Efficiency of minimizing compositions of convex functions and smooth maps
We consider global efficiency of algorithms for minimizing a sum of a convex function and a composition of a Lipschitz convex function with a smooth map. The basic algorithm we rely on is the prox-linear method, which in each iteration solves a regularized subproblem formed by linearizing the smooth...
Saved in:
Published in | Mathematical programming Vol. 178; no. 1-2; pp. 503 - 558 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider global efficiency of algorithms for minimizing a sum of a convex function and a composition of a Lipschitz convex function with a smooth map. The basic algorithm we rely on is the prox-linear method, which in each iteration solves a regularized subproblem formed by linearizing the smooth map. When the subproblems are solved exactly, the method has efficiency
O
(
ε
-
2
)
, akin to gradient descent for smooth minimization. We show that when the subproblems can only be solved by first-order methods, a simple combination of smoothing, the prox-linear method, and a fast-gradient scheme yields an algorithm with complexity
O
~
(
ε
-
3
)
. We round off the paper with an inertial prox-linear method that automatically accelerates in presence of convexity. |
---|---|
AbstractList | We consider global efficiency of algorithms for minimizing a sum of a convex function and a composition of a Lipschitz convex function with a smooth map. The basic algorithm we rely on is the prox-linear method, which in each iteration solves a regularized subproblem formed by linearizing the smooth map. When the subproblems are solved exactly, the method has efficiency O(ε-2), akin to gradient descent for smooth minimization. We show that when the subproblems can only be solved by first-order methods, a simple combination of smoothing, the prox-linear method, and a fast-gradient scheme yields an algorithm with complexity O~(ε-3). We round off the paper with an inertial prox-linear method that automatically accelerates in presence of convexity. We consider global efficiency of algorithms for minimizing a sum of a convex function and a composition of a Lipschitz convex function with a smooth map. The basic algorithm we rely on is the prox-linear method, which in each iteration solves a regularized subproblem formed by linearizing the smooth map. When the subproblems are solved exactly, the method has efficiency O ( ε - 2 ) , akin to gradient descent for smooth minimization. We show that when the subproblems can only be solved by first-order methods, a simple combination of smoothing, the prox-linear method, and a fast-gradient scheme yields an algorithm with complexity O ~ ( ε - 3 ) . We round off the paper with an inertial prox-linear method that automatically accelerates in presence of convexity. |
Author | Paquette, C. Drusvyatskiy, D. |
Author_xml | – sequence: 1 givenname: D. orcidid: 0000-0001-5245-0458 surname: Drusvyatskiy fullname: Drusvyatskiy, D. email: ddrusv@uw.edu organization: Department of Mathematics, University of Washington – sequence: 2 givenname: C. surname: Paquette fullname: Paquette, C. organization: Department of Mathematics, University of Washington |
BookMark | eNp9kF1LwzAUhoNMcJv-AO8KXlfPSdomu5QxdTDwRq9DmiYzY01q04nz19tSQRDcVeDkfc7HMyMTH7wh5BrhFgH4XURA4CmgSJEhpuyMTDFjRZoVWTEhUwCap3mBcEFmMe4AAJkQU7JeWeu0M14fk2CT2nlXuy_nt4kOdROi61zwcfjSwX-Yz8QevB5ryldJrEPo3pJaNfGSnFu1j-bq552T14fVy_Ip3Tw_rpf3m1RnCF1qKSDNFrQss1JbIdjC8BIVt7kSJQcrKkMXvGIqK7nKWMUrUTGtlEFtOGeGzcnN2Ldpw_vBxE7uwqH1_UhJGRQCOKd4MgWc5vmCFkWf4mNKtyHG1lipXaeG87pWub1EkINdOdqVvV052JWsJ_EP2bSuVu3xJENHJvZZvzXt707_Q9-DHI4j |
CitedBy_id | crossref_primary_10_1137_21M1465445 crossref_primary_10_1007_s12532_021_00205_x crossref_primary_10_1137_22M1498826 crossref_primary_10_1007_s10107_022_01909_1 crossref_primary_10_1007_s10589_021_00280_9 crossref_primary_10_1287_trsc_2022_1178 crossref_primary_10_1080_02331934_2024_2439559 crossref_primary_10_1137_21M1435719 crossref_primary_10_1137_21M1402340 crossref_primary_10_1287_opre_2022_0216 crossref_primary_10_1007_s10208_020_09490_9 crossref_primary_10_1007_s10915_023_02289_0 crossref_primary_10_1137_20M1320225 crossref_primary_10_1080_10556788_2021_1895152 crossref_primary_10_1007_s10107_025_02194_4 crossref_primary_10_1109_TIT_2022_3146206 crossref_primary_10_1137_20M1314057 crossref_primary_10_1007_s10589_022_00358_y crossref_primary_10_1007_s10208_021_09516_w crossref_primary_10_1137_21M1465470 crossref_primary_10_1007_s10994_024_06640_w crossref_primary_10_1287_moor_2021_1126 crossref_primary_10_1007_s10957_020_01800_z crossref_primary_10_1007_s12532_024_00258_8 crossref_primary_10_1137_22M1494270 crossref_primary_10_1007_s10994_023_06332_x crossref_primary_10_1007_s10589_022_00447_y crossref_primary_10_1016_j_jco_2024_101889 crossref_primary_10_1007_s10589_023_00533_9 crossref_primary_10_1007_s10915_023_02101_z crossref_primary_10_1007_s10589_023_00490_3 crossref_primary_10_1109_TAC_2021_3056535 crossref_primary_10_1007_s11590_023_01972_3 crossref_primary_10_1093_imanum_drz031 crossref_primary_10_1007_s10994_022_06217_5 crossref_primary_10_1007_s10898_024_01451_8 crossref_primary_10_1007_s10915_020_01332_8 crossref_primary_10_1287_ijoo_2021_0064 crossref_primary_10_1080_10556788_2023_2296982 crossref_primary_10_1007_s10107_025_02197_1 crossref_primary_10_1137_21M1410063 crossref_primary_10_1007_s10898_021_01114_y crossref_primary_10_1007_s12532_020_00199_y crossref_primary_10_1007_s10589_022_00377_9 crossref_primary_10_1007_s10107_019_01382_3 crossref_primary_10_1137_20M1313222 crossref_primary_10_1007_s10107_024_02154_4 crossref_primary_10_1109_TSP_2024_3365933 crossref_primary_10_1137_22M1472000 crossref_primary_10_1137_20M1321000 crossref_primary_10_1007_s10107_021_01709_z crossref_primary_10_1007_s10589_019_00081_1 crossref_primary_10_1287_moor_2023_0202 crossref_primary_10_2139_ssrn_4099814 crossref_primary_10_1103_PhysRevFluids_6_094401 crossref_primary_10_1007_s10915_022_01815_w |
Cites_doi | 10.1515/9781400873173 10.1137/130950239 10.1137/0111030 10.1007/BF01585101 10.1007/s10107-012-0629-5 10.1090/S0002-9947-96-01544-9 10.1080/00949658108810482 10.1007/BF01071708 10.1287/moor.2017.0889 10.1137/110844805 10.1137/S1052623495293160 10.1287/moor.2015.0735 10.1137/080716542 10.1007/s10107-015-0871-8 10.1137/0906017 10.1007/s10107-014-0790-0 10.1137/0327068 10.1007/BF01585997 10.1137/0329054 10.1080/08927020600643812 10.1007/s10107-004-0552-5 10.1177/0049124107301946 10.1007/BF02591949 10.1137/11082381X 10.1007/BFb0120959 10.1093/imanum/10.3.299 10.2307/1402501 10.1016/j.orl.2016.10.003 10.1016/j.automatica.2017.08.011 10.1090/qam/10666 10.1007/s10107-013-0677-5 10.1007/978-3-642-02431-3 10.1007/s10107-015-0943-9 10.1137/1.9780898718768 10.1007/BF01584377 10.1007/BF02591998 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018 Mathematical Programming is a copyright of Springer, (2018). All Rights Reserved. Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018 – notice: Mathematical Programming is a copyright of Springer, (2018). All Rights Reserved. – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s10107-018-1311-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database ProQuest Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1436-4646 |
EndPage | 558 |
ExternalDocumentID | 10_1007_s10107_018_1311_3 |
GrantInformation_xml | – fundername: Directorate for Mathematical and Physical Sciences grantid: 1651851 funderid: http://dx.doi.org/10.13039/100000086 – fundername: Air Force Office of Scientific Research grantid: FA9550-15-1-0237 funderid: http://dx.doi.org/10.13039/100000181 |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c410t-f2012492bb4bcf8839e7b1a7f5a8b70f8de297d3a4b7a43d7d8d3caae1ce773e3 |
IEDL.DBID | BENPR |
ISSN | 0025-5610 |
IngestDate | Fri Jul 25 19:50:46 EDT 2025 Fri Jul 25 19:56:02 EDT 2025 Tue Jul 01 02:15:12 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Fri Feb 21 02:32:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Secondary 90C06 Fast gradient methods Inexactness Gauss–Newton Complexity Prox-gradient Incremental methods Primary 97N60 90C30 Composite minimization Smoothing 90C25 Acceleration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-f2012492bb4bcf8839e7b1a7f5a8b70f8de297d3a4b7a43d7d8d3caae1ce773e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5245-0458 |
PQID | 2072559266 |
PQPubID | 25307 |
PageCount | 56 |
ParticipantIDs | proquest_journals_2306807721 proquest_journals_2072559266 crossref_citationtrail_10_1007_s10107_018_1311_3 crossref_primary_10_1007_s10107_018_1311_3 springer_journals_10_1007_s10107_018_1311_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Eremin (CR24) 1967; 3 Nesterov (CR43) 2004 Nesterov (CR41) 1983; 269 Nesterov (CR48) 2015; 152 Burke (CR6) 1985; 33 Ghadimi, Lan (CR26) 2016; 156 Nesterov (CR45) 2007; 22 CR37 CR35 Clark (CR12) 1985; 6 Daniilidis, Malick (CR15) 2005; 12 CR34 Moré (CR38) 1978 Rockafellar (CR55) 1970 Villa, Salzo, Baldassarre, Verri (CR60) 2013; 23 Wild (CR61) 2014 Huber (CR30) 2004 Narula, Wellington (CR39) 1982; 50 Di Pillo, Grippo (CR17) 1989; 27 Byrd, Nocedal, Waltz (CR10) 2006 Marquardt (CR36) 1963; 11 Nesterov (CR44) 2005; 103 Nesterov (CR42) 1988; 24 Siemsen, Bollen (CR58) 2007; 36 CR40 Cartis, Gould, Toint (CR11) 2011; 21 Dutter, Huber (CR23) 1981; 13 Beck, Teboulle (CR2) 2009; 2 Gillis (CR28) 2017; 25 Nesterov (CR46) 2012; 88 Nocedal, Wright (CR49) 2006 Burke, Ferris (CR9) 1995; 71 Yuan (CR63) 1985; 31 Borwein, Zhu (CR4) 2005 CR18 Wright (CR62) 1990; 10 Drusvyatskiy, Lewis (CR19) 2018; 43 CR59 CR14 Li, Swetits (CR33) 1998; 8 CR53 Devolder, Glineur, Nesterov (CR16) 2014; 146 CR50 Poliquin, Rockafellar (CR52) 1996; 348 Brassard, Bratley (CR5) 1996 Nesterov (CR47) 2013; 140 Lewis, Wright (CR32) 2016; 158 Schmidt, Roux, Bach, Shawe-Taylor, Zemel, Bartlett, Pereira, Weinberger (CR57) 2011 Rockafellar, Wets (CR56) 1998 Burke (CR7) 1991; 29 Coleman, Conn (CR13) 1982; 24 CR29 CR27 CR25 Levenberg (CR31) 1944; 2 Burke, Curtis, Wang, Wang (CR8) 2015; 25 CR22 CR21 CR20 Pauwels (CR51) 2016; 44 Powell (CR54) 1984; 29 Bolte, Pauwels (CR3) 2016; 41 Aravkin, Burke, Ljung, Lozano, Pillonetto (CR1) 2017; 86 DI Clark (1311_CR12) 1985; 6 Dmitriy Drusvyatskiy (1311_CR19) 2018; 43 JV Burke (1311_CR7) 1991; 29 O Devolder (1311_CR16) 2014; 146 W Li (1311_CR33) 1998; 8 Y Nesterov (1311_CR42) 1988; 24 Y Yuan (1311_CR63) 1985; 31 SM Wild (1311_CR61) 2014 C Cartis (1311_CR11) 2011; 21 1311_CR37 Yurii Nesterov (1311_CR43) 2004 DW Marquardt (1311_CR36) 1963; 11 RT Rockafellar (1311_CR55) 1970 A Daniilidis (1311_CR15) 2005; 12 1311_CR35 1311_CR34 Y Nesterov (1311_CR45) 2007; 22 Y Nesterov (1311_CR48) 2015; 152 G Di Pillo (1311_CR17) 1989; 27 JV Burke (1311_CR6) 1985; 33 S Ghadimi (1311_CR26) 2016; 156 JM Borwein (1311_CR4) 2005 II Eremin (1311_CR24) 1967; 3 1311_CR29 M Schmidt (1311_CR57) 2011 1311_CR27 1311_CR25 Y Nesterov (1311_CR41) 1983; 269 E Siemsen (1311_CR58) 2007; 36 1311_CR22 1311_CR20 R. Tyrrell Rockafellar (1311_CR56) 1998 1311_CR21 SC Narula (1311_CR39) 1982; 50 AS Lewis (1311_CR32) 2016; 158 S Villa (1311_CR60) 2013; 23 J Bolte (1311_CR3) 2016; 41 Richard H. Byrd (1311_CR10) 2006 A Aravkin (1311_CR1) 2017; 86 G Brassard (1311_CR5) 1996 TF Coleman (1311_CR13) 1982; 24 1311_CR18 1311_CR59 1311_CR14 PJ Huber (1311_CR30) 2004 1311_CR53 J Nocedal (1311_CR49) 2006 1311_CR50 N Gillis (1311_CR28) 2017; 25 MJD Powell (1311_CR54) 1984; 29 JV Burke (1311_CR8) 2015; 25 Y Nesterov (1311_CR44) 2005; 103 JV Burke (1311_CR9) 1995; 71 A Beck (1311_CR2) 2009; 2 Y Nesterov (1311_CR47) 2013; 140 SJ Wright (1311_CR62) 1990; 10 Jorge J. Moré (1311_CR38) 1978 R Dutter (1311_CR23) 1981; 13 1311_CR40 K Levenberg (1311_CR31) 1944; 2 RA Poliquin (1311_CR52) 1996; 348 Y Nesterov (1311_CR46) 2012; 88 E Pauwels (1311_CR51) 2016; 44 |
References_xml | – ident: CR22 – volume: 140 start-page: 125 issue: 1, Ser. B year: 2013 end-page: 161 ident: CR47 article-title: Gradient methods for minimizing composite functions publication-title: Math. Program. – year: 2004 ident: CR30 publication-title: Robust Statistics – volume: 33 start-page: 260 issue: 3 year: 1985 end-page: 279 ident: CR6 article-title: Descent methods for composite nondifferentiable optimization problems publication-title: Math. Program. – start-page: 105 year: 1978 end-page: 116 ident: CR38 article-title: The Levenberg-Marquardt algorithm: Implementation and theory publication-title: Lecture Notes in Mathematics – ident: CR35 – ident: CR29 – year: 2005 ident: CR4 publication-title: Techniques of Variational Analysis – start-page: 35 year: 2006 end-page: 59 ident: CR10 article-title: Knitro: An Integrated Package for Nonlinear Optimization publication-title: Nonconvex Optimization and Its Applications – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: CR36 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Ind. Appl. Math. – ident: CR25 – volume: 152 start-page: 381 issue: 1 year: 2015 end-page: 404 ident: CR48 article-title: Universal gradient methods for convex optimization problems publication-title: Math. Program. – volume: 22 start-page: 469 issue: 3 year: 2007 end-page: 483 ident: CR45 article-title: Modified Gauss–Newton scheme with worst case guarantees for global performance publication-title: Optim. Methods Softw. – volume: 88 start-page: 10 year: 2012 end-page: 11 ident: CR46 article-title: How to make the gradients small publication-title: OPTIMA MPS Newsl. – ident: CR21 – volume: 71 start-page: 179 issue: 2, Ser. A year: 1995 end-page: 194 ident: CR9 article-title: A Gauss-Newton method for convex composite optimization publication-title: Math. Program. – volume: 24 start-page: 137 issue: 2 year: 1982 end-page: 161 ident: CR13 article-title: Nonlinear programming via an exact penalty function: global analysis publication-title: Math. Program. – volume: 31 start-page: 269 issue: 3 year: 1985 end-page: 285 ident: CR63 article-title: On the superlinear convergence of a trust region algorithm for nonsmooth optimization publication-title: Math. Program. – volume: 146 start-page: 37 issue: 1 year: 2014 end-page: 75 ident: CR16 article-title: First-order methods of smooth convex optimization with inexact oracle publication-title: Math. Program. – ident: CR50 – volume: 50 start-page: 317 issue: 3 year: 1982 end-page: 326 ident: CR39 article-title: The minimum sum of absolute errors regression: a state of the art survey publication-title: Int. Stat. Rev. – volume: 41 start-page: 442 issue: 2 year: 2016 end-page: 465 ident: CR3 article-title: Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs publication-title: Math. Oper. Res. – volume: 10 start-page: 299 issue: 3 year: 1990 end-page: 321 ident: CR62 article-title: Convergence of an inexact algorithm for composite nonsmooth optimization publication-title: IMA J. Numer. Anal. – year: 2014 ident: CR61 publication-title: Solving Derivative-Free Nonlinear Least Squares Problems with POUNDERS – volume: 3 start-page: 53 issue: 4 year: 1967 end-page: 56 ident: CR24 article-title: The penalty method in convex programming publication-title: Cybernetics – volume: 269 start-page: 543 issue: 3 year: 1983 end-page: 547 ident: CR41 article-title: A method for solving the convex programming problem with convergence rate publication-title: Dokl. Akad. Nauk SSSR – volume: 25 start-page: 261 issue: 1 year: 2015 end-page: 294 ident: CR8 article-title: Iterative reweighted linear least squares for exact penalty subproblems on product sets publication-title: SIAM J. Optim. – volume: 348 start-page: 1805 year: 1996 end-page: 1838 ident: CR52 article-title: Prox-regular functions in variational analysis publication-title: Trans. Am. Math. Soc. – volume: 23 start-page: 1607 issue: 3 year: 2013 end-page: 1633 ident: CR60 article-title: Accelerated and inexact forward-backward algorithms publication-title: SIAM J. Optim. – ident: CR18 – volume: 36 start-page: 227 issue: 2 year: 2007 end-page: 265 ident: CR58 article-title: Least absolute deviation estimation in structural equation modeling publication-title: Sociol. Methods Res. – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR2 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. – volume: 44 start-page: 790 issue: 6 year: 2016 end-page: 795 ident: CR51 article-title: The value function approach to convergence analysis in composite optimization publication-title: Oper. Res. Lett. – ident: CR14 – ident: CR37 – ident: CR53 – volume: 27 start-page: 1333 issue: 6 year: 1989 end-page: 1360 ident: CR17 article-title: Exact penalty functions in constrained optimization publication-title: SIAM J. Control Optim. – volume: 158 start-page: 501 issue: 1–2 year: 2016 end-page: 546 ident: CR32 article-title: A proximal method for composite minimization publication-title: Math. Program. – start-page: 51 year: 2004 end-page: 110 ident: CR43 article-title: Smooth Convex Optimization publication-title: Applied Optimization – year: 1996 ident: CR5 publication-title: Fundamentals of Algorithmics – volume: 13 start-page: 79 issue: 2 year: 1981 end-page: 113 ident: CR23 article-title: Numerical methods for the nonlinear robust regression problem publication-title: J. Stat. Comput. Simul. – volume: 156 start-page: 59 issue: 1–2, Ser. A year: 2016 end-page: 99 ident: CR26 article-title: Accelerated gradient methods for nonconvex nonlinear and stochastic programming publication-title: Math. Program. – year: 1998 ident: CR56 publication-title: Variational Analysis – volume: 103 start-page: 127 issue: 1, Ser. A year: 2005 end-page: 152 ident: CR44 article-title: Smooth minimization of non-smooth functions publication-title: Math. Program. – volume: 25 start-page: 7 issue: 1 year: 2017 end-page: 16 ident: CR28 article-title: Introduction to nonnegative matrix factorization publication-title: SIAG/OPT Views News – ident: CR40 – volume: 86 start-page: 63 issue: Supplement C year: 2017 end-page: 86 ident: CR1 article-title: Generalized kalman smoothing: modeling and algorithms publication-title: Automatica – ident: CR27 – volume: 12 start-page: 315 issue: 2 year: 2005 end-page: 329 ident: CR15 article-title: Filling the gap between lower- and lower- functions publication-title: J. Convex Anal. – year: 1970 ident: CR55 publication-title: Convex Analysis – volume: 8 start-page: 457 issue: 2 year: 1998 end-page: 475 ident: CR33 article-title: The linear l1 estimator and the huber m-estimator publication-title: SIAM J. Optim. – volume: 6 start-page: 209 issue: 1 year: 1985 end-page: 219 ident: CR12 article-title: The mathematical structure of Huber’s M-estimator publication-title: SIAM J. Sci. Stat. Comput. – start-page: 1458 year: 2011 end-page: 1466 ident: CR57 article-title: Convergence rates of inexact proximal-gradient methods for convex optimization publication-title: Advances in Neural Information Processing Systems 24 – volume: 43 start-page: 919 issue: 3 year: 2018 end-page: 948 ident: CR19 article-title: Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods publication-title: Mathematics of Operations Research – volume: 24 start-page: 509 year: 1988 end-page: 517 ident: CR42 article-title: On an approach to the construction of optimal methods of minimization of smooth convex functions publication-title: Ekonom. i. Mat. Metody – volume: 21 start-page: 1721 issue: 4 year: 2011 end-page: 1739 ident: CR11 article-title: On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming publication-title: SIAM J. Optim. – volume: 29 start-page: 297 issue: 3 year: 1984 end-page: 303 ident: CR54 article-title: On the global convergence of trust region algorithms for unconstrained minimization publication-title: Math. Program. – ident: CR34 – volume: 29 start-page: 968 issue: 4 year: 1991 end-page: 998 ident: CR7 article-title: An exact penalization viewpoint of constrained optimization publication-title: SIAM J. Control Optim. – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: CR31 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. – ident: CR59 – year: 2006 ident: CR49 publication-title: Numerical Optimization – ident: CR20 – volume-title: Convex Analysis year: 1970 ident: 1311_CR55 doi: 10.1515/9781400873173 – volume: 25 start-page: 261 issue: 1 year: 2015 ident: 1311_CR8 publication-title: SIAM J. Optim. doi: 10.1137/130950239 – volume: 11 start-page: 431 year: 1963 ident: 1311_CR36 publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – ident: 1311_CR40 – volume: 24 start-page: 137 issue: 2 year: 1982 ident: 1311_CR13 publication-title: Math. Program. doi: 10.1007/BF01585101 – volume: 140 start-page: 125 issue: 1, Ser. B year: 2013 ident: 1311_CR47 publication-title: Math. Program. doi: 10.1007/s10107-012-0629-5 – ident: 1311_CR34 – start-page: 105 volume-title: Lecture Notes in Mathematics year: 1978 ident: 1311_CR38 – volume: 348 start-page: 1805 year: 1996 ident: 1311_CR52 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-96-01544-9 – volume: 25 start-page: 7 issue: 1 year: 2017 ident: 1311_CR28 publication-title: SIAG/OPT Views News – ident: 1311_CR50 – volume: 13 start-page: 79 issue: 2 year: 1981 ident: 1311_CR23 publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949658108810482 – ident: 1311_CR29 – volume: 3 start-page: 53 issue: 4 year: 1967 ident: 1311_CR24 publication-title: Cybernetics doi: 10.1007/BF01071708 – ident: 1311_CR21 – volume: 43 start-page: 919 issue: 3 year: 2018 ident: 1311_CR19 publication-title: Mathematics of Operations Research doi: 10.1287/moor.2017.0889 – volume: 23 start-page: 1607 issue: 3 year: 2013 ident: 1311_CR60 publication-title: SIAM J. Optim. doi: 10.1137/110844805 – volume: 8 start-page: 457 issue: 2 year: 1998 ident: 1311_CR33 publication-title: SIAM J. Optim. doi: 10.1137/S1052623495293160 – ident: 1311_CR35 – volume: 41 start-page: 442 issue: 2 year: 2016 ident: 1311_CR3 publication-title: Math. Oper. Res. doi: 10.1287/moor.2015.0735 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 1311_CR2 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – ident: 1311_CR18 – volume: 156 start-page: 59 issue: 1–2, Ser. A year: 2016 ident: 1311_CR26 publication-title: Math. Program. doi: 10.1007/s10107-015-0871-8 – volume: 12 start-page: 315 issue: 2 year: 2005 ident: 1311_CR15 publication-title: J. Convex Anal. – volume: 6 start-page: 209 issue: 1 year: 1985 ident: 1311_CR12 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0906017 – volume: 152 start-page: 381 issue: 1 year: 2015 ident: 1311_CR48 publication-title: Math. Program. doi: 10.1007/s10107-014-0790-0 – start-page: 35 volume-title: Nonconvex Optimization and Its Applications year: 2006 ident: 1311_CR10 – volume: 27 start-page: 1333 issue: 6 year: 1989 ident: 1311_CR17 publication-title: SIAM J. Control Optim. doi: 10.1137/0327068 – volume: 71 start-page: 179 issue: 2, Ser. A year: 1995 ident: 1311_CR9 publication-title: Math. Program. doi: 10.1007/BF01585997 – volume: 29 start-page: 968 issue: 4 year: 1991 ident: 1311_CR7 publication-title: SIAM J. Control Optim. doi: 10.1137/0329054 – ident: 1311_CR20 – volume: 24 start-page: 509 year: 1988 ident: 1311_CR42 publication-title: Ekonom. i. Mat. Metody – volume-title: Fundamentals of Algorithmics year: 1996 ident: 1311_CR5 – volume: 22 start-page: 469 issue: 3 year: 2007 ident: 1311_CR45 publication-title: Optim. Methods Softw. doi: 10.1080/08927020600643812 – volume: 103 start-page: 127 issue: 1, Ser. A year: 2005 ident: 1311_CR44 publication-title: Math. Program. doi: 10.1007/s10107-004-0552-5 – volume-title: Techniques of Variational Analysis year: 2005 ident: 1311_CR4 – volume-title: Robust Statistics year: 2004 ident: 1311_CR30 – start-page: 1458 volume-title: Advances in Neural Information Processing Systems 24 year: 2011 ident: 1311_CR57 – volume: 36 start-page: 227 issue: 2 year: 2007 ident: 1311_CR58 publication-title: Sociol. Methods Res. doi: 10.1177/0049124107301946 – ident: 1311_CR59 – volume: 31 start-page: 269 issue: 3 year: 1985 ident: 1311_CR63 publication-title: Math. Program. doi: 10.1007/BF02591949 – volume: 21 start-page: 1721 issue: 4 year: 2011 ident: 1311_CR11 publication-title: SIAM J. Optim. doi: 10.1137/11082381X – ident: 1311_CR25 doi: 10.1007/BFb0120959 – volume-title: Numerical Optimization year: 2006 ident: 1311_CR49 – ident: 1311_CR27 – volume: 10 start-page: 299 issue: 3 year: 1990 ident: 1311_CR62 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/10.3.299 – start-page: 51 volume-title: Applied Optimization year: 2004 ident: 1311_CR43 – volume: 50 start-page: 317 issue: 3 year: 1982 ident: 1311_CR39 publication-title: Int. Stat. Rev. doi: 10.2307/1402501 – volume-title: Solving Derivative-Free Nonlinear Least Squares Problems with POUNDERS year: 2014 ident: 1311_CR61 – ident: 1311_CR37 – volume: 44 start-page: 790 issue: 6 year: 2016 ident: 1311_CR51 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2016.10.003 – volume: 86 start-page: 63 issue: Supplement C year: 2017 ident: 1311_CR1 publication-title: Automatica doi: 10.1016/j.automatica.2017.08.011 – volume: 2 start-page: 164 year: 1944 ident: 1311_CR31 publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – volume: 269 start-page: 543 issue: 3 year: 1983 ident: 1311_CR41 publication-title: Dokl. Akad. Nauk SSSR – volume: 146 start-page: 37 issue: 1 year: 2014 ident: 1311_CR16 publication-title: Math. Program. doi: 10.1007/s10107-013-0677-5 – volume-title: Variational Analysis year: 1998 ident: 1311_CR56 doi: 10.1007/978-3-642-02431-3 – volume: 158 start-page: 501 issue: 1–2 year: 2016 ident: 1311_CR32 publication-title: Math. Program. doi: 10.1007/s10107-015-0943-9 – ident: 1311_CR14 doi: 10.1137/1.9780898718768 – volume: 33 start-page: 260 issue: 3 year: 1985 ident: 1311_CR6 publication-title: Math. Program. doi: 10.1007/BF01584377 – ident: 1311_CR53 – volume: 29 start-page: 297 issue: 3 year: 1984 ident: 1311_CR54 publication-title: Math. Program. doi: 10.1007/BF02591998 – ident: 1311_CR22 – volume: 88 start-page: 10 year: 2012 ident: 1311_CR46 publication-title: OPTIMA MPS Newsl. |
SSID | ssj0001388 |
Score | 2.6335778 |
Snippet | We consider global efficiency of algorithms for minimizing a sum of a convex function and a composition of a Lipschitz convex function with a smooth map. The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 503 |
SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Composition Convexity Efficiency Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrFaZQ-elECyj-zmWKRFhXqy0FvYJwg2LaaC-Ovd3WTbKlXwmOwkgZnNzjfMzDcAXDOZC1QonlhKrAtQNEkKm9NEcCoRQ0hkYWrJ6Cm_H5PHCZ20fdx1rHaPKclwUq81u2WhTNJFPdhz722DHepCd1_HNUb95fGbYc7jnFYPDmIqc9MrvjujFcL8kRQNvmZ4APZbkAj7jVUPwZapjsDeGnWguxot-VbrY_AwCEwQvo0Sziz0fCHTl08nCH3JeKzL8kuhyvwDenfW3BOVhvV05gwGp2Jen4DxcPB8d5-0QxISRbJ0kVjnwT3rn5REKssd3jFMZoJZKrhkqeXaoIJpLIhkgmDNNNdYCWEyZRjDBp-CTjWrzBmAJjdaCKSo1AWhmHBjVKDy9BxyIi26II3aKlXLIO4HWbyWK-5jr-DSKbj0Ci5xF9wsH5k39Bl_CfeiCcr2T6pLlDIf9TgcsXkZ--EhLkTIuuA2Wm21_Ou3zv8lfQF2nZqLpgexBzqLt3dz6cDIQl6FzfcFFSzUng priority: 102 providerName: Springer Nature |
Title | Efficiency of minimizing compositions of convex functions and smooth maps |
URI | https://link.springer.com/article/10.1007/s10107-018-1311-3 https://www.proquest.com/docview/2072559266 https://www.proquest.com/docview/2306807721 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5se9GD-MRqLXvwpCx0N9kme5JW-1BpEbFQT0teC4J96FYQf72ZfbQq2tOyO1kCM8nMJJl8H8AZk03hh4q7cUBju0DR1A3jZuAKHkif-b7wUtaSwbDZH9HbcTDON9ySvKyy8Impo9YzhXvkuBOC2a-NJ5fzVxdZo_B0NafQKEHFumDOy1Bpd4b3D0tf7BHOC9JWzBSKc83s8pyXll3aVRRBLL-fkWmVbv46IU0DT3cHtvOM0WllJt6FDTPdg61vOIL2bbAEX0324aaTwkLgnUpnFjsIHjJ5_rQNHawfL4q0UJSWnH84GNuyb2KqnWQys9ZzJmKeHMCo23m86rs5Y4KrqNdYuLEN5wgBKCWVKuY2-TFMeoLFgeCSNWKujR8yTQSVTFCimeaaKCGMpwxjxJBDKE9nU3MEjmkaLYSvAqlDGhDKjVEpricCyolGWIVGoa1I5XDiyGrxEq2AkFHBkVVwhAqOSBXOl7_MMyyNdY1rhQmifFol0WoQ_C0myCRi1wteFS4Kq63E__Z1vL6vE9i0eg2zG4g1KC_e3s2pTUUWsg4l3u3VodJqX7e7-Ow93XXq-Si00pHf-gKoLd54 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVl9QEuoEhN7NTOASEElBYoJ5C4BW-RkOgCKWL5KL4RT1K3gIAbx8ROLI3Hnhl75j2Aba5qMkq0CLKYZS5AMSxIslocSBGriEeRDAvWktZlrXHNzm7imzF497UwmFbp98RiozZdjWfkeBKC3q-zJwe9hwBZo_B21VNolGpxbl-fXciW7zeP3fzuRFH95OqoEQxYBQLNwmo_yJzJQ5g8pZjSmXAOguUqlDyLpVC8mgljo4QbKpniklHDjTBUS2lDbTmnlrr_jsMko86SY2V6_XS484dUCE8Ri36Jv0UtS_XCIsnTxWwUkQO_2sGRc_vtPrYwc_U5mB34p-SwVKh5GLOdBZj5hFronlpDqNd8EZonBQgFVnCSbkYQqqR99-Y6EsxW9ylh2FQkuL8QtKTlO9kxJG93na6QtuzlS3D9L5JcholOt2NXgNiaNVJGOlYmYTFlwlpdoIgifJ2sJhWoemmlegBejhwa9-kIdhkFnDoBpyjglFZgd_hJr0Tu-Kvzup-CdLCI83Skcj83U-QtcdFJWIE9P2uj5l_HWv17rC2Yaly1LtKL5uX5Gkw7GSdl7eM6TPQfn-yGc4L6arPQPAK3_63qH73mFtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgSAgOiKcYzxzgAqpok3RJDxwQ28R4iQOTuJWkSSQk1k10iMef4i-S9LEBAiQOHNu4bWQ7tS3bnwF2mGwIHCXcMyE1NkBR1ItMI_QEDyVmGIsgn1pycdk46dLTm_BmAt6qXpi82r1KSRY9DQ6lKR0eDJQ5-ND4FuQlkzYCIg6Hr6yqPNMvTzZmyw47TSvgXYzbrevjE68cK-AlNPCHnrE2z-HkSUllYrj1EDSTgWAmFFwy33ClccQUEVQyQYliiiuSCKGDRDNGNLHvnYQp6pqP7QHq4qPRrz8gnFczYp1jUqVRv9vyZ0M49m6_JGRzO9eeh7nSQUVHhUYtwIROF2H2A2yhvboYYb1mS9Bp5SgUroUT9Q1yWCW9u1dLiFy5elUT5pbyCvdn5ExpcU-kCmW9vlUW1BODbBm6_8LJFail_VSvAtINrYTASShVRENCudZJDiPq8OuEH9XBr7gVJyV6uRuicR-PcZcdg2PL4NgxOCZ12Bs9MiigO34j3qhEEJenOIuxz1zEZX2Y75eJG1xiw5OgDvuV1MbLP35r7U_U2zB91WzH553Ls3WYsRyPilbIDagNHx71pvWJhnIr10MEt_-t-O9pNheH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+of+minimizing+compositions+of+convex+functions+and+smooth+maps&rft.jtitle=Mathematical+programming&rft.au=Drusvyatskiy%2C+D&rft.au=Paquette%2C+C&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.spage=1&rft.epage=56&rft_id=info:doi/10.1007%2Fs10107-018-1311-3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |