350 start-page: 944 year: 2015 publication-title: Science – volume: 9 start-page: 3239 year: 2018 publication-title: Nat. Commu. – volume: 137 start-page: 6730 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 4991 year: 2014 publication-title: Adv. Mater – volume: 11 start-page: 3463 year: 2018 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1700722 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 start-page: 4756 year: 2017 publication-title: J. Mater. Chem. A – volume: 3 start-page: e1700106 year: 2017 publication-title: Sci. Adv. – volume: 3 start-page: 1800296 year: 2019 publication-title: Sol. RRL. – volume: 350 start-page: 6263 year: 2015 publication-title: Science – volume: 363 start-page: 6426 year: 2019 publication-title: Science – volume: 2 start-page: 591 year: 2012 publication-title: Sci. Rep. – volume: 3 start-page: 647 year: 2018 publication-title: ACS Energy Lett. – volume: 11 start-page: 75 year: 2016 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 16142 year: 2016 publication-title: Nat. Energy – volume: 144 start-page: 309 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 63 start-page: 726 year: 2018 publication-title: Science Bulletin. – volume: 10 start-page: 621 year: 2017 publication-title: Ene. Environ. Sci – ident: e_1_2_8_44_1 doi: 10.1039/C6EE02390H – ident: e_1_2_8_64_1 doi: 10.1038/s41467-018-04028-8 – ident: e_1_2_8_78_1 doi: 10.1126/sciadv.1700106 – ident: e_1_2_8_48_1 doi: 10.1039/C7EE02685D – ident: e_1_2_8_62_1 doi: 10.1002/solr.201800268 – ident: e_1_2_8_11_1 doi: 10.1038/nenergy.2016.148 – year: 2019 ident: e_1_2_8_8_1 publication-title: Nat. Photonics – ident: e_1_2_8_61_1 doi: 10.1021/ja508758k – ident: e_1_2_8_72_1 doi: 10.1002/adma.201401137 – ident: e_1_2_8_14_1 doi: 10.1126/science.1243982 – ident: e_1_2_8_18_1 doi: 10.1021/nn406020d – volume: 355 start-page: 6326 year: 2017 ident: e_1_2_8_36_1 publication-title: Science – ident: e_1_2_8_60_1 doi: 10.1039/C6TA10305G – ident: e_1_2_8_43_1 doi: 10.1002/adma.200602903 – ident: e_1_2_8_20_1 doi: 10.1063/1.4891275 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201703852 – ident: e_1_2_8_38_1 doi: 10.1038/nenergy.2016.177 – ident: e_1_2_8_74_1 doi: 10.1002/adfm.201706923 – ident: e_1_2_8_40_1 doi: 10.1021/jacs.5b01994 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.201401872 – ident: e_1_2_8_75_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_8_1_1 doi: 10.1021/ja809598r – ident: e_1_2_8_46_1 doi: 10.1002/aenm.201401855 – volume: 2017 start-page: 10 year: 1942 ident: e_1_2_8_27_1 publication-title: Energy Environ. Sci. – ident: e_1_2_8_26_1 doi: 10.1021/jp502696w – ident: e_1_2_8_29_1 doi: 10.1039/C9TA01319A – ident: e_1_2_8_50_1 doi: 10.1038/nnano.2015.230 – ident: e_1_2_8_69_1 doi: 10.1038/nenergy.2015.1 – ident: e_1_2_8_51_1 doi: 10.1002/aenm.201501773 – volume: 7 start-page: 1700736 year: 2017 ident: e_1_2_8_56_1 publication-title: Advance Energy Mater. – ident: e_1_2_8_9_1 – ident: e_1_2_8_6_1 doi: 10.1126/science.aan2301 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201302090 – ident: e_1_2_8_2_1 doi: 10.1038/srep00591 – ident: e_1_2_8_45_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_8_21_1 doi: 10.1021/ja411509g – ident: e_1_2_8_83_1 doi: 10.1038/ncomms15684 – ident: e_1_2_8_31_1 doi: 10.1038/nenergy.2017.38 – ident: e_1_2_8_3_1 doi: 10.1126/science.1228604 – ident: e_1_2_8_12_1 doi: 10.1038/s41560-018-0153-9 – ident: e_1_2_8_47_1 doi: 10.1002/adma.201401775 – ident: e_1_2_8_52_1 doi: 10.1016/j.solmat.2015.09.018 – ident: e_1_2_8_65_1 doi: 10.1021/acsenergylett.8b00121 – ident: e_1_2_8_71_1 doi: 10.1002/aenm.201700118 – ident: e_1_2_8_22_1 doi: 10.1038/nmat4014 – ident: e_1_2_8_4_1 doi: 10.1126/science.aaa9272 – volume: 350 start-page: 6263 year: 2015 ident: e_1_2_8_79_1 publication-title: Science – ident: e_1_2_8_41_1 doi: 10.1039/C8EE02172D – ident: e_1_2_8_5_1 doi: 10.1038/nenergy.2016.142 – volume: 363 start-page: 6426 year: 2019 ident: e_1_2_8_81_1 publication-title: Science – ident: e_1_2_8_54_1 doi: 10.1016/j.nanoen.2015.04.029 – ident: e_1_2_8_32_1 doi: 10.1063/1.4901510 – ident: e_1_2_8_34_1 doi: 10.1021/acs.chemrev.8b00539 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201301327 – ident: e_1_2_8_77_1 doi: 10.1038/ncomms10228 – ident: e_1_2_8_28_1 doi: 10.1002/aenm.201803587 – ident: e_1_2_8_33_1 doi: 10.1039/C5EE00645G – ident: e_1_2_8_13_1 doi: 10.1038/s41467-018-06317-8 – ident: e_1_2_8_49_1 doi: 10.1002/aenm.201700722 – ident: e_1_2_8_70_1 doi: 10.1039/C6EE03182J – ident: e_1_2_8_80_1 doi: 10.1016/j.joule.2018.10.008 – ident: e_1_2_8_53_1 doi: 10.1039/C8TA05234D – ident: e_1_2_8_66_1 doi: 10.1038/nenergy.2017.135 – ident: e_1_2_8_67_1 doi: 10.1038/s41467-018-05454-4 – ident: e_1_2_8_59_1 doi: 10.1126/science.1243167 – ident: e_1_2_8_7_1 doi: 10.1038/s41560-018-0200-6 – ident: e_1_2_8_39_1 doi: 10.1038/s41467-018-05760-x – ident: e_1_2_8_35_1 doi: 10.1039/C3EE43707H – ident: e_1_2_8_25_1 doi: 10.1039/C4EE01624F – ident: e_1_2_8_76_1 doi: 10.1021/acsenergylett.6b00060 – ident: e_1_2_8_68_1 doi: 10.1002/solr.201800296 – ident: e_1_2_8_55_1 doi: 10.1126/science.aap9282 – ident: e_1_2_8_82_1 doi: 10.1021/acs.jpclett.7b03054 – ident: e_1_2_8_24_1 doi: 10.1016/j.scib.2018.05.003 – ident: e_1_2_8_42_1 doi: 10.1002/adma.201604048 – ident: e_1_2_8_73_1 doi: 10.1002/aenm.201703392 – ident: e_1_2_8_63_1 doi: 10.1039/C5TA01343G – ident: e_1_2_8_10_1 doi: 10.1038/ncomms15684 – volume: 501 start-page: 7467 year: 2013 ident: e_1_2_8_17_1 publication-title: Nature – ident: e_1_2_8_37_1 doi: 10.1002/smll.201801154 – ident: e_1_2_8_23_1 doi: 10.1002/anie.201405183 – ident: e_1_2_8_57_1 doi: 10.1126/science.aad1015 – ident: e_1_2_8_58_1 doi: 10.1002/aenm.201703519 |
SSID | ssj0002013419 |
Score | 2.3307106 |
SecondaryResourceType | review_article |
Snippet | Lead halide perovskite owns charge diffusion length in micrometer range, which makes the planar‐structure solar cells possible. The simple and low‐temperature... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 93 |
SubjectTerms | Diffusion length Efficiency Energy conversion efficiency high efficiency Lead compounds Metal halides perovskite solar cells Perovskites Photovoltaic cells planar structure Solar cells |
Title | Recent Progress in High‐efficiency Planar‐structure Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12042 https://www.proquest.com/docview/2580907078 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfD3C5eRFFxOkdALwp1XZK2C3gZY2MIGwOtDC8lvwrC7GRVz_4J_o3-Jb6kXacggrcSkhxeX_K-CXmfh9A5uIkymoNyUzr1WMpCr6e58hT4hgXCMeoQG5NpOI7ZzTyY19D1Ohem4ENUF252Zbj92i5wIfPOBhpqzBO56hJwui3UsLm1lpxP2Ky6YYHQZmFltrocaBLPp0FY8UlJZzP8Z0TayMzvYtVFm9Eu2illIu4X_3UP1Uy2j6ag8SBG4Jl9UwU7FH7MsH2n8fn-YRwJwqZRYluGSKygrUDDvq4MnpnV8i2397T41h5l8cAsFvkBikfDu8HYK-sheIqBLPLgLCapYTxSqVag20KtielxEapQBF0ZpSal2qeRiEQgImkEEXAaI9Jw4qdUUHqI6tkyM0cI6yDiSgYhVUKyrtScitQPJdXQomCqJrpY2yRRJSzc1qxYJAXmmCTWfomzXxOdVX2fC0TGr71aa9Mm5TLJExL0fO6AQ0106cz9xwzJcDgh7uv4P51P0DZ4Ai-ed7VQHWxvTkFIvMi285c2avTv44f4C4N_xcc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5aD3oRRcVq1YBeFNZuk2y2OUppqdqWgi30tuRvQahbadWzj-Az-iROstutggjeljCbw2Qm880w-QahCzATbY0A5KZNGrCU8aBphA402IYjhGPUU2z0B7w7ZneTaFL05ri3MDk_RFlwc57h72vn4K4gXV-xhlr7RK4bBKxuHW0wTmLnl4QNyxILxDbHVubGywEoCUIa8ZKglNRXv_8MSSuc-R2t-nDT2UHbBU7EN_nB7qI1m-2hAYA8CBJ46Jqq4IrCjxl2jRqf7x_WU0G4d5TYzSGSc1jLuWFf5xYP7Xz2tnCFWvzgclncstPpYh-NO-1RqxsUAxECzQAXBZCMKWqZiHVqNAA3bgyxTSG55jJqqDi1KTUhjWUsIxkrK4mEdIwoK0iYUknpAapks8weImyiWGgVcaqlYg1lBJVpyBU1sKJhqyq6XOok0QVbuBtaMU1ynmOSOP0lXn9VdF7KPuccGb9K1ZaqTQo_WSQkaobCMw5V0ZVX9x87JO12n_ivo_8In6HN7qjfS3q3g_tjtAVWIfJerxqqwDnYE0AVL-rU284XAK_HdQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NSgMxEMdDbUG8iKJitWpALwprt8lutgEvpbbUj5aCrhQvS74WhLotrXr2EXxGn8TJ7narIIK3EEIOk5nMPyH5DUIn4CbKaA7KTenY8WKPOU3NlaPANywQzqMpYqM_YL3Qux75oxK6WPyFyfgQxYWbjYx0v7YBPtVxfQkNNeaZnDcION0KqlhMHvh0pfUQPobFHQskN4srs_XlQJU4LvVZQSgl9eUEP3PSUmh-l6tpvuluoPVcKOJWtrKbqGSSLTQAlQdZAg_tqyrYo_BTgu1Ljc_3D5OyIOxHSmwLEYkZ9GVw2NeZwUMzm7zN7U0tvrOHWdw24_F8G4Xdzn275-QVERzlgTBy4DQmqfF4oGKtQLkxrYlpcsEUE35DBrGJqXZpIALhi0AaQQScx4g0nLgxFZTuoHIyScwuwtoPuJI-o0pIryE1pyJ2maQaehRMVUWnC5tEKseF26oV4ygDHZPI2i9K7VdFx8XYaQbJ-HVUbWHaKA-UeUT8pstT5FAVnaXm_mOGqNPpk7S195_BR2h1eNmNbq8GN_toDZyCZ2-9aqgMy2AOQFW8yMPceb4A0JPIbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+High%E2%80%90efficiency+Planar%E2%80%90structure+Perovskite+Solar+Cells&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Zhao%2C+Yang&rft.au=Ye%2C+Qiufeng&rft.au=Chu%2C+Zema&rft.au=Gao%2C+Feng&rft.date=2019-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2575-0356&rft.volume=2&rft.issue=2&rft.spage=93&rft.epage=106&rft_id=info:doi/10.1002%2Feem2.12042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon |