Resonant Synchrotron X-ray Diffraction determines markers for iron-rich atmospheric particulate matter in urban region
Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources...
Saved in:
Published in | Chemosphere (Oxford) Vol. 212; pp. 418 - 428 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM10, and PM2.5 samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe2O3 was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS2 was correlated with coal deposits; and K2Fe2O4 was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies.
[Display omitted]
•Particulate matter (PM) has been the subject of intricate air quality studies.•For high correlated sources, specific markers can improve the source apportionment.•Resonant Synchrotron-XRD determines markers for industrial and vehicular sources.•The Identification of specific crystal phases can act as marker of specific sources.•RSr-XRD proves to be an improved way to contour source collinearity problems. |
---|---|
AbstractList | Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM
and PM
samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe
O
was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS
was correlated with coal deposits; and K
Fe
O
was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies. Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM10, and PM2.5 samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe2O3 was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS2 was correlated with coal deposits; and K2Fe2O4 was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies. [Display omitted] •Particulate matter (PM) has been the subject of intricate air quality studies.•For high correlated sources, specific markers can improve the source apportionment.•Resonant Synchrotron-XRD determines markers for industrial and vehicular sources.•The Identification of specific crystal phases can act as marker of specific sources.•RSr-XRD proves to be an improved way to contour source collinearity problems. Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM₁₀, and PM₂.₅ samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe₂O₃ was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS₂ was correlated with coal deposits; and K₂Fe₂O₄ was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies. Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM10, and PM2.5 samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe2O3 was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS2 was correlated with coal deposits; and K2Fe2O4 was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies.Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for air quality management, limitations such as collinearity effects, restrict their application or compromise the accurate separation of sources, particularly for particulate matter with similar chemical profiles. Receptors models also depend on the operator expertise to appropriately classified sources, a subjective process that can lead to biased results. For highly correlated sources, the identification of specific markers is still the best way to achieve proper source apportionment. In this study, Resonant Synchrotron X-ray Diffraction has been applied to the analysis of atmospheric particles to determine markers for industrial and vehicular sources in the Region of Greater Vitória, Brazil. Total suspended particulate matter, PM10, and PM2.5 samples were analyzed by Resonant Synchrotron X-ray Diffraction showing high levels of iron-based crystalline phases. In comparison to the use of chemical elemental species, the identification of the crystalline phases provided an enhanced approach to classify specific iron-based source markers. For this study, α-Fe2O3 was identified with iron-based sources such as iron ore, pelletizing, and sintering; metallic Fe was inferred with blast furnaces and steelmaking; FeS2 was correlated with coal deposits; and K2Fe2O4 was associated to sintering emissions. Elemental carbon with different X-ray diffraction patterns enabled the differentiation of industrial and vehicular sources. The attribution of crystal rather than elemental composition in the identification of sources improves the accuracy of source apportionment studies. |
Author | Lima, Ana Teresa Stuetz, Richard Michael Galvão, Elson Silva Santos, Jane Meri Orlando, Marcos Tadeu D'Azeredo Reis, Neyval Costa |
Author_xml | – sequence: 1 givenname: Elson Silva orcidid: 0000-0002-0991-877X surname: Galvão fullname: Galvão, Elson Silva email: elsongalvao@gmail.com organization: Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil – sequence: 2 givenname: Jane Meri orcidid: 0000-0003-3933-2849 surname: Santos fullname: Santos, Jane Meri organization: Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil – sequence: 3 givenname: Ana Teresa orcidid: 0000-0001-6980-6553 surname: Lima fullname: Lima, Ana Teresa organization: Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil – sequence: 4 givenname: Neyval Costa orcidid: 0000-0002-6159-4063 surname: Reis fullname: Reis, Neyval Costa organization: Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil – sequence: 5 givenname: Richard Michael orcidid: 0000-0001-5259-3088 surname: Stuetz fullname: Stuetz, Richard Michael organization: School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia – sequence: 6 givenname: Marcos Tadeu D'Azeredo surname: Orlando fullname: Orlando, Marcos Tadeu D'Azeredo organization: Departamento de Engenharia Mecânica, Universidade Federal do Espírito Santo, Vitória, ES, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30149315$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc2LFDEQxYOsuLOr_4LEm5duK92d3vRJZPyEBcEP8BbS6YqTsScZK-mF-e_NMLMgXtxToPi9V6n3rthFiAEZeyGgFiD6V9vabnAX036DhHUDQtWgaiHEI7YS6maoRDOoC7YC6GTVy1ZesquUtgBFLIcn7LIF0Q2tkCt29wVTDCZk_vUQ7IZiphj4j4rMgb_1zpGx2ZfJhBlp5wMmvjP0CylxF4n7Qlfk7YabfP6Qt3xvKHu7zCZjoXNRch_4QqMJnPBn8XvKHjszJ3x2fq_Z9_fvvq0_VrefP3xav7mtbCcgV65tB0A3NlKMzSgbMY3QWzca53BQFoYbVM7BZFqJVlhoO3BGYDe2duqhnHjNXp589xR_L5iy3vlkcZ5NwLgk3QjRq14qBf9HYZCyaRtoC_r8jC7jDie9J19COej7WAvw-gRYiikROm19NscgMxk_awH6WKTe6r-K1MciNShdiiwOwz8O90seol2ftFiSvfNIOlmPweLkCW3WU_QPcPkDYv_C-A |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_151343 crossref_primary_10_1016_j_marpolbul_2024_116428 crossref_primary_10_3390_su15118504 crossref_primary_10_1016_j_chemosphere_2020_128746 crossref_primary_10_1007_s11356_020_07848_8 crossref_primary_10_1016_j_scitotenv_2021_149747 crossref_primary_10_1016_j_chemosphere_2019_124953 crossref_primary_10_1016_j_chemosphere_2020_127184 crossref_primary_10_1016_j_jaerosci_2020_105630 crossref_primary_10_1007_s10661_021_09710_x crossref_primary_10_1016_j_apr_2024_102126 crossref_primary_10_1016_j_envres_2020_109619 crossref_primary_10_1016_j_chemosphere_2023_138715 crossref_primary_10_1007_s11356_022_23366_1 crossref_primary_10_1007_s11869_021_01123_6 |
Cites_doi | 10.1016/j.atmosres.2016.12.004 10.1016/S0045-6535(02)00243-6 10.1016/j.nimb.2015.08.030 10.4209/aaqr.2014.01.0024 10.1016/j.atmosenv.2006.05.074 10.1063/1.2952457 10.1016/j.atmosenv.2007.12.056 10.1016/S1001-0742(12)60056-4 10.1016/j.atmosenv.2009.05.018 10.1016/j.scitotenv.2016.11.110 10.1002/cem.796 10.1016/j.partic.2013.10.003 10.1023/A:1011057231700 10.1007/BF00203056 10.1016/j.chemosphere.2015.02.038 10.1016/j.atmosenv.2011.03.020 10.1016/j.atmosenv.2016.11.055 10.1016/S1352-2310(99)00113-2 10.1017/S0885715616000646 10.1016/j.renene.2005.08.032 10.1016/j.atmosenv.2009.11.026 10.1016/j.atmosenv.2012.07.036 10.1021/acs.est.7b00312 10.5094/APR.2015.013 10.1016/j.envpol.2016.06.002 10.1016/j.proci.2006.08.086 10.1016/j.envpol.2014.01.025 10.1016/j.chemosphere.2008.08.042 10.1016/j.chemosphere.2018.02.034 10.1078/1438-4639-00306 10.1164/ajrccm.164.4.2011089 10.1016/j.chemosphere.2004.11.001 10.1016/j.chemosphere.2012.12.029 10.1016/j.atmosenv.2013.08.052 10.1016/j.atmosenv.2016.07.048 10.1023/A:1006729014335 10.1016/S0140-6736(02)11274-8 10.1016/j.atmosenv.2011.04.040 10.1016/S0045-6535(97)00228-2 10.1016/j.chemosphere.2007.04.027 10.1021/acs.est.7b03781 10.1016/j.atmosres.2012.06.016 10.1016/j.scitotenv.2008.06.007 10.1016/j.atmosenv.2015.12.002 10.1016/j.scitotenv.2017.02.071 10.1146/annurev.pu.15.050194.000543 10.1016/j.apr.2017.05.001 10.1016/j.atmosenv.2013.03.031 10.1016/j.atmosenv.2014.05.001 10.1016/j.atmosenv.2007.10.072 10.1016/j.atmosenv.2008.04.046 10.1016/j.scitotenv.2012.12.047 10.1016/j.atmosenv.2009.10.037 10.1021/es203568t 10.1107/S0021889810030499 10.1016/j.atmosenv.2013.07.001 10.1021/es902785c 10.3155/1047-3289.58.2.265 10.1023/A:1012619331408 10.1177/0734242X08090404 10.1016/j.atmosenv.2016.10.029 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2018.08.111 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 428 |
ExternalDocumentID | 30149315 10_1016_j_chemosphere_2018_08_111 S0045653518315868 |
Genre | Journal Article |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-f3390efb251b2b521db06cfbaffe98c097e8ff0da35ec1c0340fa1e4b3cd60493 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Thu Jul 10 17:16:35 EDT 2025 Fri Jul 11 01:23:43 EDT 2025 Thu Apr 03 06:59:11 EDT 2025 Tue Jul 01 02:33:30 EDT 2025 Thu Apr 24 22:54:16 EDT 2025 Fri Feb 23 02:45:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Resonant Synchrotron X-ray Diffraction (RSr-XRD) Chemical composition Particulate matter (PM) Crystalline phases Source apportionment Source markers |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-f3390efb251b2b521db06cfbaffe98c097e8ff0da35ec1c0340fa1e4b3cd60493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0991-877X 0000-0001-5259-3088 0000-0002-6159-4063 0000-0003-3933-2849 0000-0001-6980-6553 |
PMID | 30149315 |
PQID | 2095523203 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2116865880 proquest_miscellaneous_2095523203 pubmed_primary_30149315 crossref_citationtrail_10_1016_j_chemosphere_2018_08_111 crossref_primary_10_1016_j_chemosphere_2018_08_111 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_08_111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Muwanguzi, Karasev, Byaruhanga, Jönsson (bib41) 2012; 9 Gildemeister, Hopke, Kim (bib23) 2007; 69 Fabris, de Jesus Filho, Coey, Mussel, Goulart (bib18) 1997; 110 Wittig, Allen (bib69) 2008; 42 Achad, López, Ceppi, Palancar, Tirao, Toselli (bib1) 2014; 92 Rohr, Wyzga (bib46) 2012; 62 Wahid, Latif, Suratman (bib63) 2013; 91 Brunekreef, Holgate (bib4) 2002; 360 Amodio, Andriani, Dambruoso, de Gennaro, Di Gilio, Intini, Palmisani, Tutino (bib2) 2013; 79 Chow, Watson (bib9) 1998 Vale (bib59) 2017 USEPA (bib58) 2004 Choi, Heo, Ban, Yi, Zoh (bib8) 2013; 447 Liu, Cai, Qiao, Wang, Xu, Li, Zhao, Chen, Kan (bib38) 2017; 51 Galvão, Santos, Lima, Reis, Orlando, Stuetz (bib21) 2018; 199 Kappos, Bruckmann, Eikmann, Englert, Heinrich, Höppe, Koch, Krause, Kreyling, Rauchfuss, Rombout, Schulz-Klemp, Thiel, Wichmann (bib32) 2004; 207 Kotchenruther (bib35) 2016; 142 Tauler, Viana, Querol, Alastuey, Flight, Wentzell, Hopke (bib53) 2009; 43 Park, Kim (bib44) 2005; 59 Kopcewicz, Kopcewicz, Pietruczuk (bib34) 2015; 131 Tian, Liu, Zhang, Wu, Zeng, Shi, Feng (bib56) 2013; 81 Schmid-Beurmann, Lottermoser (bib49) 1993; 19 Zhang, Cai, Wang, He, Zheng (bib73) 2017; 586 Ivošević, Orlić, Radović (bib31) 2015; 363 Wang, Chen, Meng, Fu, Wang (bib64) 2016; 127 Lee, Chan, Paatero (bib36) 1999; 33 Wang, Zhang, Liu, Wu, Zhang, Han, Zheng, Zhou, Feng, Zhu (bib66) 2017; 187 Vale (bib61) 2016 Roy, Wagstrom, Adams, Pandis, Robinson (bib47) 2011; 45 Cohen, Crawford, Stelcer, Bac (bib10) 2010; 44 Guo, Gao, Zhu, Luo, Zheng (bib26) 2017; 150 Cheng, Lee, Gu, Ho, Zhang, Huang, Chow, Watson, Cao, Zhang (bib7) 2015; 18 Crilley, Lucarelli, Bloss, Harrison, Beddows, Calzolai, Nava, Valli, Bernardoni, Vecchi (bib12) 2017; 220 Linak, Yoo, Wasson, Zhu, Wendt, Huggins, Chen, Shah, Huffman, Gilmour (bib37) 2007; 31 Guo, Ding, So, Ayoko, Li, Hung (bib24) 2009; 43 Ferreira, Bueno, Setti, Giménez-Romero, García-Jareño, Vicente (bib19) 2008; 92 Zeng, Zhang, Bao, Long, Tan, Li, Ma, Zhao (bib72) 2013; 25 IEMA/Ecosoft (bib29) 2011 Tecer, Tuncel, Karaca, Alagha, Süren, Zararsız, Kırmaz (bib54) 2012; 118 ICDD (bib28) 2007 Louie, Watson, Chow, Chen, Sin, Lau (bib39) 2005; 39 Vale (bib60) 2017 Guo, Kang, Huang, Zhang, Rupakheti, Sun, Tripathee, Rupakheti, Panday, Sillanpää, Paudyal (bib25) 2017; 579 Shi, Liu, Peng, Wang, Tian, Wang, Feng (bib51) 2014; 14 Duan, Tan (bib17) 2013; 74 Owoade, Hopke, Olise, Ogundele, Fawole, Olaniyi, Jegede, Ayoola, Bashiru (bib43) 2015; 6 Revuelta, McIntosh, Pey, Perez, Querol, Alastuey (bib45) 2014; 188 Watson, Zhu, Chow, Engelbrecht, Fujita, Wilson (bib68) 2002; 49 Zuo, Deng (bib75) 1997; 35 Watson, Chen, Chow, Doraiswamy, Lowenthal (bib67) 2008; 58 Blanchard, Tanenbaum, Hidy (bib3) 2012; 46 DENATRAN (bib15) 2018 Ghio, Devlin (bib22) 2001; 164 Hopke (bib27) 2003; 17 Flament, Mattielli, Aimoz, Choël, Deboudt, Jong, Rimetz-Planchon, Weis (bib20) 2008; 73 Yin, Harrison, Chen, Rutter, Schauer (bib71) 2010; 44 de Souza, de Queiroz, Morimoto, Guimarães, Garg (bib13) 2000; 246 CPTEC, Centro de Previsão do Tempo e Estudos Climáticos (bib11) 2017 Tugrul, Derun, Pişkin, Ekerim (bib57) 2009; 27 Schauer, Lough, Shafer, Christensen, Arndt, DeMinter, Park (bib48) 2006 Niu, Cao, Shen, Ho, Tie, Zhao, Xu, Zhang, Huang (bib42) 2016; 147 Thorpe, Harrison (bib55) 2008; 400 Viana, Pandolfi, Minguillón, Querol, Alastuey, Monfort, Celades (bib62) 2008; 42 Dockery, Pope (bib16) 1994; 15 Cha, Spiegel (bib6) 2004 Strezov (bib52) 2006; 31 Carvalho, Nunes, Coelho (bib5) 2017; 32 Wojdyr (bib70) 2010; 43 Zou, Huang, Zhang, Dai, Zeng, Feng, He (bib74) 2017; 8 Moreno, Querol, Alastuey, Viana, Salvador, Sánchez de la Campa, Artiñano, de la Rosa, Gibbons (bib40) 2006; 40 Karnae, John (bib33) 2011; 45 Shi, Feng, Zeng, Li, Zhang, Wang, Zhu (bib50) 2009; 43 Wang, Hu, Chen, Chen, Xu (bib65) 2013; 68 de Souza, Rodrigues, Morimoto, Garg (bib14) 1998; 112 Ivey, Holmes, Shi, Balachandran, Hu, Russell (bib30) 2017; 51 Viana (10.1016/j.chemosphere.2018.08.111_bib62) 2008; 42 Louie (10.1016/j.chemosphere.2018.08.111_bib39) 2005; 39 Ivey (10.1016/j.chemosphere.2018.08.111_bib30) 2017; 51 Moreno (10.1016/j.chemosphere.2018.08.111_bib40) 2006; 40 Carvalho (10.1016/j.chemosphere.2018.08.111_bib5) 2017; 32 Guo (10.1016/j.chemosphere.2018.08.111_bib26) 2017; 150 Ivošević (10.1016/j.chemosphere.2018.08.111_bib31) 2015; 363 Schauer (10.1016/j.chemosphere.2018.08.111_bib48) 2006 Flament (10.1016/j.chemosphere.2018.08.111_bib20) 2008; 73 Linak (10.1016/j.chemosphere.2018.08.111_bib37) 2007; 31 Dockery (10.1016/j.chemosphere.2018.08.111_bib16) 1994; 15 Achad (10.1016/j.chemosphere.2018.08.111_bib1) 2014; 92 CPTEC, Centro de Previsão do Tempo e Estudos Climáticos (10.1016/j.chemosphere.2018.08.111_bib11) 2017 Fabris (10.1016/j.chemosphere.2018.08.111_bib18) 1997; 110 Zuo (10.1016/j.chemosphere.2018.08.111_bib75) 1997; 35 Kappos (10.1016/j.chemosphere.2018.08.111_bib32) 2004; 207 Brunekreef (10.1016/j.chemosphere.2018.08.111_bib4) 2002; 360 Rohr (10.1016/j.chemosphere.2018.08.111_bib46) 2012; 62 Zou (10.1016/j.chemosphere.2018.08.111_bib74) 2017; 8 Vale (10.1016/j.chemosphere.2018.08.111_bib60) 2017 DENATRAN (10.1016/j.chemosphere.2018.08.111_bib15) 2018 Wang (10.1016/j.chemosphere.2018.08.111_bib65) 2013; 68 Blanchard (10.1016/j.chemosphere.2018.08.111_bib3) 2012; 46 IEMA/Ecosoft (10.1016/j.chemosphere.2018.08.111_bib29) 2011 de Souza (10.1016/j.chemosphere.2018.08.111_bib13) 2000; 246 Duan (10.1016/j.chemosphere.2018.08.111_bib17) 2013; 74 Gildemeister (10.1016/j.chemosphere.2018.08.111_bib23) 2007; 69 de Souza (10.1016/j.chemosphere.2018.08.111_bib14) 1998; 112 Guo (10.1016/j.chemosphere.2018.08.111_bib24) 2009; 43 Cha (10.1016/j.chemosphere.2018.08.111_bib6) 2004 Cheng (10.1016/j.chemosphere.2018.08.111_bib7) 2015; 18 Karnae (10.1016/j.chemosphere.2018.08.111_bib33) 2011; 45 Ghio (10.1016/j.chemosphere.2018.08.111_bib22) 2001; 164 Cohen (10.1016/j.chemosphere.2018.08.111_bib10) 2010; 44 Thorpe (10.1016/j.chemosphere.2018.08.111_bib55) 2008; 400 Shi (10.1016/j.chemosphere.2018.08.111_bib50) 2009; 43 USEPA (10.1016/j.chemosphere.2018.08.111_bib58) 2004 Guo (10.1016/j.chemosphere.2018.08.111_bib25) 2017; 579 Lee (10.1016/j.chemosphere.2018.08.111_bib36) 1999; 33 Kopcewicz (10.1016/j.chemosphere.2018.08.111_bib34) 2015; 131 Wang (10.1016/j.chemosphere.2018.08.111_bib64) 2016; 127 Yin (10.1016/j.chemosphere.2018.08.111_bib71) 2010; 44 Park (10.1016/j.chemosphere.2018.08.111_bib44) 2005; 59 Wittig (10.1016/j.chemosphere.2018.08.111_bib69) 2008; 42 Zeng (10.1016/j.chemosphere.2018.08.111_bib72) 2013; 25 Galvão (10.1016/j.chemosphere.2018.08.111_bib21) 2018; 199 Watson (10.1016/j.chemosphere.2018.08.111_bib67) 2008; 58 Chow (10.1016/j.chemosphere.2018.08.111_bib9) 1998 Strezov (10.1016/j.chemosphere.2018.08.111_bib52) 2006; 31 Wahid (10.1016/j.chemosphere.2018.08.111_bib63) 2013; 91 Wojdyr (10.1016/j.chemosphere.2018.08.111_bib70) 2010; 43 Liu (10.1016/j.chemosphere.2018.08.111_bib38) 2017; 51 Schmid-Beurmann (10.1016/j.chemosphere.2018.08.111_bib49) 1993; 19 Choi (10.1016/j.chemosphere.2018.08.111_bib8) 2013; 447 Owoade (10.1016/j.chemosphere.2018.08.111_bib43) 2015; 6 Amodio (10.1016/j.chemosphere.2018.08.111_bib2) 2013; 79 Tauler (10.1016/j.chemosphere.2018.08.111_bib53) 2009; 43 Revuelta (10.1016/j.chemosphere.2018.08.111_bib45) 2014; 188 Niu (10.1016/j.chemosphere.2018.08.111_bib42) 2016; 147 Zhang (10.1016/j.chemosphere.2018.08.111_bib73) 2017; 586 Tugrul (10.1016/j.chemosphere.2018.08.111_bib57) 2009; 27 ICDD (10.1016/j.chemosphere.2018.08.111_bib28) 2007 Muwanguzi (10.1016/j.chemosphere.2018.08.111_bib41) 2012; 9 Shi (10.1016/j.chemosphere.2018.08.111_bib51) 2014; 14 Roy (10.1016/j.chemosphere.2018.08.111_bib47) 2011; 45 Tecer (10.1016/j.chemosphere.2018.08.111_bib54) 2012; 118 Wang (10.1016/j.chemosphere.2018.08.111_bib66) 2017; 187 Hopke (10.1016/j.chemosphere.2018.08.111_bib27) 2003; 17 Vale (10.1016/j.chemosphere.2018.08.111_bib59) 2017 Kotchenruther (10.1016/j.chemosphere.2018.08.111_bib35) 2016; 142 Tian (10.1016/j.chemosphere.2018.08.111_bib56) 2013; 81 Crilley (10.1016/j.chemosphere.2018.08.111_bib12) 2017; 220 Ferreira (10.1016/j.chemosphere.2018.08.111_bib19) 2008; 92 Vale (10.1016/j.chemosphere.2018.08.111_bib61) 2016 Watson (10.1016/j.chemosphere.2018.08.111_bib68) 2002; 49 |
References_xml | – volume: 32 start-page: 10 year: 2017 end-page: 14 ident: bib5 article-title: X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: application to (Gd, Nd)5Si4 compounds publication-title: Powder Diffr. – volume: 45 start-page: 3769 year: 2011 end-page: 3776 ident: bib33 article-title: Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas publication-title: Atmos. Environ. – year: 2016 ident: bib61 article-title: Produção da Vale no 4T16 – year: 2017 ident: bib59 article-title: Relatório Anual, Formulário 20-F – year: 2018 ident: bib15 article-title: National Vehicular Fleet – volume: 164 start-page: 704 year: 2001 end-page: 708 ident: bib22 article-title: Inflammatory lung injury after bronchial instillation of air pollution particles publication-title: Am. J. Respir. Crit. Care Med. – volume: 79 start-page: 455 year: 2013 end-page: 461 ident: bib2 article-title: A monitoring strategy to assess the fugitive emission from a steel plant publication-title: Atmos. Environ. – volume: 17 start-page: 255 year: 2003 end-page: 265 ident: bib27 article-title: Recent developments in receptor modeling publication-title: J. Chemom. – volume: 68 start-page: 221 year: 2013 end-page: 229 ident: bib65 article-title: Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos publication-title: Environ. Times – volume: 586 start-page: 917 year: 2017 end-page: 929 ident: bib73 article-title: Review of receptor-based source apportionment research of fine particulate matter and its challenges in China publication-title: Sci. Total Environ. – volume: 35 start-page: 2051 year: 1997 end-page: 2058 ident: bib75 article-title: Iron(II)-catalyzed photochemical decomposition of oxalic acid and generation of H2O2 in atmospheric liquid phases publication-title: Chemosphere – volume: 59 start-page: 217 year: 2005 end-page: 226 ident: bib44 article-title: Source contributions to fine particulate matter in an urban atmosphere publication-title: Chemosphere – volume: 91 start-page: 1508 year: 2013 end-page: 1516 ident: bib63 article-title: Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia publication-title: Chemosphere – volume: 92 start-page: 522 year: 2014 end-page: 532 ident: bib1 article-title: Assessment of fine and sub-micrometer aerosols at an urban environment of Argentina publication-title: Atmos. Environ. – volume: 58 start-page: 265 year: 2008 end-page: 288 ident: bib67 article-title: Source apportionment: findings from the U.S. Supersites program publication-title: J. Air Waste Manag. Assoc. – volume: 73 start-page: 1793 year: 2008 end-page: 1798 ident: bib20 article-title: Iron isotopic fractionation in industrial emissions and urban aerosols publication-title: Chemosphere – volume: 579 start-page: 1240 year: 2017 end-page: 1248 ident: bib25 article-title: Characterizations of atmospheric particulate-bound mercury in the Kathmandu valley of Nepal, south Asia publication-title: Sci. Total Environ. – volume: 25 start-page: 605 year: 2013 end-page: 612 ident: bib72 article-title: Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES publication-title: J. Environ. Sci. – year: 2004 ident: bib58 article-title: EPA CMB8.2 User's Manual – volume: 31 start-page: 1929 year: 2007 end-page: 1937 ident: bib37 article-title: Ultrafine ash aerosols from coal combustion: characterization and health effects publication-title: Proc. Combust. Inst. – volume: 27 start-page: 281 year: 2009 end-page: 287 ident: bib57 article-title: A study on the structural behavior of reduced pyrite ash pellets by XRD and XRF analysis publication-title: Waste Manag. Res. – volume: 447 start-page: 370 year: 2013 end-page: 380 ident: bib8 article-title: Source apportionment of PM2.5 at the coastal area in Korea publication-title: Sci. Total Environ. – volume: 51 start-page: 13788 year: 2017 end-page: 13796 ident: bib30 article-title: Development of PM2.5 source profiles using a hybrid chemical transport-receptor modeling approach publication-title: Environ. Sci. Technol. – volume: 62 start-page: 130 year: 2012 end-page: 152 ident: bib46 article-title: Attributing health effects to individual particulate matter constituents publication-title: Atmos. Environ. – volume: 9 year: 2012 ident: bib41 article-title: Characterization of chemical composition and microstructure of natural iron ore from Muko deposits publication-title: ISRN Mater. Sci. – volume: 400 start-page: 270 year: 2008 end-page: 282 ident: bib55 article-title: Sources and properties of non-exhaust particulate matter from road traffic: a review publication-title: Sci. Total Environ. – volume: 43 start-page: 1159 year: 2009 end-page: 1169 ident: bib24 article-title: Receptor modeling of source apportionment of Hong Kong aerosols and the implication of urban and regional contribution publication-title: Atmos. Environ. – volume: 188 start-page: 109 year: 2014 end-page: 117 ident: bib45 article-title: Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain) publication-title: Environ. Pollut. – volume: 81 start-page: 76 year: 2013 end-page: 83 ident: bib56 article-title: Effects of collinearity, unknown source and removed factors on the NCPCRCMB receptor model solution publication-title: Atmos. Environ. – volume: 187 start-page: 138 year: 2017 end-page: 146 ident: bib66 article-title: Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China publication-title: Atmos. Res. – year: 2017 ident: bib11 article-title: Banco de dados – volume: 44 start-page: 841 year: 2010 end-page: 851 ident: bib71 article-title: Source apportionment of fine particles at urban background and rural sites in the UK atmosphere publication-title: Atmos. Environ. – volume: 147 start-page: 458 year: 2016 end-page: 469 ident: bib42 article-title: PM2.5 from the Guanzhong Plain: chemical composition and implications for emission reductions publication-title: Atmos. Environ. – volume: 31 start-page: 1892 year: 2006 end-page: 1905 ident: bib52 article-title: Iron ore reduction using sawdust: experimental analysis and kinetic modelling publication-title: Renew. Energy – volume: 74 start-page: 93 year: 2013 end-page: 101 ident: bib17 article-title: Atmospheric heavy metals and Arsenic in China: situation, sources and control policies publication-title: Atmos. Environ. – volume: 45 start-page: 3132 year: 2011 end-page: 3140 ident: bib47 article-title: Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles publication-title: Atmos. Environ. – volume: 42 start-page: 3820 year: 2008 end-page: 3832 ident: bib62 article-title: Inter-comparison of receptor models for PM source apportionment: case study in an industrial area publication-title: Atmos. Environ. – volume: 19 start-page: 571 year: 1993 end-page: 577 ident: bib49 article-title: 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2-FeS2 solid solution series publication-title: Phys. Chem. Miner. – volume: 199 year: 2018 ident: bib21 article-title: Trends in analytical techniques applied to particulate matter characterization: a critical review of fundaments and applications publication-title: Chemosphere – volume: 51 start-page: 8128 year: 2017 end-page: 8137 ident: bib38 article-title: The acute effects of fine particulate matter constituents on blood inflammation and coagulation publication-title: Environ. Sci. Technol. – volume: 43 start-page: 1126 year: 2010 end-page: 1128 ident: bib70 article-title: Fityk: a general-purpose peak fitting program publication-title: J. Appl. Crystallogr. – volume: 360 start-page: 1233 year: 2002 end-page: 1242 ident: bib4 article-title: Air pollution and health publication-title: Lancet – volume: 118 start-page: 153 year: 2012 end-page: 169 ident: bib54 article-title: Metallic composition and source apportionment of fine and coarse particles using positive matrix factorization in the southern Black Sea atmosphere publication-title: Atmos. Res. – volume: 69 start-page: 1064 year: 2007 end-page: 1074 ident: bib23 article-title: Sources of fine urban particulate matter in Detroit, MI publication-title: Chemosphere – volume: 6 start-page: 107 year: 2015 end-page: 119 ident: bib43 article-title: Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5–10) from a scrap iron and steel smelting industry along the Ife–Ibadan highway, Nigeria publication-title: Atmos. Pollut. Res. – volume: 46 start-page: 5479 year: 2012 end-page: 5488 ident: bib3 article-title: Source contributions to atmospheric gases and particulate matter in the southeastern United States publication-title: Environ. Sci. Technol. – volume: 49 start-page: 1093 year: 2002 end-page: 1136 ident: bib68 article-title: Receptor modeling application framework for particle source apportionment publication-title: Chemosphere – volume: 43 start-page: 8867 year: 2009 end-page: 8873 ident: bib50 article-title: Use of a nonnegative constrained principal component regression chemical mass balance model to study the contributions of nearly collinear sources publication-title: Environ. Sci. Technol. – volume: 112 start-page: 133 year: 1998 end-page: 138 ident: bib14 article-title: Industrial responsibility in the emission of particulate matter in the atmosphere publication-title: Hyperfine Interact. – volume: 131 start-page: 9 year: 2015 end-page: 16 ident: bib34 article-title: The Mössbauer study of atmospheric iron-containing aerosol in the coarse and PM2.5 fractions measured in rural site publication-title: Chemosphere – volume: 142 start-page: 210 year: 2016 end-page: 219 ident: bib35 article-title: Source apportionment of PM2.5 at multiple Northwest U.S. sites: assessing regional winter wood smoke impacts from residential wood combustion publication-title: Atmos. Environ. – volume: 127 start-page: 22 year: 2016 end-page: 33 ident: bib64 article-title: The contribution of anthropogenic sources to the aerosols over East China Sea publication-title: Atmos. Environ. – volume: 18 start-page: 96 year: 2015 end-page: 104 ident: bib7 article-title: PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway publication-title: Particuology – year: 1998 ident: bib9 article-title: Guideline on Speciated Particulate Monitoring; Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC – volume: 150 start-page: 187 year: 2017 end-page: 197 ident: bib26 article-title: Chemical profiles of PM emitted from the iron and steel industry in northern China publication-title: Atmos. Environ. – year: 2007 ident: bib28 publication-title: PDF-2, 2007 (Database) – volume: 220 start-page: 766 year: 2017 end-page: 778 ident: bib12 article-title: Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign publication-title: Environ. Pollut. – volume: 110 start-page: 23 year: 1997 end-page: 32 ident: bib18 article-title: Iron-rich spinels from Brazilian soils publication-title: Hyperfine Interact. – volume: 14 start-page: 2040 year: 2014 end-page: 2050 ident: bib51 article-title: A comparison of multiple combined models for source apportionment, including the PCA/MLR-CMB, Unmix-CMB and PMF-CMB models publication-title: Aerosol. Air Qual. Res. – volume: 363 start-page: 119 year: 2015 end-page: 123 ident: bib31 article-title: Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms – year: 2017 ident: bib60 article-title: Produção da Vale no 1T17 – year: 2011 ident: bib29 article-title: Inventory of Atmospheric Emissions of Great Vitória Region – volume: 40 start-page: 6791 year: 2006 end-page: 6803 ident: bib40 article-title: Variations in atmospheric PM trace metal content in Spanish towns: illustrating the chemical complexity of the inorganic urban aerosol cocktail publication-title: Atmos. Environ. – start-page: 1 year: 2006 end-page: 88 ident: bib48 article-title: Characterization of metals emitted from motor vehicles publication-title: Res. Rep. Health Eff. Inst. – volume: 33 start-page: 3201 year: 1999 end-page: 3212 ident: bib36 article-title: Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong publication-title: Atmos. Environ. – volume: 44 start-page: 320 year: 2010 end-page: 328 ident: bib10 article-title: Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008 publication-title: Atmos. Environ. – start-page: 1055 year: 2004 end-page: 1062 ident: bib6 article-title: Fundamental studies on alkali chloride induced corrosion during combustion of biomass publication-title: High Temperature Corrosion and Protection of Materials 6, Materials Science Forum – volume: 8 start-page: 1193 year: 2017 end-page: 1202 ident: bib74 article-title: Source apportionment of PM2.5 pollution in an industrial city in southern China publication-title: Atmos. Pollut. Res. – volume: 15 start-page: 107 year: 1994 end-page: 132 ident: bib16 article-title: Acute respiratory effects of particulate air pollution publication-title: Annu. Rev. Publ. Health – volume: 43 start-page: 3989 year: 2009 end-page: 3997 ident: bib53 article-title: Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies publication-title: Atmos. Environ. – volume: 42 start-page: 1319 year: 2008 end-page: 1337 ident: bib69 article-title: Improvement of the Chemical Mass Balance model for apportioning—sources of non-methane hydrocarbons using composite aged source profiles publication-title: Atmos. Environ. – volume: 246 start-page: 85 year: 2000 end-page: 90 ident: bib13 article-title: Air pollution investigation in Vitória Metropolitan region, ES, Brazil publication-title: J. Radioanal. Nucl. Chem. – volume: 39 start-page: 1695 year: 2005 end-page: 1710 ident: bib39 article-title: Seasonal characteristics and regional transport of PM2.5 in Hong Kong publication-title: Atmos. Environ. – volume: 92 year: 2008 ident: bib19 article-title: Resonant x-ray diffraction as a tool to calculate mixed valence ratios: application to Prussian Blue materials publication-title: Appl. Phys. Lett. – volume: 207 start-page: 399 year: 2004 end-page: 407 ident: bib32 article-title: Health effects of particles in ambient air publication-title: Int. J. Hyg Environ. Health – year: 2007 ident: 10.1016/j.chemosphere.2018.08.111_bib28 – year: 2004 ident: 10.1016/j.chemosphere.2018.08.111_bib58 – volume: 187 start-page: 138 year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib66 article-title: Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2016.12.004 – volume: 49 start-page: 1093 year: 2002 ident: 10.1016/j.chemosphere.2018.08.111_bib68 article-title: Receptor modeling application framework for particle source apportionment publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00243-6 – start-page: 1055 year: 2004 ident: 10.1016/j.chemosphere.2018.08.111_bib6 article-title: Fundamental studies on alkali chloride induced corrosion during combustion of biomass – year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib60 – volume: 363 start-page: 119 year: 2015 ident: 10.1016/j.chemosphere.2018.08.111_bib31 article-title: Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms doi: 10.1016/j.nimb.2015.08.030 – volume: 14 start-page: 2040 year: 2014 ident: 10.1016/j.chemosphere.2018.08.111_bib51 article-title: A comparison of multiple combined models for source apportionment, including the PCA/MLR-CMB, Unmix-CMB and PMF-CMB models publication-title: Aerosol. Air Qual. Res. doi: 10.4209/aaqr.2014.01.0024 – volume: 40 start-page: 6791 year: 2006 ident: 10.1016/j.chemosphere.2018.08.111_bib40 article-title: Variations in atmospheric PM trace metal content in Spanish towns: illustrating the chemical complexity of the inorganic urban aerosol cocktail publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.05.074 – volume: 92 year: 2008 ident: 10.1016/j.chemosphere.2018.08.111_bib19 article-title: Resonant x-ray diffraction as a tool to calculate mixed valence ratios: application to Prussian Blue materials publication-title: Appl. Phys. Lett. doi: 10.1063/1.2952457 – volume: 42 start-page: 3820 year: 2008 ident: 10.1016/j.chemosphere.2018.08.111_bib62 article-title: Inter-comparison of receptor models for PM source apportionment: case study in an industrial area publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.12.056 – volume: 68 start-page: 221 year: 2013 ident: 10.1016/j.chemosphere.2018.08.111_bib65 article-title: Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos publication-title: Environ. Times – volume: 25 start-page: 605 year: 2013 ident: 10.1016/j.chemosphere.2018.08.111_bib72 article-title: Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(12)60056-4 – volume: 43 start-page: 3989 year: 2009 ident: 10.1016/j.chemosphere.2018.08.111_bib53 article-title: Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.05.018 – volume: 579 start-page: 1240 year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib25 article-title: Characterizations of atmospheric particulate-bound mercury in the Kathmandu valley of Nepal, south Asia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.110 – volume: 17 start-page: 255 year: 2003 ident: 10.1016/j.chemosphere.2018.08.111_bib27 article-title: Recent developments in receptor modeling publication-title: J. Chemom. doi: 10.1002/cem.796 – volume: 18 start-page: 96 year: 2015 ident: 10.1016/j.chemosphere.2018.08.111_bib7 article-title: PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway publication-title: Particuology doi: 10.1016/j.partic.2013.10.003 – volume: 112 start-page: 133 year: 1998 ident: 10.1016/j.chemosphere.2018.08.111_bib14 article-title: Industrial responsibility in the emission of particulate matter in the atmosphere publication-title: Hyperfine Interact. doi: 10.1023/A:1011057231700 – volume: 19 start-page: 571 year: 1993 ident: 10.1016/j.chemosphere.2018.08.111_bib49 article-title: 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2-FeS2 solid solution series publication-title: Phys. Chem. Miner. doi: 10.1007/BF00203056 – volume: 131 start-page: 9 year: 2015 ident: 10.1016/j.chemosphere.2018.08.111_bib34 article-title: The Mössbauer study of atmospheric iron-containing aerosol in the coarse and PM2.5 fractions measured in rural site publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.02.038 – volume: 45 start-page: 3132 year: 2011 ident: 10.1016/j.chemosphere.2018.08.111_bib47 article-title: Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.03.020 – year: 2016 ident: 10.1016/j.chemosphere.2018.08.111_bib61 – volume: 150 start-page: 187 year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib26 article-title: Chemical profiles of PM emitted from the iron and steel industry in northern China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.11.055 – volume: 33 start-page: 3201 year: 1999 ident: 10.1016/j.chemosphere.2018.08.111_bib36 article-title: Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(99)00113-2 – volume: 32 start-page: 10 year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib5 article-title: X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: application to (Gd, Nd)5Si4 compounds publication-title: Powder Diffr. doi: 10.1017/S0885715616000646 – volume: 31 start-page: 1892 year: 2006 ident: 10.1016/j.chemosphere.2018.08.111_bib52 article-title: Iron ore reduction using sawdust: experimental analysis and kinetic modelling publication-title: Renew. Energy doi: 10.1016/j.renene.2005.08.032 – volume: 44 start-page: 841 year: 2010 ident: 10.1016/j.chemosphere.2018.08.111_bib71 article-title: Source apportionment of fine particles at urban background and rural sites in the UK atmosphere publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.11.026 – volume: 62 start-page: 130 year: 2012 ident: 10.1016/j.chemosphere.2018.08.111_bib46 article-title: Attributing health effects to individual particulate matter constituents publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.07.036 – volume: 51 start-page: 8128 year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib38 article-title: The acute effects of fine particulate matter constituents on blood inflammation and coagulation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00312 – volume: 6 start-page: 107 year: 2015 ident: 10.1016/j.chemosphere.2018.08.111_bib43 article-title: Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5–10) from a scrap iron and steel smelting industry along the Ife–Ibadan highway, Nigeria publication-title: Atmos. Pollut. Res. doi: 10.5094/APR.2015.013 – volume: 220 start-page: 766 year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib12 article-title: Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.06.002 – volume: 31 start-page: 1929 year: 2007 ident: 10.1016/j.chemosphere.2018.08.111_bib37 article-title: Ultrafine ash aerosols from coal combustion: characterization and health effects publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2006.08.086 – volume: 9 year: 2012 ident: 10.1016/j.chemosphere.2018.08.111_bib41 article-title: Characterization of chemical composition and microstructure of natural iron ore from Muko deposits publication-title: ISRN Mater. Sci. – volume: 188 start-page: 109 year: 2014 ident: 10.1016/j.chemosphere.2018.08.111_bib45 article-title: Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain) publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2014.01.025 – year: 2018 ident: 10.1016/j.chemosphere.2018.08.111_bib15 – volume: 73 start-page: 1793 year: 2008 ident: 10.1016/j.chemosphere.2018.08.111_bib20 article-title: Iron isotopic fractionation in industrial emissions and urban aerosols publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.08.042 – volume: 199 year: 2018 ident: 10.1016/j.chemosphere.2018.08.111_bib21 article-title: Trends in analytical techniques applied to particulate matter characterization: a critical review of fundaments and applications publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.02.034 – year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib11 – volume: 207 start-page: 399 year: 2004 ident: 10.1016/j.chemosphere.2018.08.111_bib32 article-title: Health effects of particles in ambient air publication-title: Int. J. Hyg Environ. Health doi: 10.1078/1438-4639-00306 – volume: 164 start-page: 704 year: 2001 ident: 10.1016/j.chemosphere.2018.08.111_bib22 article-title: Inflammatory lung injury after bronchial instillation of air pollution particles publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.164.4.2011089 – volume: 59 start-page: 217 year: 2005 ident: 10.1016/j.chemosphere.2018.08.111_bib44 article-title: Source contributions to fine particulate matter in an urban atmosphere publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.11.001 – volume: 91 start-page: 1508 year: 2013 ident: 10.1016/j.chemosphere.2018.08.111_bib63 article-title: Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.12.029 – volume: 81 start-page: 76 year: 2013 ident: 10.1016/j.chemosphere.2018.08.111_bib56 article-title: Effects of collinearity, unknown source and removed factors on the NCPCRCMB receptor model solution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.08.052 – volume: 142 start-page: 210 year: 2016 ident: 10.1016/j.chemosphere.2018.08.111_bib35 article-title: Source apportionment of PM2.5 at multiple Northwest U.S. sites: assessing regional winter wood smoke impacts from residential wood combustion publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.07.048 – volume: 246 start-page: 85 year: 2000 ident: 10.1016/j.chemosphere.2018.08.111_bib13 article-title: Air pollution investigation in Vitória Metropolitan region, ES, Brazil publication-title: J. Radioanal. Nucl. Chem. doi: 10.1023/A:1006729014335 – volume: 360 start-page: 1233 year: 2002 ident: 10.1016/j.chemosphere.2018.08.111_bib4 article-title: Air pollution and health publication-title: Lancet doi: 10.1016/S0140-6736(02)11274-8 – volume: 45 start-page: 3769 year: 2011 ident: 10.1016/j.chemosphere.2018.08.111_bib33 article-title: Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.04.040 – volume: 35 start-page: 2051 year: 1997 ident: 10.1016/j.chemosphere.2018.08.111_bib75 article-title: Iron(II)-catalyzed photochemical decomposition of oxalic acid and generation of H2O2 in atmospheric liquid phases publication-title: Chemosphere doi: 10.1016/S0045-6535(97)00228-2 – volume: 69 start-page: 1064 year: 2007 ident: 10.1016/j.chemosphere.2018.08.111_bib23 article-title: Sources of fine urban particulate matter in Detroit, MI publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.04.027 – volume: 51 start-page: 13788 year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib30 article-title: Development of PM2.5 source profiles using a hybrid chemical transport-receptor modeling approach publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03781 – year: 2011 ident: 10.1016/j.chemosphere.2018.08.111_bib29 – volume: 118 start-page: 153 year: 2012 ident: 10.1016/j.chemosphere.2018.08.111_bib54 article-title: Metallic composition and source apportionment of fine and coarse particles using positive matrix factorization in the southern Black Sea atmosphere publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2012.06.016 – volume: 400 start-page: 270 year: 2008 ident: 10.1016/j.chemosphere.2018.08.111_bib55 article-title: Sources and properties of non-exhaust particulate matter from road traffic: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.06.007 – volume: 127 start-page: 22 year: 2016 ident: 10.1016/j.chemosphere.2018.08.111_bib64 article-title: The contribution of anthropogenic sources to the aerosols over East China Sea publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.12.002 – volume: 586 start-page: 917 year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib73 article-title: Review of receptor-based source apportionment research of fine particulate matter and its challenges in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.02.071 – volume: 15 start-page: 107 year: 1994 ident: 10.1016/j.chemosphere.2018.08.111_bib16 article-title: Acute respiratory effects of particulate air pollution publication-title: Annu. Rev. Publ. Health doi: 10.1146/annurev.pu.15.050194.000543 – volume: 8 start-page: 1193 year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib74 article-title: Source apportionment of PM2.5 pollution in an industrial city in southern China publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2017.05.001 – volume: 74 start-page: 93 year: 2013 ident: 10.1016/j.chemosphere.2018.08.111_bib17 article-title: Atmospheric heavy metals and Arsenic in China: situation, sources and control policies publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.03.031 – volume: 92 start-page: 522 year: 2014 ident: 10.1016/j.chemosphere.2018.08.111_bib1 article-title: Assessment of fine and sub-micrometer aerosols at an urban environment of Argentina publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.05.001 – year: 1998 ident: 10.1016/j.chemosphere.2018.08.111_bib9 – volume: 42 start-page: 1319 year: 2008 ident: 10.1016/j.chemosphere.2018.08.111_bib69 article-title: Improvement of the Chemical Mass Balance model for apportioning—sources of non-methane hydrocarbons using composite aged source profiles publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.10.072 – start-page: 1 year: 2006 ident: 10.1016/j.chemosphere.2018.08.111_bib48 article-title: Characterization of metals emitted from motor vehicles publication-title: Res. Rep. Health Eff. Inst. – volume: 43 start-page: 1159 year: 2009 ident: 10.1016/j.chemosphere.2018.08.111_bib24 article-title: Receptor modeling of source apportionment of Hong Kong aerosols and the implication of urban and regional contribution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.04.046 – volume: 447 start-page: 370 year: 2013 ident: 10.1016/j.chemosphere.2018.08.111_bib8 article-title: Source apportionment of PM2.5 at the coastal area in Korea publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.12.047 – volume: 44 start-page: 320 year: 2010 ident: 10.1016/j.chemosphere.2018.08.111_bib10 article-title: Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.10.037 – volume: 46 start-page: 5479 year: 2012 ident: 10.1016/j.chemosphere.2018.08.111_bib3 article-title: Source contributions to atmospheric gases and particulate matter in the southeastern United States publication-title: Environ. Sci. Technol. doi: 10.1021/es203568t – volume: 43 start-page: 1126 year: 2010 ident: 10.1016/j.chemosphere.2018.08.111_bib70 article-title: Fityk: a general-purpose peak fitting program publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889810030499 – volume: 39 start-page: 1695 year: 2005 ident: 10.1016/j.chemosphere.2018.08.111_bib39 article-title: Seasonal characteristics and regional transport of PM2.5 in Hong Kong publication-title: Atmos. Environ. – year: 2017 ident: 10.1016/j.chemosphere.2018.08.111_bib59 – volume: 79 start-page: 455 year: 2013 ident: 10.1016/j.chemosphere.2018.08.111_bib2 article-title: A monitoring strategy to assess the fugitive emission from a steel plant publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.07.001 – volume: 43 start-page: 8867 year: 2009 ident: 10.1016/j.chemosphere.2018.08.111_bib50 article-title: Use of a nonnegative constrained principal component regression chemical mass balance model to study the contributions of nearly collinear sources publication-title: Environ. Sci. Technol. doi: 10.1021/es902785c – volume: 58 start-page: 265 year: 2008 ident: 10.1016/j.chemosphere.2018.08.111_bib67 article-title: Source apportionment: findings from the U.S. Supersites program publication-title: J. Air Waste Manag. Assoc. doi: 10.3155/1047-3289.58.2.265 – volume: 110 start-page: 23 year: 1997 ident: 10.1016/j.chemosphere.2018.08.111_bib18 article-title: Iron-rich spinels from Brazilian soils publication-title: Hyperfine Interact. doi: 10.1023/A:1012619331408 – volume: 27 start-page: 281 year: 2009 ident: 10.1016/j.chemosphere.2018.08.111_bib57 article-title: A study on the structural behavior of reduced pyrite ash pellets by XRD and XRF analysis publication-title: Waste Manag. Res. doi: 10.1177/0734242X08090404 – volume: 147 start-page: 458 year: 2016 ident: 10.1016/j.chemosphere.2018.08.111_bib42 article-title: PM2.5 from the Guanzhong Plain: chemical composition and implications for emission reductions publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.10.029 |
SSID | ssj0001659 |
Score | 2.3576949 |
Snippet | Particulate matter driven health problems are strongly associated with its chemical composition. Despite the benefits of using source apportionment models for... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 418 |
SubjectTerms | air quality Brazil carbon Chemical composition coal Crystalline phases elemental composition emissions furnaces hematite iron Particulate matter (PM) particulates receptors Resonant Synchrotron X-ray Diffraction (RSr-XRD) Source apportionment Source markers urban areas X-ray diffraction |
Title | Resonant Synchrotron X-ray Diffraction determines markers for iron-rich atmospheric particulate matter in urban region |
URI | https://dx.doi.org/10.1016/j.chemosphere.2018.08.111 https://www.ncbi.nlm.nih.gov/pubmed/30149315 https://www.proquest.com/docview/2095523203 https://www.proquest.com/docview/2116865880 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSh-X0qav7SMo0KsayZa8MvQStgnblubSBvZmJFkiLo29eHcLe8lvz4wfSXtICfRoMwPyzHjmG3seAO-pS9mFxPJYThOugi55nkTJ82lE32eCTgIlit9Os_mZ-rLQix2Yjb0wVFY5-P7ep3feerhzOEjzcFlV1ONLaCTVaJRSm4wafpWakpV_uLwp85CZ7iGw0pyoH8DBTY0XyuWiWVH_Pk3MlIameUopb4tRt2HQLhadPIHHA4hkR_05n8JOqPfg4Wzc3bYH94-7YdTbZ_Cbvs9TsQv7vq39edvQp2-24K3dsk9VjG3f2MDKoSwmrNgFVey0K4ZwllETHEdXec7seniGyrNlJyFa_BWQmvqBWFWzTetszWjTQ1M_h7OT4x-zOR92LXCvpFjzmKa5CNEh3HGJw5heOpH56GyMITde5NNgYhSlTXXw0otUiWhlUC71ZYZZRvoCduumDq-AGWdcDJZk75VFFhsCgsw890rHMqoJmFG6hR8GkdM-jF_FWHH2s_hDMQUpphCGcpUJJNesy34ax12YPo4qLP4yrQKjxl3YD0a1F6hF-p9i69BsVkiUa8zjE5H-g0bKzCDKM2ICL3ubuT45ZbM52u7r_zvgG3hEV32NzVvYXbeb8A6R0trtd6_CPtw7-vx1fnoF3-wYNA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6lK17GVv30exThb2KSrbkyLCXkrWka5uXtZA3IckS9Vjt4CSF_PfTxXa2PXQU9mrrQL473_1Oug-Az1ilbH1iaChGCRVeFjRPAqf5KETbp7xMPAaKl9Nsci2-zeRsB8Z9LQymVXa2v7XpG2vdPTnquHk0L0us8UU0ksqolFyqTD2CXexOJQewe3x2PpluDTLPZIuChaRI8AQOf6d5Rdbc1gss4cemmVxhQ0_O-X1u6j4YunFHp8_hWYcjyXG71Rew46t92Bv349v24fHJph_1-iXc4RE95ruQ7-vK3TQ1nn6TGW3MmnwtQ2ja2gZSdJkxfkFuMWmnWZCIaAnWwdFoLW-IWXbfUDoy3zAJZ3_5uBpLgkhZkVVjTUVw2ENdvYLr05Or8YR24xaoE5wtaUjTnPlgI-KxiY1uvbAsc8GaEHyuHMtHXoXACpNK77hjqWDBcC9s6oosBhrpaxhUdeUPgCirbPAGee-EiSTG-4gz89wJGYoghqB67mrX9SLHkRg_dZ909kP_IRiNgtFMYbgyhGRLOm8bcjyE6EsvQv2XdunoOB5CftiLXUcp4pWKqXy9WsRFuYyhfMLSf6zhPFMR6Ck2hDetzmx3jgFtHtX37f9t8BPsTa4uL_TF2fT8HTzFN23KzXsYLJuV_xCB09J-7H6MX1y0GuU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resonant+Synchrotron+X-ray+Diffraction+determines+markers+for+iron-rich+atmospheric+particulate+matter+in+urban+region&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Galv%C3%A3o%2C+Elson+Silva&rft.au=Santos%2C+Jane+Meri&rft.au=Lima%2C+Ana+Teresa&rft.au=Reis%2C+Jr%2C+Neyval+Costa&rft.date=2018-12-01&rft.eissn=1879-1298&rft.volume=212&rft.spage=418&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.08.111&rft_id=info%3Apmid%2F30149315&rft.externalDocID=30149315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |