Resonant Synchrotron X-ray Diffraction determines markers for iron-rich atmospheric particulate matter in urban region

Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 212; pp. 418 - 428
Main Authors Galvão, Elson Silva, Santos, Jane Meri, Lima, Ana Teresa, Reis, Neyval Costa, Stuetz, Richard Michael, Orlando, Marcos Tadeu D'Azeredo
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM10, and PM2.5 samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe2O3 was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS2 was correlated with coal deposits; and K2Fe2O4 was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies. [Display omitted] •Particulate matter (PM) has been the subject of intricate air quality studies.•For high correlated sources, specific markers can improve the source apportionment.•Resonant Synchrotron-XRD determines markers for industrial and vehicular sources.•The Identification of specific crystal phases can act as marker of specific sources.•RSr-XRD proves to be an improved way to contour source collinearity problems.
AbstractList Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM and PM samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe O was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS was correlated with coal deposits; and K Fe O was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies.
Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM10, and PM2.5 samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe2O3 was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS2 was correlated with coal deposits; and K2Fe2O4 was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies. [Display omitted] •Particulate matter (PM) has been the subject of intricate air quality studies.•For high correlated sources, specific markers can improve the source apportionment.•Resonant Synchrotron-XRD determines markers for industrial and vehicular sources.•The Identification of specific crystal phases can act as marker of specific sources.•RSr-XRD proves to be an improved way to contour source collinearity problems.
Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM₁₀, and PM₂.₅ samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe₂O₃ was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS₂ was correlated with coal deposits; and K₂Fe₂O₄ was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies.
Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM10, and PM2.5 samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe2O3 was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS2 was correlated with coal deposits; and K2Fe2O4 was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies.Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM10, and PM2.5 samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe2O3 was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS2 was correlated with coal deposits; and K2Fe2O4 was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies.
Author Lima, Ana Teresa
Stuetz, Richard Michael
Galvão, Elson Silva
Santos, Jane Meri
Orlando, Marcos Tadeu D'Azeredo
Reis, Neyval Costa
Author_xml – sequence: 1
  givenname: Elson Silva
  orcidid: 0000-0002-0991-877X
  surname: Galvão
  fullname: Galvão, Elson Silva
  email: elsongalvao@gmail.com
  organization: Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
– sequence: 2
  givenname: Jane Meri
  orcidid: 0000-0003-3933-2849
  surname: Santos
  fullname: Santos, Jane Meri
  organization: Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
– sequence: 3
  givenname: Ana Teresa
  orcidid: 0000-0001-6980-6553
  surname: Lima
  fullname: Lima, Ana Teresa
  organization: Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
– sequence: 4
  givenname: Neyval Costa
  orcidid: 0000-0002-6159-4063
  surname: Reis
  fullname: Reis, Neyval Costa
  organization: Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
– sequence: 5
  givenname: Richard Michael
  orcidid: 0000-0001-5259-3088
  surname: Stuetz
  fullname: Stuetz, Richard Michael
  organization: School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
– sequence: 6
  givenname: Marcos Tadeu D'Azeredo
  surname: Orlando
  fullname: Orlando, Marcos Tadeu D'Azeredo
  organization: Departamento de Engenharia Mecânica, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30149315$$D View this record in MEDLINE/PubMed
BookMark eNqNkc2LFDEQxYOsuLOr_4LEm5duK92d3vRJZPyEBcEP8BbS6YqTsScZK-mF-e_NMLMgXtxToPi9V6n3rthFiAEZeyGgFiD6V9vabnAX036DhHUDQtWgaiHEI7YS6maoRDOoC7YC6GTVy1ZesquUtgBFLIcn7LIF0Q2tkCt29wVTDCZk_vUQ7IZiphj4j4rMgb_1zpGx2ZfJhBlp5wMmvjP0CylxF4n7Qlfk7YabfP6Qt3xvKHu7zCZjoXNRch_4QqMJnPBn8XvKHjszJ3x2fq_Z9_fvvq0_VrefP3xav7mtbCcgV65tB0A3NlKMzSgbMY3QWzca53BQFoYbVM7BZFqJVlhoO3BGYDe2duqhnHjNXp589xR_L5iy3vlkcZ5NwLgk3QjRq14qBf9HYZCyaRtoC_r8jC7jDie9J19COej7WAvw-gRYiikROm19NscgMxk_awH6WKTe6r-K1MciNShdiiwOwz8O90seol2ftFiSvfNIOlmPweLkCW3WU_QPcPkDYv_C-A
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_151343
crossref_primary_10_1016_j_marpolbul_2024_116428
crossref_primary_10_3390_su15118504
crossref_primary_10_1016_j_chemosphere_2020_128746
crossref_primary_10_1007_s11356_020_07848_8
crossref_primary_10_1016_j_scitotenv_2021_149747
crossref_primary_10_1016_j_chemosphere_2019_124953
crossref_primary_10_1016_j_chemosphere_2020_127184
crossref_primary_10_1016_j_jaerosci_2020_105630
crossref_primary_10_1007_s10661_021_09710_x
crossref_primary_10_1016_j_apr_2024_102126
crossref_primary_10_1016_j_envres_2020_109619
crossref_primary_10_1016_j_chemosphere_2023_138715
crossref_primary_10_1007_s11356_022_23366_1
crossref_primary_10_1007_s11869_021_01123_6
Cites_doi 10.1016/j.atmosres.2016.12.004
10.1016/S0045-6535(02)00243-6
10.1016/j.nimb.2015.08.030
10.4209/aaqr.2014.01.0024
10.1016/j.atmosenv.2006.05.074
10.1063/1.2952457
10.1016/j.atmosenv.2007.12.056
10.1016/S1001-0742(12)60056-4
10.1016/j.atmosenv.2009.05.018
10.1016/j.scitotenv.2016.11.110
10.1002/cem.796
10.1016/j.partic.2013.10.003
10.1023/A:1011057231700
10.1007/BF00203056
10.1016/j.chemosphere.2015.02.038
10.1016/j.atmosenv.2011.03.020
10.1016/j.atmosenv.2016.11.055
10.1016/S1352-2310(99)00113-2
10.1017/S0885715616000646
10.1016/j.renene.2005.08.032
10.1016/j.atmosenv.2009.11.026
10.1016/j.atmosenv.2012.07.036
10.1021/acs.est.7b00312
10.5094/APR.2015.013
10.1016/j.envpol.2016.06.002
10.1016/j.proci.2006.08.086
10.1016/j.envpol.2014.01.025
10.1016/j.chemosphere.2008.08.042
10.1016/j.chemosphere.2018.02.034
10.1078/1438-4639-00306
10.1164/ajrccm.164.4.2011089
10.1016/j.chemosphere.2004.11.001
10.1016/j.chemosphere.2012.12.029
10.1016/j.atmosenv.2013.08.052
10.1016/j.atmosenv.2016.07.048
10.1023/A:1006729014335
10.1016/S0140-6736(02)11274-8
10.1016/j.atmosenv.2011.04.040
10.1016/S0045-6535(97)00228-2
10.1016/j.chemosphere.2007.04.027
10.1021/acs.est.7b03781
10.1016/j.atmosres.2012.06.016
10.1016/j.scitotenv.2008.06.007
10.1016/j.atmosenv.2015.12.002
10.1016/j.scitotenv.2017.02.071
10.1146/annurev.pu.15.050194.000543
10.1016/j.apr.2017.05.001
10.1016/j.atmosenv.2013.03.031
10.1016/j.atmosenv.2014.05.001
10.1016/j.atmosenv.2007.10.072
10.1016/j.atmosenv.2008.04.046
10.1016/j.scitotenv.2012.12.047
10.1016/j.atmosenv.2009.10.037
10.1021/es203568t
10.1107/S0021889810030499
10.1016/j.atmosenv.2013.07.001
10.1021/es902785c
10.3155/1047-3289.58.2.265
10.1023/A:1012619331408
10.1177/0734242X08090404
10.1016/j.atmosenv.2016.10.029
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2018.08.111
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 428
ExternalDocumentID 30149315
10_1016_j_chemosphere_2018_08_111
S0045653518315868
Genre Journal Article
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c410t-f3390efb251b2b521db06cfbaffe98c097e8ff0da35ec1c0340fa1e4b3cd60493
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Thu Jul 10 17:16:35 EDT 2025
Fri Jul 11 01:23:43 EDT 2025
Thu Apr 03 06:59:11 EDT 2025
Tue Jul 01 02:33:30 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Fri Feb 23 02:45:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Resonant Synchrotron X-ray Diffraction (RSr-XRD)
Chemical composition
Particulate matter (PM)
Crystalline phases
Source apportionment
Source markers
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-f3390efb251b2b521db06cfbaffe98c097e8ff0da35ec1c0340fa1e4b3cd60493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0991-877X
0000-0001-5259-3088
0000-0002-6159-4063
0000-0003-3933-2849
0000-0001-6980-6553
PMID 30149315
PQID 2095523203
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2116865880
proquest_miscellaneous_2095523203
pubmed_primary_30149315
crossref_citationtrail_10_1016_j_chemosphere_2018_08_111
crossref_primary_10_1016_j_chemosphere_2018_08_111
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_08_111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Muwanguzi, Karasev, Byaruhanga, Jönsson (bib41) 2012; 9
Gildemeister, Hopke, Kim (bib23) 2007; 69
Fabris, de Jesus Filho, Coey, Mussel, Goulart (bib18) 1997; 110
Wittig, Allen (bib69) 2008; 42
Achad, López, Ceppi, Palancar, Tirao, Toselli (bib1) 2014; 92
Rohr, Wyzga (bib46) 2012; 62
Wahid, Latif, Suratman (bib63) 2013; 91
Brunekreef, Holgate (bib4) 2002; 360
Amodio, Andriani, Dambruoso, de Gennaro, Di Gilio, Intini, Palmisani, Tutino (bib2) 2013; 79
Chow, Watson (bib9) 1998
Vale (bib59) 2017
USEPA (bib58) 2004
Choi, Heo, Ban, Yi, Zoh (bib8) 2013; 447
Liu, Cai, Qiao, Wang, Xu, Li, Zhao, Chen, Kan (bib38) 2017; 51
Galvão, Santos, Lima, Reis, Orlando, Stuetz (bib21) 2018; 199
Kappos, Bruckmann, Eikmann, Englert, Heinrich, Höppe, Koch, Krause, Kreyling, Rauchfuss, Rombout, Schulz-Klemp, Thiel, Wichmann (bib32) 2004; 207
Kotchenruther (bib35) 2016; 142
Tauler, Viana, Querol, Alastuey, Flight, Wentzell, Hopke (bib53) 2009; 43
Park, Kim (bib44) 2005; 59
Kopcewicz, Kopcewicz, Pietruczuk (bib34) 2015; 131
Tian, Liu, Zhang, Wu, Zeng, Shi, Feng (bib56) 2013; 81
Schmid-Beurmann, Lottermoser (bib49) 1993; 19
Zhang, Cai, Wang, He, Zheng (bib73) 2017; 586
Ivošević, Orlić, Radović (bib31) 2015; 363
Wang, Chen, Meng, Fu, Wang (bib64) 2016; 127
Lee, Chan, Paatero (bib36) 1999; 33
Wang, Zhang, Liu, Wu, Zhang, Han, Zheng, Zhou, Feng, Zhu (bib66) 2017; 187
Vale (bib61) 2016
Roy, Wagstrom, Adams, Pandis, Robinson (bib47) 2011; 45
Cohen, Crawford, Stelcer, Bac (bib10) 2010; 44
Guo, Gao, Zhu, Luo, Zheng (bib26) 2017; 150
Cheng, Lee, Gu, Ho, Zhang, Huang, Chow, Watson, Cao, Zhang (bib7) 2015; 18
Crilley, Lucarelli, Bloss, Harrison, Beddows, Calzolai, Nava, Valli, Bernardoni, Vecchi (bib12) 2017; 220
Linak, Yoo, Wasson, Zhu, Wendt, Huggins, Chen, Shah, Huffman, Gilmour (bib37) 2007; 31
Guo, Ding, So, Ayoko, Li, Hung (bib24) 2009; 43
Ferreira, Bueno, Setti, Giménez-Romero, García-Jareño, Vicente (bib19) 2008; 92
Zeng, Zhang, Bao, Long, Tan, Li, Ma, Zhao (bib72) 2013; 25
IEMA/Ecosoft (bib29) 2011
Tecer, Tuncel, Karaca, Alagha, Süren, Zararsız, Kırmaz (bib54) 2012; 118
ICDD (bib28) 2007
Louie, Watson, Chow, Chen, Sin, Lau (bib39) 2005; 39
Vale (bib60) 2017
Guo, Kang, Huang, Zhang, Rupakheti, Sun, Tripathee, Rupakheti, Panday, Sillanpää, Paudyal (bib25) 2017; 579
Shi, Liu, Peng, Wang, Tian, Wang, Feng (bib51) 2014; 14
Duan, Tan (bib17) 2013; 74
Owoade, Hopke, Olise, Ogundele, Fawole, Olaniyi, Jegede, Ayoola, Bashiru (bib43) 2015; 6
Revuelta, McIntosh, Pey, Perez, Querol, Alastuey (bib45) 2014; 188
Watson, Zhu, Chow, Engelbrecht, Fujita, Wilson (bib68) 2002; 49
Zuo, Deng (bib75) 1997; 35
Watson, Chen, Chow, Doraiswamy, Lowenthal (bib67) 2008; 58
Blanchard, Tanenbaum, Hidy (bib3) 2012; 46
DENATRAN (bib15) 2018
Ghio, Devlin (bib22) 2001; 164
Hopke (bib27) 2003; 17
Flament, Mattielli, Aimoz, Choël, Deboudt, Jong, Rimetz-Planchon, Weis (bib20) 2008; 73
Yin, Harrison, Chen, Rutter, Schauer (bib71) 2010; 44
de Souza, de Queiroz, Morimoto, Guimarães, Garg (bib13) 2000; 246
CPTEC, Centro de Previsão do Tempo e Estudos Climáticos (bib11) 2017
Tugrul, Derun, Pişkin, Ekerim (bib57) 2009; 27
Schauer, Lough, Shafer, Christensen, Arndt, DeMinter, Park (bib48) 2006
Niu, Cao, Shen, Ho, Tie, Zhao, Xu, Zhang, Huang (bib42) 2016; 147
Thorpe, Harrison (bib55) 2008; 400
Viana, Pandolfi, Minguillón, Querol, Alastuey, Monfort, Celades (bib62) 2008; 42
Dockery, Pope (bib16) 1994; 15
Cha, Spiegel (bib6) 2004
Strezov (bib52) 2006; 31
Carvalho, Nunes, Coelho (bib5) 2017; 32
Wojdyr (bib70) 2010; 43
Zou, Huang, Zhang, Dai, Zeng, Feng, He (bib74) 2017; 8
Moreno, Querol, Alastuey, Viana, Salvador, Sánchez de la Campa, Artiñano, de la Rosa, Gibbons (bib40) 2006; 40
Karnae, John (bib33) 2011; 45
Shi, Feng, Zeng, Li, Zhang, Wang, Zhu (bib50) 2009; 43
Wang, Hu, Chen, Chen, Xu (bib65) 2013; 68
de Souza, Rodrigues, Morimoto, Garg (bib14) 1998; 112
Ivey, Holmes, Shi, Balachandran, Hu, Russell (bib30) 2017; 51
Viana (10.1016/j.chemosphere.2018.08.111_bib62) 2008; 42
Louie (10.1016/j.chemosphere.2018.08.111_bib39) 2005; 39
Ivey (10.1016/j.chemosphere.2018.08.111_bib30) 2017; 51
Moreno (10.1016/j.chemosphere.2018.08.111_bib40) 2006; 40
Carvalho (10.1016/j.chemosphere.2018.08.111_bib5) 2017; 32
Guo (10.1016/j.chemosphere.2018.08.111_bib26) 2017; 150
Ivošević (10.1016/j.chemosphere.2018.08.111_bib31) 2015; 363
Schauer (10.1016/j.chemosphere.2018.08.111_bib48) 2006
Flament (10.1016/j.chemosphere.2018.08.111_bib20) 2008; 73
Linak (10.1016/j.chemosphere.2018.08.111_bib37) 2007; 31
Dockery (10.1016/j.chemosphere.2018.08.111_bib16) 1994; 15
Achad (10.1016/j.chemosphere.2018.08.111_bib1) 2014; 92
CPTEC, Centro de Previsão do Tempo e Estudos Climáticos (10.1016/j.chemosphere.2018.08.111_bib11) 2017
Fabris (10.1016/j.chemosphere.2018.08.111_bib18) 1997; 110
Zuo (10.1016/j.chemosphere.2018.08.111_bib75) 1997; 35
Kappos (10.1016/j.chemosphere.2018.08.111_bib32) 2004; 207
Brunekreef (10.1016/j.chemosphere.2018.08.111_bib4) 2002; 360
Rohr (10.1016/j.chemosphere.2018.08.111_bib46) 2012; 62
Zou (10.1016/j.chemosphere.2018.08.111_bib74) 2017; 8
Vale (10.1016/j.chemosphere.2018.08.111_bib60) 2017
DENATRAN (10.1016/j.chemosphere.2018.08.111_bib15) 2018
Wang (10.1016/j.chemosphere.2018.08.111_bib65) 2013; 68
Blanchard (10.1016/j.chemosphere.2018.08.111_bib3) 2012; 46
IEMA/Ecosoft (10.1016/j.chemosphere.2018.08.111_bib29) 2011
de Souza (10.1016/j.chemosphere.2018.08.111_bib13) 2000; 246
Duan (10.1016/j.chemosphere.2018.08.111_bib17) 2013; 74
Gildemeister (10.1016/j.chemosphere.2018.08.111_bib23) 2007; 69
de Souza (10.1016/j.chemosphere.2018.08.111_bib14) 1998; 112
Guo (10.1016/j.chemosphere.2018.08.111_bib24) 2009; 43
Cha (10.1016/j.chemosphere.2018.08.111_bib6) 2004
Cheng (10.1016/j.chemosphere.2018.08.111_bib7) 2015; 18
Karnae (10.1016/j.chemosphere.2018.08.111_bib33) 2011; 45
Ghio (10.1016/j.chemosphere.2018.08.111_bib22) 2001; 164
Cohen (10.1016/j.chemosphere.2018.08.111_bib10) 2010; 44
Thorpe (10.1016/j.chemosphere.2018.08.111_bib55) 2008; 400
Shi (10.1016/j.chemosphere.2018.08.111_bib50) 2009; 43
USEPA (10.1016/j.chemosphere.2018.08.111_bib58) 2004
Guo (10.1016/j.chemosphere.2018.08.111_bib25) 2017; 579
Lee (10.1016/j.chemosphere.2018.08.111_bib36) 1999; 33
Kopcewicz (10.1016/j.chemosphere.2018.08.111_bib34) 2015; 131
Wang (10.1016/j.chemosphere.2018.08.111_bib64) 2016; 127
Yin (10.1016/j.chemosphere.2018.08.111_bib71) 2010; 44
Park (10.1016/j.chemosphere.2018.08.111_bib44) 2005; 59
Wittig (10.1016/j.chemosphere.2018.08.111_bib69) 2008; 42
Zeng (10.1016/j.chemosphere.2018.08.111_bib72) 2013; 25
Galvão (10.1016/j.chemosphere.2018.08.111_bib21) 2018; 199
Watson (10.1016/j.chemosphere.2018.08.111_bib67) 2008; 58
Chow (10.1016/j.chemosphere.2018.08.111_bib9) 1998
Strezov (10.1016/j.chemosphere.2018.08.111_bib52) 2006; 31
Wahid (10.1016/j.chemosphere.2018.08.111_bib63) 2013; 91
Wojdyr (10.1016/j.chemosphere.2018.08.111_bib70) 2010; 43
Liu (10.1016/j.chemosphere.2018.08.111_bib38) 2017; 51
Schmid-Beurmann (10.1016/j.chemosphere.2018.08.111_bib49) 1993; 19
Choi (10.1016/j.chemosphere.2018.08.111_bib8) 2013; 447
Owoade (10.1016/j.chemosphere.2018.08.111_bib43) 2015; 6
Amodio (10.1016/j.chemosphere.2018.08.111_bib2) 2013; 79
Tauler (10.1016/j.chemosphere.2018.08.111_bib53) 2009; 43
Revuelta (10.1016/j.chemosphere.2018.08.111_bib45) 2014; 188
Niu (10.1016/j.chemosphere.2018.08.111_bib42) 2016; 147
Zhang (10.1016/j.chemosphere.2018.08.111_bib73) 2017; 586
Tugrul (10.1016/j.chemosphere.2018.08.111_bib57) 2009; 27
ICDD (10.1016/j.chemosphere.2018.08.111_bib28) 2007
Muwanguzi (10.1016/j.chemosphere.2018.08.111_bib41) 2012; 9
Shi (10.1016/j.chemosphere.2018.08.111_bib51) 2014; 14
Roy (10.1016/j.chemosphere.2018.08.111_bib47) 2011; 45
Tecer (10.1016/j.chemosphere.2018.08.111_bib54) 2012; 118
Wang (10.1016/j.chemosphere.2018.08.111_bib66) 2017; 187
Hopke (10.1016/j.chemosphere.2018.08.111_bib27) 2003; 17
Vale (10.1016/j.chemosphere.2018.08.111_bib59) 2017
Kotchenruther (10.1016/j.chemosphere.2018.08.111_bib35) 2016; 142
Tian (10.1016/j.chemosphere.2018.08.111_bib56) 2013; 81
Crilley (10.1016/j.chemosphere.2018.08.111_bib12) 2017; 220
Ferreira (10.1016/j.chemosphere.2018.08.111_bib19) 2008; 92
Vale (10.1016/j.chemosphere.2018.08.111_bib61) 2016
Watson (10.1016/j.chemosphere.2018.08.111_bib68) 2002; 49
References_xml – volume: 32
  start-page: 10
  year: 2017
  end-page: 14
  ident: bib5
  article-title: X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: application to (Gd, Nd)5Si4 compounds
  publication-title: Powder Diffr.
– volume: 45
  start-page: 3769
  year: 2011
  end-page: 3776
  ident: bib33
  article-title: Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas
  publication-title: Atmos. Environ.
– year: 2016
  ident: bib61
  article-title: Produção da Vale no 4T16
– year: 2017
  ident: bib59
  article-title: Relatório Anual, Formulário 20-F
– year: 2018
  ident: bib15
  article-title: National Vehicular Fleet
– volume: 164
  start-page: 704
  year: 2001
  end-page: 708
  ident: bib22
  article-title: Inflammatory lung injury after bronchial instillation of air pollution particles
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 79
  start-page: 455
  year: 2013
  end-page: 461
  ident: bib2
  article-title: A monitoring strategy to assess the fugitive emission from a steel plant
  publication-title: Atmos. Environ.
– volume: 17
  start-page: 255
  year: 2003
  end-page: 265
  ident: bib27
  article-title: Recent developments in receptor modeling
  publication-title: J. Chemom.
– volume: 68
  start-page: 221
  year: 2013
  end-page: 229
  ident: bib65
  article-title: Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos
  publication-title: Environ. Times
– volume: 586
  start-page: 917
  year: 2017
  end-page: 929
  ident: bib73
  article-title: Review of receptor-based source apportionment research of fine particulate matter and its challenges in China
  publication-title: Sci. Total Environ.
– volume: 35
  start-page: 2051
  year: 1997
  end-page: 2058
  ident: bib75
  article-title: Iron(II)-catalyzed photochemical decomposition of oxalic acid and generation of H2O2 in atmospheric liquid phases
  publication-title: Chemosphere
– volume: 59
  start-page: 217
  year: 2005
  end-page: 226
  ident: bib44
  article-title: Source contributions to fine particulate matter in an urban atmosphere
  publication-title: Chemosphere
– volume: 91
  start-page: 1508
  year: 2013
  end-page: 1516
  ident: bib63
  article-title: Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia
  publication-title: Chemosphere
– volume: 92
  start-page: 522
  year: 2014
  end-page: 532
  ident: bib1
  article-title: Assessment of fine and sub-micrometer aerosols at an urban environment of Argentina
  publication-title: Atmos. Environ.
– volume: 58
  start-page: 265
  year: 2008
  end-page: 288
  ident: bib67
  article-title: Source apportionment: findings from the U.S. Supersites program
  publication-title: J. Air Waste Manag. Assoc.
– volume: 73
  start-page: 1793
  year: 2008
  end-page: 1798
  ident: bib20
  article-title: Iron isotopic fractionation in industrial emissions and urban aerosols
  publication-title: Chemosphere
– volume: 579
  start-page: 1240
  year: 2017
  end-page: 1248
  ident: bib25
  article-title: Characterizations of atmospheric particulate-bound mercury in the Kathmandu valley of Nepal, south Asia
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 605
  year: 2013
  end-page: 612
  ident: bib72
  article-title: Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES
  publication-title: J. Environ. Sci.
– year: 2004
  ident: bib58
  article-title: EPA CMB8.2 User's Manual
– volume: 31
  start-page: 1929
  year: 2007
  end-page: 1937
  ident: bib37
  article-title: Ultrafine ash aerosols from coal combustion: characterization and health effects
  publication-title: Proc. Combust. Inst.
– volume: 27
  start-page: 281
  year: 2009
  end-page: 287
  ident: bib57
  article-title: A study on the structural behavior of reduced pyrite ash pellets by XRD and XRF analysis
  publication-title: Waste Manag. Res.
– volume: 447
  start-page: 370
  year: 2013
  end-page: 380
  ident: bib8
  article-title: Source apportionment of PM2.5 at the coastal area in Korea
  publication-title: Sci. Total Environ.
– volume: 51
  start-page: 13788
  year: 2017
  end-page: 13796
  ident: bib30
  article-title: Development of PM2.5 source profiles using a hybrid chemical transport-receptor modeling approach
  publication-title: Environ. Sci. Technol.
– volume: 62
  start-page: 130
  year: 2012
  end-page: 152
  ident: bib46
  article-title: Attributing health effects to individual particulate matter constituents
  publication-title: Atmos. Environ.
– volume: 9
  year: 2012
  ident: bib41
  article-title: Characterization of chemical composition and microstructure of natural iron ore from Muko deposits
  publication-title: ISRN Mater. Sci.
– volume: 400
  start-page: 270
  year: 2008
  end-page: 282
  ident: bib55
  article-title: Sources and properties of non-exhaust particulate matter from road traffic: a review
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 1159
  year: 2009
  end-page: 1169
  ident: bib24
  article-title: Receptor modeling of source apportionment of Hong Kong aerosols and the implication of urban and regional contribution
  publication-title: Atmos. Environ.
– volume: 188
  start-page: 109
  year: 2014
  end-page: 117
  ident: bib45
  article-title: Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain)
  publication-title: Environ. Pollut.
– volume: 81
  start-page: 76
  year: 2013
  end-page: 83
  ident: bib56
  article-title: Effects of collinearity, unknown source and removed factors on the NCPCRCMB receptor model solution
  publication-title: Atmos. Environ.
– volume: 187
  start-page: 138
  year: 2017
  end-page: 146
  ident: bib66
  article-title: Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China
  publication-title: Atmos. Res.
– year: 2017
  ident: bib11
  article-title: Banco de dados
– volume: 44
  start-page: 841
  year: 2010
  end-page: 851
  ident: bib71
  article-title: Source apportionment of fine particles at urban background and rural sites in the UK atmosphere
  publication-title: Atmos. Environ.
– volume: 147
  start-page: 458
  year: 2016
  end-page: 469
  ident: bib42
  article-title: PM2.5 from the Guanzhong Plain: chemical composition and implications for emission reductions
  publication-title: Atmos. Environ.
– volume: 31
  start-page: 1892
  year: 2006
  end-page: 1905
  ident: bib52
  article-title: Iron ore reduction using sawdust: experimental analysis and kinetic modelling
  publication-title: Renew. Energy
– volume: 74
  start-page: 93
  year: 2013
  end-page: 101
  ident: bib17
  article-title: Atmospheric heavy metals and Arsenic in China: situation, sources and control policies
  publication-title: Atmos. Environ.
– volume: 45
  start-page: 3132
  year: 2011
  end-page: 3140
  ident: bib47
  article-title: Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles
  publication-title: Atmos. Environ.
– volume: 42
  start-page: 3820
  year: 2008
  end-page: 3832
  ident: bib62
  article-title: Inter-comparison of receptor models for PM source apportionment: case study in an industrial area
  publication-title: Atmos. Environ.
– volume: 19
  start-page: 571
  year: 1993
  end-page: 577
  ident: bib49
  article-title: 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2-FeS2 solid solution series
  publication-title: Phys. Chem. Miner.
– volume: 199
  year: 2018
  ident: bib21
  article-title: Trends in analytical techniques applied to particulate matter characterization: a critical review of fundaments and applications
  publication-title: Chemosphere
– volume: 51
  start-page: 8128
  year: 2017
  end-page: 8137
  ident: bib38
  article-title: The acute effects of fine particulate matter constituents on blood inflammation and coagulation
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 1126
  year: 2010
  end-page: 1128
  ident: bib70
  article-title: Fityk: a general-purpose peak fitting program
  publication-title: J. Appl. Crystallogr.
– volume: 360
  start-page: 1233
  year: 2002
  end-page: 1242
  ident: bib4
  article-title: Air pollution and health
  publication-title: Lancet
– volume: 118
  start-page: 153
  year: 2012
  end-page: 169
  ident: bib54
  article-title: Metallic composition and source apportionment of fine and coarse particles using positive matrix factorization in the southern Black Sea atmosphere
  publication-title: Atmos. Res.
– volume: 69
  start-page: 1064
  year: 2007
  end-page: 1074
  ident: bib23
  article-title: Sources of fine urban particulate matter in Detroit, MI
  publication-title: Chemosphere
– volume: 6
  start-page: 107
  year: 2015
  end-page: 119
  ident: bib43
  article-title: Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5–10) from a scrap iron and steel smelting industry along the Ife–Ibadan highway, Nigeria
  publication-title: Atmos. Pollut. Res.
– volume: 46
  start-page: 5479
  year: 2012
  end-page: 5488
  ident: bib3
  article-title: Source contributions to atmospheric gases and particulate matter in the southeastern United States
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 1093
  year: 2002
  end-page: 1136
  ident: bib68
  article-title: Receptor modeling application framework for particle source apportionment
  publication-title: Chemosphere
– volume: 43
  start-page: 8867
  year: 2009
  end-page: 8873
  ident: bib50
  article-title: Use of a nonnegative constrained principal component regression chemical mass balance model to study the contributions of nearly collinear sources
  publication-title: Environ. Sci. Technol.
– volume: 112
  start-page: 133
  year: 1998
  end-page: 138
  ident: bib14
  article-title: Industrial responsibility in the emission of particulate matter in the atmosphere
  publication-title: Hyperfine Interact.
– volume: 131
  start-page: 9
  year: 2015
  end-page: 16
  ident: bib34
  article-title: The Mössbauer study of atmospheric iron-containing aerosol in the coarse and PM2.5 fractions measured in rural site
  publication-title: Chemosphere
– volume: 142
  start-page: 210
  year: 2016
  end-page: 219
  ident: bib35
  article-title: Source apportionment of PM2.5 at multiple Northwest U.S. sites: assessing regional winter wood smoke impacts from residential wood combustion
  publication-title: Atmos. Environ.
– volume: 127
  start-page: 22
  year: 2016
  end-page: 33
  ident: bib64
  article-title: The contribution of anthropogenic sources to the aerosols over East China Sea
  publication-title: Atmos. Environ.
– volume: 18
  start-page: 96
  year: 2015
  end-page: 104
  ident: bib7
  article-title: PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway
  publication-title: Particuology
– year: 1998
  ident: bib9
  article-title: Guideline on Speciated Particulate Monitoring; Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC
– volume: 150
  start-page: 187
  year: 2017
  end-page: 197
  ident: bib26
  article-title: Chemical profiles of PM emitted from the iron and steel industry in northern China
  publication-title: Atmos. Environ.
– year: 2007
  ident: bib28
  publication-title: PDF-2, 2007 (Database)
– volume: 220
  start-page: 766
  year: 2017
  end-page: 778
  ident: bib12
  article-title: Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign
  publication-title: Environ. Pollut.
– volume: 110
  start-page: 23
  year: 1997
  end-page: 32
  ident: bib18
  article-title: Iron-rich spinels from Brazilian soils
  publication-title: Hyperfine Interact.
– volume: 14
  start-page: 2040
  year: 2014
  end-page: 2050
  ident: bib51
  article-title: A comparison of multiple combined models for source apportionment, including the PCA/MLR-CMB, Unmix-CMB and PMF-CMB models
  publication-title: Aerosol. Air Qual. Res.
– volume: 363
  start-page: 119
  year: 2015
  end-page: 123
  ident: bib31
  article-title: Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
– year: 2017
  ident: bib60
  article-title: Produção da Vale no 1T17
– year: 2011
  ident: bib29
  article-title: Inventory of Atmospheric Emissions of Great Vitória Region
– volume: 40
  start-page: 6791
  year: 2006
  end-page: 6803
  ident: bib40
  article-title: Variations in atmospheric PM trace metal content in Spanish towns: illustrating the chemical complexity of the inorganic urban aerosol cocktail
  publication-title: Atmos. Environ.
– start-page: 1
  year: 2006
  end-page: 88
  ident: bib48
  article-title: Characterization of metals emitted from motor vehicles
  publication-title: Res. Rep. Health Eff. Inst.
– volume: 33
  start-page: 3201
  year: 1999
  end-page: 3212
  ident: bib36
  article-title: Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong
  publication-title: Atmos. Environ.
– volume: 44
  start-page: 320
  year: 2010
  end-page: 328
  ident: bib10
  article-title: Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008
  publication-title: Atmos. Environ.
– start-page: 1055
  year: 2004
  end-page: 1062
  ident: bib6
  article-title: Fundamental studies on alkali chloride induced corrosion during combustion of biomass
  publication-title: High Temperature Corrosion and Protection of Materials 6, Materials Science Forum
– volume: 8
  start-page: 1193
  year: 2017
  end-page: 1202
  ident: bib74
  article-title: Source apportionment of PM2.5 pollution in an industrial city in southern China
  publication-title: Atmos. Pollut. Res.
– volume: 15
  start-page: 107
  year: 1994
  end-page: 132
  ident: bib16
  article-title: Acute respiratory effects of particulate air pollution
  publication-title: Annu. Rev. Publ. Health
– volume: 43
  start-page: 3989
  year: 2009
  end-page: 3997
  ident: bib53
  article-title: Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies
  publication-title: Atmos. Environ.
– volume: 42
  start-page: 1319
  year: 2008
  end-page: 1337
  ident: bib69
  article-title: Improvement of the Chemical Mass Balance model for apportioning—sources of non-methane hydrocarbons using composite aged source profiles
  publication-title: Atmos. Environ.
– volume: 246
  start-page: 85
  year: 2000
  end-page: 90
  ident: bib13
  article-title: Air pollution investigation in Vitória Metropolitan region, ES, Brazil
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 39
  start-page: 1695
  year: 2005
  end-page: 1710
  ident: bib39
  article-title: Seasonal characteristics and regional transport of PM2.5 in Hong Kong
  publication-title: Atmos. Environ.
– volume: 92
  year: 2008
  ident: bib19
  article-title: Resonant x-ray diffraction as a tool to calculate mixed valence ratios: application to Prussian Blue materials
  publication-title: Appl. Phys. Lett.
– volume: 207
  start-page: 399
  year: 2004
  end-page: 407
  ident: bib32
  article-title: Health effects of particles in ambient air
  publication-title: Int. J. Hyg Environ. Health
– year: 2007
  ident: 10.1016/j.chemosphere.2018.08.111_bib28
– year: 2004
  ident: 10.1016/j.chemosphere.2018.08.111_bib58
– volume: 187
  start-page: 138
  year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib66
  article-title: Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2016.12.004
– volume: 49
  start-page: 1093
  year: 2002
  ident: 10.1016/j.chemosphere.2018.08.111_bib68
  article-title: Receptor modeling application framework for particle source apportionment
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00243-6
– start-page: 1055
  year: 2004
  ident: 10.1016/j.chemosphere.2018.08.111_bib6
  article-title: Fundamental studies on alkali chloride induced corrosion during combustion of biomass
– year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib60
– volume: 363
  start-page: 119
  year: 2015
  ident: 10.1016/j.chemosphere.2018.08.111_bib31
  article-title: Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
  doi: 10.1016/j.nimb.2015.08.030
– volume: 14
  start-page: 2040
  year: 2014
  ident: 10.1016/j.chemosphere.2018.08.111_bib51
  article-title: A comparison of multiple combined models for source apportionment, including the PCA/MLR-CMB, Unmix-CMB and PMF-CMB models
  publication-title: Aerosol. Air Qual. Res.
  doi: 10.4209/aaqr.2014.01.0024
– volume: 40
  start-page: 6791
  year: 2006
  ident: 10.1016/j.chemosphere.2018.08.111_bib40
  article-title: Variations in atmospheric PM trace metal content in Spanish towns: illustrating the chemical complexity of the inorganic urban aerosol cocktail
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.05.074
– volume: 92
  year: 2008
  ident: 10.1016/j.chemosphere.2018.08.111_bib19
  article-title: Resonant x-ray diffraction as a tool to calculate mixed valence ratios: application to Prussian Blue materials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2952457
– volume: 42
  start-page: 3820
  year: 2008
  ident: 10.1016/j.chemosphere.2018.08.111_bib62
  article-title: Inter-comparison of receptor models for PM source apportionment: case study in an industrial area
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2007.12.056
– volume: 68
  start-page: 221
  year: 2013
  ident: 10.1016/j.chemosphere.2018.08.111_bib65
  article-title: Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos
  publication-title: Environ. Times
– volume: 25
  start-page: 605
  year: 2013
  ident: 10.1016/j.chemosphere.2018.08.111_bib72
  article-title: Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(12)60056-4
– volume: 43
  start-page: 3989
  year: 2009
  ident: 10.1016/j.chemosphere.2018.08.111_bib53
  article-title: Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.05.018
– volume: 579
  start-page: 1240
  year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib25
  article-title: Characterizations of atmospheric particulate-bound mercury in the Kathmandu valley of Nepal, south Asia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.110
– volume: 17
  start-page: 255
  year: 2003
  ident: 10.1016/j.chemosphere.2018.08.111_bib27
  article-title: Recent developments in receptor modeling
  publication-title: J. Chemom.
  doi: 10.1002/cem.796
– volume: 18
  start-page: 96
  year: 2015
  ident: 10.1016/j.chemosphere.2018.08.111_bib7
  article-title: PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway
  publication-title: Particuology
  doi: 10.1016/j.partic.2013.10.003
– volume: 112
  start-page: 133
  year: 1998
  ident: 10.1016/j.chemosphere.2018.08.111_bib14
  article-title: Industrial responsibility in the emission of particulate matter in the atmosphere
  publication-title: Hyperfine Interact.
  doi: 10.1023/A:1011057231700
– volume: 19
  start-page: 571
  year: 1993
  ident: 10.1016/j.chemosphere.2018.08.111_bib49
  article-title: 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2-FeS2 solid solution series
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/BF00203056
– volume: 131
  start-page: 9
  year: 2015
  ident: 10.1016/j.chemosphere.2018.08.111_bib34
  article-title: The Mössbauer study of atmospheric iron-containing aerosol in the coarse and PM2.5 fractions measured in rural site
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.02.038
– volume: 45
  start-page: 3132
  year: 2011
  ident: 10.1016/j.chemosphere.2018.08.111_bib47
  article-title: Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.03.020
– year: 2016
  ident: 10.1016/j.chemosphere.2018.08.111_bib61
– volume: 150
  start-page: 187
  year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib26
  article-title: Chemical profiles of PM emitted from the iron and steel industry in northern China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.11.055
– volume: 33
  start-page: 3201
  year: 1999
  ident: 10.1016/j.chemosphere.2018.08.111_bib36
  article-title: Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00113-2
– volume: 32
  start-page: 10
  year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib5
  article-title: X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: application to (Gd, Nd)5Si4 compounds
  publication-title: Powder Diffr.
  doi: 10.1017/S0885715616000646
– volume: 31
  start-page: 1892
  year: 2006
  ident: 10.1016/j.chemosphere.2018.08.111_bib52
  article-title: Iron ore reduction using sawdust: experimental analysis and kinetic modelling
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2005.08.032
– volume: 44
  start-page: 841
  year: 2010
  ident: 10.1016/j.chemosphere.2018.08.111_bib71
  article-title: Source apportionment of fine particles at urban background and rural sites in the UK atmosphere
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.11.026
– volume: 62
  start-page: 130
  year: 2012
  ident: 10.1016/j.chemosphere.2018.08.111_bib46
  article-title: Attributing health effects to individual particulate matter constituents
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.07.036
– volume: 51
  start-page: 8128
  year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib38
  article-title: The acute effects of fine particulate matter constituents on blood inflammation and coagulation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00312
– volume: 6
  start-page: 107
  year: 2015
  ident: 10.1016/j.chemosphere.2018.08.111_bib43
  article-title: Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5–10) from a scrap iron and steel smelting industry along the Ife–Ibadan highway, Nigeria
  publication-title: Atmos. Pollut. Res.
  doi: 10.5094/APR.2015.013
– volume: 220
  start-page: 766
  year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib12
  article-title: Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.06.002
– volume: 31
  start-page: 1929
  year: 2007
  ident: 10.1016/j.chemosphere.2018.08.111_bib37
  article-title: Ultrafine ash aerosols from coal combustion: characterization and health effects
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2006.08.086
– volume: 9
  year: 2012
  ident: 10.1016/j.chemosphere.2018.08.111_bib41
  article-title: Characterization of chemical composition and microstructure of natural iron ore from Muko deposits
  publication-title: ISRN Mater. Sci.
– volume: 188
  start-page: 109
  year: 2014
  ident: 10.1016/j.chemosphere.2018.08.111_bib45
  article-title: Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain)
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2014.01.025
– year: 2018
  ident: 10.1016/j.chemosphere.2018.08.111_bib15
– volume: 73
  start-page: 1793
  year: 2008
  ident: 10.1016/j.chemosphere.2018.08.111_bib20
  article-title: Iron isotopic fractionation in industrial emissions and urban aerosols
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.08.042
– volume: 199
  year: 2018
  ident: 10.1016/j.chemosphere.2018.08.111_bib21
  article-title: Trends in analytical techniques applied to particulate matter characterization: a critical review of fundaments and applications
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.02.034
– year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib11
– volume: 207
  start-page: 399
  year: 2004
  ident: 10.1016/j.chemosphere.2018.08.111_bib32
  article-title: Health effects of particles in ambient air
  publication-title: Int. J. Hyg Environ. Health
  doi: 10.1078/1438-4639-00306
– volume: 164
  start-page: 704
  year: 2001
  ident: 10.1016/j.chemosphere.2018.08.111_bib22
  article-title: Inflammatory lung injury after bronchial instillation of air pollution particles
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.164.4.2011089
– volume: 59
  start-page: 217
  year: 2005
  ident: 10.1016/j.chemosphere.2018.08.111_bib44
  article-title: Source contributions to fine particulate matter in an urban atmosphere
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.11.001
– volume: 91
  start-page: 1508
  year: 2013
  ident: 10.1016/j.chemosphere.2018.08.111_bib63
  article-title: Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.12.029
– volume: 81
  start-page: 76
  year: 2013
  ident: 10.1016/j.chemosphere.2018.08.111_bib56
  article-title: Effects of collinearity, unknown source and removed factors on the NCPCRCMB receptor model solution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.08.052
– volume: 142
  start-page: 210
  year: 2016
  ident: 10.1016/j.chemosphere.2018.08.111_bib35
  article-title: Source apportionment of PM2.5 at multiple Northwest U.S. sites: assessing regional winter wood smoke impacts from residential wood combustion
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.07.048
– volume: 246
  start-page: 85
  year: 2000
  ident: 10.1016/j.chemosphere.2018.08.111_bib13
  article-title: Air pollution investigation in Vitória Metropolitan region, ES, Brazil
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1023/A:1006729014335
– volume: 360
  start-page: 1233
  year: 2002
  ident: 10.1016/j.chemosphere.2018.08.111_bib4
  article-title: Air pollution and health
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)11274-8
– volume: 45
  start-page: 3769
  year: 2011
  ident: 10.1016/j.chemosphere.2018.08.111_bib33
  article-title: Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.04.040
– volume: 35
  start-page: 2051
  year: 1997
  ident: 10.1016/j.chemosphere.2018.08.111_bib75
  article-title: Iron(II)-catalyzed photochemical decomposition of oxalic acid and generation of H2O2 in atmospheric liquid phases
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(97)00228-2
– volume: 69
  start-page: 1064
  year: 2007
  ident: 10.1016/j.chemosphere.2018.08.111_bib23
  article-title: Sources of fine urban particulate matter in Detroit, MI
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.04.027
– volume: 51
  start-page: 13788
  year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib30
  article-title: Development of PM2.5 source profiles using a hybrid chemical transport-receptor modeling approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03781
– year: 2011
  ident: 10.1016/j.chemosphere.2018.08.111_bib29
– volume: 118
  start-page: 153
  year: 2012
  ident: 10.1016/j.chemosphere.2018.08.111_bib54
  article-title: Metallic composition and source apportionment of fine and coarse particles using positive matrix factorization in the southern Black Sea atmosphere
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2012.06.016
– volume: 400
  start-page: 270
  year: 2008
  ident: 10.1016/j.chemosphere.2018.08.111_bib55
  article-title: Sources and properties of non-exhaust particulate matter from road traffic: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.06.007
– volume: 127
  start-page: 22
  year: 2016
  ident: 10.1016/j.chemosphere.2018.08.111_bib64
  article-title: The contribution of anthropogenic sources to the aerosols over East China Sea
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.12.002
– volume: 586
  start-page: 917
  year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib73
  article-title: Review of receptor-based source apportionment research of fine particulate matter and its challenges in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.02.071
– volume: 15
  start-page: 107
  year: 1994
  ident: 10.1016/j.chemosphere.2018.08.111_bib16
  article-title: Acute respiratory effects of particulate air pollution
  publication-title: Annu. Rev. Publ. Health
  doi: 10.1146/annurev.pu.15.050194.000543
– volume: 8
  start-page: 1193
  year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib74
  article-title: Source apportionment of PM2.5 pollution in an industrial city in southern China
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2017.05.001
– volume: 74
  start-page: 93
  year: 2013
  ident: 10.1016/j.chemosphere.2018.08.111_bib17
  article-title: Atmospheric heavy metals and Arsenic in China: situation, sources and control policies
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.03.031
– volume: 92
  start-page: 522
  year: 2014
  ident: 10.1016/j.chemosphere.2018.08.111_bib1
  article-title: Assessment of fine and sub-micrometer aerosols at an urban environment of Argentina
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.05.001
– year: 1998
  ident: 10.1016/j.chemosphere.2018.08.111_bib9
– volume: 42
  start-page: 1319
  year: 2008
  ident: 10.1016/j.chemosphere.2018.08.111_bib69
  article-title: Improvement of the Chemical Mass Balance model for apportioning—sources of non-methane hydrocarbons using composite aged source profiles
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2007.10.072
– start-page: 1
  year: 2006
  ident: 10.1016/j.chemosphere.2018.08.111_bib48
  article-title: Characterization of metals emitted from motor vehicles
  publication-title: Res. Rep. Health Eff. Inst.
– volume: 43
  start-page: 1159
  year: 2009
  ident: 10.1016/j.chemosphere.2018.08.111_bib24
  article-title: Receptor modeling of source apportionment of Hong Kong aerosols and the implication of urban and regional contribution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.04.046
– volume: 447
  start-page: 370
  year: 2013
  ident: 10.1016/j.chemosphere.2018.08.111_bib8
  article-title: Source apportionment of PM2.5 at the coastal area in Korea
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.12.047
– volume: 44
  start-page: 320
  year: 2010
  ident: 10.1016/j.chemosphere.2018.08.111_bib10
  article-title: Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.10.037
– volume: 46
  start-page: 5479
  year: 2012
  ident: 10.1016/j.chemosphere.2018.08.111_bib3
  article-title: Source contributions to atmospheric gases and particulate matter in the southeastern United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es203568t
– volume: 43
  start-page: 1126
  year: 2010
  ident: 10.1016/j.chemosphere.2018.08.111_bib70
  article-title: Fityk: a general-purpose peak fitting program
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889810030499
– volume: 39
  start-page: 1695
  year: 2005
  ident: 10.1016/j.chemosphere.2018.08.111_bib39
  article-title: Seasonal characteristics and regional transport of PM2.5 in Hong Kong
  publication-title: Atmos. Environ.
– year: 2017
  ident: 10.1016/j.chemosphere.2018.08.111_bib59
– volume: 79
  start-page: 455
  year: 2013
  ident: 10.1016/j.chemosphere.2018.08.111_bib2
  article-title: A monitoring strategy to assess the fugitive emission from a steel plant
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.07.001
– volume: 43
  start-page: 8867
  year: 2009
  ident: 10.1016/j.chemosphere.2018.08.111_bib50
  article-title: Use of a nonnegative constrained principal component regression chemical mass balance model to study the contributions of nearly collinear sources
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902785c
– volume: 58
  start-page: 265
  year: 2008
  ident: 10.1016/j.chemosphere.2018.08.111_bib67
  article-title: Source apportionment: findings from the U.S. Supersites program
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.3155/1047-3289.58.2.265
– volume: 110
  start-page: 23
  year: 1997
  ident: 10.1016/j.chemosphere.2018.08.111_bib18
  article-title: Iron-rich spinels from Brazilian soils
  publication-title: Hyperfine Interact.
  doi: 10.1023/A:1012619331408
– volume: 27
  start-page: 281
  year: 2009
  ident: 10.1016/j.chemosphere.2018.08.111_bib57
  article-title: A study on the structural behavior of reduced pyrite ash pellets by XRD and XRF analysis
  publication-title: Waste Manag. Res.
  doi: 10.1177/0734242X08090404
– volume: 147
  start-page: 458
  year: 2016
  ident: 10.1016/j.chemosphere.2018.08.111_bib42
  article-title: PM2.5 from the Guanzhong Plain: chemical composition and implications for emission reductions
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.10.029
SSID ssj0001659
Score 2.3576949
Snippet Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 418
SubjectTerms air quality
Brazil
carbon
Chemical composition
coal
Crystalline phases
elemental composition
emissions
furnaces
hematite
iron
Particulate matter (PM)
particulates
receptors
Resonant Synchrotron X-ray Diffraction (RSr-XRD)
Source apportionment
Source markers
urban areas
X-ray diffraction
Title Resonant Synchrotron X-ray Diffraction determines markers for iron-rich atmospheric particulate matter in urban region
URI https://dx.doi.org/10.1016/j.chemosphere.2018.08.111
https://www.ncbi.nlm.nih.gov/pubmed/30149315
https://www.proquest.com/docview/2095523203
https://www.proquest.com/docview/2116865880
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSh-X0qav7SMo0KsayZa8MvQStgnblubSBvZmJFkiLo29eHcLe8lvz4wfSXtICfRoMwPyzHjmG3seAO-pS9mFxPJYThOugi55nkTJ82lE32eCTgIlit9Os_mZ-rLQix2Yjb0wVFY5-P7ep3feerhzOEjzcFlV1ONLaCTVaJRSm4wafpWakpV_uLwp85CZ7iGw0pyoH8DBTY0XyuWiWVH_Pk3MlIameUopb4tRt2HQLhadPIHHA4hkR_05n8JOqPfg4Wzc3bYH94-7YdTbZ_Cbvs9TsQv7vq39edvQp2-24K3dsk9VjG3f2MDKoSwmrNgFVey0K4ZwllETHEdXec7seniGyrNlJyFa_BWQmvqBWFWzTetszWjTQ1M_h7OT4x-zOR92LXCvpFjzmKa5CNEh3HGJw5heOpH56GyMITde5NNgYhSlTXXw0otUiWhlUC71ZYZZRvoCduumDq-AGWdcDJZk75VFFhsCgsw890rHMqoJmFG6hR8GkdM-jF_FWHH2s_hDMQUpphCGcpUJJNesy34ax12YPo4qLP4yrQKjxl3YD0a1F6hF-p9i69BsVkiUa8zjE5H-g0bKzCDKM2ICL3ubuT45ZbM52u7r_zvgG3hEV32NzVvYXbeb8A6R0trtd6_CPtw7-vx1fnoF3-wYNA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6lK17GVv30exThb2KSrbkyLCXkrWka5uXtZA3IckS9Vjt4CSF_PfTxXa2PXQU9mrrQL473_1Oug-Az1ilbH1iaChGCRVeFjRPAqf5KETbp7xMPAaKl9Nsci2-zeRsB8Z9LQymVXa2v7XpG2vdPTnquHk0L0us8UU0ksqolFyqTD2CXexOJQewe3x2PpluDTLPZIuChaRI8AQOf6d5Rdbc1gss4cemmVxhQ0_O-X1u6j4YunFHp8_hWYcjyXG71Rew46t92Bv349v24fHJph_1-iXc4RE95ruQ7-vK3TQ1nn6TGW3MmnwtQ2ja2gZSdJkxfkFuMWmnWZCIaAnWwdFoLW-IWXbfUDoy3zAJZ3_5uBpLgkhZkVVjTUVw2ENdvYLr05Or8YR24xaoE5wtaUjTnPlgI-KxiY1uvbAsc8GaEHyuHMtHXoXACpNK77hjqWDBcC9s6oosBhrpaxhUdeUPgCirbPAGee-EiSTG-4gz89wJGYoghqB67mrX9SLHkRg_dZ909kP_IRiNgtFMYbgyhGRLOm8bcjyE6EsvQv2XdunoOB5CftiLXUcp4pWKqXy9WsRFuYyhfMLSf6zhPFMR6Ck2hDetzmx3jgFtHtX37f9t8BPsTa4uL_TF2fT8HTzFN23KzXsYLJuV_xCB09J-7H6MX1y0GuU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resonant+Synchrotron+X-ray+Diffraction+determines+markers+for+iron-rich+atmospheric+particulate+matter+in+urban+region&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Galv%C3%A3o%2C+Elson+Silva&rft.au=Santos%2C+Jane+Meri&rft.au=Lima%2C+Ana+Teresa&rft.au=Reis%2C+Jr%2C+Neyval+Costa&rft.date=2018-12-01&rft.eissn=1879-1298&rft.volume=212&rft.spage=418&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.08.111&rft_id=info%3Apmid%2F30149315&rft.externalDocID=30149315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon