Seizure Detection Algorithms in Critically Ill Children: A Comparative Evaluation

To evaluate the performance of commercially available seizure detection algorithms in critically ill children. Diagnostic accuracy comparison between commercially available seizure detection algorithms referenced to electroencephalography experts using quantitative electroencephalography trends. Mul...

Full description

Saved in:
Bibliographic Details
Published inCritical care medicine
Main Authors Din, Farah, Lalgudi Ganesan, Saptharishi, Akiyama, Tomoyuki, Stewart, Craig P, Ochi, Ayako, Otsubo, Hiroshi, Go, Cristina, Hahn, Cecil D
Format Journal Article
LanguageEnglish
Published United States 01.04.2020
Online AccessGet more information
ISSN1530-0293
DOI10.1097/CCM.0000000000004180

Cover

Loading…
Abstract To evaluate the performance of commercially available seizure detection algorithms in critically ill children. Diagnostic accuracy comparison between commercially available seizure detection algorithms referenced to electroencephalography experts using quantitative electroencephalography trends. Multispecialty quaternary children's hospital in Canada. Critically ill children undergoing electroencephalography monitoring. Continuous raw electroencephalography recordings (n = 19) were analyzed by a neurophysiologist to identify seizures. Those recordings were then converted to quantitative electroencephalography displays (amplitude-integrated electroencephalography and color density spectral array) and evaluated by six independent electroencephalography experts to determine the sensitivity and specificity of the amplitude-integrated electroencephalography and color density spectral array displays for seizure identification in comparison to expert interpretation of raw electroencephalography data. Those evaluations were then compared with four commercial seizure detection algorithms: ICTA-S (Stellate Harmonie Version 7; Natus Medical, San Carlos, CA), NB (Stellate Harmonie Version 7; Natus Medical), Persyst 11 (Persyst Development, Prescott, AZ), and Persyst 13 (Persyst Development) to determine sensitivity and specificity in comparison to amplitude-integrated electroencephalography and color density spectral array. Of the 379 seizures identified on raw electroencephalography, ICTA-S detected 36.9%, NB detected 92.3%, Persyst 11 detected 75.9%, and Persyst 13 detected 74.4%, whereas electroencephalography experts identified 76.5% of seizures using color density spectral array and 73.7% using amplitude-integrated electroencephalography. Daily false-positive rates averaged across all recordings were 4.7 with ICTA-S, 126.3 with NB, 5.1 with Persyst 11, 15.5 with Persyst 13, 1.7 with color density spectral array, and 1.5 with amplitude-integrated electroencephalography. Both Persyst 11 and Persyst 13 had sensitivity comparable to that of electroencephalography experts using amplitude-integrated electroencephalography and color density spectral array. Although Persyst 13 displayed the highest sensitivity for seizure count and seizure burden detected, Persyst 11 exhibited the best trade-off between sensitivity and false-positive rate among all seizure detection algorithms. Some commercially available seizure detection algorithms demonstrate performance for seizure detection that is comparable to that of electroencephalography experts using quantitative electroencephalography displays. These algorithms may have utility as early warning systems that prompt review of quantitative electroencephalography or raw electroencephalography tracings, potentially leading to more timely seizure identification in critically ill patients.
AbstractList To evaluate the performance of commercially available seizure detection algorithms in critically ill children. Diagnostic accuracy comparison between commercially available seizure detection algorithms referenced to electroencephalography experts using quantitative electroencephalography trends. Multispecialty quaternary children's hospital in Canada. Critically ill children undergoing electroencephalography monitoring. Continuous raw electroencephalography recordings (n = 19) were analyzed by a neurophysiologist to identify seizures. Those recordings were then converted to quantitative electroencephalography displays (amplitude-integrated electroencephalography and color density spectral array) and evaluated by six independent electroencephalography experts to determine the sensitivity and specificity of the amplitude-integrated electroencephalography and color density spectral array displays for seizure identification in comparison to expert interpretation of raw electroencephalography data. Those evaluations were then compared with four commercial seizure detection algorithms: ICTA-S (Stellate Harmonie Version 7; Natus Medical, San Carlos, CA), NB (Stellate Harmonie Version 7; Natus Medical), Persyst 11 (Persyst Development, Prescott, AZ), and Persyst 13 (Persyst Development) to determine sensitivity and specificity in comparison to amplitude-integrated electroencephalography and color density spectral array. Of the 379 seizures identified on raw electroencephalography, ICTA-S detected 36.9%, NB detected 92.3%, Persyst 11 detected 75.9%, and Persyst 13 detected 74.4%, whereas electroencephalography experts identified 76.5% of seizures using color density spectral array and 73.7% using amplitude-integrated electroencephalography. Daily false-positive rates averaged across all recordings were 4.7 with ICTA-S, 126.3 with NB, 5.1 with Persyst 11, 15.5 with Persyst 13, 1.7 with color density spectral array, and 1.5 with amplitude-integrated electroencephalography. Both Persyst 11 and Persyst 13 had sensitivity comparable to that of electroencephalography experts using amplitude-integrated electroencephalography and color density spectral array. Although Persyst 13 displayed the highest sensitivity for seizure count and seizure burden detected, Persyst 11 exhibited the best trade-off between sensitivity and false-positive rate among all seizure detection algorithms. Some commercially available seizure detection algorithms demonstrate performance for seizure detection that is comparable to that of electroencephalography experts using quantitative electroencephalography displays. These algorithms may have utility as early warning systems that prompt review of quantitative electroencephalography or raw electroencephalography tracings, potentially leading to more timely seizure identification in critically ill patients.
Author Akiyama, Tomoyuki
Stewart, Craig P
Lalgudi Ganesan, Saptharishi
Go, Cristina
Ochi, Ayako
Otsubo, Hiroshi
Din, Farah
Hahn, Cecil D
Author_xml – sequence: 1
  givenname: Farah
  surname: Din
  fullname: Din, Farah
  organization: Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
– sequence: 2
  givenname: Saptharishi
  surname: Lalgudi Ganesan
  fullname: Lalgudi Ganesan, Saptharishi
  organization: Department of Paediatrics, London Health Sciences Centre, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
– sequence: 3
  givenname: Tomoyuki
  surname: Akiyama
  fullname: Akiyama, Tomoyuki
  organization: Department of Child Neurology, Okayama University, Okayama, Japan
– sequence: 4
  givenname: Craig P
  surname: Stewart
  fullname: Stewart, Craig P
  organization: Department of Psychiatry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
– sequence: 5
  givenname: Ayako
  surname: Ochi
  fullname: Ochi, Ayako
  organization: Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
– sequence: 6
  givenname: Hiroshi
  surname: Otsubo
  fullname: Otsubo, Hiroshi
  organization: Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
– sequence: 7
  givenname: Cristina
  surname: Go
  fullname: Go, Cristina
  organization: Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
– sequence: 8
  givenname: Cecil D
  surname: Hahn
  fullname: Hahn, Cecil D
  organization: Program in Neurosciences & Mental Health, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31876526$$D View this record in MEDLINE/PubMed
BookMark eNpNj11LwzAYhYMo7kP_gUj-QOebNGla70qcOpiIqNcjSd-6SPpB2g3mr1dRwXNznpvzwJmR47ZrkZALBgsGhbrS-mEB_yJYDkdkymQKCfAinZDZMLwDMCFVekomKctVJnk2JU_P6D92EekNjuhG37W0DG9d9OO2Gahvqf5C70wIB7oKgeqtD1XE9pqWVHdNb6IZ_R7pcm_Cznzvz8hJbcKA5789J6-3yxd9n6wf71a6XCdOMAZJnqUg0Shg3CqRclYjYF6jlIJnAoytitw6C9apXBgrnSlczZlB4WqhCuRzcvnj7Xe2wWrTR9-YeNj8feOfyiFR3A
CitedBy_id crossref_primary_10_1097_WNP_0000000000001039
crossref_primary_10_1212_WNL_0000000000200267
crossref_primary_10_1155_2022_7100238
crossref_primary_10_1016_j_pediatrneurol_2022_12_016
crossref_primary_10_1016_j_seizure_2024_03_008
crossref_primary_10_1097_WNP_0000000000000868
crossref_primary_10_1111_epi_16812
crossref_primary_10_1097_WNP_0000000000000768
crossref_primary_10_3390_brainsci14090939
crossref_primary_10_3389_fped_2021_691764
crossref_primary_10_1097_MOP_0000000000001399
crossref_primary_10_1097_CCM_0000000000004483
crossref_primary_10_31083_j_jin2308150
crossref_primary_10_3389_fendo_2022_998675
crossref_primary_10_1007_s10309_021_00441_0
crossref_primary_10_1111_apa_15676
ContentType Journal Article
DBID NPM
DOI 10.1097/CCM.0000000000004180
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1530-0293
ExternalDocumentID 31876526
Genre Journal Article
GroupedDBID ---
.-D
.XZ
.Z2
01R
0R~
1J1
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6J9
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPPZ
ABPXF
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACOAL
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADGGA
ADHPY
AE3
AE6
AEBDS
AENEX
AFBFQ
AFDTB
AFEXH
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHOMT
AHQNM
AHQVU
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BOYCO
BQLVK
BYPQX
C45
CS3
DIWNM
DU5
E.X
EBS
EEVPB
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
L-C
L7B
N9A
NPM
N~7
N~B
O9-
OAG
OAH
OB4
OBH
ODMTH
ODZKP
OHH
OHYEH
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PONUX
RIG
RLZ
S4R
S4S
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YOJ
ZFV
ZY1
~9M
ID FETCH-LOGICAL-c4110-86305ea7012b74321fe0e8fe5542640abd98bcb0bc784ab5ca9cf21ae4cf479e2
IngestDate Mon Jul 21 06:03:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4110-86305ea7012b74321fe0e8fe5542640abd98bcb0bc784ab5ca9cf21ae4cf479e2
PMID 31876526
ParticipantIDs pubmed_primary_31876526
PublicationCentury 2000
PublicationDate 2020-April-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-April-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Critical care medicine
PublicationTitleAlternate Crit Care Med
PublicationYear 2020
SSID ssj0014573
Score 2.3990173
Snippet To evaluate the performance of commercially available seizure detection algorithms in critically ill children. Diagnostic accuracy comparison between...
SourceID pubmed
SourceType Index Database
Title Seizure Detection Algorithms in Critically Ill Children: A Comparative Evaluation
URI https://www.ncbi.nlm.nih.gov/pubmed/31876526
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5cQLyI-y5z8FaiSTppEm-l1g0riBW8yZtkpg2mC1IP9df7JjNZqAtqD6HMQAj5vjzevJn3fYQcN5TWJIfQEh5TotqOYwXgMMsVUsYcbLAz15LOXePqkd08eU_lcdusu2TCT6L3L_tK_oMqjiGuqkv2D8gWN8UB_I_44hURxuuvMH4QybvaADgXE6Etv5tpb4TL_f4gO-aa-xik09p1mmoZY2WiYrrRS93vdqH5XU1WCxuE7HjY7C78uVYfuKiWlG8h7b3FSe0SMIKa0iqMJ33ldNhPCnK9JFMYZFlrdzQYTd9eiqkHVcvTXUStV0h6pv3MlCVcu3KaReShFAdd7X_4KVAbAeBWRwtImh9ztK1TBbvxIAMPQ4_f8HRz_c-zM_LZ-dQ8mceFhHJGVeUcs83EPL-e91OG_ulXj7NMlvJbzKw8sgyku0pWzNKBNjUP1sicGK6TpY6BZYPcGzrQgg60pANNhrSkA0U60JwOZ7RJK2SgJRk2yeNFu9u6soxjhhUxzOOsoIHhW4CPWQfH1NB1pLBFIAXmjJj42sDjMOARt3nkBwy4F0EYSdcBwSLJ_FC4W2RhOBqKHUIjjp-wkv4JHGAOhCETIVfqbzHEUnr1XbKtX8bzWMuiPOevae_bmX2yXFLlgCxK_A7FISZ1E36UAfMBqrhKRQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seizure+Detection+Algorithms+in+Critically+Ill+Children%3A+A+Comparative+Evaluation&rft.jtitle=Critical+care+medicine&rft.au=Din%2C+Farah&rft.au=Lalgudi+Ganesan%2C+Saptharishi&rft.au=Akiyama%2C+Tomoyuki&rft.au=Stewart%2C+Craig+P&rft.date=2020-04-01&rft.eissn=1530-0293&rft_id=info:doi/10.1097%2FCCM.0000000000004180&rft_id=info%3Apmid%2F31876526&rft_id=info%3Apmid%2F31876526&rft.externalDocID=31876526