House price forecasting with neural networks
•We develop neural network models for house price forecasting in China.•We explore the forecasting issue for 100 major Chinese cities.•We construct simple, accurate, and stable models.•The models are useful as technical tools and for policy analysis. The house market has been rapidly growing for the...
Saved in:
Published in | Intelligent systems with applications Vol. 12; p. 200052 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We develop neural network models for house price forecasting in China.•We explore the forecasting issue for 100 major Chinese cities.•We construct simple, accurate, and stable models.•The models are useful as technical tools and for policy analysis.
The house market has been rapidly growing for the past decade in China, making price forecasting an important issue to the people and policy makers. We approach this problem by exploring neural networks for forecasting of house prices from one hundred major cities for the period of June 2010–May 2019, serving as the first study with such wide coverage for the emerging Chinese market through a machine learning technique. We aim at constructing simple and accurate neural networks as a contribution to pure technical forecasting of house prices. To facilitate the analysis, we investigate different model settings over the algorithm (the Levenberg-Marquardt, scaled conjugate gradient, and Bayesian regularization), delay (from two to six), hidden neuron (two, three, five, and eight), and data spitting ratio (70%–15%–15%, 60%–20%–20%, and 80%–10%–10% for trainingvalidationtesting), and arrive at a rather simple neural network with only four delays and three hidden neurons that leads to stable performance of 1% average relative root mean square error across the one hundred cities for the training, validation, and testing phases. We demonstrate the usefulness of the machine learning approach to the house price forecasting problem in the Chinese market. Our results could be used on a standalone basis or combined with fundamental forecasting in forming perspectives of house price trends and conducting policy analysis. Our empirical framework should not be difficult to deploy, which is an important consideration to many decision makers, and has potential to be generalized for house price forecasting of other cities in China. |
---|---|
AbstractList | The house market has been rapidly growing for the past decade in China, making price forecasting an important issue to the people and policy makers. We approach this problem by exploring neural networks for forecasting of house prices from one hundred major cities for the period of June 2010–May 2019, serving as the first study with such wide coverage for the emerging Chinese market through a machine learning technique. We aim at constructing simple and accurate neural networks as a contribution to pure technical forecasting of house prices. To facilitate the analysis, we investigate different model settings over the algorithm (the Levenberg-Marquardt, scaled conjugate gradient, and Bayesian regularization), delay (from two to six), hidden neuron (two, three, five, and eight), and data spitting ratio (70%–15%–15%, 60%–20%–20%, and 80%–10%–10% for trainingvalidationtesting), and arrive at a rather simple neural network with only four delays and three hidden neurons that leads to stable performance of 1% average relative root mean square error across the one hundred cities for the training, validation, and testing phases. We demonstrate the usefulness of the machine learning approach to the house price forecasting problem in the Chinese market. Our results could be used on a standalone basis or combined with fundamental forecasting in forming perspectives of house price trends and conducting policy analysis. Our empirical framework should not be difficult to deploy, which is an important consideration to many decision makers, and has potential to be generalized for house price forecasting of other cities in China. •We develop neural network models for house price forecasting in China.•We explore the forecasting issue for 100 major Chinese cities.•We construct simple, accurate, and stable models.•The models are useful as technical tools and for policy analysis. The house market has been rapidly growing for the past decade in China, making price forecasting an important issue to the people and policy makers. We approach this problem by exploring neural networks for forecasting of house prices from one hundred major cities for the period of June 2010–May 2019, serving as the first study with such wide coverage for the emerging Chinese market through a machine learning technique. We aim at constructing simple and accurate neural networks as a contribution to pure technical forecasting of house prices. To facilitate the analysis, we investigate different model settings over the algorithm (the Levenberg-Marquardt, scaled conjugate gradient, and Bayesian regularization), delay (from two to six), hidden neuron (two, three, five, and eight), and data spitting ratio (70%–15%–15%, 60%–20%–20%, and 80%–10%–10% for trainingvalidationtesting), and arrive at a rather simple neural network with only four delays and three hidden neurons that leads to stable performance of 1% average relative root mean square error across the one hundred cities for the training, validation, and testing phases. We demonstrate the usefulness of the machine learning approach to the house price forecasting problem in the Chinese market. Our results could be used on a standalone basis or combined with fundamental forecasting in forming perspectives of house price trends and conducting policy analysis. Our empirical framework should not be difficult to deploy, which is an important consideration to many decision makers, and has potential to be generalized for house price forecasting of other cities in China. |
ArticleNumber | 200052 |
Author | Xu, Xiaojie Zhang, Yun |
Author_xml | – sequence: 1 givenname: Xiaojie surname: Xu fullname: Xu, Xiaojie email: xxu6@ncsu.edu – sequence: 2 givenname: Yun surname: Zhang fullname: Zhang, Yun email: yzhang43@ncsu.edu |
BookMark | eNp9kMFKAzEQhoNUsNa-gKc-gK1JNpvughcpagsFL3oOs7OTmlo3kqQW397UioiHXmaGMN_P5Dtnvc53xNil4BPBhb5eT1zcwURyKXLhvJQnrC-1no4LXha9P_MZG8a4ziuyEqJQqs-u5n4bafQeHNLI-kAIMbluNdq59DLqaBtgk1va-fAaL9iphU2k4U8fsOf7u6fZfLx8fFjMbpdjVIKnMZEtNMmauKpRywaKRkjEWpNFEErWKCxvoMFC5C0FtmprCTRVhVVNLctiwBaH3NbD2uTb3iB8Gg_OfD_4sDIQksMNGV4qbGTVas4bZZWGSrVaIIlaCoRW5ix5yMLgYwxkf_MEN3t9Zm32-sxenznoy1D1D0KXIDnfpQBucxy9OaCUBX04Ciaiow6pdVluyj9wx_AvzFaMqA |
CitedBy_id | crossref_primary_10_1142_S1752890924500235 crossref_primary_10_1007_s42824_024_00156_3 crossref_primary_10_1016_j_iswa_2022_200084 crossref_primary_10_1108_ECON_05_2022_0026 crossref_primary_10_1007_s42044_024_00206_8 crossref_primary_10_1007_s13198_024_02521_6 crossref_primary_10_1080_09599916_2022_2070525 crossref_primary_10_1108_IJHMA_07_2022_0098 crossref_primary_10_1007_s42824_024_00123_y crossref_primary_10_1108_AJEB_05_2022_0051 crossref_primary_10_1142_S2810943024500112 crossref_primary_10_1007_s00521_022_07309_y crossref_primary_10_1016_j_nexus_2023_100210 crossref_primary_10_1007_s00181_021_02190_5 crossref_primary_10_2478_remav_2024_0032 crossref_primary_10_1016_j_meaene_2024_100001 crossref_primary_10_1016_j_eswa_2023_121396 crossref_primary_10_1108_AJEB_01_2024_0007 crossref_primary_10_1016_j_ins_2025_121914 crossref_primary_10_1007_s10287_023_00491_x crossref_primary_10_51290_dpusbe_1249461 crossref_primary_10_1007_s43674_023_00054_2 crossref_primary_10_1108_JFMPC_03_2024_0019 crossref_primary_10_2478_remav_2023_0018 crossref_primary_10_1515_jafio_2022_0009 crossref_primary_10_1080_03610918_2024_2330700 crossref_primary_10_1007_s10614_024_10738_7 crossref_primary_10_1016_j_engappai_2023_107670 crossref_primary_10_1007_s00521_024_09531_2 crossref_primary_10_1007_s00521_024_10726_w crossref_primary_10_1007_s11408_022_00421_y crossref_primary_10_1080_10835547_2022_2110668 crossref_primary_10_1007_s13198_024_02643_x crossref_primary_10_1108_PM_11_2022_0086 crossref_primary_10_1108_IJHMA_03_2022_0039 crossref_primary_10_1007_s13563_024_00457_8 crossref_primary_10_1080_09599916_2022_2114926 crossref_primary_10_1016_j_apgeog_2024_103483 crossref_primary_10_1016_j_iswa_2022_200061 crossref_primary_10_1080_17421772_2024_2418906 crossref_primary_10_1142_S2737599425500021 crossref_primary_10_1080_09599916_2021_1996446 crossref_primary_10_1142_S2737599424500130 crossref_primary_10_1007_s13198_024_02480_y crossref_primary_10_1007_s12206_023_0140_3 crossref_primary_10_1007_s13563_024_00483_6 crossref_primary_10_1108_JES_06_2021_0316 crossref_primary_10_1007_s13563_022_00311_9 crossref_primary_10_1007_s43674_024_00075_5 crossref_primary_10_1017_nie_2021_34 crossref_primary_10_1108_JFMPC_08_2022_0041 crossref_primary_10_1108_IJHMA_09_2022_0134 crossref_primary_10_1108_JM2_09_2023_0207 crossref_primary_10_1142_S2811034X24500060 crossref_primary_10_1108_JM2_08_2023_0171 crossref_primary_10_1007_s13563_022_00357_9 crossref_primary_10_3390_ijfs13010028 crossref_primary_10_1002_sd_3037 crossref_primary_10_48264_VVSIEV_20243510 crossref_primary_10_1108_JM2_12_2023_0315 crossref_primary_10_1007_s00521_024_10270_7 crossref_primary_10_1007_s43674_022_00045_9 crossref_primary_10_1080_03019233_2023_2218243 crossref_primary_10_1108_FS_01_2023_0016 crossref_primary_10_1007_s13563_023_00380_4 crossref_primary_10_1007_s13563_024_00472_9 |
Cites_doi | 10.1016/j.jhe.2007.04.001 10.1090/qam/10666 10.1002/ajae.12041 10.3846/1648715X.2016.1259190 10.1080/10835547.2009.12091245 10.9734/ajeba/2021/v21i130345 10.1155/2021/5392170 10.1007/s11146-015-9518-z 10.1080/14445921.2016.1225149 10.3390/mca21020020 10.1007/s00181-016-1094-4 10.1080/14445921.2018.1436306 10.1515/jafio-2017-0018 10.1017/nie.2021.34 10.3390/app10175832 10.1080/02664763.2016.1259399 10.1016/j.eswa.2014.11.040 10.1061/(ASCE)CO.1943-7862.0001047 10.1093/erae/jby036 10.3390/su10041298 10.1080/09599916.2020.1832558 10.3390/su12072899 10.1007/s11408-019-00330-7 10.1111/saje.12047 10.1016/j.econmod.2014.10.050 10.1002/for.3980020306 10.19139/soic.v7i1.435 10.1016/j.econmod.2016.12.002 10.1007/s00181-017-1245-2 10.1016/j.seps.2020.100916 10.1016/j.ijforecast.2013.12.010 10.1002/for.2385 10.1080/09599916.2017.1286366 10.1108/JES-06-2021-0316 10.1016/j.neucom.2011.02.008 10.1007/s00500-018-03739-w 10.1371/journal.pone.0244953 10.1515/jafio-2016-0006 10.1016/j.mlwa.2021.100035 10.1016/j.energy.2020.118750 10.1080/10835547.2001.12091068 10.1016/j.ejor.2009.01.009 10.14257/ijunesst.2015.8.7.11 10.7172/2449-6634.jmcbem.2017.1.1 10.1016/j.eswa.2021.114590 10.1016/S0893-6080(05)80056-5 10.1016/j.ijleo.2013.09.017 10.1162/neco.1992.4.3.415 10.1016/j.eswa.2008.01.044 10.1016/j.eneco.2009.08.001 10.1007/s10614-020-09973-5 10.1007/s11408-017-0299-7 10.1007/s00181-017-1322-6 10.1080/02664763.2017.1423044 10.22452/mjcs.vol29no1.2 10.1155/2018/1472957 10.4314/afrrev.v5i5.13 10.1504/IJBIDM.2013.059263 10.1080/09599910902837051 10.1109/72.329697 10.1016/j.mlwa.2021.100140 10.1137/0111030 10.1016/j.chaos.2019.07.011 10.1186/s40854-019-0131-7 10.1016/S1007-0214(08)70169-X 10.1002/for.2678 10.1016/j.eswa.2010.08.123 10.1080/10835547.2011.12091317 10.1016/j.asoc.2020.106996 10.1016/j.regsciurbeco.2017.10.016 10.1016/j.trpro.2014.10.067 10.1016/j.compag.2021.106120 10.1016/j.jbankfin.2007.05.009 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.iswa.2021.200052 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2667-3053 |
ExternalDocumentID | oai_doaj_org_article_054cb28d600b4f46a84d61ce1921cad2 10_1016_j_iswa_2021_200052 S2667305321000417 |
GroupedDBID | 6I. AAFTH AAXUO ALMA_UNASSIGNED_HOLDINGS AMRAJ FDB GROUPED_DOAJ M41 M~E ROL 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-eef36e29e049c62ba3b12cc96efca1429c1f0babc31e294af8d92ae743f4b9253 |
IEDL.DBID | DOA |
ISSN | 2667-3053 |
IngestDate | Wed Aug 27 01:19:25 EDT 2025 Thu Apr 24 22:52:08 EDT 2025 Tue Jul 01 02:05:38 EDT 2025 Tue Jul 25 20:57:56 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | House price Forecasting Neural network |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-eef36e29e049c62ba3b12cc96efca1429c1f0babc31e294af8d92ae743f4b9253 |
OpenAccessLink | https://doaj.org/article/054cb28d600b4f46a84d61ce1921cad2 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_054cb28d600b4f46a84d61ce1921cad2 crossref_primary_10_1016_j_iswa_2021_200052 crossref_citationtrail_10_1016_j_iswa_2021_200052 elsevier_sciencedirect_doi_10_1016_j_iswa_2021_200052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Intelligent systems with applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Xu, Li (bib0085) 2021; 57 Xin, Runeson (bib0084) 2004; 7 Ćetković, Lakić, Lazarevska, Žarković, Vujošević, Cvijović, Gogić (bib0010) 2018; 2018 Kitapci, Tosun, Tuna, Turk (bib0037) 2017 Piao, Chen, Shang (bib0062) 2019 Brandt, Bessler (bib0008) 1983; 2 Li, Fong, Chong (bib0044) 2017; 23 Park, Bae (bib0060) 2015; 42 Taffese (bib0073) 2007 Plakandaras, Gupta, Gogas, Papadimitriou (bib0063) 2015; 45 Xu (bib0089) 2015; 35 Xiaolong, Ming (bib0083) 2010; 2 Karasu, Altan, Saraç, Hacioğlu (bib0031) 2017 Wegener, von Spreckelsen, Basse, von Mettenheim (bib0079) 2016; 35 Terregrossa, Ibadi (bib0074) 2021 Xu, Zhang (bib0106) 2021; 6 Xu (bib0093) 2018; 45 Xu (bib0094) 2018; 55 Li, Xu, Zhao, Chen (bib0042) 2009; 2 Karasu, Altan, Saraç, Hacioğlu (bib0029) 2017; 4 Xu (bib0097) 2018; 16 Ma, Chen, Zhang (bib0050) 2015; 8 Xu (bib0090) 2017; 52 Nghiep, Al (bib0057) 2001; 22 Pai, Wang (bib0058) 2020; 10 Hyvärinen, Zhang, Shimizu, Hoyer (bib0024) 2010; 11 Selvamuthu, Kumar, Mishra (bib0069) 2019; 5 . Igbinosa (bib0025) 2011; 5 Abidoye, Chan (bib0001) 2017; 34 Shimizu, Hoyer, Hyvärinen, Kerminen, Jordan (bib0071) 2006; 7 Gu, Zhu, Jiang (bib0019) 2011; 38 Chiarazzo, Caggiani, Marinelli, Ottomanelli (bib0012) 2014; 3 Embaye, Zereyesus, Chen (bib0014) 2021; 16 Ge, Wang, Xie, Liu, Zhou (bib0018) 2019 Doan, Liong (bib0013) 2004 Liu, Liu (bib0049) 2019; 23 Milunovich (bib0053) 2020; 39 Altan, Karasu, Bekiros (bib0004) 2019; 126 Selim (bib0068) 2009; 36 Wang, Wen, Zhang, Wang (bib0077) 2014; 125 Wang, Yang (bib0076) 2010; 32 Wang, Chan, Wang, Chang (bib0075) 2016 Xu (bib0096) 2018; 16 Wilson, Paris, Ware, Jenkins (bib0081) 2002 Foresee, Hagan (bib0015) 1997; 3 Paluszek, Thomas (bib0059) 2020 Kouwenberg, Zwinkels (bib0038) 2014; 30 Xu, X., & Zhang, Y. (2021e). Second-hand house price index forecasting with neural networks,. Kawahara, Shimizu, Washio (bib0032) 2011; 74 Karasu, Altan (bib0027) 2019 Kim, Leatham, Bessler (bib0036) 2007; 16 Karasu, Altan, Saraç, Hacioğlu (bib0030) 2017; 2 Rico-Juan, de La Paz (bib0066) 2021; 171 Baghirli, O. (2015). Comparison of Lavenberg-Marquardt, scaled conjugate gradient and Bayesian regularization backpropagation algorithms for multistep ahead wind speed forecasting using multilayer perceptron feedforward neural network. Lim, Wang, Wang, Chang (bib0046) 2016 Kayri (bib0033) 2016; 21 Ho, Tang, Wong (bib0022) 2021; 38 Marquardt (bib0052) 1963; 11 Xu (bib0087) 2014 Wei, Cao (bib0080) 2017; 61 Xu (bib0095) 2018; 54 Karasu, Altan, Bekiros, Ahmad (bib0028) 2020; 212 Limsombunchai (bib0047) 2004 Yasnitsky, Yasnitsky, Alekseev (bib0113) 2021; 2021 Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2016). Simple and scalable predictive uncertainty estimation using deep ensembles. Zohrabyan, Leatham, Bessler (bib0115) 2008 Yang, Su, Kolari (bib0111) 2008; 32 Gal, Ghahramani (bib0017) 2016 Xu (bib0099) 2019; 39 Rahman, Maimun, Razali, Ismail (bib0065) 2019; 17 Chen, Ong, Zheng, Hsu (bib0011) 2017; 21 Huang (bib0023) 2019; 7 Lam, Yu, Lam (bib0040) 2008; 25 Fu (bib0016) 2018 Xu (bib0086) 2014 Yang, Cabrera, Wang (bib0110) 2010; 200 Al Bataineh, Kaur (bib0003) 2018 MacKay (bib0051) 1992; 4 Abidoye, Chan (bib0002) 2018; 24 Li, Cheng, Shoaib (bib0043) 2018; 10 Rafiei, Adeli (bib0064) 2016; 142 Guo, Pleiss, Sun, Weinberger (bib0020) 2017 Morano, Tajani, Torre (bib0056) 2015 Webb, Yang, Zhang (bib0078) 2016; 53 Xu, X., & Zhang, Y. (2021d). Network analysis of housing price comovements of a hundred chinese cities,. Møller (bib0054) 1993; 6 Xu, Zhang (bib0105) 2021; 5 Khan, Alam, Shahid, Mazliham (bib0035) 2019 Xu (bib0091) 2017; 31 Kang, Lee, Jeong, Lee, Oh (bib0026) 2020; 12 Xu, X. (2015a). Causality, price discovery, and price forecasts: Evidence from us corn cash and futures markets,. Peterson, Flanagan (bib0061) 2009; 31 Xu (bib0098) 2019; 46 Morano, Tajani (bib0055) 2013; 8 Shahhosseini, Hu, Pham (bib0070) 2019 Cabrera, Wang, Yang (bib0009) 2011; 33 Xu (bib0092) 2017; 44 Xu, Thurman (bib0102) 2015 Xu, X., & Thurman, W. N. (2015b). Using local information to improve short-run corn cash price forecasts Altan, Karasu, Zio (bib0005) 2021; 100 Wu, Li, Fang, Hsu, Lin, Wu (bib0082) 2009 Sarip, Hafez, Daud (bib0067) 2016; 29 Levenberg (bib0041) 1944; 2 Xu, Zhang (bib0104) 2021; 184 Hagan, Menhaj (bib0021) 1994; 5 Yang, Yu, Deng (bib0112) 2018; 68 Xu (bib0101) 2020; 102 Khalafallah (bib0034) 2008; 13 Tabales, Caridad, Carmona (bib0072) 2013; 15 Xu (bib0100) 2019; 33 Azadeh, Sheikhalishahi, Boostani (bib0006) 2014; 82 Liu, Wu (bib0048) 2020; 72 Li, Xiang, Xiong (bib0045) 2020; 2020 Yu, Jiao, Xin, Wang, Wang (bib0114) 2018; 12 Yan, Zong (bib0109) 2020 10.1016/j.iswa.2021.200052_bib0007 Terregrossa (10.1016/j.iswa.2021.200052_bib0074) 2021 Selvamuthu (10.1016/j.iswa.2021.200052_bib0069) 2019; 5 Liu (10.1016/j.iswa.2021.200052_bib0048) 2020; 72 Karasu (10.1016/j.iswa.2021.200052_bib0028) 2020; 212 Hagan (10.1016/j.iswa.2021.200052_bib0021) 1994; 5 Karasu (10.1016/j.iswa.2021.200052_bib0029) 2017; 4 Li (10.1016/j.iswa.2021.200052_bib0044) 2017; 23 10.1016/j.iswa.2021.200052_bib0088 Ćetković (10.1016/j.iswa.2021.200052_bib0010) 2018; 2018 Xu (10.1016/j.iswa.2021.200052_bib0099) 2019; 39 Embaye (10.1016/j.iswa.2021.200052_bib0014) 2021; 16 Kouwenberg (10.1016/j.iswa.2021.200052_bib0038) 2014; 30 Morano (10.1016/j.iswa.2021.200052_bib0055) 2013; 8 Zohrabyan (10.1016/j.iswa.2021.200052_bib0115) 2008 Kang (10.1016/j.iswa.2021.200052_bib0026) 2020; 12 Wang (10.1016/j.iswa.2021.200052_bib0076) 2010; 32 Wilson (10.1016/j.iswa.2021.200052_bib0081) 2002 Li (10.1016/j.iswa.2021.200052_bib0042) 2009; 2 Huang (10.1016/j.iswa.2021.200052_bib0023) 2019; 7 Shimizu (10.1016/j.iswa.2021.200052_bib0071) 2006; 7 Cabrera (10.1016/j.iswa.2021.200052_bib0009) 2011; 33 Møller (10.1016/j.iswa.2021.200052_bib0054) 1993; 6 MacKay (10.1016/j.iswa.2021.200052_bib0051) 1992; 4 Webb (10.1016/j.iswa.2021.200052_bib0078) 2016; 53 10.1016/j.iswa.2021.200052_bib0107 10.1016/j.iswa.2021.200052_bib0108 10.1016/j.iswa.2021.200052_bib0103 Kayri (10.1016/j.iswa.2021.200052_bib0033) 2016; 21 Marquardt (10.1016/j.iswa.2021.200052_bib0052) 1963; 11 Xu (10.1016/j.iswa.2021.200052_bib0102) 2015 Park (10.1016/j.iswa.2021.200052_bib0060) 2015; 42 Wang (10.1016/j.iswa.2021.200052_bib0077) 2014; 125 Yang (10.1016/j.iswa.2021.200052_bib0111) 2008; 32 Altan (10.1016/j.iswa.2021.200052_bib0004) 2019; 126 Xu (10.1016/j.iswa.2021.200052_bib0096) 2018; 16 Xiaolong (10.1016/j.iswa.2021.200052_bib0083) 2010; 2 Xu (10.1016/j.iswa.2021.200052_bib0106) 2021; 6 Chiarazzo (10.1016/j.iswa.2021.200052_bib0012) 2014; 3 Kawahara (10.1016/j.iswa.2021.200052_bib0032) 2011; 74 Lam (10.1016/j.iswa.2021.200052_bib0040) 2008; 25 Xu (10.1016/j.iswa.2021.200052_bib0101) 2020; 102 Karasu (10.1016/j.iswa.2021.200052_bib0030) 2017; 2 Al Bataineh (10.1016/j.iswa.2021.200052_bib0003) 2018 Xu (10.1016/j.iswa.2021.200052_bib0095) 2018; 54 Rafiei (10.1016/j.iswa.2021.200052_bib0064) 2016; 142 Tabales (10.1016/j.iswa.2021.200052_bib0072) 2013; 15 Yu (10.1016/j.iswa.2021.200052_bib0114) 2018; 12 Paluszek (10.1016/j.iswa.2021.200052_bib0059) 2020 Peterson (10.1016/j.iswa.2021.200052_bib0061) 2009; 31 Foresee (10.1016/j.iswa.2021.200052_bib0015) 1997; 3 Xu (10.1016/j.iswa.2021.200052_bib0104) 2021; 184 Milunovich (10.1016/j.iswa.2021.200052_bib0053) 2020; 39 Selim (10.1016/j.iswa.2021.200052_bib0068) 2009; 36 Xu (10.1016/j.iswa.2021.200052_bib0085) 2021; 57 Xin (10.1016/j.iswa.2021.200052_bib0084) 2004; 7 Xu (10.1016/j.iswa.2021.200052_bib0094) 2018; 55 Li (10.1016/j.iswa.2021.200052_bib0045) 2020; 2020 Fu (10.1016/j.iswa.2021.200052_bib0016) 2018 Sarip (10.1016/j.iswa.2021.200052_bib0067) 2016; 29 Wu (10.1016/j.iswa.2021.200052_bib0082) 2009 Xu (10.1016/j.iswa.2021.200052_bib0086) 2014 Guo (10.1016/j.iswa.2021.200052_bib0020) 2017 Li (10.1016/j.iswa.2021.200052_bib0043) 2018; 10 Abidoye (10.1016/j.iswa.2021.200052_bib0002) 2018; 24 Kim (10.1016/j.iswa.2021.200052_bib0036) 2007; 16 Rahman (10.1016/j.iswa.2021.200052_bib0065) 2019; 17 Piao (10.1016/j.iswa.2021.200052_bib0062) 2019 Ge (10.1016/j.iswa.2021.200052_bib0018) 2019 Karasu (10.1016/j.iswa.2021.200052_bib0031) 2017 Abidoye (10.1016/j.iswa.2021.200052_bib0001) 2017; 34 Wei (10.1016/j.iswa.2021.200052_bib0080) 2017; 61 Xu (10.1016/j.iswa.2021.200052_bib0090) 2017; 52 Liu (10.1016/j.iswa.2021.200052_bib0049) 2019; 23 Hyvärinen (10.1016/j.iswa.2021.200052_bib0024) 2010; 11 Wang (10.1016/j.iswa.2021.200052_bib0075) 2016 Azadeh (10.1016/j.iswa.2021.200052_bib0006) 2014; 82 Chen (10.1016/j.iswa.2021.200052_bib0011) 2017; 21 Nghiep (10.1016/j.iswa.2021.200052_bib0057) 2001; 22 Doan (10.1016/j.iswa.2021.200052_bib0013) 2004 Plakandaras (10.1016/j.iswa.2021.200052_bib0063) 2015; 45 Xu (10.1016/j.iswa.2021.200052_bib0097) 2018; 16 Yang (10.1016/j.iswa.2021.200052_bib0112) 2018; 68 Ho (10.1016/j.iswa.2021.200052_bib0022) 2021; 38 Ma (10.1016/j.iswa.2021.200052_bib0050) 2015; 8 Gal (10.1016/j.iswa.2021.200052_bib0017) 2016 Kitapci (10.1016/j.iswa.2021.200052_bib0037) 2017 Brandt (10.1016/j.iswa.2021.200052_bib0008) 1983; 2 Karasu (10.1016/j.iswa.2021.200052_bib0027) 2019 Xu (10.1016/j.iswa.2021.200052_bib0092) 2017; 44 Wegener (10.1016/j.iswa.2021.200052_bib0079) 2016; 35 Levenberg (10.1016/j.iswa.2021.200052_bib0041) 1944; 2 Xu (10.1016/j.iswa.2021.200052_bib0091) 2017; 31 Xu (10.1016/j.iswa.2021.200052_bib0087) 2014 Khan (10.1016/j.iswa.2021.200052_bib0035) 2019 Morano (10.1016/j.iswa.2021.200052_bib0056) 2015 Xu (10.1016/j.iswa.2021.200052_bib0098) 2019; 46 Yasnitsky (10.1016/j.iswa.2021.200052_bib0113) 2021; 2021 Gu (10.1016/j.iswa.2021.200052_bib0019) 2011; 38 Lim (10.1016/j.iswa.2021.200052_bib0046) 2016 Khalafallah (10.1016/j.iswa.2021.200052_bib0034) 2008; 13 Rico-Juan (10.1016/j.iswa.2021.200052_bib0066) 2021; 171 Yang (10.1016/j.iswa.2021.200052_bib0110) 2010; 200 Altan (10.1016/j.iswa.2021.200052_bib0005) 2021; 100 Limsombunchai (10.1016/j.iswa.2021.200052_bib0047) 2004 10.1016/j.iswa.2021.200052_bib0039 Shahhosseini (10.1016/j.iswa.2021.200052_bib0070) 2019 Xu (10.1016/j.iswa.2021.200052_bib0089) 2015; 35 Yan (10.1016/j.iswa.2021.200052_bib0109) 2020 Igbinosa (10.1016/j.iswa.2021.200052_bib0025) 2011; 5 Taffese (10.1016/j.iswa.2021.200052_bib0073) 2007 Xu (10.1016/j.iswa.2021.200052_bib0093) 2018; 45 Xu (10.1016/j.iswa.2021.200052_bib0100) 2019; 33 Xu (10.1016/j.iswa.2021.200052_bib0105) 2021; 5 Pai (10.1016/j.iswa.2021.200052_bib0058) 2020; 10 |
References_xml | – volume: 102 start-page: 1297 year: 2020 end-page: 1320 ident: bib0101 article-title: Corn cash price forecasting publication-title: American Journal of Agricultural Economics – volume: 34 start-page: 36 year: 2017 end-page: 53 ident: bib0001 article-title: Modelling property values in nigeria using artificial neural network publication-title: Journal of Property Research – reference: ,. – volume: 23 start-page: 123 year: 2017 end-page: 160 ident: bib0044 article-title: Forecasting the reits and stock indices: Group method of data handling neural network approach publication-title: Pacific Rim Property Research Journal – volume: 7 start-page: 121 year: 2004 end-page: 138 ident: bib0084 article-title: Modeling property prices using neural network model for hong kong publication-title: International Real Estate Review – volume: 10 start-page: 5832 year: 2020 ident: bib0058 article-title: Using machine learning models and actual transaction data for predicting real estate prices publication-title: Applied Sciences – volume: 6 start-page: 525 year: 1993 end-page: 533 ident: bib0054 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Networks – volume: 7 start-page: 66 year: 2019 end-page: 74 ident: bib0023 article-title: Predicting home value in california, united states via machine learning modeling publication-title: Statistics, Optimization & Information Computing – reference: Xu, X. (2015a). Causality, price discovery, and price forecasts: Evidence from us corn cash and futures markets,. – start-page: 4 year: 2017 end-page: 14 ident: bib0037 article-title: The use of artificial neural networks (ann) in forecasting housing prices in ankara, turkey publication-title: Journal of Marketing and Consumer Behaviour in Emerging Markets – volume: 4 start-page: 415 year: 1992 end-page: 447 ident: bib0051 article-title: Bayesian interpolation publication-title: Neural Computation – volume: 142 start-page: 04015066 year: 2016 ident: bib0064 article-title: A novel machine learning model for estimation of sale prices of real estate units publication-title: Journal of Construction Engineering and Management – reference: Xu, X., & Thurman, W. N. (2015b). Using local information to improve short-run corn cash price forecasts, – volume: 23 start-page: 11829 year: 2019 end-page: 11838 ident: bib0049 article-title: Predicting housing price in china based on long short-term memory incorporating modified genetic algorithm publication-title: Soft Computing – volume: 7 year: 2006 ident: bib0071 article-title: A linear non-gaussian acyclic model for causal discovery publication-title: Journal of Machine Learning Research – volume: 12 start-page: 2899 year: 2020 ident: bib0026 article-title: Developing a forecasting model for real estate auction prices using artificial intelligence publication-title: Sustainability – start-page: 64 year: 2020 end-page: 71 ident: bib0109 article-title: Spatial prediction of housing prices in Beijing using machine learning algorithms publication-title: Proceedings of the 2020 4th high performance computing and cluster technologies conference & 2020 3rd international conference on big data and artificial intelligence – volume: 24 start-page: 71 year: 2018 end-page: 83 ident: bib0002 article-title: Improving property valuation accuracy: A comparison of hedonic pricing model and artificial neural network publication-title: Pacific Rim Property Research Journal – volume: 5 start-page: 16 year: 2019 ident: bib0069 article-title: Indian stock market prediction using artificial neural networks on tick data publication-title: Financial Innovation – start-page: 130 year: 2021 end-page: 148 ident: bib0074 article-title: Combining housing price forecasts generated separately by hedonic and artificial neural network models publication-title: Asian Journal of Economics, Business and Accounting – volume: 39 start-page: 2052 year: 2019 end-page: 2077 ident: bib0099 article-title: Contemporaneous causal orderings of csi300 and futures prices through directed acyclic graphs publication-title: Economics Bulletin – reference: Baghirli, O. (2015). Comparison of Lavenberg-Marquardt, scaled conjugate gradient and Bayesian regularization backpropagation algorithms for multistep ahead wind speed forecasting using multilayer perceptron feedforward neural network. – year: 2008 ident: bib0115 article-title: Cointegration analysis of regional house prices in US publication-title: Technical Report – start-page: 5 year: 2004 end-page: 8 ident: bib0013 article-title: Generalization for multilayer neural network bayesian regularization or early stopping publication-title: Proceedings of asia pacific association of hydrology and water resources 2nd conference – volume: 184 start-page: 106120 year: 2021 ident: bib0104 article-title: Corn cash price forecasting with neural networks publication-title: Computers and Electronics in Agriculture – year: 2015 ident: bib0102 article-title: Forecasting local grain prices: An evaluation of composite models in 500 corn cash markets publication-title: Technical Report – volume: 2021 year: 2021 ident: bib0113 article-title: The complex neural network model for mass appraisal and scenario forecasting of the urban real estate market value that adapts itself to space and time publication-title: Complexity – volume: 2 start-page: 970 year: 2009 end-page: 974 ident: bib0042 article-title: A SVR based forecasting approach for real estate price prediction publication-title: 2009 international conference on machine learning and cybernetics – volume: 55 start-page: 1889 year: 2018 end-page: 1923 ident: bib0094 article-title: Cointegration and price discovery in us corn cash and futures markets publication-title: Empirical Economics – volume: 10 start-page: 1298 year: 2018 ident: bib0043 article-title: Walled buildings, sustainability, and housing prices: an artificial neural network approach publication-title: Sustainability – start-page: 8 year: 2019 end-page: 11 ident: bib0027 article-title: Recognition model for solar radiation time series based on random forest with feature selection approach publication-title: 2019 11th international conference on electrical and electronics engineering (ELECO) – volume: 72 start-page: 100916 year: 2020 ident: bib0048 article-title: Predicting housing prices in china based on modified Holt’s exponential smoothing incorporating whale optimization algorithm publication-title: Socio-Economic Planning Sciences – volume: 5 start-page: 100035 year: 2021 ident: bib0105 article-title: Individual time series and composite forecasting of the chinese stock index publication-title: Machine Learning with Applications – volume: 44 start-page: 2593 year: 2017 end-page: 2620 ident: bib0092 article-title: Short-run price forecast performance of individual and composite models for 496 corn cash markets publication-title: Journal of Applied Statistics – volume: 2 start-page: 384 year: 2010 end-page: 386 ident: bib0083 article-title: Applied research on real estate price prediction by the neural network publication-title: 2010 the 2nd conference on environmental science and information application technology – volume: 3 start-page: 1930 year: 1997 end-page: 1935 ident: bib0015 article-title: Gauss-newton approximation to bayesian learning publication-title: Proceedings of international conference on neural networks (ICNN’97) – start-page: 1321 year: 2017 end-page: 1330 ident: bib0020 article-title: On calibration of modern neural networks publication-title: International conference on machine learning – volume: 61 start-page: 147 year: 2017 end-page: 155 ident: bib0080 article-title: Forecasting house prices using dynamic model averaging approach: Evidence from china publication-title: Economic Modelling – volume: 31 start-page: 147 year: 2009 end-page: 164 ident: bib0061 article-title: Neural network hedonic pricing models in mass real estate appraisal publication-title: Journal of Real Estate Research – start-page: 25 year: 2004 end-page: 26 ident: bib0047 article-title: House price prediction: hedonic price model vs. artificial neural network publication-title: New zealand agricultural and resource economics society conference – start-page: 3589 year: 2016 end-page: 3592 ident: bib0075 article-title: Predicting public housing prices using delayed neural networks publication-title: 2016 ieee region 10 conference (tencon) – volume: 100 start-page: 106996 year: 2021 ident: bib0005 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Applied Soft Computing – year: 2014 ident: bib0086 article-title: Causality and price discovery in US corn markets: An application of error correction modeling and directed acyclic graphs publication-title: Technical Report – volume: 15 start-page: 29 year: 2013 end-page: 44 ident: bib0072 article-title: Artificial neural networks for predicting real estate price publication-title: Revista de Métodos Cuantitativos para la Economía y la Empresa – volume: 38 start-page: 3383 year: 2011 end-page: 3386 ident: bib0019 article-title: Housing price forecasting based on genetic algorithm and support vector machine publication-title: Expert Systems with Applications – volume: 5 start-page: 989 year: 1994 end-page: 993 ident: bib0021 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE Transactions on Neural Networks – year: 2014 ident: bib0087 article-title: Price discovery in us corn cash and futures markets: The role of cash market selection publication-title: Selected paper prepared for presentation at the agricultural & applied economics associations 2014 AAEA annual meeting, Minneapolis, MN – volume: 171 start-page: 114590 year: 2021 ident: bib0066 article-title: Machine learning with explainability or spatial hedonics tools? an analysis of the asking prices in the housing market in alicante, spain publication-title: Expert Systems with Applications – volume: 126 start-page: 325 year: 2019 end-page: 336 ident: bib0004 article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques publication-title: Chaos, Solitons & Fractals – volume: 8 start-page: 340 year: 2013 end-page: 362 ident: bib0055 article-title: Bare ownership evaluation. hedonic price model vs. artificial neural network publication-title: International Journal of Business Intelligence and Data Mining – start-page: 98 year: 2007 end-page: 104 ident: bib0073 article-title: Case-based reasoning and neural networks for real estate valuation publication-title: Artificial intelligence and applications – volume: 16 start-page: 37 year: 2007 end-page: 58 ident: bib0036 article-title: Reits’ dynamics under structural change with unknown break points publication-title: Journal of Housing Economics – volume: 29 start-page: 15 year: 2016 end-page: 27 ident: bib0067 article-title: Application of fuzzy regression model for real estate price prediction publication-title: Malaysian Journal of Computer Science – volume: 12 start-page: 90 year: 2018 end-page: 99 ident: bib0114 article-title: Prediction on housing price based on deep learning publication-title: International Journal of Computer and Information Engineering – volume: 57 start-page: 617 year: 2021 end-page: 637 ident: bib0085 article-title: A new appraisal model of second-hand housing prices in China’s first-tier cities based on machine learning algorithms publication-title: Computational Economics – volume: 6 year: 2021 ident: bib0106 article-title: Network analysis of corn cash price comovements publication-title: Machine Learning with Applications – volume: 8 start-page: 109 year: 2015 end-page: 118 ident: bib0050 article-title: Study on the prediction of real estate price index based on HHGA-RBF neural network algorithm publication-title: International Journal of u-and e-Service, Science and Technology – volume: 2018 year: 2018 ident: bib0010 article-title: Assessment of the real estate market value in the european market by artificial neural networks application publication-title: Complexity – year: 2020 ident: bib0059 article-title: Practical MATLAB deep learning: A project-based approach – volume: 16 start-page: e0244953 year: 2021 ident: bib0014 article-title: Predicting the rental value of houses in household surveys in tanzania, uganda and malawi: Evaluations of hedonic pricing and machine learning approaches publication-title: Plos One – volume: 4 start-page: 137 year: 2017 end-page: 146 ident: bib0029 article-title: Estimation of fast varied wind speed based on narx neural network by using curve fitting publication-title: International Journal of Energy Applications and Technologies – volume: 35 start-page: 2581 year: 2015 end-page: 2594 ident: bib0089 article-title: Cointegration among regional corn cash prices publication-title: Economics Bulletin – volume: 35 start-page: 86 year: 2016 end-page: 92 ident: bib0079 article-title: Forecasting government bond yields with neural networks considering cointegration publication-title: Journal of Forecasting – volume: 38 start-page: 48 year: 2021 end-page: 70 ident: bib0022 article-title: Predicting property prices with machine learning algorithms publication-title: Journal of Property Research – volume: 32 start-page: 496 year: 2010 end-page: 503 ident: bib0076 article-title: Nonlinearity and intraday efficiency tests on energy futures markets publication-title: Energy Economics – volume: 21 start-page: 20 year: 2016 ident: bib0033 article-title: Predictive abilities of Bayesian regularization and Levenberg–Marquardt algorithms in artificial neural networks: A comparative empirical study on social data publication-title: Mathematical and Computational Applications – volume: 30 start-page: 415 year: 2014 end-page: 425 ident: bib0038 article-title: Forecasting the us housing market publication-title: International Journal of Forecasting – volume: 52 start-page: 731 year: 2017 end-page: 758 ident: bib0090 article-title: Contemporaneous causal orderings of us corn cash prices through directed acyclic graphs publication-title: Empirical Economics – volume: 212 start-page: 118750 year: 2020 ident: bib0028 article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series publication-title: Energy – volume: 5 start-page: 152 year: 2011 end-page: 168 ident: bib0025 article-title: Determinants of residential property value in nigeria–a neural network approach publication-title: African Research Review – volume: 3 start-page: 810 year: 2014 end-page: 817 ident: bib0012 article-title: A neural network based model for real estate price estimation considering environmental quality of property location publication-title: Transportation Research Procedia – volume: 200 start-page: 498 year: 2010 end-page: 507 ident: bib0110 article-title: Nonlinearity, data-snooping, and stock index ETFreturn predictability publication-title: European Journal of Operational Research – volume: 125 start-page: 1439 year: 2014 end-page: 1443 ident: bib0077 article-title: Real estate price forecasting based on SVM optimized by pso publication-title: Optik – volume: 36 start-page: 2843 year: 2009 end-page: 2852 ident: bib0068 article-title: Determinants of house prices in turkey: Hedonic regression versus artificial neural network publication-title: Expert systems with Applications – volume: 16 year: 2018 ident: bib0097 article-title: Using local information to improve short-run corn price forecasts publication-title: Journal of Agricultural & Food Industrial Organization – volume: 33 start-page: 565 year: 2011 end-page: 594 ident: bib0009 article-title: Linear and nonlinear predictablity of international securitized real estate returns: A reality check publication-title: Journal of Real Estate Research – start-page: 269 year: 2018 end-page: 273 ident: bib0016 article-title: Forecasting second-hand housing price using artificial intelligence and machine learning techniques publication-title: 2018 8th international conference on mechatronics, computer and education informationization (MCEI 2018) – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: bib0052 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: Journal of the Society for Industrial and Applied Mathematics – start-page: 518 year: 2016 end-page: 522 ident: bib0046 article-title: Housing price prediction using neural networks publication-title: 2016 12th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD) – volume: 42 start-page: 2928 year: 2015 end-page: 2934 ident: bib0060 article-title: Using machine learning algorithms for housing price prediction: The case of fairfax county, virginia housing data publication-title: Expert Systems with Applications – start-page: 491 year: 2019 end-page: 495 ident: bib0062 article-title: Housing price prediction based on CNN publication-title: 2019 9th international conference on information science and technology (ICIST) – start-page: 23 year: 2015 end-page: 29 ident: bib0056 article-title: Artificial intelligence in property valuations: An application of artificial neural networks to housing appraisal publication-title: Advances in Environmental Science and Energy, Planning – volume: 25 start-page: 321 year: 2008 end-page: 342 ident: bib0040 article-title: An artificial neural network and entropy model for residential property price forecasting in hong kong publication-title: Journal of Property Research – volume: 17 year: 2019 ident: bib0065 article-title: The artificial neural network model (ann) for malaysian housing market analysis publication-title: Planning Malaysia – volume: 46 start-page: 663 year: 2019 end-page: 695 ident: bib0098 article-title: Contemporaneous and granger causality among us corn cash and futures prices publication-title: European Review of Agricultural Economics – volume: 82 start-page: 567 year: 2014 end-page: 582 ident: bib0006 article-title: A flexible neuro-fuzzy approach for improvement of seasonal housing price estimation in uncertain and non-linear environments publication-title: South African Journal of Economics – reference: Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2016). Simple and scalable predictive uncertainty estimation using deep ensembles. – volume: 53 start-page: 29 year: 2016 end-page: 49 ident: bib0078 article-title: Price jump risk in the us housing market publication-title: The Journal of Real Estate Finance and Economics – start-page: 174 year: 2018 end-page: 178 ident: bib0003 article-title: A comparative study of different curve fitting algorithms in artificial neural network using housing dataset publication-title: Naecon 2018-IEEE national aerospace and electronics conference – volume: 21 start-page: 273 year: 2017 end-page: 283 ident: bib0011 article-title: Forecasting spatial dynamics of the housing market using support vector machine publication-title: International Journal of Strategic Property Management – volume: 54 start-page: 1267 year: 2018 end-page: 1295 ident: bib0095 article-title: Intraday price information flows between the csi300 and futures market: An application of wavelet analysis publication-title: Empirical Economics – volume: 31 start-page: 491 year: 2017 end-page: 509 ident: bib0091 article-title: The rolling causal structure between the chinese stock index and futures publication-title: Financial Markets and Portfolio Management – volume: 68 start-page: 98 year: 2018 end-page: 114 ident: bib0112 article-title: Housing price spillovers in china: A high-dimensional generalized var approach publication-title: Regional Science and Urban Economics – volume: 33 start-page: 155 year: 2019 end-page: 181 ident: bib0100 article-title: Price dynamics in corn cash and futures markets: cointegration, causality, and forecasting through a rolling window approach publication-title: Financial Markets and Portfolio Management – start-page: 1 year: 2017 end-page: 4 ident: bib0031 article-title: Prediction of wind speed with non-linear autoregressive (NAR) neural networks publication-title: 2017 25th signal processing and communications applications conference (SIU) – volume: 32 start-page: 729 year: 2008 end-page: 740 ident: bib0111 article-title: Do euro exchange rates follow a martingale? some out-of-sample evidence publication-title: Journal of Banking & Finance – start-page: 52 year: 2019 end-page: 58 ident: bib0035 article-title: Comparative performance analysis of Levenberg-Marquardt, Bayesian regularization and scaled conjugate gradient for the prediction of flash floods publication-title: Journal of Information Communication Technologies and Robotic Applications – reference: Xu, X., & Zhang, Y. (2021d). Network analysis of housing price comovements of a hundred chinese cities,. – start-page: 1050 year: 2016 end-page: 1059 ident: bib0017 article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning publication-title: international conference on machine learning – volume: 2020 year: 2020 ident: bib0045 article-title: The behavioral mechanism and forecasting of Beijing housing prices from a multiscale perspective publication-title: Discrete Dynamics in Nature and Society – volume: 13 start-page: 325 year: 2008 end-page: 328 ident: bib0034 article-title: Neural network based model for predicting housing market performance publication-title: Tsinghua Science and Technology – volume: 22 start-page: 313 year: 2001 end-page: 336 ident: bib0057 article-title: Predicting housing value: A comparison of multiple regression analysis and artificial neural networks publication-title: Journal of Real Estate Research – volume: 45 start-page: 259 year: 2015 end-page: 267 ident: bib0063 article-title: Forecasting the us real house price index publication-title: Economic Modelling – reference: Xu, X., & Zhang, Y. (2021e). Second-hand house price index forecasting with neural networks,. – volume: 74 start-page: 2212 year: 2011 end-page: 2221 ident: bib0032 article-title: Analyzing relationships among arma processes based on non-Gaussianity of external influences publication-title: Neurocomputing – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: bib0041 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Quarterly of Applied Mathematics – volume: 45 start-page: 2455 year: 2018 end-page: 2480 ident: bib0093 article-title: Causal structure among us corn futures and regional cash prices in the time and frequency domain publication-title: Journal of Applied Statistics – start-page: 1054 year: 2019 end-page: 1059 ident: bib0018 article-title: An integrated model for urban subregion house price forecasting: A multi-source data perspective publication-title: 2019 ieee international conference on data mining (ICDM) – reference: . – start-page: 87 year: 2019 end-page: 97 ident: bib0070 article-title: Optimizing ensemble weights for machine learning models: a case study for housing price prediction publication-title: Informs international conference on service science – start-page: 17 year: 2002 end-page: 28 ident: bib0081 article-title: Residential property price time series forecasting with neural networks publication-title: Applications and innovations in intelligent systems ix – volume: 2 start-page: 237 year: 1983 end-page: 248 ident: bib0008 article-title: Price forecasting and evaluation: An application in agriculture publication-title: Journal of Forecasting – volume: 2 start-page: 16 year: 2017 end-page: 20 ident: bib0030 article-title: Prediction of solar radiation based on machine learning methods publication-title: The Journal of Cognitive Systems – start-page: 295 year: 2009 end-page: 300 ident: bib0082 article-title: Hybrid genetic-based support vector regression with feng shui theory for appraising real estate price publication-title: 2009 first asian conference on intelligent information and database systems – volume: 11 year: 2010 ident: bib0024 article-title: Estimation of a structural vector autoregression model using non-Gaussianity publication-title: Journal of Machine Learning Research – volume: 16 start-page: 20160006 year: 2018 ident: bib0096 article-title: Linear and nonlinear causality between corn cash and futures prices publication-title: Journal of Agricultural & Food Industrial Organization – volume: 39 start-page: 1098 year: 2020 end-page: 1118 ident: bib0053 article-title: Forecasting australia’s real house price index: A comparison of time series and machine learning methods publication-title: Journal of Forecasting – volume: 16 start-page: 37 issue: 1 year: 2007 ident: 10.1016/j.iswa.2021.200052_bib0036 article-title: Reits’ dynamics under structural change with unknown break points publication-title: Journal of Housing Economics doi: 10.1016/j.jhe.2007.04.001 – start-page: 8 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0027 article-title: Recognition model for solar radiation time series based on random forest with feature selection approach – volume: 2 start-page: 164 issue: 2 year: 1944 ident: 10.1016/j.iswa.2021.200052_bib0041 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Quarterly of Applied Mathematics doi: 10.1090/qam/10666 – ident: 10.1016/j.iswa.2021.200052_bib0103 – volume: 102 start-page: 1297 issue: 4 year: 2020 ident: 10.1016/j.iswa.2021.200052_bib0101 article-title: Corn cash price forecasting publication-title: American Journal of Agricultural Economics doi: 10.1002/ajae.12041 – volume: 21 start-page: 273 issue: 3 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0011 article-title: Forecasting spatial dynamics of the housing market using support vector machine publication-title: International Journal of Strategic Property Management doi: 10.3846/1648715X.2016.1259190 – volume: 31 start-page: 147 issue: 2 year: 2009 ident: 10.1016/j.iswa.2021.200052_bib0061 article-title: Neural network hedonic pricing models in mass real estate appraisal publication-title: Journal of Real Estate Research doi: 10.1080/10835547.2009.12091245 – year: 2014 ident: 10.1016/j.iswa.2021.200052_bib0086 article-title: Causality and price discovery in US corn markets: An application of error correction modeling and directed acyclic graphs – start-page: 130 year: 2021 ident: 10.1016/j.iswa.2021.200052_bib0074 article-title: Combining housing price forecasts generated separately by hedonic and artificial neural network models publication-title: Asian Journal of Economics, Business and Accounting doi: 10.9734/ajeba/2021/v21i130345 – volume: 2021 year: 2021 ident: 10.1016/j.iswa.2021.200052_bib0113 article-title: The complex neural network model for mass appraisal and scenario forecasting of the urban real estate market value that adapts itself to space and time publication-title: Complexity doi: 10.1155/2021/5392170 – year: 2008 ident: 10.1016/j.iswa.2021.200052_bib0115 article-title: Cointegration analysis of regional house prices in US – start-page: 174 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0003 article-title: A comparative study of different curve fitting algorithms in artificial neural network using housing dataset – start-page: 23 year: 2015 ident: 10.1016/j.iswa.2021.200052_bib0056 article-title: Artificial intelligence in property valuations: An application of artificial neural networks to housing appraisal publication-title: Advances in Environmental Science and Energy, Planning – volume: 7 start-page: 121 issue: 1 year: 2004 ident: 10.1016/j.iswa.2021.200052_bib0084 article-title: Modeling property prices using neural network model for hong kong publication-title: International Real Estate Review – start-page: 269 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0016 article-title: Forecasting second-hand housing price using artificial intelligence and machine learning techniques – volume: 53 start-page: 29 issue: 1 year: 2016 ident: 10.1016/j.iswa.2021.200052_bib0078 article-title: Price jump risk in the us housing market publication-title: The Journal of Real Estate Finance and Economics doi: 10.1007/s11146-015-9518-z – volume: 23 start-page: 123 issue: 2 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0044 article-title: Forecasting the reits and stock indices: Group method of data handling neural network approach publication-title: Pacific Rim Property Research Journal doi: 10.1080/14445921.2016.1225149 – volume: 21 start-page: 20 issue: 2 year: 2016 ident: 10.1016/j.iswa.2021.200052_bib0033 article-title: Predictive abilities of Bayesian regularization and Levenberg–Marquardt algorithms in artificial neural networks: A comparative empirical study on social data publication-title: Mathematical and Computational Applications doi: 10.3390/mca21020020 – start-page: 295 year: 2009 ident: 10.1016/j.iswa.2021.200052_bib0082 article-title: Hybrid genetic-based support vector regression with feng shui theory for appraising real estate price – volume: 52 start-page: 731 issue: 2 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0090 article-title: Contemporaneous causal orderings of us corn cash prices through directed acyclic graphs publication-title: Empirical Economics doi: 10.1007/s00181-016-1094-4 – volume: 24 start-page: 71 issue: 1 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0002 article-title: Improving property valuation accuracy: A comparison of hedonic pricing model and artificial neural network publication-title: Pacific Rim Property Research Journal doi: 10.1080/14445921.2018.1436306 – volume: 16 issue: 1 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0097 article-title: Using local information to improve short-run corn price forecasts publication-title: Journal of Agricultural & Food Industrial Organization doi: 10.1515/jafio-2017-0018 – ident: 10.1016/j.iswa.2021.200052_bib0107 doi: 10.1017/nie.2021.34 – start-page: 1 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0031 article-title: Prediction of wind speed with non-linear autoregressive (NAR) neural networks – start-page: 52 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0035 article-title: Comparative performance analysis of Levenberg-Marquardt, Bayesian regularization and scaled conjugate gradient for the prediction of flash floods publication-title: Journal of Information Communication Technologies and Robotic Applications – volume: 3 start-page: 1930 year: 1997 ident: 10.1016/j.iswa.2021.200052_bib0015 article-title: Gauss-newton approximation to bayesian learning – volume: 10 start-page: 5832 issue: 17 year: 2020 ident: 10.1016/j.iswa.2021.200052_bib0058 article-title: Using machine learning models and actual transaction data for predicting real estate prices publication-title: Applied Sciences doi: 10.3390/app10175832 – volume: 35 start-page: 2581 issue: 4 year: 2015 ident: 10.1016/j.iswa.2021.200052_bib0089 article-title: Cointegration among regional corn cash prices publication-title: Economics Bulletin – volume: 44 start-page: 2593 issue: 14 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0092 article-title: Short-run price forecast performance of individual and composite models for 496 corn cash markets publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2016.1259399 – volume: 42 start-page: 2928 issue: 6 year: 2015 ident: 10.1016/j.iswa.2021.200052_bib0060 article-title: Using machine learning algorithms for housing price prediction: The case of fairfax county, virginia housing data publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.11.040 – volume: 142 start-page: 04015066 issue: 2 year: 2016 ident: 10.1016/j.iswa.2021.200052_bib0064 article-title: A novel machine learning model for estimation of sale prices of real estate units publication-title: Journal of Construction Engineering and Management doi: 10.1061/(ASCE)CO.1943-7862.0001047 – volume: 7 issue: 10 year: 2006 ident: 10.1016/j.iswa.2021.200052_bib0071 article-title: A linear non-gaussian acyclic model for causal discovery publication-title: Journal of Machine Learning Research – volume: 46 start-page: 663 issue: 4 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0098 article-title: Contemporaneous and granger causality among us corn cash and futures prices publication-title: European Review of Agricultural Economics doi: 10.1093/erae/jby036 – volume: 10 start-page: 1298 issue: 4 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0043 article-title: Walled buildings, sustainability, and housing prices: an artificial neural network approach publication-title: Sustainability doi: 10.3390/su10041298 – volume: 38 start-page: 48 issue: 1 year: 2021 ident: 10.1016/j.iswa.2021.200052_bib0022 article-title: Predicting property prices with machine learning algorithms publication-title: Journal of Property Research doi: 10.1080/09599916.2020.1832558 – volume: 12 start-page: 2899 issue: 7 year: 2020 ident: 10.1016/j.iswa.2021.200052_bib0026 article-title: Developing a forecasting model for real estate auction prices using artificial intelligence publication-title: Sustainability doi: 10.3390/su12072899 – volume: 33 start-page: 155 issue: 2 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0100 article-title: Price dynamics in corn cash and futures markets: cointegration, causality, and forecasting through a rolling window approach publication-title: Financial Markets and Portfolio Management doi: 10.1007/s11408-019-00330-7 – volume: 82 start-page: 567 issue: 4 year: 2014 ident: 10.1016/j.iswa.2021.200052_bib0006 article-title: A flexible neuro-fuzzy approach for improvement of seasonal housing price estimation in uncertain and non-linear environments publication-title: South African Journal of Economics doi: 10.1111/saje.12047 – volume: 45 start-page: 259 year: 2015 ident: 10.1016/j.iswa.2021.200052_bib0063 article-title: Forecasting the us real house price index publication-title: Economic Modelling doi: 10.1016/j.econmod.2014.10.050 – start-page: 3589 year: 2016 ident: 10.1016/j.iswa.2021.200052_bib0075 article-title: Predicting public housing prices using delayed neural networks – volume: 2 start-page: 970 year: 2009 ident: 10.1016/j.iswa.2021.200052_bib0042 article-title: A SVR based forecasting approach for real estate price prediction – volume: 2 start-page: 237 issue: 3 year: 1983 ident: 10.1016/j.iswa.2021.200052_bib0008 article-title: Price forecasting and evaluation: An application in agriculture publication-title: Journal of Forecasting doi: 10.1002/for.3980020306 – volume: 7 start-page: 66 issue: 1 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0023 article-title: Predicting home value in california, united states via machine learning modeling publication-title: Statistics, Optimization & Information Computing doi: 10.19139/soic.v7i1.435 – volume: 61 start-page: 147 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0080 article-title: Forecasting house prices using dynamic model averaging approach: Evidence from china publication-title: Economic Modelling doi: 10.1016/j.econmod.2016.12.002 – year: 2015 ident: 10.1016/j.iswa.2021.200052_bib0102 article-title: Forecasting local grain prices: An evaluation of composite models in 500 corn cash markets – year: 2020 ident: 10.1016/j.iswa.2021.200052_bib0059 – volume: 54 start-page: 1267 issue: 3 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0095 article-title: Intraday price information flows between the csi300 and futures market: An application of wavelet analysis publication-title: Empirical Economics doi: 10.1007/s00181-017-1245-2 – volume: 72 start-page: 100916 year: 2020 ident: 10.1016/j.iswa.2021.200052_bib0048 article-title: Predicting housing prices in china based on modified Holt’s exponential smoothing incorporating whale optimization algorithm publication-title: Socio-Economic Planning Sciences doi: 10.1016/j.seps.2020.100916 – start-page: 17 year: 2002 ident: 10.1016/j.iswa.2021.200052_bib0081 article-title: Residential property price time series forecasting with neural networks – volume: 30 start-page: 415 issue: 3 year: 2014 ident: 10.1016/j.iswa.2021.200052_bib0038 article-title: Forecasting the us housing market publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2013.12.010 – volume: 35 start-page: 86 issue: 1 year: 2016 ident: 10.1016/j.iswa.2021.200052_bib0079 article-title: Forecasting government bond yields with neural networks considering cointegration publication-title: Journal of Forecasting doi: 10.1002/for.2385 – volume: 34 start-page: 36 issue: 1 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0001 article-title: Modelling property values in nigeria using artificial neural network publication-title: Journal of Property Research doi: 10.1080/09599916.2017.1286366 – start-page: 87 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0070 article-title: Optimizing ensemble weights for machine learning models: a case study for housing price prediction – ident: 10.1016/j.iswa.2021.200052_bib0108 doi: 10.1108/JES-06-2021-0316 – volume: 74 start-page: 2212 issue: 12–13 year: 2011 ident: 10.1016/j.iswa.2021.200052_bib0032 article-title: Analyzing relationships among arma processes based on non-Gaussianity of external influences publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.02.008 – volume: 23 start-page: 11829 issue: 22 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0049 article-title: Predicting housing price in china based on long short-term memory incorporating modified genetic algorithm publication-title: Soft Computing doi: 10.1007/s00500-018-03739-w – volume: 15 start-page: 29 year: 2013 ident: 10.1016/j.iswa.2021.200052_bib0072 article-title: Artificial neural networks for predicting real estate price publication-title: Revista de Métodos Cuantitativos para la Economía y la Empresa – volume: 16 start-page: e0244953 issue: 2 year: 2021 ident: 10.1016/j.iswa.2021.200052_bib0014 article-title: Predicting the rental value of houses in household surveys in tanzania, uganda and malawi: Evaluations of hedonic pricing and machine learning approaches publication-title: Plos One doi: 10.1371/journal.pone.0244953 – start-page: 64 year: 2020 ident: 10.1016/j.iswa.2021.200052_bib0109 article-title: Spatial prediction of housing prices in Beijing using machine learning algorithms – volume: 16 start-page: 20160006 issue: 2 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0096 article-title: Linear and nonlinear causality between corn cash and futures prices publication-title: Journal of Agricultural & Food Industrial Organization doi: 10.1515/jafio-2016-0006 – volume: 12 start-page: 90 issue: 2 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0114 article-title: Prediction on housing price based on deep learning publication-title: International Journal of Computer and Information Engineering – volume: 2 start-page: 16 issue: 1 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0030 article-title: Prediction of solar radiation based on machine learning methods publication-title: The Journal of Cognitive Systems – volume: 5 start-page: 100035 year: 2021 ident: 10.1016/j.iswa.2021.200052_bib0105 article-title: Individual time series and composite forecasting of the chinese stock index publication-title: Machine Learning with Applications doi: 10.1016/j.mlwa.2021.100035 – volume: 11 issue: 5 year: 2010 ident: 10.1016/j.iswa.2021.200052_bib0024 article-title: Estimation of a structural vector autoregression model using non-Gaussianity publication-title: Journal of Machine Learning Research – volume: 212 start-page: 118750 year: 2020 ident: 10.1016/j.iswa.2021.200052_bib0028 article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series publication-title: Energy doi: 10.1016/j.energy.2020.118750 – volume: 22 start-page: 313 issue: 3 year: 2001 ident: 10.1016/j.iswa.2021.200052_bib0057 article-title: Predicting housing value: A comparison of multiple regression analysis and artificial neural networks publication-title: Journal of Real Estate Research doi: 10.1080/10835547.2001.12091068 – start-page: 5 year: 2004 ident: 10.1016/j.iswa.2021.200052_bib0013 article-title: Generalization for multilayer neural network bayesian regularization or early stopping – volume: 200 start-page: 498 issue: 2 year: 2010 ident: 10.1016/j.iswa.2021.200052_bib0110 article-title: Nonlinearity, data-snooping, and stock index ETFreturn predictability publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2009.01.009 – volume: 8 start-page: 109 issue: 7 year: 2015 ident: 10.1016/j.iswa.2021.200052_bib0050 article-title: Study on the prediction of real estate price index based on HHGA-RBF neural network algorithm publication-title: International Journal of u-and e-Service, Science and Technology doi: 10.14257/ijunesst.2015.8.7.11 – ident: 10.1016/j.iswa.2021.200052_bib0088 – start-page: 4 issue: 1 (5) year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0037 article-title: The use of artificial neural networks (ann) in forecasting housing prices in ankara, turkey publication-title: Journal of Marketing and Consumer Behaviour in Emerging Markets doi: 10.7172/2449-6634.jmcbem.2017.1.1 – volume: 171 start-page: 114590 year: 2021 ident: 10.1016/j.iswa.2021.200052_bib0066 article-title: Machine learning with explainability or spatial hedonics tools? an analysis of the asking prices in the housing market in alicante, spain publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114590 – volume: 6 start-page: 525 issue: 4 year: 1993 ident: 10.1016/j.iswa.2021.200052_bib0054 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80056-5 – volume: 125 start-page: 1439 issue: 3 year: 2014 ident: 10.1016/j.iswa.2021.200052_bib0077 article-title: Real estate price forecasting based on SVM optimized by pso publication-title: Optik doi: 10.1016/j.ijleo.2013.09.017 – start-page: 1321 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0020 article-title: On calibration of modern neural networks – volume: 4 start-page: 415 issue: 3 year: 1992 ident: 10.1016/j.iswa.2021.200052_bib0051 article-title: Bayesian interpolation publication-title: Neural Computation doi: 10.1162/neco.1992.4.3.415 – volume: 36 start-page: 2843 issue: 2 year: 2009 ident: 10.1016/j.iswa.2021.200052_bib0068 article-title: Determinants of house prices in turkey: Hedonic regression versus artificial neural network publication-title: Expert systems with Applications doi: 10.1016/j.eswa.2008.01.044 – volume: 32 start-page: 496 issue: 2 year: 2010 ident: 10.1016/j.iswa.2021.200052_bib0076 article-title: Nonlinearity and intraday efficiency tests on energy futures markets publication-title: Energy Economics doi: 10.1016/j.eneco.2009.08.001 – ident: 10.1016/j.iswa.2021.200052_bib0007 – volume: 57 start-page: 617 issue: 2 year: 2021 ident: 10.1016/j.iswa.2021.200052_bib0085 article-title: A new appraisal model of second-hand housing prices in China’s first-tier cities based on machine learning algorithms publication-title: Computational Economics doi: 10.1007/s10614-020-09973-5 – volume: 31 start-page: 491 issue: 4 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0091 article-title: The rolling causal structure between the chinese stock index and futures publication-title: Financial Markets and Portfolio Management doi: 10.1007/s11408-017-0299-7 – volume: 55 start-page: 1889 issue: 4 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0094 article-title: Cointegration and price discovery in us corn cash and futures markets publication-title: Empirical Economics doi: 10.1007/s00181-017-1322-6 – ident: 10.1016/j.iswa.2021.200052_bib0039 – year: 2014 ident: 10.1016/j.iswa.2021.200052_bib0087 article-title: Price discovery in us corn cash and futures markets: The role of cash market selection – volume: 45 start-page: 2455 issue: 13 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0093 article-title: Causal structure among us corn futures and regional cash prices in the time and frequency domain publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2017.1423044 – volume: 39 start-page: 2052 issue: 3 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0099 article-title: Contemporaneous causal orderings of csi300 and futures prices through directed acyclic graphs publication-title: Economics Bulletin – start-page: 518 year: 2016 ident: 10.1016/j.iswa.2021.200052_bib0046 article-title: Housing price prediction using neural networks – start-page: 98 year: 2007 ident: 10.1016/j.iswa.2021.200052_bib0073 article-title: Case-based reasoning and neural networks for real estate valuation – start-page: 25 year: 2004 ident: 10.1016/j.iswa.2021.200052_bib0047 article-title: House price prediction: hedonic price model vs. artificial neural network – volume: 29 start-page: 15 issue: 1 year: 2016 ident: 10.1016/j.iswa.2021.200052_bib0067 article-title: Application of fuzzy regression model for real estate price prediction publication-title: Malaysian Journal of Computer Science doi: 10.22452/mjcs.vol29no1.2 – volume: 2018 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0010 article-title: Assessment of the real estate market value in the european market by artificial neural networks application publication-title: Complexity doi: 10.1155/2018/1472957 – volume: 5 start-page: 152 issue: 5 year: 2011 ident: 10.1016/j.iswa.2021.200052_bib0025 article-title: Determinants of residential property value in nigeria–a neural network approach publication-title: African Research Review doi: 10.4314/afrrev.v5i5.13 – volume: 8 start-page: 340 issue: 4 year: 2013 ident: 10.1016/j.iswa.2021.200052_bib0055 article-title: Bare ownership evaluation. hedonic price model vs. artificial neural network publication-title: International Journal of Business Intelligence and Data Mining doi: 10.1504/IJBIDM.2013.059263 – start-page: 491 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0062 article-title: Housing price prediction based on CNN – volume: 25 start-page: 321 issue: 4 year: 2008 ident: 10.1016/j.iswa.2021.200052_bib0040 article-title: An artificial neural network and entropy model for residential property price forecasting in hong kong publication-title: Journal of Property Research doi: 10.1080/09599910902837051 – start-page: 1050 year: 2016 ident: 10.1016/j.iswa.2021.200052_bib0017 article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning – volume: 5 start-page: 989 issue: 6 year: 1994 ident: 10.1016/j.iswa.2021.200052_bib0021 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.329697 – volume: 6 year: 2021 ident: 10.1016/j.iswa.2021.200052_bib0106 article-title: Network analysis of corn cash price comovements publication-title: Machine Learning with Applications doi: 10.1016/j.mlwa.2021.100140 – volume: 11 start-page: 431 issue: 2 year: 1963 ident: 10.1016/j.iswa.2021.200052_bib0052 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: Journal of the Society for Industrial and Applied Mathematics doi: 10.1137/0111030 – volume: 126 start-page: 325 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0004 article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2019.07.011 – volume: 4 start-page: 137 issue: 3 year: 2017 ident: 10.1016/j.iswa.2021.200052_bib0029 article-title: Estimation of fast varied wind speed based on narx neural network by using curve fitting publication-title: International Journal of Energy Applications and Technologies – volume: 5 start-page: 16 issue: 1 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0069 article-title: Indian stock market prediction using artificial neural networks on tick data publication-title: Financial Innovation doi: 10.1186/s40854-019-0131-7 – volume: 2 start-page: 384 year: 2010 ident: 10.1016/j.iswa.2021.200052_bib0083 article-title: Applied research on real estate price prediction by the neural network – volume: 13 start-page: 325 issue: S1 year: 2008 ident: 10.1016/j.iswa.2021.200052_bib0034 article-title: Neural network based model for predicting housing market performance publication-title: Tsinghua Science and Technology doi: 10.1016/S1007-0214(08)70169-X – volume: 39 start-page: 1098 issue: 7 year: 2020 ident: 10.1016/j.iswa.2021.200052_bib0053 article-title: Forecasting australia’s real house price index: A comparison of time series and machine learning methods publication-title: Journal of Forecasting doi: 10.1002/for.2678 – start-page: 1054 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0018 article-title: An integrated model for urban subregion house price forecasting: A multi-source data perspective – volume: 17 issue: 9 year: 2019 ident: 10.1016/j.iswa.2021.200052_bib0065 article-title: The artificial neural network model (ann) for malaysian housing market analysis publication-title: Planning Malaysia – volume: 38 start-page: 3383 issue: 4 year: 2011 ident: 10.1016/j.iswa.2021.200052_bib0019 article-title: Housing price forecasting based on genetic algorithm and support vector machine publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.08.123 – volume: 33 start-page: 565 issue: 4 year: 2011 ident: 10.1016/j.iswa.2021.200052_bib0009 article-title: Linear and nonlinear predictablity of international securitized real estate returns: A reality check publication-title: Journal of Real Estate Research doi: 10.1080/10835547.2011.12091317 – volume: 100 start-page: 106996 year: 2021 ident: 10.1016/j.iswa.2021.200052_bib0005 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106996 – volume: 68 start-page: 98 year: 2018 ident: 10.1016/j.iswa.2021.200052_bib0112 article-title: Housing price spillovers in china: A high-dimensional generalized var approach publication-title: Regional Science and Urban Economics doi: 10.1016/j.regsciurbeco.2017.10.016 – volume: 3 start-page: 810 year: 2014 ident: 10.1016/j.iswa.2021.200052_bib0012 article-title: A neural network based model for real estate price estimation considering environmental quality of property location publication-title: Transportation Research Procedia doi: 10.1016/j.trpro.2014.10.067 – volume: 184 start-page: 106120 year: 2021 ident: 10.1016/j.iswa.2021.200052_bib0104 article-title: Corn cash price forecasting with neural networks publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2021.106120 – volume: 2020 year: 2020 ident: 10.1016/j.iswa.2021.200052_bib0045 article-title: The behavioral mechanism and forecasting of Beijing housing prices from a multiscale perspective publication-title: Discrete Dynamics in Nature and Society – volume: 32 start-page: 729 issue: 5 year: 2008 ident: 10.1016/j.iswa.2021.200052_bib0111 article-title: Do euro exchange rates follow a martingale? some out-of-sample evidence publication-title: Journal of Banking & Finance doi: 10.1016/j.jbankfin.2007.05.009 |
SSID | ssj0002811344 |
Score | 2.4735112 |
Snippet | •We develop neural network models for house price forecasting in China.•We explore the forecasting issue for 100 major Chinese cities.•We construct simple,... The house market has been rapidly growing for the past decade in China, making price forecasting an important issue to the people and policy makers. We... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 200052 |
SubjectTerms | Forecasting House price Neural network |
Title | House price forecasting with neural networks |
URI | https://dx.doi.org/10.1016/j.iswa.2021.200052 https://doaj.org/article/054cb28d600b4f46a84d61ce1921cad2 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwvfiPKlDGwQETuOSUZArSqkMlGpm2VfLlIrFCpaxMZv5y5OqrKUhSVD5DjRnS_vnXV-J8Q1GIAcwMcJaBMTI1axL5yPs3vnDVe9QsUb-qMXMxzr50k2WWv1xTVhQR44GO6OKAV4lZcEzF5X2rhcl0YCso4XuLL5-xLmrSVTs2bLSMq06eRKAERRREutPTETirumiy8WHVJNhphk6hcqNeL9a-C0BjiDfbHbMsXoIXzhgdjC-lDsdV0YojYoj8TtkJJ3jOasDhQRBUVwC65ljniLNWK9SpqlDtXei2MxHvRfn4Zx2wMhBi2TZYxYpQZVgcTkwSjvUi8VQGGwAicJTEBWiXceUkmjtKvyslAOiRdU2hcqS0_Edv1e46mIEoQyQYpopxwlHZnXmOUSIC0dhbYzPSE7G1hoBcK5T8Wb7SrBZpbtZtluNtitJ25Wz8yDPMbG0Y9s2tVIlrZubpDDbetw-5fDeyLrHGNblhDQn6aabnj52X-8_Fzs8JThMOKF2F5-fOIlsZKlv2oWIF1H3_0fGv7eMw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=House+price+forecasting+with+neural+networks&rft.jtitle=Intelligent+systems+with+applications&rft.au=Xu%2C+Xiaojie&rft.au=Zhang%2C+Yun&rft.date=2021-11-01&rft.issn=2667-3053&rft.eissn=2667-3053&rft.volume=12&rft.spage=200052&rft_id=info:doi/10.1016%2Fj.iswa.2021.200052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_iswa_2021_200052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-3053&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-3053&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-3053&client=summon |