Visual complexity analysis using deep intermediate-layer features
In this paper, we focus on visual complexity, an image attribute that humans can subjectively evaluate based on the level of details in the image. We explore unsupervised information extraction from intermediate convolutional layers of deep neural networks to measure visual complexity. We derive an...
Saved in:
Published in | Computer vision and image understanding Vol. 195; p. 102949 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1077-3142 1090-235X |
DOI | 10.1016/j.cviu.2020.102949 |
Cover
Loading…
Abstract | In this paper, we focus on visual complexity, an image attribute that humans can subjectively evaluate based on the level of details in the image. We explore unsupervised information extraction from intermediate convolutional layers of deep neural networks to measure visual complexity. We derive an activation energy metric that combines convolutional layer activations to quantify visual complexity. To show the effectiveness of our proposed metric for various applications, we introduce Savoias, a visual complexity dataset that compromises of more than 1,400 images from seven diverse image categories (e.g., advertisement and interior design). We demonstrate high correlations of our deep neural network-based measure of visual complexity with human-curated ground-truth (GT) scores on various widely used network architectures, e.g., VGG16, ResNet-v2-152, and EfficientNet, and in networks trained on two classification tasks (object and scene classification). This result reveals that intermediate convolutional layers of deep neural networks carry information about the complexity of images that is meaningful to people. Furthermore, we show that our method of measuring visual complexity outperforms traditional methods on Savoias and two other state-of-the-art benchmark datasets. Moreover, we perform extensive analysis on the performance difference between our unsupervised method and a supervised method trained on the feature map, and show that by supervision, we can improve the prediction. Finally, we demonstrate that, within the context of a category, visually more complex images are also more memorable to human observers.
[Display omitted]
•Unsupervised extraction of information from convolutional layers of deep neural networks.•Unsupervised Activation Energy (UAE) metric to quantify visual complexity.•SAVOIAS, a dataset for the analysis of visual complexity.•High correlation between our UAE method and ground truth.•Within context of category, visually more complex images are more memorable to human. |
---|---|
AbstractList | In this paper, we focus on visual complexity, an image attribute that humans can subjectively evaluate based on the level of details in the image. We explore unsupervised information extraction from intermediate convolutional layers of deep neural networks to measure visual complexity. We derive an activation energy metric that combines convolutional layer activations to quantify visual complexity. To show the effectiveness of our proposed metric for various applications, we introduce Savoias, a visual complexity dataset that compromises of more than 1,400 images from seven diverse image categories (e.g., advertisement and interior design). We demonstrate high correlations of our deep neural network-based measure of visual complexity with human-curated ground-truth (GT) scores on various widely used network architectures, e.g., VGG16, ResNet-v2-152, and EfficientNet, and in networks trained on two classification tasks (object and scene classification). This result reveals that intermediate convolutional layers of deep neural networks carry information about the complexity of images that is meaningful to people. Furthermore, we show that our method of measuring visual complexity outperforms traditional methods on Savoias and two other state-of-the-art benchmark datasets. Moreover, we perform extensive analysis on the performance difference between our unsupervised method and a supervised method trained on the feature map, and show that by supervision, we can improve the prediction. Finally, we demonstrate that, within the context of a category, visually more complex images are also more memorable to human observers.
[Display omitted]
•Unsupervised extraction of information from convolutional layers of deep neural networks.•Unsupervised Activation Energy (UAE) metric to quantify visual complexity.•SAVOIAS, a dataset for the analysis of visual complexity.•High correlation between our UAE method and ground truth.•Within context of category, visually more complex images are more memorable to human. |
ArticleNumber | 102949 |
Author | Saraee, Elham Betke, Margrit Jalal, Mona |
Author_xml | – sequence: 1 givenname: Elham surname: Saraee fullname: Saraee, Elham email: esaraee@bu.edu – sequence: 2 givenname: Mona surname: Jalal fullname: Jalal, Mona – sequence: 3 givenname: Margrit surname: Betke fullname: Betke, Margrit |
BookMark | eNp9kE1Lw0AQhhepYFv9A57yB1L3q00WvJSiVih4UfG2TDazsiXdlN1NMf_ehHry0NMMMzwvvM-MTHzrkZB7RheMstXDfmFOrltwyscDV1JdkSmjiuZcLL8m414UuWCS35BZjHtKGZOKTcn608UOmsy0h2ODPy71GXho-uhi1kXnv7Ma8Zg5nzAcsHaQMG-gx5BZhNQFjLfk2kIT8e5vzsnH89P7Zpvv3l5eN-tdbiSjKbesQFFW3DBVABaClkZIVthqKVe1NcZyIVFUhaikAo6MglLlallaBcObKjEn5TnXhDbGgFYblyC51qcArtGM6lGF3utRhR5V6LOKAeX_0GNwBwj9ZejxDOFQ6uQw6GgcejNICGiSrlt3Cf8F_UR7bw |
CitedBy_id | crossref_primary_10_1080_23270012_2021_1998801 crossref_primary_10_1007_s00371_022_02634_8 crossref_primary_10_1080_00038628_2023_2269549 crossref_primary_10_1007_s11042_022_14084_4 crossref_primary_10_1002_pchj_564 crossref_primary_10_3788_AOS240464 crossref_primary_10_1016_j_isprsjprs_2022_02_012 crossref_primary_10_3390_app10155347 crossref_primary_10_1016_j_displa_2021_102031 crossref_primary_10_1016_j_cognition_2022_105319 crossref_primary_10_3758_s13421_024_01590_z crossref_primary_10_12677_CSA_2022_123072 crossref_primary_10_2478_amns_2024_3250 crossref_primary_10_1016_j_patrec_2024_11_032 crossref_primary_10_3390_a16120567 crossref_primary_10_3390_electronics12112526 crossref_primary_10_1371_journal_pcbi_1011703 crossref_primary_10_3390_electronics12214405 crossref_primary_10_1007_s11042_024_19110_1 crossref_primary_10_1145_3643824 crossref_primary_10_1007_s00138_023_01484_1 crossref_primary_10_1038_s41598_023_44553_1 crossref_primary_10_1007_s11042_022_13085_7 crossref_primary_10_1080_10641734_2024_2334939 crossref_primary_10_1007_s11042_024_19068_0 crossref_primary_10_1109_TPAMI_2022_3232328 crossref_primary_10_1523_JNEUROSCI_1175_23_2024 crossref_primary_10_1016_j_heliyon_2023_e15559 crossref_primary_10_1088_2631_8695_adbb40 crossref_primary_10_1007_s00500_023_08844_z crossref_primary_10_1016_j_visres_2024_108525 |
Cites_doi | 10.1109/ICCV.2015.463 10.1109/CVPR.2017.243 10.1109/TVCG.2015.2467732 10.2352/ISSN.2470-1173.2017.12.IQSP-225 10.1037/0096-3445.106.3.269 10.1037/h0062483 10.21236/ADA554133 10.1007/s11263-016-0924-3 10.1109/ICCV.2015.275 10.1109/CVPR.2016.618 10.1007/978-3-319-46604-0_57 10.1109/TIP.2003.819861 10.1002/mar.20983 10.1109/CVPR.2016.90 10.1016/j.jretai.2004.01.005 10.1109/CVPR.2017.533 10.1016/j.visres.2015.03.005 10.1167/14.14.3 10.1117/12.767029 10.1016/j.actpsy.2015.06.005 10.1109/TVCG.2013.234 10.1080/15230406.2017.1323676 10.1016/j.neucom.2017.01.054 10.1037/h0043158 10.1145/2598153.2598173 10.1109/ICIP.2011.6116371 10.1145/2897824.2925908 10.1109/CVPR.2017.19 10.1145/3119881.3119883 10.1093/biomet/31.3-4.324 10.1109/ICCVW.2015.134 10.1007/s11263-017-1016-8 10.1109/CVPR.2011.5995721 10.2190/EM.28.2.d 10.1109/CVPR.2016.80 10.1109/ICCV.2013.397 10.1016/j.knosys.2018.06.006 10.1037/a0033872 10.1016/j.dsp.2014.04.003 10.1068/i0588sas 10.1007/s10208-009-9045-5 10.1016/j.actpsy.2015.10.002 10.1016/j.ijhcs.2006.01.002 10.1109/CVPR.2016.492 10.1109/CVPR.2010.5539970 10.1509/jmkg.74.5.048 10.1109/CVPR.2017.577 10.1109/CVPR.2016.234 10.1371/journal.pone.0185276 10.1109/CVPR.2016.237 10.1163/156856809788313138 10.3169/mta.4.251 10.1348/000712610X498958 10.1371/journal.pone.0157986 10.1145/2020408.2020425 10.1109/CVPR.2018.00068 10.1109/CVPR.2017.213 10.1609/aaai.v31i1.11231 10.1109/TIP.2006.881959 10.1007/s11263-015-0872-3 10.1109/CVPR.2015.7299107 10.1086/256963 10.2190/P7W1-5F1F-NJK9-X05B 10.1109/34.1000236 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.cviu.2020.102949 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1090-235X |
ExternalDocumentID | 10_1016_j_cviu_2020_102949 S1077314220300333 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SST |
ID | FETCH-LOGICAL-c410t-f17e38b2c197ae7308c3417fb546dfccf234e3b73b49a2e10a998658f9adfc093 |
IEDL.DBID | .~1 |
ISSN | 1077-3142 |
IngestDate | Thu Apr 24 23:04:37 EDT 2025 Tue Jul 01 04:32:07 EDT 2025 Fri Feb 23 02:48:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Memorability Visual complexity Scene classification Deep neural network Object classification Convolutional neural network Convolutional layers Feature extraction Activation energy |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-f17e38b2c197ae7308c3417fb546dfccf234e3b73b49a2e10a998658f9adfc093 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1077314220300333 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cviu_2020_102949 crossref_primary_10_1016_j_cviu_2020_102949 elsevier_sciencedirect_doi_10_1016_j_cviu_2020_102949 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Computer vision and image understanding |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hussain, Zhang, Zhang, Ye, Thomas, Agha, Ong, Kovashka (b44) 2017 Isola, P., Parikh, D., Torralba, A., Oliva, A., 2011a. Understanding the intrinsic memorability of images. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2429–2437. Rosenholtz, Li, Nakano (b83) 2007; 7 Pilelienė, Grigaliūnaitė (b78) 2018; 3 Reinecke, Yeh, Miratrix, Mardiko, Zhao, Liu, Gajos (b82) 2013 Borkin, Vo, Bylinskii, Isola, Sunkavalli, Oliva, Pfister (b9) 2013; 19 Liu, H., Chen, T., Shen, Q., Yue, T., Ma, Z., 2018. Deep image compression via end-to-end learning. In: CVPR Workshops, pp. 2575–2578. Sameki, Lai, Mays, Guo, Ishwar, Betke (b85) 2019 Eysenck (b26) 1941; 48 Palumbo, Ogden, Makin, Bertamini (b74) 2014; 14 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b41) 2017 Oliva, A., Mack, M.L., Shrestha, M., Peeper, A., 2004. Identifying the perceptual dimensions of visual complexity of scenes. In: Proceedings of the Annual Meeting of the Cognitive Science Society. Bradley, Terry (b10) 1952; 39 Bylinskii, Kim, O’Donovan, Alsheikh, Madan, Pfister, Durand, Russell, Hertzmann (b13) 2017 Krishen (b58) 2008; 21 Ulyanov, D., Vedaldi, A., Lempitsky, V., 2018. Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454. Babenko, A., Lempitsky, V., 2015. Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269–1277. Gordo, Almazán, Larlus (b34) 2016 Heaps, Handel (b40) 1999; 25 Forsythe, Nadal, Sheehy, Cela-Conde, Sawey (b28) 2011; 102 Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1097–1105. Nadal, Munar, Marty, Cela-Conde (b71) 2010; 28 Fan, Z.B., Li, Y., Yu, J., Zhang, K., 2017. Visual complexity of Chinese ink paintings. In: Proceedings of the ACM Symposium on Applied Perception, pp. 9:1–9:8. Ledig, C., Theis, L., Huszár, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al., 2017. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690. . Yang, F., Choi, W., Lin, Y., 2016. Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137. Toderici, G., Vincent, D., Johnston, N., Ji. Hwang, S., Minnen, D., Shor, J., Covell, M., 2017. Full resolution image compression with recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306–5314. Ionescu, R.T., Alexe, B., Leordeanu, M., Popescu, M., Papadopoulos, D.P., Ferrari, V., 2016. How hard can it be? Estimating the difficulty of visual search in an image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2157–2166. Perera, Tal, Zelnik-Manor (b76) 2019 Miniukovich, A., Angeli, A.D., 2014. Quantification of interface visual complexity. In: Proceedings of International Working Conference on Advanced Visual Interfaces, AVI, pp. 153–160. Johnson, Alahi, Fei-Fei (b51) 2016 Bylinskii, Isola, Bainbridge, Torralba, Oliva (b12) 2015; 116 Guo, Qian, Li, Asano (b35) 2018; 159 Sohn, Seegebarth, Moritz (b91) 2017; 34 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b62) 2014 Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L., 2016. Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4545–4554. Gordo, Almazan, Revaud, Larlus (b33) 2017; 124 Bainbridge, Isola, Oliva (b4) 2013; 142 Candès, Recht (b14) 2009; 9 Cimpoi, Maji, Kokkinos, Vedaldi (b20) 2016; 118 Machado, Romero, Nadal, Santos, Correia, Carballal (b66) 2015; 160 Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R., 2016. Unconstrained salient object detection via proposal subset optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5733–5742. Comaniciu, Meer (b21) 2002; 24 Isola, P., Xiao, J., Torralba, A., Oliva, A., 2011b. What makes an image memorable?. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 145–152. Berlyne (b6) 1971 Wang, Bovik, Sheikh, Simoncelli (b98) 2004; 13 Liu, L., Shen, C., van den Hengel, A., 2015. The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4749–4757. IVL (b49) 2014 Corchs, Gasparini, Schettini (b23) 2014; 30 David, H.A., 1963. The Method of Paired Comparisons. vol. 12. London. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., 2017. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence, p. 12. Li, Yu (b61) 2015 Gartus, Leder (b30) 2013; 4 Marin, Leder (b68) 2016; 163 Da Silva, M.P., Courboulay, V., Estraillier, P., 2011. Image complexity measure based on visual attention. In: Proceedings of the 18th IEEE International Conference on Image Processing (ICIP), pp. 3281–3284. Gartus, Leder (b31) 2017; 12 Wang, Li, Gupta, Yeung (b99) 2015 Wang, Z., Simoncelli, E.P., Bovik, A.C., 2003. Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, Ieee. pp. 1398–1402. Ng, Yang, Davis (b72) 2015 Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O., 2018. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595. Chipman (b18) 1977; 106 Khosla, A., Bainbridge, W.A., Torralba, A., Olivia, A., 2013. Modifying the memorability of face photographs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3200–3207. He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 770–778. Kim, J., Lee, S., 2017. Deep learning of human visual sensitivity in image quality assessment framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1676–1684. Sheikh, Sabir, Bovik (b87) 2006; 15 Simonyan, Zisserman (b89) 2014 Bruna, Sprechmann, LeCun (b11) 2015 Mack, M.L., Oliva, A., 2004. Computational estimation of visual complexity. In: The 12th Annual Object, Perception, Attention, and Memory Conference, Minneapolis, Minnesota. Chang, Yu, Wang, Ashley, Finkelstein (b16) 2016; 35 Arrow (b2) 1950; 58 Ramanarayanan, G., Bala, K., Ferwerda, J.A., Walter, B., 2008b. Dimensionality of visual complexity in computer graphics scenes. In: Proceedings of the Human Vision and Electronic Imaging XIII, p. 68060E. Schnur, Bektaş, Çöltekin (b86) 2018; 45 Kim, W.H., Jalal, M., Hwang, S.J., Johnson, S.C., Singh, V., 2017. Online graph completion: Multivariate signal recovery in computer vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5019–5027. Pieters, Wedel, Batra (b77) 2010; 74 Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A., 2010. Sun database: Large-scale scene recognition from abbey to zoo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3485–3492. Chipman, Mendelson (b19) 1979; 5 Liu, N., Han, J., 2016. Dhsnet: Deep hierarchical saliency network for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 678–686. Borkin, Bylinskii, Kim, Bainbridge, Yeh, Borkin, Pfister, Oliva (b8) 2016; 22 Bauerly, Liu (b5) 2006; 64 Kendall, Smith (b52) 1940; 31 Uricchio, T., Bertini, M., Seidenari, L., Bimbo, A., 2015. Fisher encoded convolutional bag-of-windows for efficient image retrieval and social image tagging. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 9–15. Razavian, Sullivan, Carlsson, Maki (b81) 2016; 4 Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep neural networks?. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 3320–3328. IKEA,, 0000. Jacobsen, Höfel (b50) 2001; 19 Birkhoff (b7) 1933 Khosla, A., Xiao, J., Torralba, A., Oliva, A., 2012. Memorability of image regions. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 296–304. RSIVL (b84) 2016 Ramanarayanan, G., Bala, K., Ferwerda, J.A., Walter, B., 2008a. Dimensionality of visual complexity in computer graphics scenes. In: Proceedings of Human Vision and Electronic Imaging XIII Conference, p. 68060E. Cardaci, D. Gesu, Petrou, Tabacchi (b15) 2009; 22 Corchs, Ciocca, Bricolo, Gasparini (b22) 2016; 11 Tan, Le (b93) 2019 Amirshahi, Pedersen, Yu (b1) 2017; 2017 Gupta, Srivastava, Bhardwaj, Bhateja (b36) 2011 Snodgrass, Vanderwart (b90) 1980; 6 Zhou, Lapedriza, Khosla, Oliva, Torralba (b107) 2017 H., S., Z., W., L., C., A., B. (b37) 2006 Westlake, N., Cai, H., Hall, P., 2016. Detecting people in artwork with cnns. In: European Conference on Computer Vision, pp. 825–841. Paulin, Mairal, Douze, Harchaoui, Perronnin, Schmid (b75) 2017; 121 Miller (b69) 1956; 63 Simonyan, Vedaldi, Zisserman (b88) 2013 Gleich, D.F., Lim, L.h., 2011. Rank aggregation via nuclear norm minimization. In: Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining, pp. 60–68. Haytko, Baker (b38) 2004; 80 Gao, Wang, Li, Tan, Yu, Zhu (b29) 2017; 257 Huh, Agrawal, Efros (b43) 2016 Khosla, A., Raju, A.S., Torralba, A., Oliva, A., 2015. Understanding and predicting image memorability at a large scale. In: Proceedings of the IEEE Internationa Huh (10.1016/j.cviu.2020.102949_b43) 2016 10.1016/j.cviu.2020.102949_b64 10.1016/j.cviu.2020.102949_b63 Gupta (10.1016/j.cviu.2020.102949_b36) 2011 10.1016/j.cviu.2020.102949_b60 Cimpoi (10.1016/j.cviu.2020.102949_b20) 2016; 118 Haytko (10.1016/j.cviu.2020.102949_b38) 2004; 80 Razavian (10.1016/j.cviu.2020.102949_b81) 2016; 4 Bruna (10.1016/j.cviu.2020.102949_b11) 2015 Nadal (10.1016/j.cviu.2020.102949_b71) 2010; 28 Gao (10.1016/j.cviu.2020.102949_b29) 2017; 257 Forsythe (10.1016/j.cviu.2020.102949_b28) 2011; 102 Guo (10.1016/j.cviu.2020.102949_b35) 2018; 159 10.1016/j.cviu.2020.102949_b65 10.1016/j.cviu.2020.102949_b67 Gordo (10.1016/j.cviu.2020.102949_b34) 2016 10.1016/j.cviu.2020.102949_b73 Pieters (10.1016/j.cviu.2020.102949_b77) 2010; 74 Heaps (10.1016/j.cviu.2020.102949_b40) 1999; 25 10.1016/j.cviu.2020.102949_b70 Borkin (10.1016/j.cviu.2020.102949_b9) 2013; 19 10.1016/j.cviu.2020.102949_b79 Bradley (10.1016/j.cviu.2020.102949_b10) 1952; 39 10.1016/j.cviu.2020.102949_b42 Gartus (10.1016/j.cviu.2020.102949_b30) 2013; 4 Ng (10.1016/j.cviu.2020.102949_b72) 2015 Sheikh (10.1016/j.cviu.2020.102949_b87) 2006; 15 Gartus (10.1016/j.cviu.2020.102949_b31) 2017; 12 Miller (10.1016/j.cviu.2020.102949_b69) 1956; 63 10.1016/j.cviu.2020.102949_b48 Krishen (10.1016/j.cviu.2020.102949_b58) 2008; 21 10.1016/j.cviu.2020.102949_b47 10.1016/j.cviu.2020.102949_b46 Bainbridge (10.1016/j.cviu.2020.102949_b4) 2013; 142 10.1016/j.cviu.2020.102949_b45 Wang (10.1016/j.cviu.2020.102949_b98) 2004; 13 10.1016/j.cviu.2020.102949_b53 Rosenholtz (10.1016/j.cviu.2020.102949_b83) 2007; 7 Chipman (10.1016/j.cviu.2020.102949_b18) 1977; 106 Tan (10.1016/j.cviu.2020.102949_b93) 2019 Candès (10.1016/j.cviu.2020.102949_b14) 2009; 9 10.1016/j.cviu.2020.102949_b59 Chipman (10.1016/j.cviu.2020.102949_b19) 1979; 5 Howard (10.1016/j.cviu.2020.102949_b41) 2017 Jacobsen (10.1016/j.cviu.2020.102949_b50) 2001; 19 Wang (10.1016/j.cviu.2020.102949_b99) 2015 10.1016/j.cviu.2020.102949_b55 Palumbo (10.1016/j.cviu.2020.102949_b74) 2014; 14 10.1016/j.cviu.2020.102949_b54 10.1016/j.cviu.2020.102949_b57 10.1016/j.cviu.2020.102949_b56 10.1016/j.cviu.2020.102949_b3 Marin (10.1016/j.cviu.2020.102949_b68) 2016; 163 Corchs (10.1016/j.cviu.2020.102949_b23) 2014; 30 Arrow (10.1016/j.cviu.2020.102949_b2) 1950; 58 Schnur (10.1016/j.cviu.2020.102949_b86) 2018; 45 Sohn (10.1016/j.cviu.2020.102949_b91) 2017; 34 Snodgrass (10.1016/j.cviu.2020.102949_b90) 1980; 6 Cardaci (10.1016/j.cviu.2020.102949_b15) 2009; 22 10.1016/j.cviu.2020.102949_b25 Lin (10.1016/j.cviu.2020.102949_b62) 2014 10.1016/j.cviu.2020.102949_b27 Berlyne (10.1016/j.cviu.2020.102949_b6) 1971 10.1016/j.cviu.2020.102949_b24 Hussain (10.1016/j.cviu.2020.102949_b44) 2017 Machado (10.1016/j.cviu.2020.102949_b66) 2015; 160 Simonyan (10.1016/j.cviu.2020.102949_b88) 2013 H. (10.1016/j.cviu.2020.102949_b37) 2006 Pilelienė (10.1016/j.cviu.2020.102949_b78) 2018; 3 Johnson (10.1016/j.cviu.2020.102949_b51) 2016 Corchs (10.1016/j.cviu.2020.102949_b22) 2016; 11 Comaniciu (10.1016/j.cviu.2020.102949_b21) 2002; 24 10.1016/j.cviu.2020.102949_b39 10.1016/j.cviu.2020.102949_b32 Bauerly (10.1016/j.cviu.2020.102949_b5) 2006; 64 Reinecke (10.1016/j.cviu.2020.102949_b82) 2013 10.1016/j.cviu.2020.102949_b80 Simonyan (10.1016/j.cviu.2020.102949_b89) 2014 Chang (10.1016/j.cviu.2020.102949_b16) 2016; 35 Zhou (10.1016/j.cviu.2020.102949_b107) 2017 Bylinskii (10.1016/j.cviu.2020.102949_b13) 2017 Eysenck (10.1016/j.cviu.2020.102949_b26) 1941; 48 Amirshahi (10.1016/j.cviu.2020.102949_b1) 2017; 2017 Borkin (10.1016/j.cviu.2020.102949_b8) 2016; 22 10.1016/j.cviu.2020.102949_b95 10.1016/j.cviu.2020.102949_b102 Li (10.1016/j.cviu.2020.102949_b61) 2015 10.1016/j.cviu.2020.102949_b94 10.1016/j.cviu.2020.102949_b103 10.1016/j.cviu.2020.102949_b97 10.1016/j.cviu.2020.102949_b100 IVL (10.1016/j.cviu.2020.102949_b49) 2014 10.1016/j.cviu.2020.102949_b96 10.1016/j.cviu.2020.102949_b101 10.1016/j.cviu.2020.102949_b106 Paulin (10.1016/j.cviu.2020.102949_b75) 2017; 121 Perera (10.1016/j.cviu.2020.102949_b76) 2019 10.1016/j.cviu.2020.102949_b104 10.1016/j.cviu.2020.102949_b92 10.1016/j.cviu.2020.102949_b105 RSIVL (10.1016/j.cviu.2020.102949_b84) 2016 Kendall (10.1016/j.cviu.2020.102949_b52) 1940; 31 Birkhoff (10.1016/j.cviu.2020.102949_b7) 1933 Sameki (10.1016/j.cviu.2020.102949_b85) 2019 10.1016/j.cviu.2020.102949_b17 Gordo (10.1016/j.cviu.2020.102949_b33) 2017; 124 Bylinskii (10.1016/j.cviu.2020.102949_b12) 2015; 116 |
References_xml | – volume: 124 start-page: 237 year: 2017 end-page: 254 ident: b33 article-title: End-to-end learning of deep visual representations for image retrieval publication-title: Int. J. Comput. Vis. – volume: 31 start-page: 324 year: 1940 end-page: 345 ident: b52 article-title: On the method of paired comparisons publication-title: Biometrika – reference: Wang, Z., Simoncelli, E.P., Bovik, A.C., 2003. Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, Ieee. pp. 1398–1402. – reference: Ledig, C., Theis, L., Huszár, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al., 2017. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690. – year: 2019 ident: b93 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks – year: 2015 ident: b61 article-title: Visual saliency based on multiscale deep features – volume: 39 start-page: 324 year: 1952 end-page: 345 ident: b10 article-title: Rank analysis of incomplete block designs: I. the method of paired comparisons publication-title: Biometrika – reference: Ulyanov, D., Vedaldi, A., Lempitsky, V., 2018. Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454. – volume: 257 start-page: 104 year: 2017 end-page: 114 ident: b29 article-title: Deepsim: Deep similarity for image quality assessment publication-title: Neurocomputing – volume: 12 year: 2017 ident: b31 article-title: Predicting perceived visual complexity of abstract patterns using computational measures: The influence of mirror symmetry on complexity perception publication-title: PLoS One – year: 2014 ident: b89 article-title: Very deep convolutional networks for large-scale image recognition – volume: 6 start-page: 174 year: 1980 ident: b90 article-title: A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity publication-title: J. Exp. Psychol.: Hum. Learn. Memory – volume: 11 year: 2016 ident: b22 article-title: Predicting complexity perception of real world images publication-title: PLoS One – volume: 160 start-page: 43 year: 2015 end-page: 57 ident: b66 article-title: Computerized measures of visual complexity publication-title: Acta Psychol. – reference: Uricchio, T., Bertini, M., Seidenari, L., Bimbo, A., 2015. Fisher encoded convolutional bag-of-windows for efficient image retrieval and social image tagging. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 9–15. – volume: 21 year: 2008 ident: b58 article-title: Perceived versus actual complexity for websites: Their relationship to consumer satisfaction publication-title: J. Consum. Satisf. Dissatisfaction Complain. Behav. – volume: 163 start-page: 38 year: 2016 end-page: 58 ident: b68 article-title: Effects of presentation duration on measures of complexity in affective environmental scenes and representational paintings publication-title: Acta Psychol. – reference: Khosla, A., Raju, A.S., Torralba, A., Oliva, A., 2015. Understanding and predicting image memorability at a large scale. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2390–2398. – year: 2017 ident: b107 article-title: Places: A 10 million image database for scene recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1097–1105. – volume: 4 start-page: 361 year: 2013 end-page: 364 ident: b30 article-title: The small step toward asymmetry: aesthetic judgment of broken symmetries publication-title: i-Perception – volume: 22 start-page: 519 year: 2016 end-page: 528 ident: b8 article-title: Beyond memorability: Visualization recognition and recall publication-title: IEEE Trans. Vis. Comput. Graphics – reference: Oliva, A., Mack, M.L., Shrestha, M., Peeper, A., 2004. Identifying the perceptual dimensions of visual complexity of scenes. In: Proceedings of the Annual Meeting of the Cognitive Science Society. – reference: Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O., 2018. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b98 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 80 start-page: 67 year: 2004 end-page: 83 ident: b38 article-title: It’s all at the mall: exploring adolescent girls’ experiences publication-title: J. Retail. – reference: Khosla, A., Bainbridge, W.A., Torralba, A., Olivia, A., 2013. Modifying the memorability of face photographs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3200–3207. – year: 2013 ident: b88 article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps – year: 2014 ident: b49 article-title: Imaging and Vision Laboratory – reference: Liu, H., Chen, T., Shen, Q., Yue, T., Ma, Z., 2018. Deep image compression via end-to-end learning. In: CVPR Workshops, pp. 2575–2578. – reference: Westlake, N., Cai, H., Hall, P., 2016. Detecting people in artwork with cnns. In: European Conference on Computer Vision, pp. 825–841. – volume: 30 start-page: 86 year: 2014 end-page: 100 ident: b23 article-title: No reference image quality classification for jpeg-distorted images publication-title: Digit. Signal Process. – reference: Fan, Z.B., Li, Y., Yu, J., Zhang, K., 2017. Visual complexity of Chinese ink paintings. In: Proceedings of the ACM Symposium on Applied Perception, pp. 9:1–9:8. – volume: 142 start-page: 1323 year: 2013 ident: b4 article-title: The intrinsic memorability of face photographs publication-title: J. Exp. Psychol. [Gen.] – volume: 19 start-page: 2306 year: 2013 end-page: 2315 ident: b9 article-title: What makes a visualization memorable? publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2006 ident: b37 article-title: LIVE Image quality assessment database release 2 – year: 2017 ident: b41 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications – volume: 34 start-page: 195 year: 2017 end-page: 214 ident: b91 article-title: The impact of perceived visual complexity of mobile online shops on user’s satisfaction publication-title: Psychol. Mark. – volume: 74 start-page: 48 year: 2010 end-page: 60 ident: b77 article-title: The stopping power of advertising: Measures and effects of visual complexity publication-title: J. Market. – reference: David, H.A., 1963. The Method of Paired Comparisons. vol. 12. London. – volume: 3 start-page: 489 year: 2018 end-page: 501 ident: b78 article-title: Effect of visual advertising complexity on consumers? attention publication-title: Economics – year: 2016 ident: b84 article-title: Imaging and Vision Laboratory, Department of Informatics, Systems and Communication – start-page: 1100 year: 2017 end-page: 1110 ident: b44 article-title: Automatic understanding of image and video advertisements publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition – volume: 5 start-page: 365 year: 1979 end-page: 378 ident: b19 article-title: Influence of six types of visual structure on complexity judgments in children and aults publication-title: J. Exp. Psychol.: Hum. Percept. Perform. – volume: 58 start-page: 328 year: 1950 end-page: 346 ident: b2 article-title: A difficulty in the concept of social welfare publication-title: J. Polit. Econ. – reference: Mack, M.L., Oliva, A., 2004. Computational estimation of visual complexity. In: The 12th Annual Object, Perception, Attention, and Memory Conference, Minneapolis, Minnesota. – reference: Kim, J., Lee, S., 2017. Deep learning of human visual sensitivity in image quality assessment framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1676–1684. – volume: 63 start-page: 81 year: 1956 ident: b69 article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information publication-title: Psychol. Rev. – volume: 64 start-page: 670 year: 2006 end-page: 682 ident: b5 article-title: Computational modeling and experimental investigation of effects of compositional elements on interface and design aesthetics publication-title: Int. J. Hum.-Comput. Stud. – volume: 15 start-page: 3440 year: 2006 end-page: 3451 ident: b87 article-title: A statistical evaluation of recent full reference image quality assessment algorithms publication-title: IEEE Trans. Image Process. – reference: IKEA,, 0000. – start-page: 694 year: 2016 end-page: 711 ident: b51 article-title: Perceptual losses for real-time style transfer and super-resolution publication-title: European Conference on Computer Vision – start-page: 740 year: 2014 end-page: 755 ident: b62 article-title: Microsoft COCO: Common objects in COntext publication-title: European Conference on Computer Vision – volume: 118 start-page: 65 year: 2016 end-page: 94 ident: b20 article-title: Deep filter banks for texture recognition, description, and segmentation publication-title: Int. J. Comput. Vis. – volume: 7 year: 2007 ident: b83 article-title: Measuring visual clutter publication-title: J. Vis. – volume: 28 start-page: 173 year: 2010 end-page: 191 ident: b71 article-title: Visual complexity and beauty appreciation: Explaining the divergence of results publication-title: Empir. Stud. Arts – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 770–778. – volume: 2017 start-page: 42 year: 2017 end-page: 51 ident: b1 article-title: Image quality assessment by comparing cnn features between images publication-title: Electron. Imaging – reference: Toderici, G., Vincent, D., Johnston, N., Ji. Hwang, S., Minnen, D., Shor, J., Covell, M., 2017. Full resolution image compression with recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306–5314. – reference: Isola, P., Xiao, J., Torralba, A., Oliva, A., 2011b. What makes an image memorable?. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 145–152. – reference: Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R., 2016. Unconstrained salient object detection via proposal subset optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5733–5742. – reference: Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., 2017. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence, p. 12. – reference: Babenko, A., Lempitsky, V., 2015. Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269–1277. – volume: 4 start-page: 251 year: 2016 end-page: 258 ident: b81 article-title: Visual instance retrieval with deep convolutional networks publication-title: ITE Transa. Media Technol. Appl. – reference: Yang, F., Choi, W., Lin, Y., 2016. Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137. – volume: 159 start-page: 110 year: 2018 end-page: 119 ident: b35 article-title: Assessment model for perceived visual complexity of painting images publication-title: Knowl.-Based Syst. – reference: Liu, N., Han, J., 2016. Dhsnet: Deep hierarchical saliency network for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 678–686. – start-page: 2049 year: 2013 end-page: 2058 ident: b82 article-title: Predicting users’ first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness publication-title: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems – reference: Ramanarayanan, G., Bala, K., Ferwerda, J.A., Walter, B., 2008b. Dimensionality of visual complexity in computer graphics scenes. In: Proceedings of the Human Vision and Electronic Imaging XIII, p. 68060E. – volume: 25 start-page: 299 year: 1999 ident: b40 article-title: Similarity and features of natural textures publication-title: J. Exp. Psychol.: Hum. Percept. Perform. – reference: Liu, L., Shen, C., van den Hengel, A., 2015. The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4749–4757. – volume: 22 start-page: 195 year: 2009 end-page: 209 ident: b15 article-title: Attentional vs computational complexity measures in observing paintings publication-title: Spatial Vis. – volume: 9 start-page: 717 year: 2009 end-page: 772 ident: b14 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. – volume: 45 start-page: 238 year: 2018 end-page: 254 ident: b86 article-title: Measured and perceived visual complexity: A comparative study among three online map providers publication-title: Cartogr. Geogr. Inf. Sci. – reference: Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A., 2010. Sun database: Large-scale scene recognition from abbey to zoo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3485–3492. – year: 1933 ident: b7 article-title: Aesthetic Measure, vol. 38 – volume: 35 start-page: 148:1 year: 2016 end-page: 148:10 ident: b16 article-title: Automatic triage for a photo series publication-title: ACM Trans. Graph. – reference: Isola, P., Parikh, D., Torralba, A., Oliva, A., 2011a. Understanding the intrinsic memorability of images. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2429–2437. – reference: Ionescu, R.T., Alexe, B., Leordeanu, M., Popescu, M., Papadopoulos, D.P., Ferrari, V., 2016. How hard can it be? Estimating the difficulty of visual search in an image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2157–2166. – year: 1971 ident: b6 article-title: Aesthetics and Psychobiology – reference: Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708. – year: 2019 ident: b85 article-title: BUOCA: budget-optimized crowd worker allocation publication-title: Comput. Res. Repos. – reference: Miniukovich, A., Angeli, A.D., 2014. Quantification of interface visual complexity. In: Proceedings of International Working Conference on Advanced Visual Interfaces, AVI, pp. 153–160. – volume: 24 start-page: 603 year: 2002 end-page: 619 ident: b21 article-title: Mean shift: A robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2015 ident: b72 article-title: Exploiting local features from deep networks for image retrieval – volume: 14 year: 2014 ident: b74 article-title: Examining visual complexity and its influence on perceived duration publication-title: J. Vis. – reference: Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep neural networks?. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 3320–3328. – reference: Tzeng, E., Hoffman, J., Darrell, T., Saenko, K., 2015. Simultaneous deep transfer across domains and tasks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4068–4076. – volume: 121 start-page: 149 year: 2017 end-page: 168 ident: b75 article-title: Convolutional patch representations for image retrieval: an unsupervised approach publication-title: Int. J. Comput. Vis. – reference: Kim, W.H., Jalal, M., Hwang, S.J., Johnson, S.C., Singh, V., 2017. Online graph completion: Multivariate signal recovery in computer vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5019–5027. – start-page: 57 year: 2017 end-page: 69 ident: b13 article-title: Learning visual importance for graphic designs and data visualizations publication-title: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology – reference: Gleich, D.F., Lim, L.h., 2011. Rank aggregation via nuclear norm minimization. In: Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining, pp. 60–68. – start-page: 1 year: 2011 end-page: 4 ident: b36 article-title: A modified psnr metric based on hvs for quality assessment of color images publication-title: 2011 International Conference on Communication and Industrial Application – volume: 102 start-page: 49 year: 2011 end-page: 70 ident: b28 article-title: Predicting beauty: fractal dimension and visual complexity in art publication-title: Br. J. Psychol. – year: 2019 ident: b76 article-title: Is image memorability prediction solved? – year: 2015 ident: b99 article-title: Transferring rich feature hierarchies for robust visual tracking – start-page: 241 year: 2016 end-page: 257 ident: b34 article-title: Deep image retrieval: Learning global representations for image search publication-title: European Conference on Computer Vision – volume: 48 start-page: 83 year: 1941 ident: b26 article-title: The empirical determination of an aesthetic formula publication-title: Psychol. Rev. – year: 2015 ident: b11 article-title: Super-resolution with deep convolutional sufficient statistics – volume: 116 start-page: 165 year: 2015 end-page: 178 ident: b12 article-title: Intrinsic and extrinsic effects on image memorability publication-title: Vis. Res. – reference: . – reference: Da Silva, M.P., Courboulay, V., Estraillier, P., 2011. Image complexity measure based on visual attention. In: Proceedings of the 18th IEEE International Conference on Image Processing (ICIP), pp. 3281–3284. – year: 2016 ident: b43 article-title: What makes imagenet good for transfer learning? – reference: Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L., 2016. Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4545–4554. – reference: Khosla, A., Xiao, J., Torralba, A., Oliva, A., 2012. Memorability of image regions. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 296–304. – volume: 19 start-page: 177 year: 2001 end-page: 190 ident: b50 article-title: Aesthetics electrified: An analysis of descriptive symmetry and evaluative aesthetic judgment processes using event-related brain potentials publication-title: Empir. Stud. Arts – volume: 106 start-page: 269 year: 1977 end-page: 301 ident: b18 article-title: Complexity and structure in visual patterns publication-title: J. Exp. Psychol. [Gen.] – reference: Ramanarayanan, G., Bala, K., Ferwerda, J.A., Walter, B., 2008a. Dimensionality of visual complexity in computer graphics scenes. In: Proceedings of Human Vision and Electronic Imaging XIII Conference, p. 68060E. – ident: 10.1016/j.cviu.2020.102949_b95 doi: 10.1109/ICCV.2015.463 – ident: 10.1016/j.cviu.2020.102949_b42 doi: 10.1109/CVPR.2017.243 – volume: 22 start-page: 519 year: 2016 ident: 10.1016/j.cviu.2020.102949_b8 article-title: Beyond memorability: Visualization recognition and recall publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2015.2467732 – volume: 2017 start-page: 42 year: 2017 ident: 10.1016/j.cviu.2020.102949_b1 article-title: Image quality assessment by comparing cnn features between images publication-title: Electron. Imaging doi: 10.2352/ISSN.2470-1173.2017.12.IQSP-225 – volume: 106 start-page: 269 year: 1977 ident: 10.1016/j.cviu.2020.102949_b18 article-title: Complexity and structure in visual patterns publication-title: J. Exp. Psychol. [Gen.] doi: 10.1037/0096-3445.106.3.269 – ident: 10.1016/j.cviu.2020.102949_b59 – volume: 48 start-page: 83 year: 1941 ident: 10.1016/j.cviu.2020.102949_b26 article-title: The empirical determination of an aesthetic formula publication-title: Psychol. Rev. doi: 10.1037/h0062483 – ident: 10.1016/j.cviu.2020.102949_b47 doi: 10.21236/ADA554133 – volume: 6 start-page: 174 year: 1980 ident: 10.1016/j.cviu.2020.102949_b90 article-title: A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity publication-title: J. Exp. Psychol.: Hum. Learn. Memory – ident: 10.1016/j.cviu.2020.102949_b104 – volume: 121 start-page: 149 year: 2017 ident: 10.1016/j.cviu.2020.102949_b75 article-title: Convolutional patch representations for image retrieval: an unsupervised approach publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-016-0924-3 – ident: 10.1016/j.cviu.2020.102949_b54 doi: 10.1109/ICCV.2015.275 – ident: 10.1016/j.cviu.2020.102949_b45 – ident: 10.1016/j.cviu.2020.102949_b106 doi: 10.1109/CVPR.2016.618 – volume: 25 start-page: 299 year: 1999 ident: 10.1016/j.cviu.2020.102949_b40 article-title: Similarity and features of natural textures publication-title: J. Exp. Psychol.: Hum. Percept. Perform. – ident: 10.1016/j.cviu.2020.102949_b101 doi: 10.1007/978-3-319-46604-0_57 – volume: 13 start-page: 600 year: 2004 ident: 10.1016/j.cviu.2020.102949_b98 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 34 start-page: 195 year: 2017 ident: 10.1016/j.cviu.2020.102949_b91 article-title: The impact of perceived visual complexity of mobile online shops on user’s satisfaction publication-title: Psychol. Mark. doi: 10.1002/mar.20983 – start-page: 2049 year: 2013 ident: 10.1016/j.cviu.2020.102949_b82 article-title: Predicting users’ first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness – volume: 39 start-page: 324 year: 1952 ident: 10.1016/j.cviu.2020.102949_b10 article-title: Rank analysis of incomplete block designs: I. the method of paired comparisons publication-title: Biometrika – ident: 10.1016/j.cviu.2020.102949_b39 doi: 10.1109/CVPR.2016.90 – volume: 80 start-page: 67 year: 2004 ident: 10.1016/j.cviu.2020.102949_b38 article-title: It’s all at the mall: exploring adolescent girls’ experiences publication-title: J. Retail. doi: 10.1016/j.jretai.2004.01.005 – year: 2006 ident: 10.1016/j.cviu.2020.102949_b37 – ident: 10.1016/j.cviu.2020.102949_b56 doi: 10.1109/CVPR.2017.533 – volume: 116 start-page: 165 year: 2015 ident: 10.1016/j.cviu.2020.102949_b12 article-title: Intrinsic and extrinsic effects on image memorability publication-title: Vis. Res. doi: 10.1016/j.visres.2015.03.005 – volume: 14 year: 2014 ident: 10.1016/j.cviu.2020.102949_b74 article-title: Examining visual complexity and its influence on perceived duration publication-title: J. Vis. doi: 10.1167/14.14.3 – year: 2019 ident: 10.1016/j.cviu.2020.102949_b76 – ident: 10.1016/j.cviu.2020.102949_b80 doi: 10.1117/12.767029 – ident: 10.1016/j.cviu.2020.102949_b73 – volume: 3 start-page: 489 year: 2018 ident: 10.1016/j.cviu.2020.102949_b78 article-title: Effect of visual advertising complexity on consumers? attention publication-title: Economics – year: 2016 ident: 10.1016/j.cviu.2020.102949_b84 – start-page: 241 year: 2016 ident: 10.1016/j.cviu.2020.102949_b34 article-title: Deep image retrieval: Learning global representations for image search – start-page: 1 year: 2011 ident: 10.1016/j.cviu.2020.102949_b36 article-title: A modified psnr metric based on hvs for quality assessment of color images – year: 2014 ident: 10.1016/j.cviu.2020.102949_b49 – volume: 160 start-page: 43 year: 2015 ident: 10.1016/j.cviu.2020.102949_b66 article-title: Computerized measures of visual complexity publication-title: Acta Psychol. doi: 10.1016/j.actpsy.2015.06.005 – volume: 19 start-page: 2306 year: 2013 ident: 10.1016/j.cviu.2020.102949_b9 article-title: What makes a visualization memorable? publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2013.234 – year: 2015 ident: 10.1016/j.cviu.2020.102949_b11 – volume: 45 start-page: 238 year: 2018 ident: 10.1016/j.cviu.2020.102949_b86 article-title: Measured and perceived visual complexity: A comparative study among three online map providers publication-title: Cartogr. Geogr. Inf. Sci. doi: 10.1080/15230406.2017.1323676 – volume: 257 start-page: 104 year: 2017 ident: 10.1016/j.cviu.2020.102949_b29 article-title: Deepsim: Deep similarity for image quality assessment publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.054 – volume: 63 start-page: 81 year: 1956 ident: 10.1016/j.cviu.2020.102949_b69 article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information publication-title: Psychol. Rev. doi: 10.1037/h0043158 – ident: 10.1016/j.cviu.2020.102949_b70 doi: 10.1145/2598153.2598173 – ident: 10.1016/j.cviu.2020.102949_b24 doi: 10.1109/ICIP.2011.6116371 – volume: 35 start-page: 148:1 year: 2016 ident: 10.1016/j.cviu.2020.102949_b16 article-title: Automatic triage for a photo series publication-title: ACM Trans. Graph. doi: 10.1145/2897824.2925908 – ident: 10.1016/j.cviu.2020.102949_b60 doi: 10.1109/CVPR.2017.19 – ident: 10.1016/j.cviu.2020.102949_b27 doi: 10.1145/3119881.3119883 – volume: 31 start-page: 324 year: 1940 ident: 10.1016/j.cviu.2020.102949_b52 article-title: On the method of paired comparisons publication-title: Biometrika doi: 10.1093/biomet/31.3-4.324 – ident: 10.1016/j.cviu.2020.102949_b97 doi: 10.1109/ICCVW.2015.134 – ident: 10.1016/j.cviu.2020.102949_b25 – volume: 124 start-page: 237 year: 2017 ident: 10.1016/j.cviu.2020.102949_b33 article-title: End-to-end learning of deep visual representations for image retrieval publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-017-1016-8 – ident: 10.1016/j.cviu.2020.102949_b48 doi: 10.1109/CVPR.2011.5995721 – ident: 10.1016/j.cviu.2020.102949_b79 doi: 10.1117/12.767029 – start-page: 694 year: 2016 ident: 10.1016/j.cviu.2020.102949_b51 article-title: Perceptual losses for real-time style transfer and super-resolution – volume: 28 start-page: 173 year: 2010 ident: 10.1016/j.cviu.2020.102949_b71 article-title: Visual complexity and beauty appreciation: Explaining the divergence of results publication-title: Empir. Stud. Arts doi: 10.2190/EM.28.2.d – year: 2013 ident: 10.1016/j.cviu.2020.102949_b88 – ident: 10.1016/j.cviu.2020.102949_b67 – year: 2014 ident: 10.1016/j.cviu.2020.102949_b89 – ident: 10.1016/j.cviu.2020.102949_b64 doi: 10.1109/CVPR.2016.80 – volume: 5 start-page: 365 year: 1979 ident: 10.1016/j.cviu.2020.102949_b19 article-title: Influence of six types of visual structure on complexity judgments in children and aults publication-title: J. Exp. Psychol.: Hum. Percept. Perform. – ident: 10.1016/j.cviu.2020.102949_b53 doi: 10.1109/ICCV.2013.397 – start-page: 57 year: 2017 ident: 10.1016/j.cviu.2020.102949_b13 article-title: Learning visual importance for graphic designs and data visualizations – volume: 159 start-page: 110 year: 2018 ident: 10.1016/j.cviu.2020.102949_b35 article-title: Assessment model for perceived visual complexity of painting images publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.06.006 – year: 2015 ident: 10.1016/j.cviu.2020.102949_b99 – ident: 10.1016/j.cviu.2020.102949_b55 – ident: 10.1016/j.cviu.2020.102949_b100 – volume: 142 start-page: 1323 year: 2013 ident: 10.1016/j.cviu.2020.102949_b4 article-title: The intrinsic memorability of face photographs publication-title: J. Exp. Psychol. [Gen.] doi: 10.1037/a0033872 – volume: 30 start-page: 86 year: 2014 ident: 10.1016/j.cviu.2020.102949_b23 article-title: No reference image quality classification for jpeg-distorted images publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2014.04.003 – volume: 4 start-page: 361 year: 2013 ident: 10.1016/j.cviu.2020.102949_b30 article-title: The small step toward asymmetry: aesthetic judgment of broken symmetries publication-title: i-Perception doi: 10.1068/i0588sas – year: 2017 ident: 10.1016/j.cviu.2020.102949_b41 – volume: 9 start-page: 717 year: 2009 ident: 10.1016/j.cviu.2020.102949_b14 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – volume: 163 start-page: 38 year: 2016 ident: 10.1016/j.cviu.2020.102949_b68 article-title: Effects of presentation duration on measures of complexity in affective environmental scenes and representational paintings publication-title: Acta Psychol. doi: 10.1016/j.actpsy.2015.10.002 – volume: 64 start-page: 670 year: 2006 ident: 10.1016/j.cviu.2020.102949_b5 article-title: Computational modeling and experimental investigation of effects of compositional elements on interface and design aesthetics publication-title: Int. J. Hum.-Comput. Stud. doi: 10.1016/j.ijhcs.2006.01.002 – ident: 10.1016/j.cviu.2020.102949_b17 doi: 10.1109/CVPR.2016.492 – year: 2015 ident: 10.1016/j.cviu.2020.102949_b61 – year: 2016 ident: 10.1016/j.cviu.2020.102949_b43 – start-page: 1100 year: 2017 ident: 10.1016/j.cviu.2020.102949_b44 article-title: Automatic understanding of image and video advertisements – ident: 10.1016/j.cviu.2020.102949_b102 doi: 10.1109/CVPR.2010.5539970 – volume: 74 start-page: 48 year: 2010 ident: 10.1016/j.cviu.2020.102949_b77 article-title: The stopping power of advertising: Measures and effects of visual complexity publication-title: J. Market. doi: 10.1509/jmkg.74.5.048 – year: 2019 ident: 10.1016/j.cviu.2020.102949_b85 article-title: BUOCA: budget-optimized crowd worker allocation publication-title: Comput. Res. Repos. – year: 2015 ident: 10.1016/j.cviu.2020.102949_b72 – ident: 10.1016/j.cviu.2020.102949_b96 – year: 1933 ident: 10.1016/j.cviu.2020.102949_b7 – ident: 10.1016/j.cviu.2020.102949_b94 doi: 10.1109/CVPR.2017.577 – ident: 10.1016/j.cviu.2020.102949_b103 doi: 10.1109/CVPR.2016.234 – volume: 12 year: 2017 ident: 10.1016/j.cviu.2020.102949_b31 article-title: Predicting perceived visual complexity of abstract patterns using computational measures: The influence of mirror symmetry on complexity perception publication-title: PLoS One doi: 10.1371/journal.pone.0185276 – ident: 10.1016/j.cviu.2020.102949_b63 – ident: 10.1016/j.cviu.2020.102949_b46 doi: 10.1109/CVPR.2016.237 – volume: 22 start-page: 195 year: 2009 ident: 10.1016/j.cviu.2020.102949_b15 article-title: Attentional vs computational complexity measures in observing paintings publication-title: Spatial Vis. doi: 10.1163/156856809788313138 – volume: 4 start-page: 251 year: 2016 ident: 10.1016/j.cviu.2020.102949_b81 article-title: Visual instance retrieval with deep convolutional networks publication-title: ITE Transa. Media Technol. Appl. doi: 10.3169/mta.4.251 – volume: 102 start-page: 49 year: 2011 ident: 10.1016/j.cviu.2020.102949_b28 article-title: Predicting beauty: fractal dimension and visual complexity in art publication-title: Br. J. Psychol. doi: 10.1348/000712610X498958 – volume: 11 year: 2016 ident: 10.1016/j.cviu.2020.102949_b22 article-title: Predicting complexity perception of real world images publication-title: PLoS One doi: 10.1371/journal.pone.0157986 – year: 2019 ident: 10.1016/j.cviu.2020.102949_b93 – ident: 10.1016/j.cviu.2020.102949_b32 doi: 10.1145/2020408.2020425 – ident: 10.1016/j.cviu.2020.102949_b105 doi: 10.1109/CVPR.2018.00068 – ident: 10.1016/j.cviu.2020.102949_b57 doi: 10.1109/CVPR.2017.213 – ident: 10.1016/j.cviu.2020.102949_b92 doi: 10.1609/aaai.v31i1.11231 – volume: 7 issue: 17 year: 2007 ident: 10.1016/j.cviu.2020.102949_b83 article-title: Measuring visual clutter publication-title: J. Vis. – volume: 15 start-page: 3440 year: 2006 ident: 10.1016/j.cviu.2020.102949_b87 article-title: A statistical evaluation of recent full reference image quality assessment algorithms publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881959 – volume: 118 start-page: 65 year: 2016 ident: 10.1016/j.cviu.2020.102949_b20 article-title: Deep filter banks for texture recognition, description, and segmentation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0872-3 – ident: 10.1016/j.cviu.2020.102949_b65 doi: 10.1109/CVPR.2015.7299107 – volume: 21 issue: 104 year: 2008 ident: 10.1016/j.cviu.2020.102949_b58 article-title: Perceived versus actual complexity for websites: Their relationship to consumer satisfaction publication-title: J. Consum. Satisf. Dissatisfaction Complain. Behav. – year: 1971 ident: 10.1016/j.cviu.2020.102949_b6 – year: 2017 ident: 10.1016/j.cviu.2020.102949_b107 article-title: Places: A 10 million image database for scene recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 58 start-page: 328 year: 1950 ident: 10.1016/j.cviu.2020.102949_b2 article-title: A difficulty in the concept of social welfare publication-title: J. Polit. Econ. doi: 10.1086/256963 – volume: 19 start-page: 177 year: 2001 ident: 10.1016/j.cviu.2020.102949_b50 article-title: Aesthetics electrified: An analysis of descriptive symmetry and evaluative aesthetic judgment processes using event-related brain potentials publication-title: Empir. Stud. Arts doi: 10.2190/P7W1-5F1F-NJK9-X05B – ident: 10.1016/j.cviu.2020.102949_b3 – volume: 24 start-page: 603 year: 2002 ident: 10.1016/j.cviu.2020.102949_b21 article-title: Mean shift: A robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.1000236 – start-page: 740 year: 2014 ident: 10.1016/j.cviu.2020.102949_b62 article-title: Microsoft COCO: Common objects in COntext |
SSID | ssj0011491 |
Score | 2.46979 |
Snippet | In this paper, we focus on visual complexity, an image attribute that humans can subjectively evaluate based on the level of details in the image. We explore... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102949 |
SubjectTerms | Activation energy Convolutional layers Convolutional neural network Deep neural network Feature extraction Memorability Object classification Scene classification Visual complexity |
Title | Visual complexity analysis using deep intermediate-layer features |
URI | https://dx.doi.org/10.1016/j.cviu.2020.102949 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssDARwFRPqoMbCg0iZM4GauKqoDoAkXdIts5o6CqVG2KmPjtnB2nKhLqwBjHtqLL-fwueX5HyHUUCyFSHrsMGCYoikpXIPJ1Y5VHKgnyWBrZxadRPByHD5No0iD9-iyMplXa2F_FdBOtbUvXWrM7L4ruMyYujOpPGOinHqVa8TMMmfby2-81zQPhvqmapzu7urc9OFNxvORnscIcMTAKBqnW0_xrc9rYcAaHZN8iRadXPcwRacCsRQ4sanTsmlxiU12YoW5rkb0NlcFj0nstliucybDH4Qtht8OtFImjae9vTg4wd7RwxMIcJCnBnXKE4o4CI_u5PCHjwd1Lf-jaygmuDH2vdJXPgCYikH7KOOAiTiTuVkyJKIxzJaUKaAhUMCrClAfgexyzLsQiKuV420vpKWnOPmZwRhxgPOT65x9oNbQ04ZKDiAAnzyMmlGoTvzZZJq2suK5uMc1q_th7ps2caTNnlZnb5GY9Zl6JamztHdVvIvvlGhlG_S3jzv857oLs6quKD3ZJmuViBVeIPErRMa7VITu9-8fh6Af97tin |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VdgAGvhHfZGBDUZs4iZOxqkAtLV1oUbfIds6oqCoVTRE_n3PiVCAhBlY7Z0Vn-_zOfn4GuAkjKWUiIpcjpwRFM-VKQr5upLNQx34WqUJ28XEYdcfBwySc1KBT3YUxtEob-8uYXkRrW9K03mwuptPmEyUunJktDBqnLcbYBjSMOlVYh0a71-8O14cJlAR4JfXQbMkFvr07U9K81Md0RWmiX4gYJEZS87f16duac78HOxYsOu3yf_ahhvMD2LXA0bHTcklF1dsMVdkBbH8TGjyE9vN0uaKWCgI5fhLydoRVI3EM8_3FyRAXjtGOeC_ukuTozgShcUdjofy5PILx_d2o03Xt4wmuCrxW7mqPI4ulr7yEC6R5HCtasLiWYRBlWintswCZ5EwGifDRawlKvAiO6ERQdSthx1Cfv83xBBzkIhDm_A-NIFoSCyVQhkiNZyGXWp-CV7ksVVZZ3DxwMUsrCtlratycGjenpZtP4XZtsyh1Nf78Oqx6Iv0xOlIK_H_Ynf3T7ho2u6PHQTroDfvnsGVqSnrYBdTz9xVeEhDJ5ZUdaF93EttY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+complexity+analysis+using+deep+intermediate-layer+features&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Saraee%2C+Elham&rft.au=Jalal%2C+Mona&rft.au=Betke%2C+Margrit&rft.date=2020-06-01&rft.issn=1077-3142&rft.volume=195&rft.spage=102949&rft_id=info:doi/10.1016%2Fj.cviu.2020.102949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2020_102949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |