Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis

Developing highly efficient, inexpensive catalysts for oxygen electrocatalysis in alkaline electrolytes (i.e., the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER)) is essential for constructing advanced energy conversion techniques (such as electrolyzers, fuel cells, and meta...

Full description

Saved in:
Bibliographic Details
Published ineScience (Beijing) Vol. 3; no. 4; p. 100141
Main Authors Wang, Xia, Yu, Minghao, Feng, Xinliang
Format Journal Article
LanguageEnglish
Published KeAi Communications Co. Ltd 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing highly efficient, inexpensive catalysts for oxygen electrocatalysis in alkaline electrolytes (i.e., the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER)) is essential for constructing advanced energy conversion techniques (such as electrolyzers, fuel cells, and metal–air batteries). Recent achievements in efficient noble metal-free ORR and OER catalysts make the replacement of conventional noble metal counterparts a realistic possibility. In particular, various electronic structure regulation strategies have been employed to endow these oxygen catalysts with attractive physicochemical properties and strong synergistic effects, providing significant fundamental understanding to advance in this direction. This review article summarizes recently developed electronic structure regulation strategies for three types of noble metal-free oxygen catalysts: transition metal compounds, single-atom catalysts, and metal-free catalysts. We begin by briefly presenting the basic ORR and OER reaction mechanisms, following this with an analysis of the fundamental relationship between electronic structure and intrinsic electrocatalytic activity for the three categories of catalysts. Subsequently, recent advances in electronic structure regulation strategies for noble metal-free ORR and OER catalysts are systematically discussed. We conclude by summarizing the remaining challenges and presenting our outlook on the future for designing and synthesizing noble metal-free oxygen electrocatalysts.
AbstractList Developing highly efficient, inexpensive catalysts for oxygen electrocatalysis in alkaline electrolytes (i.e., the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER)) is essential for constructing advanced energy conversion techniques (such as electrolyzers, fuel cells, and metal–air batteries). Recent achievements in efficient noble metal-free ORR and OER catalysts make the replacement of conventional noble metal counterparts a realistic possibility. In particular, various electronic structure regulation strategies have been employed to endow these oxygen catalysts with attractive physicochemical properties and strong synergistic effects, providing significant fundamental understanding to advance in this direction. This review article summarizes recently developed electronic structure regulation strategies for three types of noble metal-free oxygen catalysts: transition metal compounds, single-atom catalysts, and metal-free catalysts. We begin by briefly presenting the basic ORR and OER reaction mechanisms, following this with an analysis of the fundamental relationship between electronic structure and intrinsic electrocatalytic activity for the three categories of catalysts. Subsequently, recent advances in electronic structure regulation strategies for noble metal-free ORR and OER catalysts are systematically discussed. We conclude by summarizing the remaining challenges and presenting our outlook on the future for designing and synthesizing noble metal-free oxygen electrocatalysts.
ArticleNumber 100141
Author Wang, Xia
Feng, Xinliang
Yu, Minghao
Author_xml – sequence: 1
  givenname: Xia
  surname: Wang
  fullname: Wang, Xia
– sequence: 2
  givenname: Minghao
  orcidid: 0000-0002-0211-0778
  surname: Yu
  fullname: Yu, Minghao
– sequence: 3
  givenname: Xinliang
  surname: Feng
  fullname: Feng, Xinliang
BookMark eNp9kM1KAzEUhYMo-PsCrvICU5NMJpkuRaoWBDe6DjfJnZIaJ5KkaN_eqRURF67u4XDPt_hOyeGYRiTkkrMZZ1xdrWdYXJgJJtqpYFzyA3IilNLNFPXhr3xMLkpZM8ZEz3kr9QnBRURXcxqDo6XmjaubjDTjahOhhjTSNNAx2Yj0FSvEZsg4RaiYA8RCa3qH7CnEF4hhRJo-tiscKe6hDqbJtoRyTo6G6R0vvu8Zeb5dPN3cNw-Pd8ub64fGSc5qg3OQApn0VuoBvPbzngnbcd-j6qW1wg7WK-tarZhW3mlllZKeacv63s9de0aWe65PsDZvObxC3poEwXwVKa8M5BpcRMM70B10PXqBUjE-V8Jy3XbecWg7qSeW2LNcTqVkHH54nJmdd7M2O-9m593svU-j_s_IhfolsmYI8b_pJyY4jdI
CitedBy_id crossref_primary_10_1021_acsaenm_4c00831
crossref_primary_10_1039_D4QI00124A
crossref_primary_10_1002_ange_202319518
crossref_primary_10_1021_acs_inorgchem_3c03826
crossref_primary_10_1016_j_jcis_2024_05_049
crossref_primary_10_1021_acscatal_4c06836
crossref_primary_10_1016_j_jcis_2025_137305
crossref_primary_10_1016_j_jelechem_2025_119052
crossref_primary_10_1002_adma_202411709
crossref_primary_10_1016_j_cej_2024_158465
crossref_primary_10_1002_smll_202404786
crossref_primary_10_1002_ente_202401978
crossref_primary_10_1016_j_jcis_2024_12_078
crossref_primary_10_1016_j_surfin_2025_106071
crossref_primary_10_1021_acs_inorgchem_4c05429
crossref_primary_10_1016_j_jre_2024_10_008
crossref_primary_10_1016_j_jpcs_2025_112556
crossref_primary_10_1002_ange_202422920
crossref_primary_10_1016_j_cej_2024_158051
crossref_primary_10_1039_D4GC05650G
crossref_primary_10_1021_acsanm_4c07115
crossref_primary_10_1007_s12598_024_03201_x
crossref_primary_10_1016_j_fuel_2024_133516
crossref_primary_10_1016_j_fuel_2024_133915
crossref_primary_10_1002_advs_202401780
crossref_primary_10_1039_D3TA05023H
crossref_primary_10_1002_smll_202408227
crossref_primary_10_1007_s40843_024_3126_1
crossref_primary_10_1007_s42823_023_00679_w
crossref_primary_10_1016_j_ijhydene_2024_10_237
crossref_primary_10_1002_aenm_202402657
crossref_primary_10_3390_nano14181533
crossref_primary_10_1021_acscatal_4c03060
crossref_primary_10_1039_D4QI01851F
crossref_primary_10_1016_j_esci_2024_100352
crossref_primary_10_1016_j_apcatb_2024_125007
crossref_primary_10_1039_D5EE00074B
crossref_primary_10_1002_aenm_202404077
crossref_primary_10_1002_adfm_202417580
crossref_primary_10_1021_acsanm_3c03751
crossref_primary_10_1002_smll_202500616
crossref_primary_10_1016_j_ijhydene_2024_11_286
crossref_primary_10_1016_j_isci_2023_108718
crossref_primary_10_1002_adfm_202413134
crossref_primary_10_1039_D3TA00555K
crossref_primary_10_1016_j_apcatb_2023_123579
crossref_primary_10_1002_tcr_202400151
crossref_primary_10_1021_acsami_4c07279
crossref_primary_10_1021_acsami_4c07953
crossref_primary_10_1002_adma_202413141
crossref_primary_10_1002_adfm_202423552
crossref_primary_10_1016_j_ijhydene_2025_02_051
crossref_primary_10_1039_D4TA05798H
crossref_primary_10_1039_D4TA07911F
crossref_primary_10_1007_s12274_023_6038_7
crossref_primary_10_1002_advs_202408754
crossref_primary_10_1002_anie_202319518
crossref_primary_10_1016_j_jcis_2025_02_081
crossref_primary_10_1021_acs_langmuir_4c01797
crossref_primary_10_1016_j_apsusc_2025_162696
crossref_primary_10_1039_D4QI00919C
crossref_primary_10_1002_adma_202500063
crossref_primary_10_1016_j_mtcomm_2024_110677
crossref_primary_10_1016_j_ijhydene_2024_10_411
crossref_primary_10_1002_smll_202411894
crossref_primary_10_1515_zpch_2023_0312
crossref_primary_10_1021_acsaem_4c03303
crossref_primary_10_1039_D4QI03298E
crossref_primary_10_1002_adma_202412950
crossref_primary_10_1021_jacs_5c00665
crossref_primary_10_1002_ifm2_19
crossref_primary_10_1016_j_apsusc_2024_159464
crossref_primary_10_1002_adfm_202416551
crossref_primary_10_1007_s12274_024_6507_7
crossref_primary_10_1021_acs_jpclett_4c03301
crossref_primary_10_1002_smll_202409129
crossref_primary_10_1002_smll_202409404
crossref_primary_10_1016_j_apcatb_2024_124921
crossref_primary_10_1016_j_apsusc_2024_160183
crossref_primary_10_1039_D4DT01625D
crossref_primary_10_1016_j_ijhydene_2025_01_228
crossref_primary_10_1016_j_esci_2024_100264
crossref_primary_10_1007_s44246_023_00090_0
crossref_primary_10_1016_j_fuel_2025_134349
crossref_primary_10_1016_j_esci_2024_100312
crossref_primary_10_1016_j_jpowsour_2024_235784
crossref_primary_10_1002_adfm_202408517
crossref_primary_10_1021_accountsmr_3c00266
crossref_primary_10_1016_j_jcis_2025_01_075
crossref_primary_10_1039_D4CE01298D
crossref_primary_10_1002_celc_202300516
crossref_primary_10_1016_j_jelechem_2024_118671
crossref_primary_10_1002_adma_202416126
crossref_primary_10_1039_D5TA00134J
crossref_primary_10_1016_j_esci_2024_100272
crossref_primary_10_1038_s41598_024_55085_7
crossref_primary_10_1002_adfm_202425640
crossref_primary_10_1002_smll_202307278
crossref_primary_10_1002_smll_202401019
crossref_primary_10_1002_ange_202400888
crossref_primary_10_1002_adma_202308746
crossref_primary_10_1002_anie_202422920
crossref_primary_10_1002_adma_202418757
crossref_primary_10_3390_nano13131945
crossref_primary_10_1093_nsr_nwae193
crossref_primary_10_1021_acs_nanolett_4c00315
crossref_primary_10_1039_D4QM00842A
crossref_primary_10_1016_j_electacta_2023_143587
crossref_primary_10_1039_D4SC05206D
crossref_primary_10_1002_smll_202404000
crossref_primary_10_1002_smll_202403151
crossref_primary_10_1016_j_ijhydene_2024_10_049
crossref_primary_10_1016_j_jelechem_2024_118863
crossref_primary_10_1016_j_apcatb_2024_124949
crossref_primary_10_1039_D3CS00010A
crossref_primary_10_1021_acsmaterialslett_4c00778
crossref_primary_10_1016_j_nanoen_2024_110529
crossref_primary_10_1016_j_cej_2024_149243
crossref_primary_10_1021_acs_chemrev_3c00931
crossref_primary_10_1039_D4GC04466E
crossref_primary_10_1002_smll_202307662
crossref_primary_10_1016_j_mcat_2024_114489
crossref_primary_10_1016_j_surfin_2024_105499
crossref_primary_10_1016_j_cej_2024_157263
crossref_primary_10_1016_j_jece_2024_114326
crossref_primary_10_1039_D3CE00728F
crossref_primary_10_1039_D4CC04075A
crossref_primary_10_1039_D4SC07186G
crossref_primary_10_1002_smll_202309727
crossref_primary_10_1002_anie_202400888
crossref_primary_10_1016_j_fuel_2025_134283
crossref_primary_10_1016_j_jechem_2024_05_021
Cites_doi 10.1002/adma.202003075
10.1002/adma.201606793
10.1021/acsnano.7b08721
10.1021/j100082a030
10.1002/adfm.201706008
10.1002/anie.201509982
10.1021/cs500744x
10.1016/j.jelechem.2006.11.008
10.1002/adfm.202004009
10.1038/nchem.1069
10.1016/0013-4686(66)80045-2
10.1039/C7MH00358G
10.1002/aenm.202101242
10.1002/adma.201601406
10.3390/nano9081161
10.1002/adma.201102306
10.1021/acscatal.2c00697
10.1039/c3ee41444b
10.1021/jacs.6b05398
10.1126/science.aan8285
10.1002/anie.202003917
10.1016/j.jechem.2020.04.012
10.1021/jacs.9b09352
10.1039/D1CS00330E
10.1021/acsmaterialslett.9b00094
10.1002/adfm.201806419
10.1126/science.aaf7680
10.1002/anie.201914967
10.1038/nenergy.2016.189
10.1016/S1872-2067(19)63284-5
10.1002/ange.201600687
10.1002/advs.201800036
10.1038/s41467-020-16237-1
10.1021/acs.accounts.6b00635
10.1038/s41467-020-15873-x
10.1098/rspa.2014.0792
10.1002/ange.201307203
10.1126/science.aac9439
10.1021/jacs.8b07294
10.1039/C9CP05548G
10.1021/nn204153h
10.1038/nchem.367
10.1021/jacs.8b13701
10.1002/ange.202002665
10.1038/natrevmats.2017.59
10.1021/acscatal.0c02388
10.1002/adfm.201804886
10.1038/s41929-017-0008-y
10.1021/acs.accounts.7b00616
10.1038/s41467-020-16848-8
10.1039/c1cp21228a
10.1002/adma.201602868
10.1126/science.1212858
10.1039/C4EE00942H
10.1111/j.1151-2916.1999.tb02241.x
10.1039/D0QM00729C
10.1021/ja502379c
10.1126/science.1191700
10.1021/jacs.6b03714
10.1002/adma.201304138
10.1016/j.apcatb.2019.03.021
10.1039/C5TA02063H
10.1038/s41563-019-0571-5
10.1002/ange.201810175
10.1126/sciadv.1501122
10.1002/adma.201907168
10.1038/ncomms12876
10.1038/s41563-019-0535-9
10.1016/j.nantod.2019.02.008
10.1039/C9CS00607A
10.1038/nnano.2015.48
10.1021/acsnano.7b00417
10.1002/ange.202003842
10.1039/C6MH00358C
10.1038/ncomms3439
10.1002/adfm.201401264
10.1126/science.aba8311
10.1002/adma.201503211
10.1002/adma.201302753
10.1016/j.nanoen.2017.11.004
10.1126/science.aad0832
10.1039/c1cs15228a
10.1103/PhysRevLett.90.156401
10.1039/C7CS00705A
10.1021/ja5085157
10.1126/science.185.4147.258
10.1002/smll.202202033
10.1039/C4CS00236A
10.1021/jp047349j
10.1016/j.cattod.2008.09.019
10.1002/ange.201406695
10.1002/cctc.201000397
10.1038/s41467-020-14565-w
10.1021/acs.chemmater.5b04457
10.1002/anie.201006768
10.1021/acsami.7b03033
10.1039/C6EE03446B
10.1126/science.aaf1525
10.1021/jacs.9b04492
10.1038/nmat4551
10.1002/adma.201606800
10.1021/acscatal.7b02739
10.1038/s41467-021-20923-z
10.1126/science.aam7092
10.1038/s41467-019-09394-5
10.1039/C5CS00670H
10.1021/jacs.5b11713
10.1016/j.jpowsour.2015.09.081
10.1002/adma.201805268
10.1126/science.aad4998
10.1038/s41929-018-0063-z
10.1039/C8EE02656D
10.1103/PhysRevB.56.8902
10.1002/anie.201701477
10.1039/C5CC01841B
10.1016/j.ccr.2012.12.012
10.1002/aenm.201900945
10.1002/adma.201905622
10.1039/C6CS00328A
10.1038/ncomms4949
10.1039/c3cp51213d
10.1002/adma.201604103
10.1016/S0360-0564(02)45013-4
10.1103/PhysRevB.60.4665
10.1002/aenm.201400696
10.1038/nature11115
10.1039/C5CP06682D
10.1039/C4CS00484A
10.1021/jacs.9b11852
10.1016/j.nanoen.2019.01.011
10.1039/C8CS00024G
10.1021/cr300367d
10.1039/c2nr31858j
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.esci.2023.100141
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2667-1417
ExternalDocumentID oai_doaj_org_article_15a75a58ed2e4601962b1735dc1a3547
10_1016_j_esci_2023_100141
GroupedDBID 0R~
AALRI
AAXUO
AAYWO
AAYXX
ADVLN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CITATION
EBS
FDB
GROUPED_DOAJ
M41
ROL
ID FETCH-LOGICAL-c410t-e9a42e04db47fad7d9802b51d8e684bb2bfbd6bc376076dc76b664d07b088d9c3
IEDL.DBID DOA
ISSN 2667-1417
IngestDate Wed Aug 27 01:19:38 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Tue Jul 01 00:57:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-e9a42e04db47fad7d9802b51d8e684bb2bfbd6bc376076dc76b664d07b088d9c3
ORCID 0000-0002-0211-0778
OpenAccessLink https://doaj.org/article/15a75a58ed2e4601962b1735dc1a3547
ParticipantIDs doaj_primary_oai_doaj_org_article_15a75a58ed2e4601962b1735dc1a3547
crossref_primary_10_1016_j_esci_2023_100141
crossref_citationtrail_10_1016_j_esci_2023_100141
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-00
2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-00
PublicationDecade 2020
PublicationTitle eScience (Beijing)
PublicationYear 2023
Publisher KeAi Communications Co. Ltd
Publisher_xml – name: KeAi Communications Co. Ltd
References Seh (10.1016/j.esci.2023.100141_bib1) 2017; 355
Wei (10.1016/j.esci.2023.100141_bib39) 2017; 29
Levy (10.1016/j.esci.2023.100141_bib148) 2010; 329
Tang (10.1016/j.esci.2023.100141_bib133) 2016; 28
Cai (10.1016/j.esci.2023.100141_bib82) 2017; 4
Yin (10.1016/j.esci.2023.100141_bib98) 2016; 138
Tian (10.1016/j.esci.2023.100141_bib85) 2014; 24
Suntivich (10.1016/j.esci.2023.100141_bib16) 2011; 3
Wang (10.1016/j.esci.2023.100141_bib108) 2019; 29
Yin (10.1016/j.esci.2023.100141_bib153) 2017; 11
Wang (10.1016/j.esci.2023.100141_bib14) 2021; 33
Gusmão (10.1016/j.esci.2023.100141_bib74) 2020; 10
Ritter (10.1016/j.esci.2023.100141_bib25) 1997; 56
Chen (10.1016/j.esci.2023.100141_bib156) 2020; 32
Liu (10.1016/j.esci.2023.100141_bib96) 2017; 29
Kamysbayev (10.1016/j.esci.2023.100141_bib53) 2020; 369
Lu (10.1016/j.esci.2023.100141_bib113) 2019; 131
Sun (10.1016/j.esci.2023.100141_bib111) 2021; 33
Novoselov (10.1016/j.esci.2023.100141_bib151) 2016; 353
Naguib (10.1016/j.esci.2023.100141_bib52) 2014; 26
Sabatier (10.1016/j.esci.2023.100141_bib8) 1920
Dionigi (10.1016/j.esci.2023.100141_bib61) 2020; 11
Zhu (10.1016/j.esci.2023.100141_bib76) 2020; 10
Qian (10.1016/j.esci.2023.100141_bib101) 2019; 250
Dong (10.1016/j.esci.2023.100141_bib47) 2013; 257
Liu (10.1016/j.esci.2023.100141_bib87) 2011; 50
Duan (10.1016/j.esci.2023.100141_bib124) 2020; 59
Nørskov (10.1016/j.esci.2023.100141_bib15) 2004; 108
Oyama (10.1016/j.esci.2023.100141_bib55) 2009; 143
Zamora Zeledón (10.1016/j.esci.2023.100141_bib4) 2021; 12
Nie (10.1016/j.esci.2023.100141_bib21) 2015; 44
Dinh (10.1016/j.esci.2023.100141_bib46) 2019; 25
Yang (10.1016/j.esci.2023.100141_bib77) 2016; 2
Paraknowitsch (10.1016/j.esci.2023.100141_bib90) 2013; 6
Petrie (10.1016/j.esci.2023.100141_bib145) 2016; 138
Peng (10.1016/j.esci.2023.100141_bib72) 2014; 4
Naguib (10.1016/j.esci.2023.100141_bib49) 2011; 23
Gao (10.1016/j.esci.2023.100141_bib37) 2014; 7
Xu (10.1016/j.esci.2023.100141_bib71) 2018; 1
Lim (10.1016/j.esci.2023.100141_bib58) 2015; 3
Rossmeisl (10.1016/j.esci.2023.100141_bib22) 2007; 607
Guo (10.1016/j.esci.2023.100141_bib104) 2018; 12
Li (10.1016/j.esci.2023.100141_bib64) 2017; 13
Zhang (10.1016/j.esci.2023.100141_bib69) 2021; 11
Zhang (10.1016/j.esci.2023.100141_bib99) 2021; 50
Su (10.1016/j.esci.2023.100141_bib84) 2013; 113
Zhuang (10.1016/j.esci.2023.100141_bib127) 2017; 29
Wang (10.1016/j.esci.2023.100141_bib65) 2017; 56
Yuan (10.1016/j.esci.2023.100141_bib122) 2020; 142
Tang (10.1016/j.esci.2023.100141_bib29) 2018; 51
Sun (10.1016/j.esci.2023.100141_bib9) 2015; 44
Sickafus (10.1016/j.esci.2023.100141_bib42) 1999; 82
Noh (10.1016/j.esci.2023.100141_bib141) 2022; 12
Suntivich (10.1016/j.esci.2023.100141_bib32) 2011; 334
Bode (10.1016/j.esci.2023.100141_bib41) 1966; 11
Wang (10.1016/j.esci.2023.100141_bib105) 2022; 134
Fu (10.1016/j.esci.2023.100141_bib75) 2019; 9
Das (10.1016/j.esci.2023.100141_bib137) 2022; 18
Calle-Vallejo (10.1016/j.esci.2023.100141_bib23) 2011; 13
Zhao (10.1016/j.esci.2023.100141_bib80) 2019; 31
Liu (10.1016/j.esci.2023.100141_bib138) 2014; 136
Zhao (10.1016/j.esci.2023.100141_bib70) 2021; 60
Hu (10.1016/j.esci.2023.100141_bib81) 2016; 55
Tyson (10.1016/j.esci.2023.100141_bib24) 1999; 60
Huang (10.1016/j.esci.2023.100141_bib62) 2019; 40
Tan (10.1016/j.esci.2023.100141_bib67) 2016; 18
Hu (10.1016/j.esci.2023.100141_bib135) 2018; 47
Man (10.1016/j.esci.2023.100141_bib31) 2011; 3
Naguib (10.1016/j.esci.2023.100141_bib50) 2012; 6
Shen (10.1016/j.esci.2023.100141_bib94) 2014; 126
Hou (10.1016/j.esci.2023.100141_bib103) 2019; 10
Maiyalagan (10.1016/j.esci.2023.100141_bib5) 2014; 5
Liu (10.1016/j.esci.2023.100141_bib28) 2016; 1
Yu (10.1016/j.esci.2023.100141_bib116) 2021; 11
Tao (10.1016/j.esci.2023.100141_bib134) 2016; 138
Zhao (10.1016/j.esci.2023.100141_bib106) 2015; 27
Hou (10.1016/j.esci.2023.100141_bib140) 2020; 132
Sa (10.1016/j.esci.2023.100141_bib83) 2014; 126
Pomerantseva (10.1016/j.esci.2023.100141_bib7) 2019; 366
Zhang (10.1016/j.esci.2023.100141_bib121) 2019; 141
Zhu (10.1016/j.esci.2023.100141_bib136) 2018; 47
Sun (10.1016/j.esci.2023.100141_bib142) 2018; 5
Debe (10.1016/j.esci.2023.100141_bib2) 2012; 486
Yu (10.1016/j.esci.2023.100141_bib109) 2017; 29
Doyle (10.1016/j.esci.2023.100141_bib40) 2013; 15
Tam (10.1016/j.esci.2023.100141_bib86) 2019; 9
Qiu (10.1016/j.esci.2023.100141_bib57) 2018; 28
Xu (10.1016/j.esci.2023.100141_bib149) 2021; 14
Yang (10.1016/j.esci.2023.100141_bib11) 2021; 31
Zhang (10.1016/j.esci.2023.100141_bib78) 2015; 10
Xu (10.1016/j.esci.2023.100141_bib128) 2016; 128
Kuang (10.1016/j.esci.2023.100141_bib126) 2018; 28
Jiang (10.1016/j.esci.2023.100141_bib154) 2018; 8
Xu (10.1016/j.esci.2023.100141_bib38) 2019; 9
Aronsson (10.1016/j.esci.2023.100141_bib54) 1965
Wang (10.1016/j.esci.2023.100141_bib12) 2018; 28
Minot (10.1016/j.esci.2023.100141_bib147) 2003; 90
Han (10.1016/j.esci.2023.100141_bib115) 2019; 31
Mu (10.1016/j.esci.2023.100141_bib43) 2020; 32
Lu (10.1016/j.esci.2023.100141_bib97) 2017; 42
Yang (10.1016/j.esci.2023.100141_bib155) 2019; 141
Wang (10.1016/j.esci.2023.100141_bib68) 2020; 32
Jung (10.1016/j.esci.2023.100141_bib123) 2020; 19
Wang (10.1016/j.esci.2023.100141_bib3) 2021; 33
Gao (10.1016/j.esci.2023.100141_bib146) 2020; 22
Huang (10.1016/j.esci.2023.100141_bib110) 2015; 51
Luo (10.1016/j.esci.2023.100141_bib143) 2017; 2
Houston (10.1016/j.esci.2023.100141_bib48) 1974; 185
Liu (10.1016/j.esci.2023.100141_bib13) 2020; 7
Grimaud (10.1016/j.esci.2023.100141_bib30) 2016; 15
Zhu (10.1016/j.esci.2023.100141_bib66) 2017; 9
Wang (10.1016/j.esci.2023.100141_bib114) 2018; 11
Wang (10.1016/j.esci.2023.100141_bib144) 2016; 354
Greeley (10.1016/j.esci.2023.100141_bib27) 2009; 1
Pan (10.1016/j.esci.2023.100141_bib36) 2002; 11
Jin (10.1016/j.esci.2023.100141_bib150) 2012; 4
Song (10.1016/j.esci.2023.100141_bib34) 2020; 49
Cui (10.1016/j.esci.2023.100141_bib92) 2017; 4
Zhao (10.1016/j.esci.2023.100141_bib152) 2021; 5
Jiang (10.1016/j.esci.2023.100141_bib132) 2018; 140
Song (10.1016/j.esci.2023.100141_bib139) 2015; 300
Wang (10.1016/j.esci.2023.100141_bib95) 2018; 15
Hwang (10.1016/j.esci.2023.100141_bib10) 2017; 358
Guo (10.1016/j.esci.2023.100141_bib107) 2018; 28
Hall (10.1016/j.esci.2023.100141_bib59) 2015; 471
Liu (10.1016/j.esci.2023.100141_bib102) 2019; 141
Cheng (10.1016/j.esci.2023.100141_bib18) 2012; 41
Liu (10.1016/j.esci.2023.100141_bib131) 2020; 11
Tang (10.1016/j.esci.2023.100141_bib120) 2020; 132
Zhu (10.1016/j.esci.2023.100141_bib91) 2017; 50
Chen (10.1016/j.esci.2023.100141_bib119) 2019; 1
Grimaud (10.1016/j.esci.2023.100141_bib33) 2013; 4
Fei (10.1016/j.esci.2023.100141_bib73) 2018; 1
Liu (10.1016/j.esci.2023.100141_bib117) 2019; 58
Lei (10.1016/j.esci.2023.100141_bib88) 2018; 8
Jeon (10.1016/j.esci.2023.100141_bib89) 2013; 25
Shao (10.1016/j.esci.2023.100141_bib157) 2019; 29
Zhu (10.1016/j.esci.2023.100141_bib112) 2020; 10
Suen (10.1016/j.esci.2023.100141_bib44) 2017; 46
Liu (10.1016/j.esci.2023.100141_bib45) 2021; 53
Zinola (10.1016/j.esci.2023.100141_bib19) 1994; 98
Zhu (10.1016/j.esci.2023.100141_bib20) 2016; 45
Wang (10.1016/j.esci.2023.100141_bib125) 2014; 4
Pu (10.1016/j.esci.2023.100141_bib56) 2020; 30
Zhang (10.1016/j.esci.2023.100141_bib63) 2016; 352
Chai (10.1016/j.esci.2023.100141_bib93) 2017; 10
Sun (10.1016/j.esci.2023.100141_bib51) 2022
Zhu (10.1016/j.esci.2023.100141_bib130) 2016; 28
Grimaud (10.1016/j.esci.2023.100141_bib35) 2016; 2
Lu (10.1016/j.esci.2023.100141_bib158) 2019; 31
Trotochaud (10.1016/j.esci.2023.100141_bib60) 2014; 136
Hammer (10.1016/j.esci.2023.100141_bib26) 2000
Guo (10.1016/j.esci.2023.100141_bib17) 2016; 351
Yuan (10.1016/j.esci.2023.100141_bib6) 2020; 19
Shang (10.1016/j.esci.2023.100141_bib118) 2020; 11
Ling (10.1016/j.esci.2023.100141_bib129) 2016; 7
Zhu (10.1016/j.esci.2023.100141_bib100) 2018; 30
Tang (10.1016/j.esci.2023.100141_bib79) 2017; 29
References_xml – volume: 33
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib111
  article-title: Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003075
– volume: 29
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib127
  article-title: Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606793
– volume: 12
  start-page: 1894
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib104
  article-title: Carbon nanosheets containing discrete Co-N x-B y-C active sites for efficient oxygen electrocatalysis and rechargeable Zn–Air Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08721
– volume: 98
  start-page: 7566
  year: 1994
  ident: 10.1016/j.esci.2023.100141_bib19
  article-title: A quantum chemical approach to the influence of platinum surface structure on the oxygen electroreduction reaction
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100082a030
– volume: 29
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib108
  article-title: Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis
  publication-title: Adv. Funct. Mater.
– volume: 28
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib57
  article-title: Fabrication of nickel–cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706008
– volume: 13
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib64
  article-title: Anionic regulated NiFe (oxy) sulfide electrocatalysts for water oxidation
  publication-title: Small
– volume: 32
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib68
  article-title: Lattice-strain engineering of homogeneous NiS0.5Se0.5 core–shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib80
  article-title: Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage
  publication-title: Adv. Mater.
– volume: 55
  start-page: 11736
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib81
  article-title: Carbon-based metal-free catalysts for electrocatalysis beyond the ORR
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509982
– volume: 4
  start-page: 3797
  year: 2014
  ident: 10.1016/j.esci.2023.100141_bib72
  article-title: Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application
  publication-title: ACS Catal.
  doi: 10.1021/cs500744x
– volume: 607
  start-page: 83
  year: 2007
  ident: 10.1016/j.esci.2023.100141_bib22
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 30
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib56
  article-title: Transition-metal phosphides: activity origin, energy-related electrocatalysis applications, and synthetic strategies
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004009
– volume: 3
  start-page: 546
  year: 2011
  ident: 10.1016/j.esci.2023.100141_bib16
  article-title: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1069
– volume: 11
  start-page: 1079
  year: 1966
  ident: 10.1016/j.esci.2023.100141_bib41
  article-title: Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(66)80045-2
– volume: 4
  start-page: 945
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib82
  article-title: Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design
  publication-title: Mater. Horiz.
  doi: 10.1039/C7MH00358G
– volume: 15
  start-page: 124
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib95
  article-title: Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries
  publication-title: Energy Stor. Mater.
– volume: 11
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib116
  article-title: Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101242
– volume: 28
  start-page: 6845
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib133
  article-title: Topological defects in metal-free nanocarbon for oxygen electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601406
– volume: 9
  start-page: 1161
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib38
  article-title: Recent advances in oxygen electrocatalysts based on perovskite oxides
  publication-title: Nanomaterials
  doi: 10.3390/nano9081161
– volume: 23
  start-page: 4248
  year: 2011
  ident: 10.1016/j.esci.2023.100141_bib49
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 8
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib154
  article-title: Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable zn–air batteries
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 7994
  year: 2022
  ident: 10.1016/j.esci.2023.100141_bib141
  article-title: Molecularly engineered carbon platform to anchor edge-hosted single-atomic M–N/C (M= Fe, Co, Ni, Cu) electrocatalysts of outstanding durability
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00697
– volume: 6
  start-page: 2839
  year: 2013
  ident: 10.1016/j.esci.2023.100141_bib90
  article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41444b
– volume: 138
  start-page: 9978
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib134
  article-title: Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05398
– volume: 366
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib7
  article-title: Energy storage: the future enabled by nanomaterials
  publication-title: Science
  doi: 10.1126/science.aan8285
– volume: 60
  start-page: 4448
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib70
  article-title: Intrinsic electrocatalytic activity regulation of M–N–C single-atom catalysts for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003917
– volume: 53
  start-page: 290
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib45
  article-title: Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.04.012
– volume: 141
  start-page: 20118
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib121
  article-title: Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09352
– volume: 50
  start-page: 9817
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib99
  article-title: Doping regulation in transition metal compounds for electrocatalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00330E
– volume: 1
  start-page: 139
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib119
  article-title: Tailoring electronic structure of atomically dispersed metal–N3S1 active sites for highly efficient oxygen reduction catalysis
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00094
– volume: 29
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib157
  article-title: Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806419
– volume: 354
  start-page: 1031
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib144
  article-title: Direct and continuous strain control of catalysts with tunable battery electrode materials
  publication-title: Science
  doi: 10.1126/science.aaf7680
– volume: 59
  start-page: 8181
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib124
  article-title: Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914967
– volume: 33
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib3
  article-title: Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib35
  article-title: Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.189
– volume: 40
  start-page: 1822
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib62
  article-title: Electronic structure regulation on layered double hydroxides for oxygen evolution reaction
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63284-5
– volume: 33
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib14
  article-title: Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications
  publication-title: Adv. Mater.
– volume: 128
  start-page: 5363
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib128
  article-title: Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201600687
– volume: 5
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib142
  article-title: B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800036
– volume: 11
  start-page: 2522
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib61
  article-title: In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16237-1
– volume: 50
  start-page: 915
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib91
  article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00635
– volume: 11
  start-page: 2002
  year: 2002
  ident: 10.1016/j.esci.2023.100141_bib36
  article-title: Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15873-x
– volume: 471
  year: 2015
  ident: 10.1016/j.esci.2023.100141_bib59
  article-title: Nickel hydroxides and related materials: a review of their structures, synthesis and properties
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2014.0792
– volume: 126
  start-page: 4186
  year: 2014
  ident: 10.1016/j.esci.2023.100141_bib83
  article-title: Carbon nanotubes/heteroatom-doped carbon core–sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201307203
– volume: 353
  start-page: aac9439
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib151
  article-title: 2D materials and van der Waals heterostructures
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 140
  start-page: 11594
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib132
  article-title: Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07294
– volume: 22
  start-page: 2457
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib146
  article-title: Strain effects on Co, N co-decorated graphyne catalysts for overall water splitting electrocatalysis
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP05548G
– volume: 6
  start-page: 1322
  year: 2012
  ident: 10.1016/j.esci.2023.100141_bib50
  article-title: Two-dimensional transition metal carbides
  publication-title: ACS Nano
  doi: 10.1021/nn204153h
– volume: 1
  start-page: 552
  year: 2009
  ident: 10.1016/j.esci.2023.100141_bib27
  article-title: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.367
– volume: 141
  start-page: 8136
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib102
  article-title: Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13701
– volume: 132
  start-page: 7454
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib140
  article-title: Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202002665
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib143
  article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.59
– volume: 10
  start-page: 9634
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib74
  article-title: Recent developments on the single atom supported at 2D materials beyond graphene as catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02388
– volume: 28
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib126
  article-title: Electronic tuning of Co, Ni-based nanostructured (Hydr) oxides for aqueous electrocatalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804886
– volume: 1
  start-page: 63
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib73
  article-title: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 51
  start-page: 881
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib29
  article-title: Multiscale principles to boost reactivity in gas-involving energy electrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00616
– volume: 14
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib149
  article-title: Strain engineering of two-dimensional materials for advanced electrocatalysts, Mater
  publication-title: Today Nano
– volume: 11
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib69
  article-title: Coordination engineering of single-atom catalysts for the oxygen reduction reaction: a review
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 3049
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib118
  article-title: Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16848-8
– volume: 13
  start-page: 15639
  year: 2011
  ident: 10.1016/j.esci.2023.100141_bib23
  article-title: Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21228a
– volume: 29
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib109
  article-title: Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc–air batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602868
– volume: 334
  start-page: 1383
  year: 2011
  ident: 10.1016/j.esci.2023.100141_bib32
  article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 7
  start-page: 2448
  year: 2014
  ident: 10.1016/j.esci.2023.100141_bib37
  article-title: Organohalide lead perovskites for photovoltaic applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00942H
– volume: 82
  start-page: 3279
  year: 1999
  ident: 10.1016/j.esci.2023.100141_bib42
  article-title: Structure of spinel
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb02241.x
– volume: 5
  start-page: 1033
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib152
  article-title: Interface engineering in transition metal-based heterostructures for oxygen electrocatalysis
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D0QM00729C
– year: 2022
  ident: 10.1016/j.esci.2023.100141_bib51
  article-title: Redox-active metaphosphate-like terminals enable high-capacity MXene anodes for ultrafast Na-ion storage
  publication-title: Adv. Mater.
– volume: 136
  start-page: 6744
  year: 2014
  ident: 10.1016/j.esci.2023.100141_bib60
  article-title: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502379c
– volume: 329
  start-page: 544
  year: 2010
  ident: 10.1016/j.esci.2023.100141_bib148
  article-title: Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles
  publication-title: Science
  doi: 10.1126/science.1191700
– volume: 138
  start-page: 7965
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib98
  article-title: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03714
– volume: 26
  start-page: 992
  year: 2014
  ident: 10.1016/j.esci.2023.100141_bib52
  article-title: 25th anniversary article: MXenes: a new family of two-dimensional materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304138
– volume: 250
  start-page: 71
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib101
  article-title: Bifunctional porous Co-doped NiO nanoflowers electrocatalysts for rechargeable zinc-air batteries
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.03.021
– volume: 134
  year: 2022
  ident: 10.1016/j.esci.2023.100141_bib105
  article-title: Atomically dispersed pentacoordinated-zirconium catalyst with axial oxygen ligand for oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– year: 1920
  ident: 10.1016/j.esci.2023.100141_bib8
– volume: 28
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib12
  article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−air batteries
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 11920
  year: 2015
  ident: 10.1016/j.esci.2023.100141_bib58
  article-title: Layered transition metal oxyhydroxides as tri-functional electrocatalysts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02063H
– volume: 19
  start-page: 436
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib123
  article-title: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0571-5
– volume: 131
  start-page: 2648
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib113
  article-title: An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201810175
– volume: 32
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib156
  article-title: Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis
  publication-title: Adv. Mater.
– volume: 2
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib77
  article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501122
– volume: 32
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib43
  article-title: Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907168
– volume: 7
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib129
  article-title: Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12876
– volume: 31
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib158
  article-title: Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib13
  article-title: Progress and challenges toward the rational design of oxygen electrocatalysts based on a descriptor approach
  publication-title: Adv. Sci.
– volume: 19
  start-page: 282
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib6
  article-title: Zirconium nitride catalysts surpass platinum for oxygen reduction
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0535-9
– volume: 25
  start-page: 99
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib46
  article-title: Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2019.02.008
– volume: 49
  start-page: 2196
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib34
  article-title: A review on fundamentals for designing oxygen evolution electrocatalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00607A
– volume: 10
  start-page: 444
  year: 2015
  ident: 10.1016/j.esci.2023.100141_bib78
  article-title: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.48
– volume: 11
  start-page: 2275
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib153
  article-title: NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn–air batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00417
– volume: 132
  start-page: 9256
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib120
  article-title: Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202003842
– volume: 4
  start-page: 7
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib92
  article-title: Heteroatom-doped graphene as electrocatalysts for air cathodes
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00358C
– volume: 4
  start-page: 2439
  year: 2013
  ident: 10.1016/j.esci.2023.100141_bib33
  article-title: Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3439
– volume: 24
  start-page: 5956
  year: 2014
  ident: 10.1016/j.esci.2023.100141_bib85
  article-title: Toward full exposure of “active sites”: nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401264
– volume: 369
  start-page: 979
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib53
  article-title: Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes
  publication-title: Science
  doi: 10.1126/science.aba8311
– volume: 27
  start-page: 6834
  year: 2015
  ident: 10.1016/j.esci.2023.100141_bib106
  article-title: Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503211
– volume: 25
  start-page: 6138
  year: 2013
  ident: 10.1016/j.esci.2023.100141_bib89
  article-title: Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302753
– volume: 42
  start-page: 334
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib97
  article-title: N, B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.004
– volume: 351
  start-page: 361
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib17
  article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts
  publication-title: Science
  doi: 10.1126/science.aad0832
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib28
  article-title: Carbon-based metal-free catalysts
  publication-title: Nat. Rev. Mater.
– volume: 41
  start-page: 2172
  year: 2012
  ident: 10.1016/j.esci.2023.100141_bib18
  article-title: Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15228a
– volume: 9
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib75
  article-title: Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell
  publication-title: Adv. Energy Mater.
– volume: 90
  year: 2003
  ident: 10.1016/j.esci.2023.100141_bib147
  article-title: Tuning carbon nanotube band gaps with strain
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.156401
– volume: 47
  start-page: 4332
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib136
  article-title: TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00705A
– volume: 136
  start-page: 15670
  year: 2014
  ident: 10.1016/j.esci.2023.100141_bib138
  article-title: Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5085157
– year: 1965
  ident: 10.1016/j.esci.2023.100141_bib54
– volume: 10
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib76
  article-title: Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion
  publication-title: Adv. Energy Mater.
– volume: 185
  start-page: 258
  year: 1974
  ident: 10.1016/j.esci.2023.100141_bib48
  article-title: Surface electronic properties of tungsten, tungsten carbide, and platinum
  publication-title: Science
  doi: 10.1126/science.185.4147.258
– volume: 18
  year: 2022
  ident: 10.1016/j.esci.2023.100141_bib137
  article-title: Transition metal non-oxides as electrocatalysts: advantages and challenges
  publication-title: Small
  doi: 10.1002/smll.202202033
– volume: 44
  start-page: 623
  year: 2015
  ident: 10.1016/j.esci.2023.100141_bib9
  article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00236A
– volume: 108
  start-page: 17886
  year: 2004
  ident: 10.1016/j.esci.2023.100141_bib15
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 143
  start-page: 94
  year: 2009
  ident: 10.1016/j.esci.2023.100141_bib55
  article-title: Transition metal phosphide hydroprocessing catalysts: a review
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2008.09.019
– volume: 126
  start-page: 10980
  year: 2014
  ident: 10.1016/j.esci.2023.100141_bib94
  article-title: Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201406695
– volume: 3
  start-page: 1159
  year: 2011
  ident: 10.1016/j.esci.2023.100141_bib31
  article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 11
  start-page: 938
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib131
  article-title: Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14565-w
– volume: 28
  start-page: 1691
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib130
  article-title: Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04457
– volume: 10
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib112
  article-title: Single-atom catalysts: engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion
  publication-title: Adv. Energy Mater.
– volume: 28
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib107
  article-title: N, P-doped CoS2 embedded in TiO2 Nanoporous films for Zn–air batteries
  publication-title: Adv. Funct. Mater.
– volume: 50
  start-page: 3257
  year: 2011
  ident: 10.1016/j.esci.2023.100141_bib87
  article-title: Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201006768
– volume: 9
  start-page: 19807
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib66
  article-title: Au promoted nickel–iron layered double hydroxide nanoarrays: a modular catalyst enabling high-performance oxygen evolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03033
– volume: 29
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib96
  article-title: In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1186
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib93
  article-title: Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03446B
– volume: 352
  start-page: 333
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib63
  article-title: Homogeneously dispersed multimetal oxygen-evolving catalysts
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 141
  start-page: 10417
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib155
  article-title: Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04492
– volume: 15
  start-page: 121
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib30
  article-title: Anionic redox processes for electrochemical devices
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4551
– volume: 29
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib39
  article-title: Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606800
– volume: 8
  start-page: 2464
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib88
  article-title: Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc-air batteries
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02739
– volume: 12
  start-page: 620
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib4
  article-title: Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20923-z
– volume: 358
  start-page: 751
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib10
  article-title: Perovskites in catalysis and electrocatalysis
  publication-title: Science
  doi: 10.1126/science.aam7092
– volume: 10
  start-page: 1392
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib103
  article-title: Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09394-5
– volume: 45
  start-page: 517
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib20
  article-title: Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00670H
– volume: 138
  start-page: 2488
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib145
  article-title: Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11713
– volume: 300
  start-page: 279
  year: 2015
  ident: 10.1016/j.esci.2023.100141_bib139
  article-title: Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.081
– volume: 30
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib100
  article-title: A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc–air batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805268
– volume: 355
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib1
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 1
  start-page: 339
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib71
  article-title: A universal principle for a rational design of single-atom electrocatalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 11
  start-page: 3375
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib114
  article-title: Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02656D
– volume: 56
  start-page: 8902
  year: 1997
  ident: 10.1016/j.esci.2023.100141_bib25
  article-title: Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.8902
– volume: 56
  start-page: 5867
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib65
  article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701477
– volume: 51
  start-page: 7903
  year: 2015
  ident: 10.1016/j.esci.2023.100141_bib110
  article-title: High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01841B
– volume: 257
  start-page: 1946
  year: 2013
  ident: 10.1016/j.esci.2023.100141_bib47
  article-title: Nanostructured transition metal nitrides for energy storage and fuel cells
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.12.012
– volume: 9
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib86
  article-title: Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn−air batteries and overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900945
– volume: 31
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib115
  article-title: Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905622
– volume: 46
  start-page: 337
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib44
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 5
  start-page: 3949
  year: 2014
  ident: 10.1016/j.esci.2023.100141_bib5
  article-title: Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4949
– volume: 15
  start-page: 13737
  year: 2013
  ident: 10.1016/j.esci.2023.100141_bib40
  article-title: Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51213d
– volume: 29
  year: 2017
  ident: 10.1016/j.esci.2023.100141_bib79
  article-title: Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604103
– volume: 31
  year: 2021
  ident: 10.1016/j.esci.2023.100141_bib11
  article-title: Advanced oxygen electrocatalysis in energy conversion and storage
  publication-title: Adv. Funct. Mater.
– start-page: 71
  year: 2000
  ident: 10.1016/j.esci.2023.100141_bib26
  article-title: Theoretical surface science and catalysis—calculations and concepts
  doi: 10.1016/S0360-0564(02)45013-4
– volume: 60
  start-page: 4665
  year: 1999
  ident: 10.1016/j.esci.2023.100141_bib24
  article-title: Valence state of Mn in Ca-doped LaMnO3 studied by high-resolution Mn K β emission spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.4665
– volume: 4
  year: 2014
  ident: 10.1016/j.esci.2023.100141_bib125
  article-title: Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400696
– volume: 486
  start-page: 43
  year: 2012
  ident: 10.1016/j.esci.2023.100141_bib2
  article-title: Electrocatalyst approaches and challenges for automotive fuel cells
  publication-title: Nature
  doi: 10.1038/nature11115
– volume: 18
  start-page: 1699
  year: 2016
  ident: 10.1016/j.esci.2023.100141_bib67
  article-title: Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06682D
– volume: 44
  start-page: 2168
  year: 2015
  ident: 10.1016/j.esci.2023.100141_bib21
  article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00484A
– volume: 142
  start-page: 2404
  year: 2020
  ident: 10.1016/j.esci.2023.100141_bib122
  article-title: Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11852
– volume: 58
  start-page: 277
  year: 2019
  ident: 10.1016/j.esci.2023.100141_bib117
  article-title: Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.011
– volume: 47
  start-page: 3100
  year: 2018
  ident: 10.1016/j.esci.2023.100141_bib135
  article-title: Two-dimensional transition metal dichalcogenides: interface and defect engineering
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00024G
– volume: 113
  start-page: 5782
  year: 2013
  ident: 10.1016/j.esci.2023.100141_bib84
  article-title: Nanocarbons for the development of advanced catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/cr300367d
– volume: 4
  start-page: 6455
  year: 2012
  ident: 10.1016/j.esci.2023.100141_bib150
  article-title: Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction
  publication-title: Nanoscale
  doi: 10.1039/c2nr31858j
SSID ssj0002811347
Score 2.5970106
SecondaryResourceType review_article
Snippet Developing highly efficient, inexpensive catalysts for oxygen electrocatalysis in alkaline electrolytes (i.e., the oxygen reduction reaction (ORR) and the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 100141
SubjectTerms Active sites
Electronic structure
Intrinsic activity
Noble metal-free electrocatalysts
Oxygen electrocatalysts
Title Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis
URI https://doaj.org/article/15a75a58ed2e4601962b1735dc1a3547
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOXiT1c02j92jSksR9GShtyWP2UOtrZQV9N87s9mW9aIXb8uShPBlyMyEme9j7CpzxKGe6cRAjgmK8CEpTKESD0JWxgRhPPUOPz3r8UQ-TtW0I_VFNWGRHjgCdyuUNcqqHEIGUhObS-aEGajghR0o2fSRo8_rJFOz5slIUI8kKctpvAmEFKbtmInFXYD-5YaUwxsOIil-eKUOeX_jZUZ7bLcND_ld3NY-24LFAdvpkAYeMhhulGt4ZH_9WAFfRU15RJkvK74glRj-BhhZJ9UK8NPW0dR43dTJcjt_tRRh8uXnF9oQb-VwmtccIik5YpPR8OVhnLRiCYmXIq0TKKzMIJXBSVPZYEKRp5lTIuSgc-lc5ioXtPNUBGN08EY7rWVIjcN7JhR-cMx6i-UCThivJFgthFXo3HExTMm09aYwQVUIelB9JtZglb5lEidBi3m5LhmblQRwSQCXEeA-u97MeY88Gr-Ovqcz2IwkDuzmB1pG2VpG-ZdlnP7HImdsm_YVS_7OWQ-PFS4wDKndZWNx39C82Ps
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+structure+regulation+of+noble+metal-free+materials+toward+alkaline+oxygen+electrocatalysis&rft.jtitle=eScience+%28Beijing%29&rft.au=Xia+Wang&rft.au=Minghao+Yu&rft.au=Xinliang+Feng&rft.date=2023-08-01&rft.pub=KeAi+Communications+Co.+Ltd&rft.issn=2667-1417&rft.eissn=2667-1417&rft.volume=3&rft.issue=4&rft.spage=100141&rft_id=info:doi/10.1016%2Fj.esci.2023.100141&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_15a75a58ed2e4601962b1735dc1a3547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-1417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-1417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-1417&client=summon