Visual complexity analysis using deep intermediate-layer features

In this paper, we focus on visual complexity, an image attribute that humans can subjectively evaluate based on the level of details in the image. We explore unsupervised information extraction from intermediate convolutional layers of deep neural networks to measure visual complexity. We derive an...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 195; p. 102949
Main Authors Saraee, Elham, Jalal, Mona, Betke, Margrit
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.06.2020
Subjects
Online AccessGet full text
ISSN1077-3142
1090-235X
DOI10.1016/j.cviu.2020.102949

Cover

Loading…
Abstract In this paper, we focus on visual complexity, an image attribute that humans can subjectively evaluate based on the level of details in the image. We explore unsupervised information extraction from intermediate convolutional layers of deep neural networks to measure visual complexity. We derive an activation energy metric that combines convolutional layer activations to quantify visual complexity. To show the effectiveness of our proposed metric for various applications, we introduce Savoias, a visual complexity dataset that compromises of more than 1,400 images from seven diverse image categories (e.g., advertisement and interior design). We demonstrate high correlations of our deep neural network-based measure of visual complexity with human-curated ground-truth (GT) scores on various widely used network architectures, e.g., VGG16, ResNet-v2-152, and EfficientNet, and in networks trained on two classification tasks (object and scene classification). This result reveals that intermediate convolutional layers of deep neural networks carry information about the complexity of images that is meaningful to people. Furthermore, we show that our method of measuring visual complexity outperforms traditional methods on Savoias and two other state-of-the-art benchmark datasets. Moreover, we perform extensive analysis on the performance difference between our unsupervised method and a supervised method trained on the feature map, and show that by supervision, we can improve the prediction. Finally, we demonstrate that, within the context of a category, visually more complex images are also more memorable to human observers. [Display omitted] •Unsupervised extraction of information from convolutional layers of deep neural networks.•Unsupervised Activation Energy (UAE) metric to quantify visual complexity.•SAVOIAS, a dataset for the analysis of visual complexity.•High correlation between our UAE method and ground truth.•Within context of category, visually more complex images are more memorable to human.
AbstractList In this paper, we focus on visual complexity, an image attribute that humans can subjectively evaluate based on the level of details in the image. We explore unsupervised information extraction from intermediate convolutional layers of deep neural networks to measure visual complexity. We derive an activation energy metric that combines convolutional layer activations to quantify visual complexity. To show the effectiveness of our proposed metric for various applications, we introduce Savoias, a visual complexity dataset that compromises of more than 1,400 images from seven diverse image categories (e.g., advertisement and interior design). We demonstrate high correlations of our deep neural network-based measure of visual complexity with human-curated ground-truth (GT) scores on various widely used network architectures, e.g., VGG16, ResNet-v2-152, and EfficientNet, and in networks trained on two classification tasks (object and scene classification). This result reveals that intermediate convolutional layers of deep neural networks carry information about the complexity of images that is meaningful to people. Furthermore, we show that our method of measuring visual complexity outperforms traditional methods on Savoias and two other state-of-the-art benchmark datasets. Moreover, we perform extensive analysis on the performance difference between our unsupervised method and a supervised method trained on the feature map, and show that by supervision, we can improve the prediction. Finally, we demonstrate that, within the context of a category, visually more complex images are also more memorable to human observers. [Display omitted] •Unsupervised extraction of information from convolutional layers of deep neural networks.•Unsupervised Activation Energy (UAE) metric to quantify visual complexity.•SAVOIAS, a dataset for the analysis of visual complexity.•High correlation between our UAE method and ground truth.•Within context of category, visually more complex images are more memorable to human.
ArticleNumber 102949
Author Saraee, Elham
Betke, Margrit
Jalal, Mona
Author_xml – sequence: 1
  givenname: Elham
  surname: Saraee
  fullname: Saraee, Elham
  email: esaraee@bu.edu
– sequence: 2
  givenname: Mona
  surname: Jalal
  fullname: Jalal, Mona
– sequence: 3
  givenname: Margrit
  surname: Betke
  fullname: Betke, Margrit
BookMark eNp9kE1Lw0AQhhepYFv9A57yB1L3q00WvJSiVih4UfG2TDazsiXdlN1NMf_ehHry0NMMMzwvvM-MTHzrkZB7RheMstXDfmFOrltwyscDV1JdkSmjiuZcLL8m414UuWCS35BZjHtKGZOKTcn608UOmsy0h2ODPy71GXho-uhi1kXnv7Ma8Zg5nzAcsHaQMG-gx5BZhNQFjLfk2kIT8e5vzsnH89P7Zpvv3l5eN-tdbiSjKbesQFFW3DBVABaClkZIVthqKVe1NcZyIVFUhaikAo6MglLlallaBcObKjEn5TnXhDbGgFYblyC51qcArtGM6lGF3utRhR5V6LOKAeX_0GNwBwj9ZejxDOFQ6uQw6GgcejNICGiSrlt3Cf8F_UR7bw
CitedBy_id crossref_primary_10_1080_23270012_2021_1998801
crossref_primary_10_1007_s00371_022_02634_8
crossref_primary_10_1080_00038628_2023_2269549
crossref_primary_10_1007_s11042_022_14084_4
crossref_primary_10_1002_pchj_564
crossref_primary_10_3788_AOS240464
crossref_primary_10_1016_j_isprsjprs_2022_02_012
crossref_primary_10_3390_app10155347
crossref_primary_10_1016_j_displa_2021_102031
crossref_primary_10_1016_j_cognition_2022_105319
crossref_primary_10_3758_s13421_024_01590_z
crossref_primary_10_12677_CSA_2022_123072
crossref_primary_10_2478_amns_2024_3250
crossref_primary_10_1016_j_patrec_2024_11_032
crossref_primary_10_3390_a16120567
crossref_primary_10_3390_electronics12112526
crossref_primary_10_1371_journal_pcbi_1011703
crossref_primary_10_3390_electronics12214405
crossref_primary_10_1007_s11042_024_19110_1
crossref_primary_10_1145_3643824
crossref_primary_10_1007_s00138_023_01484_1
crossref_primary_10_1038_s41598_023_44553_1
crossref_primary_10_1007_s11042_022_13085_7
crossref_primary_10_1080_10641734_2024_2334939
crossref_primary_10_1007_s11042_024_19068_0
crossref_primary_10_1109_TPAMI_2022_3232328
crossref_primary_10_1523_JNEUROSCI_1175_23_2024
crossref_primary_10_1016_j_heliyon_2023_e15559
crossref_primary_10_1088_2631_8695_adbb40
crossref_primary_10_1007_s00500_023_08844_z
crossref_primary_10_1016_j_visres_2024_108525
Cites_doi 10.1109/ICCV.2015.463
10.1109/CVPR.2017.243
10.1109/TVCG.2015.2467732
10.2352/ISSN.2470-1173.2017.12.IQSP-225
10.1037/0096-3445.106.3.269
10.1037/h0062483
10.21236/ADA554133
10.1007/s11263-016-0924-3
10.1109/ICCV.2015.275
10.1109/CVPR.2016.618
10.1007/978-3-319-46604-0_57
10.1109/TIP.2003.819861
10.1002/mar.20983
10.1109/CVPR.2016.90
10.1016/j.jretai.2004.01.005
10.1109/CVPR.2017.533
10.1016/j.visres.2015.03.005
10.1167/14.14.3
10.1117/12.767029
10.1016/j.actpsy.2015.06.005
10.1109/TVCG.2013.234
10.1080/15230406.2017.1323676
10.1016/j.neucom.2017.01.054
10.1037/h0043158
10.1145/2598153.2598173
10.1109/ICIP.2011.6116371
10.1145/2897824.2925908
10.1109/CVPR.2017.19
10.1145/3119881.3119883
10.1093/biomet/31.3-4.324
10.1109/ICCVW.2015.134
10.1007/s11263-017-1016-8
10.1109/CVPR.2011.5995721
10.2190/EM.28.2.d
10.1109/CVPR.2016.80
10.1109/ICCV.2013.397
10.1016/j.knosys.2018.06.006
10.1037/a0033872
10.1016/j.dsp.2014.04.003
10.1068/i0588sas
10.1007/s10208-009-9045-5
10.1016/j.actpsy.2015.10.002
10.1016/j.ijhcs.2006.01.002
10.1109/CVPR.2016.492
10.1109/CVPR.2010.5539970
10.1509/jmkg.74.5.048
10.1109/CVPR.2017.577
10.1109/CVPR.2016.234
10.1371/journal.pone.0185276
10.1109/CVPR.2016.237
10.1163/156856809788313138
10.3169/mta.4.251
10.1348/000712610X498958
10.1371/journal.pone.0157986
10.1145/2020408.2020425
10.1109/CVPR.2018.00068
10.1109/CVPR.2017.213
10.1609/aaai.v31i1.11231
10.1109/TIP.2006.881959
10.1007/s11263-015-0872-3
10.1109/CVPR.2015.7299107
10.1086/256963
10.2190/P7W1-5F1F-NJK9-X05B
10.1109/34.1000236
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cviu.2020.102949
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
ExternalDocumentID 10_1016_j_cviu_2020_102949
S1077314220300333
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SST
ID FETCH-LOGICAL-c410t-f17e38b2c197ae7308c3417fb546dfccf234e3b73b49a2e10a998658f9adfc093
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Thu Apr 24 23:04:37 EDT 2025
Tue Jul 01 04:32:07 EDT 2025
Fri Feb 23 02:48:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Memorability
Visual complexity
Scene classification
Deep neural network
Object classification
Convolutional neural network
Convolutional layers
Feature extraction
Activation energy
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-f17e38b2c197ae7308c3417fb546dfccf234e3b73b49a2e10a998658f9adfc093
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1077314220300333
ParticipantIDs crossref_citationtrail_10_1016_j_cviu_2020_102949
crossref_primary_10_1016_j_cviu_2020_102949
elsevier_sciencedirect_doi_10_1016_j_cviu_2020_102949
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Computer vision and image understanding
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hussain, Zhang, Zhang, Ye, Thomas, Agha, Ong, Kovashka (b44) 2017
Isola, P., Parikh, D., Torralba, A., Oliva, A., 2011a. Understanding the intrinsic memorability of images. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2429–2437.
Rosenholtz, Li, Nakano (b83) 2007; 7
Pilelienė, Grigaliūnaitė (b78) 2018; 3
Reinecke, Yeh, Miratrix, Mardiko, Zhao, Liu, Gajos (b82) 2013
Borkin, Vo, Bylinskii, Isola, Sunkavalli, Oliva, Pfister (b9) 2013; 19
Liu, H., Chen, T., Shen, Q., Yue, T., Ma, Z., 2018. Deep image compression via end-to-end learning. In: CVPR Workshops, pp. 2575–2578.
Sameki, Lai, Mays, Guo, Ishwar, Betke (b85) 2019
Eysenck (b26) 1941; 48
Palumbo, Ogden, Makin, Bertamini (b74) 2014; 14
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b41) 2017
Oliva, A., Mack, M.L., Shrestha, M., Peeper, A., 2004. Identifying the perceptual dimensions of visual complexity of scenes. In: Proceedings of the Annual Meeting of the Cognitive Science Society.
Bradley, Terry (b10) 1952; 39
Bylinskii, Kim, O’Donovan, Alsheikh, Madan, Pfister, Durand, Russell, Hertzmann (b13) 2017
Krishen (b58) 2008; 21
Ulyanov, D., Vedaldi, A., Lempitsky, V., 2018. Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454.
Babenko, A., Lempitsky, V., 2015. Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269–1277.
Gordo, Almazán, Larlus (b34) 2016
Heaps, Handel (b40) 1999; 25
Forsythe, Nadal, Sheehy, Cela-Conde, Sawey (b28) 2011; 102
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1097–1105.
Nadal, Munar, Marty, Cela-Conde (b71) 2010; 28
Fan, Z.B., Li, Y., Yu, J., Zhang, K., 2017. Visual complexity of Chinese ink paintings. In: Proceedings of the ACM Symposium on Applied Perception, pp. 9:1–9:8.
Ledig, C., Theis, L., Huszár, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al., 2017. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690.
.
Yang, F., Choi, W., Lin, Y., 2016. Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137.
Toderici, G., Vincent, D., Johnston, N., Ji. Hwang, S., Minnen, D., Shor, J., Covell, M., 2017. Full resolution image compression with recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306–5314.
Ionescu, R.T., Alexe, B., Leordeanu, M., Popescu, M., Papadopoulos, D.P., Ferrari, V., 2016. How hard can it be? Estimating the difficulty of visual search in an image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2157–2166.
Perera, Tal, Zelnik-Manor (b76) 2019
Miniukovich, A., Angeli, A.D., 2014. Quantification of interface visual complexity. In: Proceedings of International Working Conference on Advanced Visual Interfaces, AVI, pp. 153–160.
Johnson, Alahi, Fei-Fei (b51) 2016
Bylinskii, Isola, Bainbridge, Torralba, Oliva (b12) 2015; 116
Guo, Qian, Li, Asano (b35) 2018; 159
Sohn, Seegebarth, Moritz (b91) 2017; 34
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b62) 2014
Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L., 2016. Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4545–4554.
Gordo, Almazan, Revaud, Larlus (b33) 2017; 124
Bainbridge, Isola, Oliva (b4) 2013; 142
Candès, Recht (b14) 2009; 9
Cimpoi, Maji, Kokkinos, Vedaldi (b20) 2016; 118
Machado, Romero, Nadal, Santos, Correia, Carballal (b66) 2015; 160
Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R., 2016. Unconstrained salient object detection via proposal subset optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5733–5742.
Comaniciu, Meer (b21) 2002; 24
Isola, P., Xiao, J., Torralba, A., Oliva, A., 2011b. What makes an image memorable?. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 145–152.
Berlyne (b6) 1971
Wang, Bovik, Sheikh, Simoncelli (b98) 2004; 13
Liu, L., Shen, C., van den Hengel, A., 2015. The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4749–4757.
IVL (b49) 2014
Corchs, Gasparini, Schettini (b23) 2014; 30
David, H.A., 1963. The Method of Paired Comparisons. vol. 12. London.
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., 2017. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence, p. 12.
Li, Yu (b61) 2015
Gartus, Leder (b30) 2013; 4
Marin, Leder (b68) 2016; 163
Da Silva, M.P., Courboulay, V., Estraillier, P., 2011. Image complexity measure based on visual attention. In: Proceedings of the 18th IEEE International Conference on Image Processing (ICIP), pp. 3281–3284.
Gartus, Leder (b31) 2017; 12
Wang, Li, Gupta, Yeung (b99) 2015
Wang, Z., Simoncelli, E.P., Bovik, A.C., 2003. Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, Ieee. pp. 1398–1402.
Ng, Yang, Davis (b72) 2015
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O., 2018. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595.
Chipman (b18) 1977; 106
Khosla, A., Bainbridge, W.A., Torralba, A., Olivia, A., 2013. Modifying the memorability of face photographs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3200–3207.
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 770–778.
Kim, J., Lee, S., 2017. Deep learning of human visual sensitivity in image quality assessment framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1676–1684.
Sheikh, Sabir, Bovik (b87) 2006; 15
Simonyan, Zisserman (b89) 2014
Bruna, Sprechmann, LeCun (b11) 2015
Mack, M.L., Oliva, A., 2004. Computational estimation of visual complexity. In: The 12th Annual Object, Perception, Attention, and Memory Conference, Minneapolis, Minnesota.
Chang, Yu, Wang, Ashley, Finkelstein (b16) 2016; 35
Arrow (b2) 1950; 58
Ramanarayanan, G., Bala, K., Ferwerda, J.A., Walter, B., 2008b. Dimensionality of visual complexity in computer graphics scenes. In: Proceedings of the Human Vision and Electronic Imaging XIII, p. 68060E.
Schnur, Bektaş, Çöltekin (b86) 2018; 45
Kim, W.H., Jalal, M., Hwang, S.J., Johnson, S.C., Singh, V., 2017. Online graph completion: Multivariate signal recovery in computer vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5019–5027.
Pieters, Wedel, Batra (b77) 2010; 74
Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A., 2010. Sun database: Large-scale scene recognition from abbey to zoo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3485–3492.
Chipman, Mendelson (b19) 1979; 5
Liu, N., Han, J., 2016. Dhsnet: Deep hierarchical saliency network for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 678–686.
Borkin, Bylinskii, Kim, Bainbridge, Yeh, Borkin, Pfister, Oliva (b8) 2016; 22
Bauerly, Liu (b5) 2006; 64
Kendall, Smith (b52) 1940; 31
Uricchio, T., Bertini, M., Seidenari, L., Bimbo, A., 2015. Fisher encoded convolutional bag-of-windows for efficient image retrieval and social image tagging. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 9–15.
Razavian, Sullivan, Carlsson, Maki (b81) 2016; 4
Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep neural networks?. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 3320–3328.
IKEA,, 0000.
Jacobsen, Höfel (b50) 2001; 19
Birkhoff (b7) 1933
Khosla, A., Xiao, J., Torralba, A., Oliva, A., 2012. Memorability of image regions. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 296–304.
RSIVL (b84) 2016
Ramanarayanan, G., Bala, K., Ferwerda, J.A., Walter, B., 2008a. Dimensionality of visual complexity in computer graphics scenes. In: Proceedings of Human Vision and Electronic Imaging XIII Conference, p. 68060E.
Cardaci, D. Gesu, Petrou, Tabacchi (b15) 2009; 22
Corchs, Ciocca, Bricolo, Gasparini (b22) 2016; 11
Tan, Le (b93) 2019
Amirshahi, Pedersen, Yu (b1) 2017; 2017
Gupta, Srivastava, Bhardwaj, Bhateja (b36) 2011
Snodgrass, Vanderwart (b90) 1980; 6
Zhou, Lapedriza, Khosla, Oliva, Torralba (b107) 2017
H., S., Z., W., L., C., A., B. (b37) 2006
Westlake, N., Cai, H., Hall, P., 2016. Detecting people in artwork with cnns. In: European Conference on Computer Vision, pp. 825–841.
Paulin, Mairal, Douze, Harchaoui, Perronnin, Schmid (b75) 2017; 121
Miller (b69) 1956; 63
Simonyan, Vedaldi, Zisserman (b88) 2013
Gleich, D.F., Lim, L.h., 2011. Rank aggregation via nuclear norm minimization. In: Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining, pp. 60–68.
Haytko, Baker (b38) 2004; 80
Gao, Wang, Li, Tan, Yu, Zhu (b29) 2017; 257
Huh, Agrawal, Efros (b43) 2016
Khosla, A., Raju, A.S., Torralba, A., Oliva, A., 2015. Understanding and predicting image memorability at a large scale. In: Proceedings of the IEEE Internationa
Huh (10.1016/j.cviu.2020.102949_b43) 2016
10.1016/j.cviu.2020.102949_b64
10.1016/j.cviu.2020.102949_b63
Gupta (10.1016/j.cviu.2020.102949_b36) 2011
10.1016/j.cviu.2020.102949_b60
Cimpoi (10.1016/j.cviu.2020.102949_b20) 2016; 118
Haytko (10.1016/j.cviu.2020.102949_b38) 2004; 80
Razavian (10.1016/j.cviu.2020.102949_b81) 2016; 4
Bruna (10.1016/j.cviu.2020.102949_b11) 2015
Nadal (10.1016/j.cviu.2020.102949_b71) 2010; 28
Gao (10.1016/j.cviu.2020.102949_b29) 2017; 257
Forsythe (10.1016/j.cviu.2020.102949_b28) 2011; 102
Guo (10.1016/j.cviu.2020.102949_b35) 2018; 159
10.1016/j.cviu.2020.102949_b65
10.1016/j.cviu.2020.102949_b67
Gordo (10.1016/j.cviu.2020.102949_b34) 2016
10.1016/j.cviu.2020.102949_b73
Pieters (10.1016/j.cviu.2020.102949_b77) 2010; 74
Heaps (10.1016/j.cviu.2020.102949_b40) 1999; 25
10.1016/j.cviu.2020.102949_b70
Borkin (10.1016/j.cviu.2020.102949_b9) 2013; 19
10.1016/j.cviu.2020.102949_b79
Bradley (10.1016/j.cviu.2020.102949_b10) 1952; 39
10.1016/j.cviu.2020.102949_b42
Gartus (10.1016/j.cviu.2020.102949_b30) 2013; 4
Ng (10.1016/j.cviu.2020.102949_b72) 2015
Sheikh (10.1016/j.cviu.2020.102949_b87) 2006; 15
Gartus (10.1016/j.cviu.2020.102949_b31) 2017; 12
Miller (10.1016/j.cviu.2020.102949_b69) 1956; 63
10.1016/j.cviu.2020.102949_b48
Krishen (10.1016/j.cviu.2020.102949_b58) 2008; 21
10.1016/j.cviu.2020.102949_b47
10.1016/j.cviu.2020.102949_b46
Bainbridge (10.1016/j.cviu.2020.102949_b4) 2013; 142
10.1016/j.cviu.2020.102949_b45
Wang (10.1016/j.cviu.2020.102949_b98) 2004; 13
10.1016/j.cviu.2020.102949_b53
Rosenholtz (10.1016/j.cviu.2020.102949_b83) 2007; 7
Chipman (10.1016/j.cviu.2020.102949_b18) 1977; 106
Tan (10.1016/j.cviu.2020.102949_b93) 2019
Candès (10.1016/j.cviu.2020.102949_b14) 2009; 9
10.1016/j.cviu.2020.102949_b59
Chipman (10.1016/j.cviu.2020.102949_b19) 1979; 5
Howard (10.1016/j.cviu.2020.102949_b41) 2017
Jacobsen (10.1016/j.cviu.2020.102949_b50) 2001; 19
Wang (10.1016/j.cviu.2020.102949_b99) 2015
10.1016/j.cviu.2020.102949_b55
Palumbo (10.1016/j.cviu.2020.102949_b74) 2014; 14
10.1016/j.cviu.2020.102949_b54
10.1016/j.cviu.2020.102949_b57
10.1016/j.cviu.2020.102949_b56
10.1016/j.cviu.2020.102949_b3
Marin (10.1016/j.cviu.2020.102949_b68) 2016; 163
Corchs (10.1016/j.cviu.2020.102949_b23) 2014; 30
Arrow (10.1016/j.cviu.2020.102949_b2) 1950; 58
Schnur (10.1016/j.cviu.2020.102949_b86) 2018; 45
Sohn (10.1016/j.cviu.2020.102949_b91) 2017; 34
Snodgrass (10.1016/j.cviu.2020.102949_b90) 1980; 6
Cardaci (10.1016/j.cviu.2020.102949_b15) 2009; 22
10.1016/j.cviu.2020.102949_b25
Lin (10.1016/j.cviu.2020.102949_b62) 2014
10.1016/j.cviu.2020.102949_b27
Berlyne (10.1016/j.cviu.2020.102949_b6) 1971
10.1016/j.cviu.2020.102949_b24
Hussain (10.1016/j.cviu.2020.102949_b44) 2017
Machado (10.1016/j.cviu.2020.102949_b66) 2015; 160
Simonyan (10.1016/j.cviu.2020.102949_b88) 2013
H. (10.1016/j.cviu.2020.102949_b37) 2006
Pilelienė (10.1016/j.cviu.2020.102949_b78) 2018; 3
Johnson (10.1016/j.cviu.2020.102949_b51) 2016
Corchs (10.1016/j.cviu.2020.102949_b22) 2016; 11
Comaniciu (10.1016/j.cviu.2020.102949_b21) 2002; 24
10.1016/j.cviu.2020.102949_b39
10.1016/j.cviu.2020.102949_b32
Bauerly (10.1016/j.cviu.2020.102949_b5) 2006; 64
Reinecke (10.1016/j.cviu.2020.102949_b82) 2013
10.1016/j.cviu.2020.102949_b80
Simonyan (10.1016/j.cviu.2020.102949_b89) 2014
Chang (10.1016/j.cviu.2020.102949_b16) 2016; 35
Zhou (10.1016/j.cviu.2020.102949_b107) 2017
Bylinskii (10.1016/j.cviu.2020.102949_b13) 2017
Eysenck (10.1016/j.cviu.2020.102949_b26) 1941; 48
Amirshahi (10.1016/j.cviu.2020.102949_b1) 2017; 2017
Borkin (10.1016/j.cviu.2020.102949_b8) 2016; 22
10.1016/j.cviu.2020.102949_b95
10.1016/j.cviu.2020.102949_b102
Li (10.1016/j.cviu.2020.102949_b61) 2015
10.1016/j.cviu.2020.102949_b94
10.1016/j.cviu.2020.102949_b103
10.1016/j.cviu.2020.102949_b97
10.1016/j.cviu.2020.102949_b100
IVL (10.1016/j.cviu.2020.102949_b49) 2014
10.1016/j.cviu.2020.102949_b96
10.1016/j.cviu.2020.102949_b101
10.1016/j.cviu.2020.102949_b106
Paulin (10.1016/j.cviu.2020.102949_b75) 2017; 121
Perera (10.1016/j.cviu.2020.102949_b76) 2019
10.1016/j.cviu.2020.102949_b104
10.1016/j.cviu.2020.102949_b92
10.1016/j.cviu.2020.102949_b105
RSIVL (10.1016/j.cviu.2020.102949_b84) 2016
Kendall (10.1016/j.cviu.2020.102949_b52) 1940; 31
Birkhoff (10.1016/j.cviu.2020.102949_b7) 1933
Sameki (10.1016/j.cviu.2020.102949_b85) 2019
10.1016/j.cviu.2020.102949_b17
Gordo (10.1016/j.cviu.2020.102949_b33) 2017; 124
Bylinskii (10.1016/j.cviu.2020.102949_b12) 2015; 116
References_xml – volume: 124
  start-page: 237
  year: 2017
  end-page: 254
  ident: b33
  article-title: End-to-end learning of deep visual representations for image retrieval
  publication-title: Int. J. Comput. Vis.
– volume: 31
  start-page: 324
  year: 1940
  end-page: 345
  ident: b52
  article-title: On the method of paired comparisons
  publication-title: Biometrika
– reference: Wang, Z., Simoncelli, E.P., Bovik, A.C., 2003. Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, Ieee. pp. 1398–1402.
– reference: Ledig, C., Theis, L., Huszár, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al., 2017. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690.
– year: 2019
  ident: b93
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– year: 2015
  ident: b61
  article-title: Visual saliency based on multiscale deep features
– volume: 39
  start-page: 324
  year: 1952
  end-page: 345
  ident: b10
  article-title: Rank analysis of incomplete block designs: I. the method of paired comparisons
  publication-title: Biometrika
– reference: Ulyanov, D., Vedaldi, A., Lempitsky, V., 2018. Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454.
– volume: 257
  start-page: 104
  year: 2017
  end-page: 114
  ident: b29
  article-title: Deepsim: Deep similarity for image quality assessment
  publication-title: Neurocomputing
– volume: 12
  year: 2017
  ident: b31
  article-title: Predicting perceived visual complexity of abstract patterns using computational measures: The influence of mirror symmetry on complexity perception
  publication-title: PLoS One
– year: 2014
  ident: b89
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 6
  start-page: 174
  year: 1980
  ident: b90
  article-title: A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity
  publication-title: J. Exp. Psychol.: Hum. Learn. Memory
– volume: 11
  year: 2016
  ident: b22
  article-title: Predicting complexity perception of real world images
  publication-title: PLoS One
– volume: 160
  start-page: 43
  year: 2015
  end-page: 57
  ident: b66
  article-title: Computerized measures of visual complexity
  publication-title: Acta Psychol.
– reference: Uricchio, T., Bertini, M., Seidenari, L., Bimbo, A., 2015. Fisher encoded convolutional bag-of-windows for efficient image retrieval and social image tagging. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 9–15.
– volume: 21
  year: 2008
  ident: b58
  article-title: Perceived versus actual complexity for websites: Their relationship to consumer satisfaction
  publication-title: J. Consum. Satisf. Dissatisfaction Complain. Behav.
– volume: 163
  start-page: 38
  year: 2016
  end-page: 58
  ident: b68
  article-title: Effects of presentation duration on measures of complexity in affective environmental scenes and representational paintings
  publication-title: Acta Psychol.
– reference: Khosla, A., Raju, A.S., Torralba, A., Oliva, A., 2015. Understanding and predicting image memorability at a large scale. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2390–2398.
– year: 2017
  ident: b107
  article-title: Places: A 10 million image database for scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1097–1105.
– volume: 4
  start-page: 361
  year: 2013
  end-page: 364
  ident: b30
  article-title: The small step toward asymmetry: aesthetic judgment of broken symmetries
  publication-title: i-Perception
– volume: 22
  start-page: 519
  year: 2016
  end-page: 528
  ident: b8
  article-title: Beyond memorability: Visualization recognition and recall
  publication-title: IEEE Trans. Vis. Comput. Graphics
– reference: Oliva, A., Mack, M.L., Shrestha, M., Peeper, A., 2004. Identifying the perceptual dimensions of visual complexity of scenes. In: Proceedings of the Annual Meeting of the Cognitive Science Society.
– reference: Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O., 2018. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b98
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 80
  start-page: 67
  year: 2004
  end-page: 83
  ident: b38
  article-title: It’s all at the mall: exploring adolescent girls’ experiences
  publication-title: J. Retail.
– reference: Khosla, A., Bainbridge, W.A., Torralba, A., Olivia, A., 2013. Modifying the memorability of face photographs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3200–3207.
– year: 2013
  ident: b88
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
– year: 2014
  ident: b49
  article-title: Imaging and Vision Laboratory
– reference: Liu, H., Chen, T., Shen, Q., Yue, T., Ma, Z., 2018. Deep image compression via end-to-end learning. In: CVPR Workshops, pp. 2575–2578.
– reference: Westlake, N., Cai, H., Hall, P., 2016. Detecting people in artwork with cnns. In: European Conference on Computer Vision, pp. 825–841.
– volume: 30
  start-page: 86
  year: 2014
  end-page: 100
  ident: b23
  article-title: No reference image quality classification for jpeg-distorted images
  publication-title: Digit. Signal Process.
– reference: Fan, Z.B., Li, Y., Yu, J., Zhang, K., 2017. Visual complexity of Chinese ink paintings. In: Proceedings of the ACM Symposium on Applied Perception, pp. 9:1–9:8.
– volume: 142
  start-page: 1323
  year: 2013
  ident: b4
  article-title: The intrinsic memorability of face photographs
  publication-title: J. Exp. Psychol. [Gen.]
– volume: 19
  start-page: 2306
  year: 2013
  end-page: 2315
  ident: b9
  article-title: What makes a visualization memorable?
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2006
  ident: b37
  article-title: LIVE Image quality assessment database release 2
– year: 2017
  ident: b41
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– volume: 34
  start-page: 195
  year: 2017
  end-page: 214
  ident: b91
  article-title: The impact of perceived visual complexity of mobile online shops on user’s satisfaction
  publication-title: Psychol. Mark.
– volume: 74
  start-page: 48
  year: 2010
  end-page: 60
  ident: b77
  article-title: The stopping power of advertising: Measures and effects of visual complexity
  publication-title: J. Market.
– reference: David, H.A., 1963. The Method of Paired Comparisons. vol. 12. London.
– volume: 3
  start-page: 489
  year: 2018
  end-page: 501
  ident: b78
  article-title: Effect of visual advertising complexity on consumers? attention
  publication-title: Economics
– year: 2016
  ident: b84
  article-title: Imaging and Vision Laboratory, Department of Informatics, Systems and Communication
– start-page: 1100
  year: 2017
  end-page: 1110
  ident: b44
  article-title: Automatic understanding of image and video advertisements
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 5
  start-page: 365
  year: 1979
  end-page: 378
  ident: b19
  article-title: Influence of six types of visual structure on complexity judgments in children and aults
  publication-title: J. Exp. Psychol.: Hum. Percept. Perform.
– volume: 58
  start-page: 328
  year: 1950
  end-page: 346
  ident: b2
  article-title: A difficulty in the concept of social welfare
  publication-title: J. Polit. Econ.
– reference: Mack, M.L., Oliva, A., 2004. Computational estimation of visual complexity. In: The 12th Annual Object, Perception, Attention, and Memory Conference, Minneapolis, Minnesota.
– reference: Kim, J., Lee, S., 2017. Deep learning of human visual sensitivity in image quality assessment framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1676–1684.
– volume: 63
  start-page: 81
  year: 1956
  ident: b69
  article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information
  publication-title: Psychol. Rev.
– volume: 64
  start-page: 670
  year: 2006
  end-page: 682
  ident: b5
  article-title: Computational modeling and experimental investigation of effects of compositional elements on interface and design aesthetics
  publication-title: Int. J. Hum.-Comput. Stud.
– volume: 15
  start-page: 3440
  year: 2006
  end-page: 3451
  ident: b87
  article-title: A statistical evaluation of recent full reference image quality assessment algorithms
  publication-title: IEEE Trans. Image Process.
– reference: IKEA,, 0000.
– start-page: 694
  year: 2016
  end-page: 711
  ident: b51
  article-title: Perceptual losses for real-time style transfer and super-resolution
  publication-title: European Conference on Computer Vision
– start-page: 740
  year: 2014
  end-page: 755
  ident: b62
  article-title: Microsoft COCO: Common objects in COntext
  publication-title: European Conference on Computer Vision
– volume: 118
  start-page: 65
  year: 2016
  end-page: 94
  ident: b20
  article-title: Deep filter banks for texture recognition, description, and segmentation
  publication-title: Int. J. Comput. Vis.
– volume: 7
  year: 2007
  ident: b83
  article-title: Measuring visual clutter
  publication-title: J. Vis.
– volume: 28
  start-page: 173
  year: 2010
  end-page: 191
  ident: b71
  article-title: Visual complexity and beauty appreciation: Explaining the divergence of results
  publication-title: Empir. Stud. Arts
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 770–778.
– volume: 2017
  start-page: 42
  year: 2017
  end-page: 51
  ident: b1
  article-title: Image quality assessment by comparing cnn features between images
  publication-title: Electron. Imaging
– reference: Toderici, G., Vincent, D., Johnston, N., Ji. Hwang, S., Minnen, D., Shor, J., Covell, M., 2017. Full resolution image compression with recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306–5314.
– reference: Isola, P., Xiao, J., Torralba, A., Oliva, A., 2011b. What makes an image memorable?. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 145–152.
– reference: Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R., 2016. Unconstrained salient object detection via proposal subset optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5733–5742.
– reference: Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., 2017. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence, p. 12.
– reference: Babenko, A., Lempitsky, V., 2015. Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269–1277.
– volume: 4
  start-page: 251
  year: 2016
  end-page: 258
  ident: b81
  article-title: Visual instance retrieval with deep convolutional networks
  publication-title: ITE Transa. Media Technol. Appl.
– reference: Yang, F., Choi, W., Lin, Y., 2016. Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137.
– volume: 159
  start-page: 110
  year: 2018
  end-page: 119
  ident: b35
  article-title: Assessment model for perceived visual complexity of painting images
  publication-title: Knowl.-Based Syst.
– reference: Liu, N., Han, J., 2016. Dhsnet: Deep hierarchical saliency network for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 678–686.
– start-page: 2049
  year: 2013
  end-page: 2058
  ident: b82
  article-title: Predicting users’ first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness
  publication-title: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
– reference: Ramanarayanan, G., Bala, K., Ferwerda, J.A., Walter, B., 2008b. Dimensionality of visual complexity in computer graphics scenes. In: Proceedings of the Human Vision and Electronic Imaging XIII, p. 68060E.
– volume: 25
  start-page: 299
  year: 1999
  ident: b40
  article-title: Similarity and features of natural textures
  publication-title: J. Exp. Psychol.: Hum. Percept. Perform.
– reference: Liu, L., Shen, C., van den Hengel, A., 2015. The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4749–4757.
– volume: 22
  start-page: 195
  year: 2009
  end-page: 209
  ident: b15
  article-title: Attentional vs computational complexity measures in observing paintings
  publication-title: Spatial Vis.
– volume: 9
  start-page: 717
  year: 2009
  end-page: 772
  ident: b14
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
– volume: 45
  start-page: 238
  year: 2018
  end-page: 254
  ident: b86
  article-title: Measured and perceived visual complexity: A comparative study among three online map providers
  publication-title: Cartogr. Geogr. Inf. Sci.
– reference: Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A., 2010. Sun database: Large-scale scene recognition from abbey to zoo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3485–3492.
– year: 1933
  ident: b7
  article-title: Aesthetic Measure, vol. 38
– volume: 35
  start-page: 148:1
  year: 2016
  end-page: 148:10
  ident: b16
  article-title: Automatic triage for a photo series
  publication-title: ACM Trans. Graph.
– reference: Isola, P., Parikh, D., Torralba, A., Oliva, A., 2011a. Understanding the intrinsic memorability of images. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2429–2437.
– reference: Ionescu, R.T., Alexe, B., Leordeanu, M., Popescu, M., Papadopoulos, D.P., Ferrari, V., 2016. How hard can it be? Estimating the difficulty of visual search in an image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2157–2166.
– year: 1971
  ident: b6
  article-title: Aesthetics and Psychobiology
– reference: Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708.
– year: 2019
  ident: b85
  article-title: BUOCA: budget-optimized crowd worker allocation
  publication-title: Comput. Res. Repos.
– reference: Miniukovich, A., Angeli, A.D., 2014. Quantification of interface visual complexity. In: Proceedings of International Working Conference on Advanced Visual Interfaces, AVI, pp. 153–160.
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  ident: b21
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2015
  ident: b72
  article-title: Exploiting local features from deep networks for image retrieval
– volume: 14
  year: 2014
  ident: b74
  article-title: Examining visual complexity and its influence on perceived duration
  publication-title: J. Vis.
– reference: Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep neural networks?. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 3320–3328.
– reference: Tzeng, E., Hoffman, J., Darrell, T., Saenko, K., 2015. Simultaneous deep transfer across domains and tasks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4068–4076.
– volume: 121
  start-page: 149
  year: 2017
  end-page: 168
  ident: b75
  article-title: Convolutional patch representations for image retrieval: an unsupervised approach
  publication-title: Int. J. Comput. Vis.
– reference: Kim, W.H., Jalal, M., Hwang, S.J., Johnson, S.C., Singh, V., 2017. Online graph completion: Multivariate signal recovery in computer vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5019–5027.
– start-page: 57
  year: 2017
  end-page: 69
  ident: b13
  article-title: Learning visual importance for graphic designs and data visualizations
  publication-title: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology
– reference: Gleich, D.F., Lim, L.h., 2011. Rank aggregation via nuclear norm minimization. In: Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining, pp. 60–68.
– start-page: 1
  year: 2011
  end-page: 4
  ident: b36
  article-title: A modified psnr metric based on hvs for quality assessment of color images
  publication-title: 2011 International Conference on Communication and Industrial Application
– volume: 102
  start-page: 49
  year: 2011
  end-page: 70
  ident: b28
  article-title: Predicting beauty: fractal dimension and visual complexity in art
  publication-title: Br. J. Psychol.
– year: 2019
  ident: b76
  article-title: Is image memorability prediction solved?
– year: 2015
  ident: b99
  article-title: Transferring rich feature hierarchies for robust visual tracking
– start-page: 241
  year: 2016
  end-page: 257
  ident: b34
  article-title: Deep image retrieval: Learning global representations for image search
  publication-title: European Conference on Computer Vision
– volume: 48
  start-page: 83
  year: 1941
  ident: b26
  article-title: The empirical determination of an aesthetic formula
  publication-title: Psychol. Rev.
– year: 2015
  ident: b11
  article-title: Super-resolution with deep convolutional sufficient statistics
– volume: 116
  start-page: 165
  year: 2015
  end-page: 178
  ident: b12
  article-title: Intrinsic and extrinsic effects on image memorability
  publication-title: Vis. Res.
– reference: .
– reference: Da Silva, M.P., Courboulay, V., Estraillier, P., 2011. Image complexity measure based on visual attention. In: Proceedings of the 18th IEEE International Conference on Image Processing (ICIP), pp. 3281–3284.
– year: 2016
  ident: b43
  article-title: What makes imagenet good for transfer learning?
– reference: Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L., 2016. Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4545–4554.
– reference: Khosla, A., Xiao, J., Torralba, A., Oliva, A., 2012. Memorability of image regions. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 296–304.
– volume: 19
  start-page: 177
  year: 2001
  end-page: 190
  ident: b50
  article-title: Aesthetics electrified: An analysis of descriptive symmetry and evaluative aesthetic judgment processes using event-related brain potentials
  publication-title: Empir. Stud. Arts
– volume: 106
  start-page: 269
  year: 1977
  end-page: 301
  ident: b18
  article-title: Complexity and structure in visual patterns
  publication-title: J. Exp. Psychol. [Gen.]
– reference: Ramanarayanan, G., Bala, K., Ferwerda, J.A., Walter, B., 2008a. Dimensionality of visual complexity in computer graphics scenes. In: Proceedings of Human Vision and Electronic Imaging XIII Conference, p. 68060E.
– ident: 10.1016/j.cviu.2020.102949_b95
  doi: 10.1109/ICCV.2015.463
– ident: 10.1016/j.cviu.2020.102949_b42
  doi: 10.1109/CVPR.2017.243
– volume: 22
  start-page: 519
  year: 2016
  ident: 10.1016/j.cviu.2020.102949_b8
  article-title: Beyond memorability: Visualization recognition and recall
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2015.2467732
– volume: 2017
  start-page: 42
  year: 2017
  ident: 10.1016/j.cviu.2020.102949_b1
  article-title: Image quality assessment by comparing cnn features between images
  publication-title: Electron. Imaging
  doi: 10.2352/ISSN.2470-1173.2017.12.IQSP-225
– volume: 106
  start-page: 269
  year: 1977
  ident: 10.1016/j.cviu.2020.102949_b18
  article-title: Complexity and structure in visual patterns
  publication-title: J. Exp. Psychol. [Gen.]
  doi: 10.1037/0096-3445.106.3.269
– ident: 10.1016/j.cviu.2020.102949_b59
– volume: 48
  start-page: 83
  year: 1941
  ident: 10.1016/j.cviu.2020.102949_b26
  article-title: The empirical determination of an aesthetic formula
  publication-title: Psychol. Rev.
  doi: 10.1037/h0062483
– ident: 10.1016/j.cviu.2020.102949_b47
  doi: 10.21236/ADA554133
– volume: 6
  start-page: 174
  year: 1980
  ident: 10.1016/j.cviu.2020.102949_b90
  article-title: A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity
  publication-title: J. Exp. Psychol.: Hum. Learn. Memory
– ident: 10.1016/j.cviu.2020.102949_b104
– volume: 121
  start-page: 149
  year: 2017
  ident: 10.1016/j.cviu.2020.102949_b75
  article-title: Convolutional patch representations for image retrieval: an unsupervised approach
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-016-0924-3
– ident: 10.1016/j.cviu.2020.102949_b54
  doi: 10.1109/ICCV.2015.275
– ident: 10.1016/j.cviu.2020.102949_b45
– ident: 10.1016/j.cviu.2020.102949_b106
  doi: 10.1109/CVPR.2016.618
– volume: 25
  start-page: 299
  year: 1999
  ident: 10.1016/j.cviu.2020.102949_b40
  article-title: Similarity and features of natural textures
  publication-title: J. Exp. Psychol.: Hum. Percept. Perform.
– ident: 10.1016/j.cviu.2020.102949_b101
  doi: 10.1007/978-3-319-46604-0_57
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.cviu.2020.102949_b98
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 34
  start-page: 195
  year: 2017
  ident: 10.1016/j.cviu.2020.102949_b91
  article-title: The impact of perceived visual complexity of mobile online shops on user’s satisfaction
  publication-title: Psychol. Mark.
  doi: 10.1002/mar.20983
– start-page: 2049
  year: 2013
  ident: 10.1016/j.cviu.2020.102949_b82
  article-title: Predicting users’ first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness
– volume: 39
  start-page: 324
  year: 1952
  ident: 10.1016/j.cviu.2020.102949_b10
  article-title: Rank analysis of incomplete block designs: I. the method of paired comparisons
  publication-title: Biometrika
– ident: 10.1016/j.cviu.2020.102949_b39
  doi: 10.1109/CVPR.2016.90
– volume: 80
  start-page: 67
  year: 2004
  ident: 10.1016/j.cviu.2020.102949_b38
  article-title: It’s all at the mall: exploring adolescent girls’ experiences
  publication-title: J. Retail.
  doi: 10.1016/j.jretai.2004.01.005
– year: 2006
  ident: 10.1016/j.cviu.2020.102949_b37
– ident: 10.1016/j.cviu.2020.102949_b56
  doi: 10.1109/CVPR.2017.533
– volume: 116
  start-page: 165
  year: 2015
  ident: 10.1016/j.cviu.2020.102949_b12
  article-title: Intrinsic and extrinsic effects on image memorability
  publication-title: Vis. Res.
  doi: 10.1016/j.visres.2015.03.005
– volume: 14
  year: 2014
  ident: 10.1016/j.cviu.2020.102949_b74
  article-title: Examining visual complexity and its influence on perceived duration
  publication-title: J. Vis.
  doi: 10.1167/14.14.3
– year: 2019
  ident: 10.1016/j.cviu.2020.102949_b76
– ident: 10.1016/j.cviu.2020.102949_b80
  doi: 10.1117/12.767029
– ident: 10.1016/j.cviu.2020.102949_b73
– volume: 3
  start-page: 489
  year: 2018
  ident: 10.1016/j.cviu.2020.102949_b78
  article-title: Effect of visual advertising complexity on consumers? attention
  publication-title: Economics
– year: 2016
  ident: 10.1016/j.cviu.2020.102949_b84
– start-page: 241
  year: 2016
  ident: 10.1016/j.cviu.2020.102949_b34
  article-title: Deep image retrieval: Learning global representations for image search
– start-page: 1
  year: 2011
  ident: 10.1016/j.cviu.2020.102949_b36
  article-title: A modified psnr metric based on hvs for quality assessment of color images
– year: 2014
  ident: 10.1016/j.cviu.2020.102949_b49
– volume: 160
  start-page: 43
  year: 2015
  ident: 10.1016/j.cviu.2020.102949_b66
  article-title: Computerized measures of visual complexity
  publication-title: Acta Psychol.
  doi: 10.1016/j.actpsy.2015.06.005
– volume: 19
  start-page: 2306
  year: 2013
  ident: 10.1016/j.cviu.2020.102949_b9
  article-title: What makes a visualization memorable?
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2013.234
– year: 2015
  ident: 10.1016/j.cviu.2020.102949_b11
– volume: 45
  start-page: 238
  year: 2018
  ident: 10.1016/j.cviu.2020.102949_b86
  article-title: Measured and perceived visual complexity: A comparative study among three online map providers
  publication-title: Cartogr. Geogr. Inf. Sci.
  doi: 10.1080/15230406.2017.1323676
– volume: 257
  start-page: 104
  year: 2017
  ident: 10.1016/j.cviu.2020.102949_b29
  article-title: Deepsim: Deep similarity for image quality assessment
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.054
– volume: 63
  start-page: 81
  year: 1956
  ident: 10.1016/j.cviu.2020.102949_b69
  article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information
  publication-title: Psychol. Rev.
  doi: 10.1037/h0043158
– ident: 10.1016/j.cviu.2020.102949_b70
  doi: 10.1145/2598153.2598173
– ident: 10.1016/j.cviu.2020.102949_b24
  doi: 10.1109/ICIP.2011.6116371
– volume: 35
  start-page: 148:1
  year: 2016
  ident: 10.1016/j.cviu.2020.102949_b16
  article-title: Automatic triage for a photo series
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2897824.2925908
– ident: 10.1016/j.cviu.2020.102949_b60
  doi: 10.1109/CVPR.2017.19
– ident: 10.1016/j.cviu.2020.102949_b27
  doi: 10.1145/3119881.3119883
– volume: 31
  start-page: 324
  year: 1940
  ident: 10.1016/j.cviu.2020.102949_b52
  article-title: On the method of paired comparisons
  publication-title: Biometrika
  doi: 10.1093/biomet/31.3-4.324
– ident: 10.1016/j.cviu.2020.102949_b97
  doi: 10.1109/ICCVW.2015.134
– ident: 10.1016/j.cviu.2020.102949_b25
– volume: 124
  start-page: 237
  year: 2017
  ident: 10.1016/j.cviu.2020.102949_b33
  article-title: End-to-end learning of deep visual representations for image retrieval
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-017-1016-8
– ident: 10.1016/j.cviu.2020.102949_b48
  doi: 10.1109/CVPR.2011.5995721
– ident: 10.1016/j.cviu.2020.102949_b79
  doi: 10.1117/12.767029
– start-page: 694
  year: 2016
  ident: 10.1016/j.cviu.2020.102949_b51
  article-title: Perceptual losses for real-time style transfer and super-resolution
– volume: 28
  start-page: 173
  year: 2010
  ident: 10.1016/j.cviu.2020.102949_b71
  article-title: Visual complexity and beauty appreciation: Explaining the divergence of results
  publication-title: Empir. Stud. Arts
  doi: 10.2190/EM.28.2.d
– year: 2013
  ident: 10.1016/j.cviu.2020.102949_b88
– ident: 10.1016/j.cviu.2020.102949_b67
– year: 2014
  ident: 10.1016/j.cviu.2020.102949_b89
– ident: 10.1016/j.cviu.2020.102949_b64
  doi: 10.1109/CVPR.2016.80
– volume: 5
  start-page: 365
  year: 1979
  ident: 10.1016/j.cviu.2020.102949_b19
  article-title: Influence of six types of visual structure on complexity judgments in children and aults
  publication-title: J. Exp. Psychol.: Hum. Percept. Perform.
– ident: 10.1016/j.cviu.2020.102949_b53
  doi: 10.1109/ICCV.2013.397
– start-page: 57
  year: 2017
  ident: 10.1016/j.cviu.2020.102949_b13
  article-title: Learning visual importance for graphic designs and data visualizations
– volume: 159
  start-page: 110
  year: 2018
  ident: 10.1016/j.cviu.2020.102949_b35
  article-title: Assessment model for perceived visual complexity of painting images
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.06.006
– year: 2015
  ident: 10.1016/j.cviu.2020.102949_b99
– ident: 10.1016/j.cviu.2020.102949_b55
– ident: 10.1016/j.cviu.2020.102949_b100
– volume: 142
  start-page: 1323
  year: 2013
  ident: 10.1016/j.cviu.2020.102949_b4
  article-title: The intrinsic memorability of face photographs
  publication-title: J. Exp. Psychol. [Gen.]
  doi: 10.1037/a0033872
– volume: 30
  start-page: 86
  year: 2014
  ident: 10.1016/j.cviu.2020.102949_b23
  article-title: No reference image quality classification for jpeg-distorted images
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2014.04.003
– volume: 4
  start-page: 361
  year: 2013
  ident: 10.1016/j.cviu.2020.102949_b30
  article-title: The small step toward asymmetry: aesthetic judgment of broken symmetries
  publication-title: i-Perception
  doi: 10.1068/i0588sas
– year: 2017
  ident: 10.1016/j.cviu.2020.102949_b41
– volume: 9
  start-page: 717
  year: 2009
  ident: 10.1016/j.cviu.2020.102949_b14
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– volume: 163
  start-page: 38
  year: 2016
  ident: 10.1016/j.cviu.2020.102949_b68
  article-title: Effects of presentation duration on measures of complexity in affective environmental scenes and representational paintings
  publication-title: Acta Psychol.
  doi: 10.1016/j.actpsy.2015.10.002
– volume: 64
  start-page: 670
  year: 2006
  ident: 10.1016/j.cviu.2020.102949_b5
  article-title: Computational modeling and experimental investigation of effects of compositional elements on interface and design aesthetics
  publication-title: Int. J. Hum.-Comput. Stud.
  doi: 10.1016/j.ijhcs.2006.01.002
– ident: 10.1016/j.cviu.2020.102949_b17
  doi: 10.1109/CVPR.2016.492
– year: 2015
  ident: 10.1016/j.cviu.2020.102949_b61
– year: 2016
  ident: 10.1016/j.cviu.2020.102949_b43
– start-page: 1100
  year: 2017
  ident: 10.1016/j.cviu.2020.102949_b44
  article-title: Automatic understanding of image and video advertisements
– ident: 10.1016/j.cviu.2020.102949_b102
  doi: 10.1109/CVPR.2010.5539970
– volume: 74
  start-page: 48
  year: 2010
  ident: 10.1016/j.cviu.2020.102949_b77
  article-title: The stopping power of advertising: Measures and effects of visual complexity
  publication-title: J. Market.
  doi: 10.1509/jmkg.74.5.048
– year: 2019
  ident: 10.1016/j.cviu.2020.102949_b85
  article-title: BUOCA: budget-optimized crowd worker allocation
  publication-title: Comput. Res. Repos.
– year: 2015
  ident: 10.1016/j.cviu.2020.102949_b72
– ident: 10.1016/j.cviu.2020.102949_b96
– year: 1933
  ident: 10.1016/j.cviu.2020.102949_b7
– ident: 10.1016/j.cviu.2020.102949_b94
  doi: 10.1109/CVPR.2017.577
– ident: 10.1016/j.cviu.2020.102949_b103
  doi: 10.1109/CVPR.2016.234
– volume: 12
  year: 2017
  ident: 10.1016/j.cviu.2020.102949_b31
  article-title: Predicting perceived visual complexity of abstract patterns using computational measures: The influence of mirror symmetry on complexity perception
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0185276
– ident: 10.1016/j.cviu.2020.102949_b63
– ident: 10.1016/j.cviu.2020.102949_b46
  doi: 10.1109/CVPR.2016.237
– volume: 22
  start-page: 195
  year: 2009
  ident: 10.1016/j.cviu.2020.102949_b15
  article-title: Attentional vs computational complexity measures in observing paintings
  publication-title: Spatial Vis.
  doi: 10.1163/156856809788313138
– volume: 4
  start-page: 251
  year: 2016
  ident: 10.1016/j.cviu.2020.102949_b81
  article-title: Visual instance retrieval with deep convolutional networks
  publication-title: ITE Transa. Media Technol. Appl.
  doi: 10.3169/mta.4.251
– volume: 102
  start-page: 49
  year: 2011
  ident: 10.1016/j.cviu.2020.102949_b28
  article-title: Predicting beauty: fractal dimension and visual complexity in art
  publication-title: Br. J. Psychol.
  doi: 10.1348/000712610X498958
– volume: 11
  year: 2016
  ident: 10.1016/j.cviu.2020.102949_b22
  article-title: Predicting complexity perception of real world images
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157986
– year: 2019
  ident: 10.1016/j.cviu.2020.102949_b93
– ident: 10.1016/j.cviu.2020.102949_b32
  doi: 10.1145/2020408.2020425
– ident: 10.1016/j.cviu.2020.102949_b105
  doi: 10.1109/CVPR.2018.00068
– ident: 10.1016/j.cviu.2020.102949_b57
  doi: 10.1109/CVPR.2017.213
– ident: 10.1016/j.cviu.2020.102949_b92
  doi: 10.1609/aaai.v31i1.11231
– volume: 7
  issue: 17
  year: 2007
  ident: 10.1016/j.cviu.2020.102949_b83
  article-title: Measuring visual clutter
  publication-title: J. Vis.
– volume: 15
  start-page: 3440
  year: 2006
  ident: 10.1016/j.cviu.2020.102949_b87
  article-title: A statistical evaluation of recent full reference image quality assessment algorithms
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881959
– volume: 118
  start-page: 65
  year: 2016
  ident: 10.1016/j.cviu.2020.102949_b20
  article-title: Deep filter banks for texture recognition, description, and segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0872-3
– ident: 10.1016/j.cviu.2020.102949_b65
  doi: 10.1109/CVPR.2015.7299107
– volume: 21
  issue: 104
  year: 2008
  ident: 10.1016/j.cviu.2020.102949_b58
  article-title: Perceived versus actual complexity for websites: Their relationship to consumer satisfaction
  publication-title: J. Consum. Satisf. Dissatisfaction Complain. Behav.
– year: 1971
  ident: 10.1016/j.cviu.2020.102949_b6
– year: 2017
  ident: 10.1016/j.cviu.2020.102949_b107
  article-title: Places: A 10 million image database for scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 58
  start-page: 328
  year: 1950
  ident: 10.1016/j.cviu.2020.102949_b2
  article-title: A difficulty in the concept of social welfare
  publication-title: J. Polit. Econ.
  doi: 10.1086/256963
– volume: 19
  start-page: 177
  year: 2001
  ident: 10.1016/j.cviu.2020.102949_b50
  article-title: Aesthetics electrified: An analysis of descriptive symmetry and evaluative aesthetic judgment processes using event-related brain potentials
  publication-title: Empir. Stud. Arts
  doi: 10.2190/P7W1-5F1F-NJK9-X05B
– ident: 10.1016/j.cviu.2020.102949_b3
– volume: 24
  start-page: 603
  year: 2002
  ident: 10.1016/j.cviu.2020.102949_b21
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.1000236
– start-page: 740
  year: 2014
  ident: 10.1016/j.cviu.2020.102949_b62
  article-title: Microsoft COCO: Common objects in COntext
SSID ssj0011491
Score 2.46979
Snippet In this paper, we focus on visual complexity, an image attribute that humans can subjectively evaluate based on the level of details in the image. We explore...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102949
SubjectTerms Activation energy
Convolutional layers
Convolutional neural network
Deep neural network
Feature extraction
Memorability
Object classification
Scene classification
Visual complexity
Title Visual complexity analysis using deep intermediate-layer features
URI https://dx.doi.org/10.1016/j.cviu.2020.102949
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssDARwFRPqoMbCg0iZM4GauKqoDoAkXdIts5o6CqVG2KmPjtnB2nKhLqwBjHtqLL-fwueX5HyHUUCyFSHrsMGCYoikpXIPJ1Y5VHKgnyWBrZxadRPByHD5No0iD9-iyMplXa2F_FdBOtbUvXWrM7L4ruMyYujOpPGOinHqVa8TMMmfby2-81zQPhvqmapzu7urc9OFNxvORnscIcMTAKBqnW0_xrc9rYcAaHZN8iRadXPcwRacCsRQ4sanTsmlxiU12YoW5rkb0NlcFj0nstliucybDH4Qtht8OtFImjae9vTg4wd7RwxMIcJCnBnXKE4o4CI_u5PCHjwd1Lf-jaygmuDH2vdJXPgCYikH7KOOAiTiTuVkyJKIxzJaUKaAhUMCrClAfgexyzLsQiKuV420vpKWnOPmZwRhxgPOT65x9oNbQ04ZKDiAAnzyMmlGoTvzZZJq2suK5uMc1q_th7ps2caTNnlZnb5GY9Zl6JamztHdVvIvvlGhlG_S3jzv857oLs6quKD3ZJmuViBVeIPErRMa7VITu9-8fh6Af97tin
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VdgAGvhHfZGBDUZs4iZOxqkAtLV1oUbfIds6oqCoVTRE_n3PiVCAhBlY7Z0Vn-_zOfn4GuAkjKWUiIpcjpwRFM-VKQr5upLNQx34WqUJ28XEYdcfBwySc1KBT3YUxtEob-8uYXkRrW9K03mwuptPmEyUunJktDBqnLcbYBjSMOlVYh0a71-8O14cJlAR4JfXQbMkFvr07U9K81Md0RWmiX4gYJEZS87f16duac78HOxYsOu3yf_ahhvMD2LXA0bHTcklF1dsMVdkBbH8TGjyE9vN0uaKWCgI5fhLydoRVI3EM8_3FyRAXjtGOeC_ukuTozgShcUdjofy5PILx_d2o03Xt4wmuCrxW7mqPI4ulr7yEC6R5HCtasLiWYRBlWintswCZ5EwGifDRawlKvAiO6ERQdSthx1Cfv83xBBzkIhDm_A-NIFoSCyVQhkiNZyGXWp-CV7ksVVZZ3DxwMUsrCtlratycGjenpZtP4XZtsyh1Nf78Oqx6Iv0xOlIK_H_Ynf3T7ho2u6PHQTroDfvnsGVqSnrYBdTz9xVeEhDJ5ZUdaF93EttY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+complexity+analysis+using+deep+intermediate-layer+features&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Saraee%2C+Elham&rft.au=Jalal%2C+Mona&rft.au=Betke%2C+Margrit&rft.date=2020-06-01&rft.issn=1077-3142&rft.volume=195&rft.spage=102949&rft_id=info:doi/10.1016%2Fj.cviu.2020.102949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2020_102949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon