Equation governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise
•An exact low-dimensional partial differential equation with analytical coefficients governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.•The remarkable demonstration on the existence and eligibility o...
Saved in:
Published in | Theoretical and applied mechanics letters Vol. 13; no. 3; p. 100436 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An exact low-dimensional partial differential equation with analytical coefficients governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.•The remarkable demonstration on the existence and eligibility of the globally-evolving-based generalized density evolution equation (GE-GDEE) is provided for the case that the original high-dimensional stochastic differential system itself is non-Markovian.•The insights for the physical-mechanism-informed determination of the intrinsic drift coefficient of GE-GDEE is discussed.
Stochastic fractional differential systems are important and useful in the mathematics, physics, and engineering fields. However, the determination of their probabilistic responses is difficult due to their non-Markovian property. The recently developed globally-evolving-based generalized density evolution equation (GE-GDEE), which is a unified partial differential equation (PDE) governing the transient probability density function (PDF) of a generic path-continuous process, including non-Markovian ones, provides a feasible tool to solve this problem. In the paper, the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established. In particular, it is proved that in the GE-GDEE corresponding to the state-quantities of interest, the intrinsic drift coefficient is a time-varying linear function, and can be analytically determined. In this sense, an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original high-dimensional linear fractional differential system can be constructed such that their transient PDFs are identical. Specifically, for a multi-dimensional linear fractional differential system, if only one or two quantities are of interest, GE-GDEE is only in one or two dimensions, and the surrogate system would be a one- or two-dimensional linear integer-order system. Several examples are studied to assess the merit of the proposed method. Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems, the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian, and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems. |
---|---|
AbstractList | Stochastic fractional differential systems are important and useful in the mathematics, physics, and engineering fields. However, the determination of their probabilistic responses is difficult due to their non-Markovian property. The recently developed globally-evolving-based generalized density evolution equation (GE-GDEE), which is a unified partial differential equation (PDE) governing the transient probability density function (PDF) of a generic path-continuous process, including non-Markovian ones, provides a feasible tool to solve this problem. In the paper, the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established. In particular, it is proved that in the GE-GDEE corresponding to the state-quantities of interest, the intrinsic drift coefficient is a time-varying linear function, and can be analytically determined. In this sense, an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original high-dimensional linear fractional differential system can be constructed such that their transient PDFs are identical. Specifically, for a multi-dimensional linear fractional differential system, if only one or two quantities are of interest, GE-GDEE is only in one or two dimensions, and the surrogate system would be a one- or two-dimensional linear integer-order system. Several examples are studied to assess the merit of the proposed method. Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems, the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian, and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems. •An exact low-dimensional partial differential equation with analytical coefficients governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.•The remarkable demonstration on the existence and eligibility of the globally-evolving-based generalized density evolution equation (GE-GDEE) is provided for the case that the original high-dimensional stochastic differential system itself is non-Markovian.•The insights for the physical-mechanism-informed determination of the intrinsic drift coefficient of GE-GDEE is discussed. Stochastic fractional differential systems are important and useful in the mathematics, physics, and engineering fields. However, the determination of their probabilistic responses is difficult due to their non-Markovian property. The recently developed globally-evolving-based generalized density evolution equation (GE-GDEE), which is a unified partial differential equation (PDE) governing the transient probability density function (PDF) of a generic path-continuous process, including non-Markovian ones, provides a feasible tool to solve this problem. In the paper, the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established. In particular, it is proved that in the GE-GDEE corresponding to the state-quantities of interest, the intrinsic drift coefficient is a time-varying linear function, and can be analytically determined. In this sense, an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original high-dimensional linear fractional differential system can be constructed such that their transient PDFs are identical. Specifically, for a multi-dimensional linear fractional differential system, if only one or two quantities are of interest, GE-GDEE is only in one or two dimensions, and the surrogate system would be a one- or two-dimensional linear integer-order system. Several examples are studied to assess the merit of the proposed method. Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems, the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian, and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems. |
ArticleNumber | 100436 |
Author | Luo, Yi Spanos, Pol D. Lyu, Meng-Ze Chen, Jian-Bing |
Author_xml | – sequence: 1 givenname: Yi surname: Luo fullname: Luo, Yi organization: George R. Brown School of Engineering, Rice University, Houston 77005, TX, USA – sequence: 2 givenname: Meng-Ze orcidid: 0000-0002-8932-2617 surname: Lyu fullname: Lyu, Meng-Ze email: lyumz@tongji.edu.cn organization: College of Civil Engineering, Tongji University, Shanghai 200092, China – sequence: 3 givenname: Jian-Bing surname: Chen fullname: Chen, Jian-Bing organization: State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China – sequence: 4 givenname: Pol D. surname: Spanos fullname: Spanos, Pol D. organization: George R. Brown School of Engineering, Rice University, Houston 77005, TX, USA |
BookMark | eNp9UTtu3TAQVOEAsR1fIBUvoBf-xCcCaQzDdgwYSJPUBEWunleQSIeknvGOkRvkLDlZJCtpUpjNgrM7g92Zi-osxABV9ZHRHaNMfRp2xU7jjlMuFoBKoc6qc051U1Mh9fvqKueBLq9hSmhxXv28_THbgjH8_nWIR0gBw4GUJyDPKXa2wxHLiXgIea1wjOO8DpPYk2keC9Yep7UZgx3JiAFsIn2yrmyIx76HBKHg8smnXGDKJM_dAK6QEsm9nXNGG8jLExYgIWKGD9W73o4Zrv7Wy-r73e23my_149f7h5vrx9pJRkvdN45zaTkVutu3grO92nvdKNVTJVTbWsWl72UHndQaGq0Fd1xoZhvp27Zx4rJ62HR9tIN5TjjZdDLRonkFYjoYmwq6EUzjqW-FF1JIKVXHrOO0A8H3vuFLo1202k3LpZhzgt44LK-2lmRxNIyaNR0zmDUds6ZjtnQWKv-P-m-VN0mfNxIsBh0RkskOITjwmBZrlwvwLfofByiwjw |
CitedBy_id | crossref_primary_10_1016_j_engstruct_2024_118210 crossref_primary_10_1016_j_engstruct_2024_118685 crossref_primary_10_1007_s10409_023_22471_x crossref_primary_10_1016_j_cma_2023_116443 crossref_primary_10_1007_s00707_023_03666_4 crossref_primary_10_1007_s11071_024_10831_4 crossref_primary_10_3390_agronomy14010184 crossref_primary_10_1016_j_jcp_2025_113929 crossref_primary_10_3934_math_2024472 crossref_primary_10_1007_s11012_025_01949_9 crossref_primary_10_1007_s11071_024_10664_1 crossref_primary_10_1007_s11071_024_09592_x crossref_primary_10_1016_j_ymssp_2025_112333 crossref_primary_10_1016_j_ymssp_2024_111683 crossref_primary_10_1016_j_ymssp_2025_112485 |
Cites_doi | 10.1016/j.probengmech.2014.07.001 10.1137/1106001 10.1111/j.1365-246X.1967.tb02303.x 10.1016/j.ijnonlinmec.2015.11.010 10.1016/j.probengmech.2022.103228 10.1061/(ASCE)0733-9399(1997)123:3(290) 10.1016/j.probengmech.2020.103023 10.1177/1077546313486283 10.1007/s11071-009-9543-7 10.1061/(ASCE)EM.1943-7889.0001937 10.1016/j.ymssp.2021.108024 10.1016/j.soildyn.2010.01.013 10.1061/AJRUA6.0001229 10.1016/j.probengmech.2022.103197 10.1016/S0045-7825(98)00108-X 10.1016/j.ijnonlinmec.2022.104170 10.1016/j.cnsns.2022.106392 10.1016/j.strusafe.2022.102233 10.1007/s11071-004-3764-6 10.1007/s11071-015-2482-6 10.1137/1103006 10.1090/S0002-9947-1953-0053428-1 10.1016/j.amc.2006.08.104 10.1016/j.cnsns.2010.05.027 10.1016/j.probengmech.2011.08.017 10.1098/rspa.2022.0356 10.1006/jsvi.2001.3682 10.1016/j.strusafe.2020.101975 10.1007/s11071-021-07014-w 10.2298/TSCI1904131H 10.1115/1.4034460 10.1007/s11071-013-1002-9 10.1016/j.camwa.2009.08.019 10.1016/j.ijnonlinmec.2022.104247 10.1016/j.probengmech.2021.103119 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.taml.2023.100436 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_doaj_org_article_5d0d83d3434446b1ac20be327d52d838 10_1016_j_taml_2023_100436 S2095034923000077 |
GroupedDBID | 0R~ 0SF 4.4 457 5VR 5VS 6I. 92E 92I 92Q 93N AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFTF ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CCEZO CCVFK CHBEP CW9 EBS EJD FA0 FDB GROUPED_DOAJ IPNFZ M41 NCXOZ O9- OK1 RIG RNS ROL SSZ TCJ TGP Y7S -SA -S~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CAJEA CITATION Q-- U1G U5K |
ID | FETCH-LOGICAL-c410t-f5c224a2039b78321767d9566f063688a624df4beb499e59932c2391a54d885c3 |
IEDL.DBID | DOA |
ISSN | 2095-0349 |
IngestDate | Wed Aug 27 01:24:21 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Tue Jul 01 00:33:06 EDT 2025 Tue Jul 25 20:55:29 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Analytical intrinsic drift coefficient Dimension reduction Linear fractional differential system Non-Markovian system Globally-evolving-based generalized density evolution equation (GE-GDEE) |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-f5c224a2039b78321767d9566f063688a624df4beb499e59932c2391a54d885c3 |
ORCID | 0000-0002-8932-2617 |
OpenAccessLink | https://doaj.org/article/5d0d83d3434446b1ac20be327d52d838 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5d0d83d3434446b1ac20be327d52d838 crossref_citationtrail_10_1016_j_taml_2023_100436 crossref_primary_10_1016_j_taml_2023_100436 elsevier_sciencedirect_doi_10_1016_j_taml_2023_100436 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | Theoretical and applied mechanics letters |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Luo, Spanos, Chen (bib0029) 2022; 147 Luo, Chen, Spanos (bib0032) 2022; 67 West, Bologna, Grigolini (bib0043) 2003 Kong, Zhang, Zhang (bib0019) 2022; 110 Spanos, Zhang (bib0020) 2022; 146 He (bib0004) 1998; 167 He, Ji (bib0008) 2019; 23 Sun, Chen (bib0033) 2022; 8 Guo, Pu, Huang (bib0044) 2015 Lyu, Chen (bib0030) 2021; 63 Xu, Li, Liu (bib0010) 2013; 74 Kazem (bib0014) 2013; 16 Gardiner (bib0040) 2004 Dobrushin (bib0038) 1958; 3 Spanos, Evangelatos (bib0017) 2010; 30 Miller, Ross (bib0042) 1993 Agrawal (bib0005) 2004; 38 Paola, Failla, Pirrotta (bib0013) 2012; 28 Spanos, Zeldin (bib0009) 1997; 123 Bonilla, Rivero, Trujillo (bib0041) 2007; 187 Li, Chen, Podlubny (bib0007) 2010; 59 Chen, Lyu (bib0031) 2022; 478 Pirrotta, Kougioumtzoglou, Matteo (bib0015) 2021; 147 Dynkin (bib0036) 1952; 16 Huang, Jin, Lim (bib0012) 2010; 59 Kong, Han, Zhang (bib0018) 2022; 107 Machado, Kiryakova, Mainardi (bib0002) 2011; 16 Xu, Li, Liu (bib0027) 2016; 83 Kinney (bib0037) 1953; 74 Seregin (bib0039) 1961; 6 Kougioumtzoglou, Spanos (bib0022) 2016; 80 Kong, Spanos (bib0024) 2020; 59 Caputo (bib0035) 1967; 13 Kong, Zhang, Zhang (bib0025) 2022; 162 Spanos, Matteo, Cheng (bib0026) 2016; 83 Lyu, Chen (bib0028) 2022; 98 Santos, Brudastova, Kougioumtzoglou (bib0023) 2020; 86 Kilbas, Srivastava, Trujillo (bib0001) 2006 Xu, Wang, Liu (bib0006) 2015; 21 Agrawal (bib0011) 2001; 247 Han, Kloeden (bib0034) 2017 Su, Xian (bib0016) 2022; 68 Matteo, Kougioumtzoglou, Pirrotta (bib0021) 2014; 38 Baleanu, Diethelm, Scalas (bib0003) 2012 Bonilla (10.1016/j.taml.2023.100436_bib0041) 2007; 187 West (10.1016/j.taml.2023.100436_bib0043) 2003 Spanos (10.1016/j.taml.2023.100436_bib0020) 2022; 146 Lyu (10.1016/j.taml.2023.100436_bib0028) 2022; 98 Kougioumtzoglou (10.1016/j.taml.2023.100436_bib0022) 2016; 80 Lyu (10.1016/j.taml.2023.100436_bib0030) 2021; 63 Su (10.1016/j.taml.2023.100436_bib0016) 2022; 68 Dynkin (10.1016/j.taml.2023.100436_sbref0036) 1952; 16 Baleanu (10.1016/j.taml.2023.100436_bib0003) 2012 Kong (10.1016/j.taml.2023.100436_bib0019) 2022; 110 Guo (10.1016/j.taml.2023.100436_bib0044) 2015 Huang (10.1016/j.taml.2023.100436_bib0012) 2010; 59 Luo (10.1016/j.taml.2023.100436_bib0029) 2022; 147 Xu (10.1016/j.taml.2023.100436_bib0027) 2016; 83 Machado (10.1016/j.taml.2023.100436_bib0002) 2011; 16 Dobrushin (10.1016/j.taml.2023.100436_sbref0038) 1958; 3 Agrawal (10.1016/j.taml.2023.100436_bib0005) 2004; 38 Santos (10.1016/j.taml.2023.100436_bib0023) 2020; 86 Chen (10.1016/j.taml.2023.100436_bib0031) 2022; 478 Agrawal (10.1016/j.taml.2023.100436_bib0011) 2001; 247 Pirrotta (10.1016/j.taml.2023.100436_bib0015) 2021; 147 Kinney (10.1016/j.taml.2023.100436_bib0037) 1953; 74 Spanos (10.1016/j.taml.2023.100436_bib0026) 2016; 83 Gardiner (10.1016/j.taml.2023.100436_bib0040) 2004 He (10.1016/j.taml.2023.100436_bib0004) 1998; 167 Spanos (10.1016/j.taml.2023.100436_bib0009) 1997; 123 Li (10.1016/j.taml.2023.100436_bib0007) 2010; 59 Xu (10.1016/j.taml.2023.100436_bib0010) 2013; 74 Kazem (10.1016/j.taml.2023.100436_bib0014) 2013; 16 Han (10.1016/j.taml.2023.100436_bib0034) 2017 Kong (10.1016/j.taml.2023.100436_bib0025) 2022; 162 Miller (10.1016/j.taml.2023.100436_bib0042) 1993 Kilbas (10.1016/j.taml.2023.100436_bib0001) 2006 Paola (10.1016/j.taml.2023.100436_bib0013) 2012; 28 Caputo (10.1016/j.taml.2023.100436_bib0035) 1967; 13 Spanos (10.1016/j.taml.2023.100436_bib0017) 2010; 30 Seregin (10.1016/j.taml.2023.100436_sbref0039) 1961; 6 Xu (10.1016/j.taml.2023.100436_bib0006) 2015; 21 Matteo (10.1016/j.taml.2023.100436_bib0021) 2014; 38 Sun (10.1016/j.taml.2023.100436_bib0033) 2022; 8 Kong (10.1016/j.taml.2023.100436_bib0018) 2022; 107 Kong (10.1016/j.taml.2023.100436_bib0024) 2020; 59 Luo (10.1016/j.taml.2023.100436_bib0032) 2022; 67 He (10.1016/j.taml.2023.100436_bib0008) 2019; 23 |
References_xml | – year: 2012 ident: bib0003 article-title: Fractional Calculus: Models and Numerical Methods – volume: 28 start-page: 85 year: 2012 end-page: 90 ident: bib0013 article-title: Stationary and non-stationary stochastic response of linear fractional viscoelastic systems publication-title: Probab. Eng. Mech. – volume: 83 start-page: 121003 year: 2016 ident: bib0026 article-title: Galerkin scheme-based determination of survival probability of oscillators with fractional derivative elements publication-title: J. Appl. Mech. – volume: 3 start-page: 92 year: 1958 end-page: 93 ident: bib0038 article-title: The continuity condition for the sample functions of a martingale publication-title: Theory Probab. Appl. – year: 2004 ident: bib0040 article-title: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences – volume: 16 start-page: 1140 year: 2011 end-page: 1153 ident: bib0002 article-title: Recent history of fractional calculus publication-title: Commun. Nonlinear Sci. Numer.Simul. – volume: 80 start-page: 66 year: 2016 end-page: 75 ident: bib0022 article-title: Harmonic wavelets based response evolutionary power spectrum determination of linear and non-linear oscillators with fractional derivative element publication-title: Int. J. Non-Linear Mech. – year: 2017 ident: bib0034 article-title: Random Ordinary Differential Equations and Their Numerical Solution – volume: 187 start-page: 68 year: 2007 end-page: 78 ident: bib0041 article-title: On systems of linear fractional differential equations with constant coefficients publication-title: Appl. Math. Comput. – year: 2015 ident: bib0044 article-title: Fractional Partial Differential Equations and Their Numerical Solutions – volume: 30 start-page: 811 year: 2010 end-page: 821 ident: bib0017 article-title: Response of a non-linear system with restoring forces governed by fractional derivatives - time domain simulation and statistical linearization solution publication-title: Soil Dyn. Earthq. Eng. – volume: 167 start-page: 57 year: 1998 end-page: 68 ident: bib0004 article-title: Approximate analytical solution for seepage flow with fractional derivatives in porous media publication-title: Comput. Methods Appl. Mech.Eng. – volume: 98 start-page: 102233 year: 2022 ident: bib0028 article-title: A unified formalism of the GE-GDEE for generic continuous responses and first-passage reliability analysis of multi-dimensional nonlinear systems subjected to non-white-noise excitations publication-title: Struct. Saf. – volume: 8 start-page: 04022012 year: 2022 ident: bib0033 article-title: Physically driven exact dimension-reduction of a class of nonlinear multi-dimensional systems subjected to additive white noise publication-title: J. Risk Uncertainty Eng. Syst. A – volume: 110 start-page: 106392 year: 2022 ident: bib0019 article-title: Stationary response determination of MDOF fractional nonlinear systems subjected to combined colored noise and periodic excitation publication-title: Commun. Nonlinear Sci. Numer.Simul. – volume: 86 start-page: 101975 year: 2020 ident: bib0023 article-title: Spectral identification of nonlinear multi-degree-of-freedom structural systems with fractional derivative terms based on incomplete non-stationary data publication-title: Struct. Saf. – volume: 13 start-page: 529 year: 1967 end-page: 539 ident: bib0035 article-title: Linear model of dissipation whose q is almost frequency independent – II publication-title: Geophys. J. Int. – year: 2006 ident: bib0001 article-title: Theory and Applications of Fractional Differential Equations – volume: 38 start-page: 323 year: 2004 end-page: 337 ident: bib0005 article-title: A general formulation and solution scheme for fractional optimal control problems publication-title: Nonlinear Dyn. – volume: 74 start-page: 745 year: 2013 end-page: 753 ident: bib0010 article-title: Responses of duffing oscillator with fractional damping and random phase publication-title: Nonlinear Dyn. – volume: 68 start-page: 103228 year: 2022 ident: bib0016 article-title: Nonstationary random vibration analysis of fractionally-damped systems by numerical explicit time-domain method publication-title: Probab. Eng. Mech. – volume: 123 start-page: 290 year: 1997 end-page: 292 ident: bib0009 article-title: Random vibration of systems with frequency-dependent parameters or fractional derivatives publication-title: J. Eng. Mech. – volume: 67 start-page: 103197 year: 2022 ident: bib0032 article-title: Determination of monopile offshore structure response to stochastic wave loads via analog filter approximation and GV-GDEE procedure publication-title: Probab. Eng. Mech. – volume: 83 start-page: 2311 year: 2016 end-page: 2321 ident: bib0027 article-title: A method to stochastic dynamical systems with strong nonlinearity and fractional damping publication-title: Nonlinear Dyn. – volume: 478 start-page: 20220356 year: 2022 ident: bib0031 article-title: Globally-evolving-based generalized density evolution equation for nonlinear systems involving randomness from both system parameters and excitations publication-title: Proc. R. Soc. A – volume: 23 start-page: 2131 year: 2019 end-page: 2133 ident: bib0008 article-title: Two-scale mathematics and fractional calculus for thermodynamics publication-title: Therm. Sci. – volume: 147 start-page: 104247 year: 2022 ident: bib0029 article-title: Stochastic response determination of multi-dimensional nonlinear systems endowed with fractional derivative elements by the GE-GDEE publication-title: Int. J. Non-Linear Mech. – year: 2003 ident: bib0043 article-title: Physics of Fractal Operators – volume: 6 start-page: 1 year: 1961 end-page: 26 ident: bib0039 article-title: Continuity conditions for stochastic processes publication-title: Theory Probab. Appl. – volume: 16 start-page: 3 year: 2013 end-page: 11 ident: bib0014 article-title: Exact solution of some linear fractional differential equations by laplace transform publication-title: Int. J. Nonlinear Sci. – volume: 107 start-page: 375 year: 2022 end-page: 390 ident: bib0018 article-title: Approximate stochastic response of hysteretic system with fractional element and subjected to combined stochastic and periodic excitation publication-title: Nonlinear Dyn. – volume: 146 start-page: 104170 year: 2022 ident: bib0020 article-title: Nonstationary stochastic response determination of nonlinear oscillators endowed with fractional derivatives publication-title: Int. J. Non-Linear Mech. – volume: 59 start-page: 103023 year: 2020 ident: bib0024 article-title: Response spectral density determination for nonlinear systems endowed with fractional derivatives and subject to colored noise publication-title: Probab. Eng. Mech. – volume: 63 start-page: 103119 year: 2021 ident: bib0030 article-title: First-passage reliability of high-dimensional nonlinear systems under additive excitation by the ensemble-evolving-based generalized density evolution equation publication-title: Probab. Eng. Mech. – year: 1993 ident: bib0042 article-title: An Introduction to the Fractional Calculus and Fractional Differential Equations – volume: 59 start-page: 339 year: 2010 end-page: 349 ident: bib0012 article-title: Statistical analysis for stochastic systems including fractional derivatives publication-title: Nonlinear Dyn. – volume: 74 start-page: 280 year: 1953 end-page: 302 ident: bib0037 article-title: Continuity properties of sample functions of Markov processes publication-title: Trans. Am. Math. Soc. – volume: 162 start-page: 108024 year: 2022 ident: bib0025 article-title: Non-stationary response power spectrum determination of linear/non-linear systems endowed with fractional derivative elements via harmonic wavelet publication-title: Mech. Syst. Signal Process. – volume: 16 start-page: 563 year: 1952 end-page: 572 ident: bib0036 article-title: The criterion for continuity and absence of discontinuities of the second kind for the trajectories of a Markov random process publication-title: Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya – volume: 147 start-page: 04021031 year: 2021 ident: bib0015 article-title: Deterministic and random vibration of linear systems with singular parameter matrices and fractional derivative terms publication-title: J. Eng. Mech. – volume: 59 start-page: 1810 year: 2010 end-page: 1821 ident: bib0007 article-title: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability publication-title: Comput. Math. Appl. – volume: 38 start-page: 127 year: 2014 end-page: 135 ident: bib0021 article-title: Stochastic response determination of nonlinear oscillators with fractional derivatives elements via the wiener path integral publication-title: Probab. Eng. Mech. – volume: 247 start-page: 927 year: 2001 end-page: 938 ident: bib0011 article-title: Stochastic analysis of dynamic systems containing fractional derivatives publication-title: J. Sound Vib. – volume: 21 start-page: 435 year: 2015 end-page: 448 ident: bib0006 article-title: Sliding mode control of a class of fractional chaotic systems in the presence of parameter perturbations publication-title: J. Vib. Control – volume: 38 start-page: 127 year: 2014 ident: 10.1016/j.taml.2023.100436_bib0021 article-title: Stochastic response determination of nonlinear oscillators with fractional derivatives elements via the wiener path integral publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2014.07.001 – volume: 6 start-page: 1 year: 1961 ident: 10.1016/j.taml.2023.100436_sbref0039 article-title: Continuity conditions for stochastic processes publication-title: Theory Probab. Appl. doi: 10.1137/1106001 – volume: 16 start-page: 3 year: 2013 ident: 10.1016/j.taml.2023.100436_bib0014 article-title: Exact solution of some linear fractional differential equations by laplace transform publication-title: Int. J. Nonlinear Sci. – year: 2015 ident: 10.1016/j.taml.2023.100436_bib0044 – year: 2004 ident: 10.1016/j.taml.2023.100436_bib0040 – volume: 13 start-page: 529 year: 1967 ident: 10.1016/j.taml.2023.100436_bib0035 article-title: Linear model of dissipation whose q is almost frequency independent – II publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1967.tb02303.x – volume: 80 start-page: 66 year: 2016 ident: 10.1016/j.taml.2023.100436_bib0022 article-title: Harmonic wavelets based response evolutionary power spectrum determination of linear and non-linear oscillators with fractional derivative element publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2015.11.010 – volume: 68 start-page: 103228 year: 2022 ident: 10.1016/j.taml.2023.100436_bib0016 article-title: Nonstationary random vibration analysis of fractionally-damped systems by numerical explicit time-domain method publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2022.103228 – year: 2017 ident: 10.1016/j.taml.2023.100436_bib0034 – volume: 123 start-page: 290 year: 1997 ident: 10.1016/j.taml.2023.100436_bib0009 article-title: Random vibration of systems with frequency-dependent parameters or fractional derivatives publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1997)123:3(290) – volume: 59 start-page: 103023 year: 2020 ident: 10.1016/j.taml.2023.100436_bib0024 article-title: Response spectral density determination for nonlinear systems endowed with fractional derivatives and subject to colored noise publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2020.103023 – volume: 21 start-page: 435 year: 2015 ident: 10.1016/j.taml.2023.100436_bib0006 article-title: Sliding mode control of a class of fractional chaotic systems in the presence of parameter perturbations publication-title: J. Vib. Control doi: 10.1177/1077546313486283 – volume: 59 start-page: 339 year: 2010 ident: 10.1016/j.taml.2023.100436_bib0012 article-title: Statistical analysis for stochastic systems including fractional derivatives publication-title: Nonlinear Dyn. doi: 10.1007/s11071-009-9543-7 – volume: 147 start-page: 04021031 year: 2021 ident: 10.1016/j.taml.2023.100436_bib0015 article-title: Deterministic and random vibration of linear systems with singular parameter matrices and fractional derivative terms publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001937 – volume: 162 start-page: 108024 year: 2022 ident: 10.1016/j.taml.2023.100436_bib0025 article-title: Non-stationary response power spectrum determination of linear/non-linear systems endowed with fractional derivative elements via harmonic wavelet publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108024 – year: 1993 ident: 10.1016/j.taml.2023.100436_bib0042 – volume: 30 start-page: 811 year: 2010 ident: 10.1016/j.taml.2023.100436_bib0017 article-title: Response of a non-linear system with restoring forces governed by fractional derivatives - time domain simulation and statistical linearization solution publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2010.01.013 – volume: 8 start-page: 04022012 year: 2022 ident: 10.1016/j.taml.2023.100436_bib0033 article-title: Physically driven exact dimension-reduction of a class of nonlinear multi-dimensional systems subjected to additive white noise publication-title: J. Risk Uncertainty Eng. Syst. A doi: 10.1061/AJRUA6.0001229 – volume: 67 start-page: 103197 year: 2022 ident: 10.1016/j.taml.2023.100436_bib0032 article-title: Determination of monopile offshore structure response to stochastic wave loads via analog filter approximation and GV-GDEE procedure publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2022.103197 – volume: 167 start-page: 57 year: 1998 ident: 10.1016/j.taml.2023.100436_bib0004 article-title: Approximate analytical solution for seepage flow with fractional derivatives in porous media publication-title: Comput. Methods Appl. Mech.Eng. doi: 10.1016/S0045-7825(98)00108-X – volume: 146 start-page: 104170 year: 2022 ident: 10.1016/j.taml.2023.100436_bib0020 article-title: Nonstationary stochastic response determination of nonlinear oscillators endowed with fractional derivatives publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2022.104170 – volume: 110 start-page: 106392 year: 2022 ident: 10.1016/j.taml.2023.100436_bib0019 article-title: Stationary response determination of MDOF fractional nonlinear systems subjected to combined colored noise and periodic excitation publication-title: Commun. Nonlinear Sci. Numer.Simul. doi: 10.1016/j.cnsns.2022.106392 – volume: 98 start-page: 102233 year: 2022 ident: 10.1016/j.taml.2023.100436_bib0028 article-title: A unified formalism of the GE-GDEE for generic continuous responses and first-passage reliability analysis of multi-dimensional nonlinear systems subjected to non-white-noise excitations publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2022.102233 – volume: 38 start-page: 323 year: 2004 ident: 10.1016/j.taml.2023.100436_bib0005 article-title: A general formulation and solution scheme for fractional optimal control problems publication-title: Nonlinear Dyn. doi: 10.1007/s11071-004-3764-6 – volume: 83 start-page: 2311 year: 2016 ident: 10.1016/j.taml.2023.100436_bib0027 article-title: A method to stochastic dynamical systems with strong nonlinearity and fractional damping publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2482-6 – volume: 3 start-page: 92 year: 1958 ident: 10.1016/j.taml.2023.100436_sbref0038 article-title: The continuity condition for the sample functions of a martingale publication-title: Theory Probab. Appl. doi: 10.1137/1103006 – volume: 74 start-page: 280 year: 1953 ident: 10.1016/j.taml.2023.100436_bib0037 article-title: Continuity properties of sample functions of Markov processes publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1953-0053428-1 – year: 2006 ident: 10.1016/j.taml.2023.100436_bib0001 – volume: 187 start-page: 68 year: 2007 ident: 10.1016/j.taml.2023.100436_bib0041 article-title: On systems of linear fractional differential equations with constant coefficients publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.08.104 – year: 2012 ident: 10.1016/j.taml.2023.100436_bib0003 – volume: 16 start-page: 1140 year: 2011 ident: 10.1016/j.taml.2023.100436_bib0002 article-title: Recent history of fractional calculus publication-title: Commun. Nonlinear Sci. Numer.Simul. doi: 10.1016/j.cnsns.2010.05.027 – volume: 28 start-page: 85 year: 2012 ident: 10.1016/j.taml.2023.100436_bib0013 article-title: Stationary and non-stationary stochastic response of linear fractional viscoelastic systems publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2011.08.017 – volume: 478 start-page: 20220356 year: 2022 ident: 10.1016/j.taml.2023.100436_bib0031 article-title: Globally-evolving-based generalized density evolution equation for nonlinear systems involving randomness from both system parameters and excitations publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2022.0356 – volume: 247 start-page: 927 year: 2001 ident: 10.1016/j.taml.2023.100436_bib0011 article-title: Stochastic analysis of dynamic systems containing fractional derivatives publication-title: J. Sound Vib. doi: 10.1006/jsvi.2001.3682 – volume: 86 start-page: 101975 year: 2020 ident: 10.1016/j.taml.2023.100436_bib0023 article-title: Spectral identification of nonlinear multi-degree-of-freedom structural systems with fractional derivative terms based on incomplete non-stationary data publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2020.101975 – volume: 107 start-page: 375 year: 2022 ident: 10.1016/j.taml.2023.100436_bib0018 article-title: Approximate stochastic response of hysteretic system with fractional element and subjected to combined stochastic and periodic excitation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-07014-w – volume: 16 start-page: 563 year: 1952 ident: 10.1016/j.taml.2023.100436_sbref0036 article-title: The criterion for continuity and absence of discontinuities of the second kind for the trajectories of a Markov random process publication-title: Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya – volume: 23 start-page: 2131 year: 2019 ident: 10.1016/j.taml.2023.100436_bib0008 article-title: Two-scale mathematics and fractional calculus for thermodynamics publication-title: Therm. Sci. doi: 10.2298/TSCI1904131H – year: 2003 ident: 10.1016/j.taml.2023.100436_bib0043 – volume: 83 start-page: 121003 year: 2016 ident: 10.1016/j.taml.2023.100436_bib0026 article-title: Galerkin scheme-based determination of survival probability of oscillators with fractional derivative elements publication-title: J. Appl. Mech. doi: 10.1115/1.4034460 – volume: 74 start-page: 745 year: 2013 ident: 10.1016/j.taml.2023.100436_bib0010 article-title: Responses of duffing oscillator with fractional damping and random phase publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-1002-9 – volume: 59 start-page: 1810 year: 2010 ident: 10.1016/j.taml.2023.100436_bib0007 article-title: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.08.019 – volume: 147 start-page: 104247 year: 2022 ident: 10.1016/j.taml.2023.100436_bib0029 article-title: Stochastic response determination of multi-dimensional nonlinear systems endowed with fractional derivative elements by the GE-GDEE publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2022.104247 – volume: 63 start-page: 103119 year: 2021 ident: 10.1016/j.taml.2023.100436_bib0030 article-title: First-passage reliability of high-dimensional nonlinear systems under additive excitation by the ensemble-evolving-based generalized density evolution equation publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2021.103119 |
SSID | ssj0000516393 |
Score | 2.3509223 |
Snippet | •An exact low-dimensional partial differential equation with analytical coefficients governing the probability density evolution of multi-dimensional linear... Stochastic fractional differential systems are important and useful in the mathematics, physics, and engineering fields. However, the determination of their... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100436 |
SubjectTerms | Analytical intrinsic drift coefficient Dimension reduction Globally-evolving-based generalized density evolution equation (GE-GDEE) Linear fractional differential system Non-Markovian system |
Title | Equation governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise |
URI | https://dx.doi.org/10.1016/j.taml.2023.100436 https://doaj.org/article/5d0d83d3434446b1ac20be327d52d838 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQXOCAWEXZ5AM3FNHEduIcAbGICg4IRG-RV1QELbQpiM_gD_gWvoyZOIWcyoVTJNuxI88k8yYzfkPInhKpya3Xkc0yE3GveCQNvI85Sz3TKuPSYET38io9v-UXXdFtlPrCnLBADxw27kDYtpXMMs44eC46RkpB7ViSWZFAR3XMF2xew5mqWb3B9GJ4GTpFhCQs9YmZkNxVqieMOyQMswR4xc_8a5Uq8v6GcWoYnNMlslgjRXoYnnCZzLj-Cllo8Aeuko-Tl8DU_fV5X9XMhVYKiI5imZhAwP1OLaaow9W91lpGB55WeYSRRWr_QMtBEW6qIfXDcNIBWia1U-Ab8EgD4_OIjsYa_9zQckDP1HiERzDpG4YiaH_QG7k1cnt6cnN8HtU1FiLD43YZeWHAiKukzXKdYdWiLM0s-EypB-ySSqnShFvPtdPgGjkBaCYxCctjJbiVUhi2Tmb7g77bIDSVKnFeCGG555lTWuZC5l7mIDCAIXGLxJM9LkxNQI51MB6LSabZQ4FyKVAuRZBLi-z_3PMc6Demjj5C0f2MROrsqgEUqqgVqvhLoVpETARf1CgkoAuYqjdl8c3_WHyLzOOUIaNym8yWw7HbAdRT6l0yd9i5vuvsVor-DZSGAb8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equation%C2%A0governing+the+probability+density+evolution+of+multi-dimensional+linear+fractional+differential+systems+subject+to+Gaussian+white+noise&rft.jtitle=Theoretical+and+applied+mechanics+letters&rft.au=Yi+Luo&rft.au=Meng-Ze+Lyu&rft.au=Jian-Bing+Chen&rft.au=Pol+D.+Spanos&rft.date=2023-05-01&rft.pub=Elsevier&rft.issn=2095-0349&rft.volume=13&rft.issue=3&rft.spage=100436&rft_id=info:doi/10.1016%2Fj.taml.2023.100436&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5d0d83d3434446b1ac20be327d52d838 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-0349&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-0349&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-0349&client=summon |