Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis
Developing highly efficient, inexpensive catalysts for oxygen electrocatalysis in alkaline electrolytes (i.e., the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER)) is essential for constructing advanced energy conversion techniques (such as electrolyzers, fuel cells, and meta...
Saved in:
Published in | eScience (Beijing) Vol. 3; no. 4; p. 100141 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
KeAi Communications Co. Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing highly efficient, inexpensive catalysts for oxygen electrocatalysis in alkaline electrolytes (i.e., the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER)) is essential for constructing advanced energy conversion techniques (such as electrolyzers, fuel cells, and metal–air batteries). Recent achievements in efficient noble metal-free ORR and OER catalysts make the replacement of conventional noble metal counterparts a realistic possibility. In particular, various electronic structure regulation strategies have been employed to endow these oxygen catalysts with attractive physicochemical properties and strong synergistic effects, providing significant fundamental understanding to advance in this direction. This review article summarizes recently developed electronic structure regulation strategies for three types of noble metal-free oxygen catalysts: transition metal compounds, single-atom catalysts, and metal-free catalysts. We begin by briefly presenting the basic ORR and OER reaction mechanisms, following this with an analysis of the fundamental relationship between electronic structure and intrinsic electrocatalytic activity for the three categories of catalysts. Subsequently, recent advances in electronic structure regulation strategies for noble metal-free ORR and OER catalysts are systematically discussed. We conclude by summarizing the remaining challenges and presenting our outlook on the future for designing and synthesizing noble metal-free oxygen electrocatalysts. |
---|---|
AbstractList | Developing highly efficient, inexpensive catalysts for oxygen electrocatalysis in alkaline electrolytes (i.e., the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER)) is essential for constructing advanced energy conversion techniques (such as electrolyzers, fuel cells, and metal–air batteries). Recent achievements in efficient noble metal-free ORR and OER catalysts make the replacement of conventional noble metal counterparts a realistic possibility. In particular, various electronic structure regulation strategies have been employed to endow these oxygen catalysts with attractive physicochemical properties and strong synergistic effects, providing significant fundamental understanding to advance in this direction. This review article summarizes recently developed electronic structure regulation strategies for three types of noble metal-free oxygen catalysts: transition metal compounds, single-atom catalysts, and metal-free catalysts. We begin by briefly presenting the basic ORR and OER reaction mechanisms, following this with an analysis of the fundamental relationship between electronic structure and intrinsic electrocatalytic activity for the three categories of catalysts. Subsequently, recent advances in electronic structure regulation strategies for noble metal-free ORR and OER catalysts are systematically discussed. We conclude by summarizing the remaining challenges and presenting our outlook on the future for designing and synthesizing noble metal-free oxygen electrocatalysts. |
ArticleNumber | 100141 |
Author | Wang, Xia Feng, Xinliang Yu, Minghao |
Author_xml | – sequence: 1 givenname: Xia surname: Wang fullname: Wang, Xia – sequence: 2 givenname: Minghao orcidid: 0000-0002-0211-0778 surname: Yu fullname: Yu, Minghao – sequence: 3 givenname: Xinliang surname: Feng fullname: Feng, Xinliang |
BookMark | eNp9kM1KAzEUhYMo-PsCrvICU5NMJpkuRaoWBDe6DjfJnZIaJ5KkaN_eqRURF67u4XDPt_hOyeGYRiTkkrMZZ1xdrWdYXJgJJtqpYFzyA3IilNLNFPXhr3xMLkpZM8ZEz3kr9QnBRURXcxqDo6XmjaubjDTjahOhhjTSNNAx2Yj0FSvEZsg4RaiYA8RCa3qH7CnEF4hhRJo-tiscKe6hDqbJtoRyTo6G6R0vvu8Zeb5dPN3cNw-Pd8ub64fGSc5qg3OQApn0VuoBvPbzngnbcd-j6qW1wg7WK-tarZhW3mlllZKeacv63s9de0aWe65PsDZvObxC3poEwXwVKa8M5BpcRMM70B10PXqBUjE-V8Jy3XbecWg7qSeW2LNcTqVkHH54nJmdd7M2O-9m593svU-j_s_IhfolsmYI8b_pJyY4jdI |
CitedBy_id | crossref_primary_10_1021_acsaenm_4c00831 crossref_primary_10_1039_D4QI00124A crossref_primary_10_1002_ange_202319518 crossref_primary_10_1021_acs_inorgchem_3c03826 crossref_primary_10_1016_j_jcis_2024_05_049 crossref_primary_10_1021_acscatal_4c06836 crossref_primary_10_1016_j_jcis_2025_137305 crossref_primary_10_1016_j_jelechem_2025_119052 crossref_primary_10_1002_adma_202411709 crossref_primary_10_1016_j_cej_2024_158465 crossref_primary_10_1002_smll_202404786 crossref_primary_10_1002_ente_202401978 crossref_primary_10_1016_j_jcis_2024_12_078 crossref_primary_10_1016_j_surfin_2025_106071 crossref_primary_10_1021_acs_inorgchem_4c05429 crossref_primary_10_1016_j_jre_2024_10_008 crossref_primary_10_1016_j_jpcs_2025_112556 crossref_primary_10_1002_ange_202422920 crossref_primary_10_1016_j_cej_2024_158051 crossref_primary_10_1039_D4GC05650G crossref_primary_10_1021_acsanm_4c07115 crossref_primary_10_1007_s12598_024_03201_x crossref_primary_10_1016_j_fuel_2024_133516 crossref_primary_10_1016_j_fuel_2024_133915 crossref_primary_10_1002_advs_202401780 crossref_primary_10_1039_D3TA05023H crossref_primary_10_1002_smll_202408227 crossref_primary_10_1007_s40843_024_3126_1 crossref_primary_10_1007_s42823_023_00679_w crossref_primary_10_1016_j_ijhydene_2024_10_237 crossref_primary_10_1002_aenm_202402657 crossref_primary_10_3390_nano14181533 crossref_primary_10_1021_acscatal_4c03060 crossref_primary_10_1039_D4QI01851F crossref_primary_10_1016_j_esci_2024_100352 crossref_primary_10_1016_j_apcatb_2024_125007 crossref_primary_10_1039_D5EE00074B crossref_primary_10_1002_aenm_202404077 crossref_primary_10_1002_adfm_202417580 crossref_primary_10_1021_acsanm_3c03751 crossref_primary_10_1002_smll_202500616 crossref_primary_10_1016_j_ijhydene_2024_11_286 crossref_primary_10_1016_j_isci_2023_108718 crossref_primary_10_1002_adfm_202413134 crossref_primary_10_1039_D3TA00555K crossref_primary_10_1016_j_apcatb_2023_123579 crossref_primary_10_1002_tcr_202400151 crossref_primary_10_1021_acsami_4c07279 crossref_primary_10_1021_acsami_4c07953 crossref_primary_10_1002_adma_202413141 crossref_primary_10_1002_adfm_202423552 crossref_primary_10_1016_j_ijhydene_2025_02_051 crossref_primary_10_1039_D4TA05798H crossref_primary_10_1039_D4TA07911F crossref_primary_10_1007_s12274_023_6038_7 crossref_primary_10_1002_advs_202408754 crossref_primary_10_1002_anie_202319518 crossref_primary_10_1016_j_jcis_2025_02_081 crossref_primary_10_1021_acs_langmuir_4c01797 crossref_primary_10_1016_j_apsusc_2025_162696 crossref_primary_10_1039_D4QI00919C crossref_primary_10_1002_adma_202500063 crossref_primary_10_1016_j_mtcomm_2024_110677 crossref_primary_10_1016_j_ijhydene_2024_10_411 crossref_primary_10_1002_smll_202411894 crossref_primary_10_1515_zpch_2023_0312 crossref_primary_10_1021_acsaem_4c03303 crossref_primary_10_1039_D4QI03298E crossref_primary_10_1002_adma_202412950 crossref_primary_10_1021_jacs_5c00665 crossref_primary_10_1002_ifm2_19 crossref_primary_10_1016_j_apsusc_2024_159464 crossref_primary_10_1002_adfm_202416551 crossref_primary_10_1007_s12274_024_6507_7 crossref_primary_10_1021_acs_jpclett_4c03301 crossref_primary_10_1002_smll_202409129 crossref_primary_10_1002_smll_202409404 crossref_primary_10_1016_j_apcatb_2024_124921 crossref_primary_10_1016_j_apsusc_2024_160183 crossref_primary_10_1039_D4DT01625D crossref_primary_10_1016_j_ijhydene_2025_01_228 crossref_primary_10_1016_j_esci_2024_100264 crossref_primary_10_1007_s44246_023_00090_0 crossref_primary_10_1016_j_fuel_2025_134349 crossref_primary_10_1016_j_esci_2024_100312 crossref_primary_10_1016_j_jpowsour_2024_235784 crossref_primary_10_1002_adfm_202408517 crossref_primary_10_1021_accountsmr_3c00266 crossref_primary_10_1016_j_jcis_2025_01_075 crossref_primary_10_1039_D4CE01298D crossref_primary_10_1002_celc_202300516 crossref_primary_10_1016_j_jelechem_2024_118671 crossref_primary_10_1002_adma_202416126 crossref_primary_10_1039_D5TA00134J crossref_primary_10_1016_j_esci_2024_100272 crossref_primary_10_1038_s41598_024_55085_7 crossref_primary_10_1002_adfm_202425640 crossref_primary_10_1002_smll_202307278 crossref_primary_10_1002_smll_202401019 crossref_primary_10_1002_ange_202400888 crossref_primary_10_1002_adma_202308746 crossref_primary_10_1002_anie_202422920 crossref_primary_10_1002_adma_202418757 crossref_primary_10_3390_nano13131945 crossref_primary_10_1093_nsr_nwae193 crossref_primary_10_1021_acs_nanolett_4c00315 crossref_primary_10_1039_D4QM00842A crossref_primary_10_1016_j_electacta_2023_143587 crossref_primary_10_1039_D4SC05206D crossref_primary_10_1002_smll_202404000 crossref_primary_10_1002_smll_202403151 crossref_primary_10_1016_j_ijhydene_2024_10_049 crossref_primary_10_1016_j_jelechem_2024_118863 crossref_primary_10_1016_j_apcatb_2024_124949 crossref_primary_10_1039_D3CS00010A crossref_primary_10_1021_acsmaterialslett_4c00778 crossref_primary_10_1016_j_nanoen_2024_110529 crossref_primary_10_1016_j_cej_2024_149243 crossref_primary_10_1021_acs_chemrev_3c00931 crossref_primary_10_1039_D4GC04466E crossref_primary_10_1002_smll_202307662 crossref_primary_10_1016_j_mcat_2024_114489 crossref_primary_10_1016_j_surfin_2024_105499 crossref_primary_10_1016_j_cej_2024_157263 crossref_primary_10_1016_j_jece_2024_114326 crossref_primary_10_1039_D3CE00728F crossref_primary_10_1039_D4CC04075A crossref_primary_10_1039_D4SC07186G crossref_primary_10_1002_smll_202309727 crossref_primary_10_1002_anie_202400888 crossref_primary_10_1016_j_fuel_2025_134283 crossref_primary_10_1016_j_jechem_2024_05_021 |
Cites_doi | 10.1002/adma.202003075 10.1002/adma.201606793 10.1021/acsnano.7b08721 10.1021/j100082a030 10.1002/adfm.201706008 10.1002/anie.201509982 10.1021/cs500744x 10.1016/j.jelechem.2006.11.008 10.1002/adfm.202004009 10.1038/nchem.1069 10.1016/0013-4686(66)80045-2 10.1039/C7MH00358G 10.1002/aenm.202101242 10.1002/adma.201601406 10.3390/nano9081161 10.1002/adma.201102306 10.1021/acscatal.2c00697 10.1039/c3ee41444b 10.1021/jacs.6b05398 10.1126/science.aan8285 10.1002/anie.202003917 10.1016/j.jechem.2020.04.012 10.1021/jacs.9b09352 10.1039/D1CS00330E 10.1021/acsmaterialslett.9b00094 10.1002/adfm.201806419 10.1126/science.aaf7680 10.1002/anie.201914967 10.1038/nenergy.2016.189 10.1016/S1872-2067(19)63284-5 10.1002/ange.201600687 10.1002/advs.201800036 10.1038/s41467-020-16237-1 10.1021/acs.accounts.6b00635 10.1038/s41467-020-15873-x 10.1098/rspa.2014.0792 10.1002/ange.201307203 10.1126/science.aac9439 10.1021/jacs.8b07294 10.1039/C9CP05548G 10.1021/nn204153h 10.1038/nchem.367 10.1021/jacs.8b13701 10.1002/ange.202002665 10.1038/natrevmats.2017.59 10.1021/acscatal.0c02388 10.1002/adfm.201804886 10.1038/s41929-017-0008-y 10.1021/acs.accounts.7b00616 10.1038/s41467-020-16848-8 10.1039/c1cp21228a 10.1002/adma.201602868 10.1126/science.1212858 10.1039/C4EE00942H 10.1111/j.1151-2916.1999.tb02241.x 10.1039/D0QM00729C 10.1021/ja502379c 10.1126/science.1191700 10.1021/jacs.6b03714 10.1002/adma.201304138 10.1016/j.apcatb.2019.03.021 10.1039/C5TA02063H 10.1038/s41563-019-0571-5 10.1002/ange.201810175 10.1126/sciadv.1501122 10.1002/adma.201907168 10.1038/ncomms12876 10.1038/s41563-019-0535-9 10.1016/j.nantod.2019.02.008 10.1039/C9CS00607A 10.1038/nnano.2015.48 10.1021/acsnano.7b00417 10.1002/ange.202003842 10.1039/C6MH00358C 10.1038/ncomms3439 10.1002/adfm.201401264 10.1126/science.aba8311 10.1002/adma.201503211 10.1002/adma.201302753 10.1016/j.nanoen.2017.11.004 10.1126/science.aad0832 10.1039/c1cs15228a 10.1103/PhysRevLett.90.156401 10.1039/C7CS00705A 10.1021/ja5085157 10.1126/science.185.4147.258 10.1002/smll.202202033 10.1039/C4CS00236A 10.1021/jp047349j 10.1016/j.cattod.2008.09.019 10.1002/ange.201406695 10.1002/cctc.201000397 10.1038/s41467-020-14565-w 10.1021/acs.chemmater.5b04457 10.1002/anie.201006768 10.1021/acsami.7b03033 10.1039/C6EE03446B 10.1126/science.aaf1525 10.1021/jacs.9b04492 10.1038/nmat4551 10.1002/adma.201606800 10.1021/acscatal.7b02739 10.1038/s41467-021-20923-z 10.1126/science.aam7092 10.1038/s41467-019-09394-5 10.1039/C5CS00670H 10.1021/jacs.5b11713 10.1016/j.jpowsour.2015.09.081 10.1002/adma.201805268 10.1126/science.aad4998 10.1038/s41929-018-0063-z 10.1039/C8EE02656D 10.1103/PhysRevB.56.8902 10.1002/anie.201701477 10.1039/C5CC01841B 10.1016/j.ccr.2012.12.012 10.1002/aenm.201900945 10.1002/adma.201905622 10.1039/C6CS00328A 10.1038/ncomms4949 10.1039/c3cp51213d 10.1002/adma.201604103 10.1016/S0360-0564(02)45013-4 10.1103/PhysRevB.60.4665 10.1002/aenm.201400696 10.1038/nature11115 10.1039/C5CP06682D 10.1039/C4CS00484A 10.1021/jacs.9b11852 10.1016/j.nanoen.2019.01.011 10.1039/C8CS00024G 10.1021/cr300367d 10.1039/c2nr31858j |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.esci.2023.100141 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (ODIN) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2667-1417 |
ExternalDocumentID | oai_doaj_org_article_15a75a58ed2e4601962b1735dc1a3547 10_1016_j_esci_2023_100141 |
GroupedDBID | 0R~ AALRI AAXUO AAYWO AAYXX ADVLN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ CITATION EBS FDB GROUPED_DOAJ M41 ROL |
ID | FETCH-LOGICAL-c410t-e9a42e04db47fad7d9802b51d8e684bb2bfbd6bc376076dc76b664d07b088d9c3 |
IEDL.DBID | DOA |
ISSN | 2667-1417 |
IngestDate | Wed Aug 27 01:19:38 EDT 2025 Thu Apr 24 23:06:27 EDT 2025 Tue Jul 01 00:57:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-e9a42e04db47fad7d9802b51d8e684bb2bfbd6bc376076dc76b664d07b088d9c3 |
ORCID | 0000-0002-0211-0778 |
OpenAccessLink | https://doaj.org/article/15a75a58ed2e4601962b1735dc1a3547 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_15a75a58ed2e4601962b1735dc1a3547 crossref_primary_10_1016_j_esci_2023_100141 crossref_citationtrail_10_1016_j_esci_2023_100141 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-00 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-00 |
PublicationDecade | 2020 |
PublicationTitle | eScience (Beijing) |
PublicationYear | 2023 |
Publisher | KeAi Communications Co. Ltd |
Publisher_xml | – name: KeAi Communications Co. Ltd |
References | Seh (10.1016/j.esci.2023.100141_bib1) 2017; 355 Wei (10.1016/j.esci.2023.100141_bib39) 2017; 29 Levy (10.1016/j.esci.2023.100141_bib148) 2010; 329 Tang (10.1016/j.esci.2023.100141_bib133) 2016; 28 Cai (10.1016/j.esci.2023.100141_bib82) 2017; 4 Yin (10.1016/j.esci.2023.100141_bib98) 2016; 138 Tian (10.1016/j.esci.2023.100141_bib85) 2014; 24 Suntivich (10.1016/j.esci.2023.100141_bib16) 2011; 3 Wang (10.1016/j.esci.2023.100141_bib108) 2019; 29 Yin (10.1016/j.esci.2023.100141_bib153) 2017; 11 Wang (10.1016/j.esci.2023.100141_bib14) 2021; 33 Gusmão (10.1016/j.esci.2023.100141_bib74) 2020; 10 Ritter (10.1016/j.esci.2023.100141_bib25) 1997; 56 Chen (10.1016/j.esci.2023.100141_bib156) 2020; 32 Liu (10.1016/j.esci.2023.100141_bib96) 2017; 29 Kamysbayev (10.1016/j.esci.2023.100141_bib53) 2020; 369 Lu (10.1016/j.esci.2023.100141_bib113) 2019; 131 Sun (10.1016/j.esci.2023.100141_bib111) 2021; 33 Novoselov (10.1016/j.esci.2023.100141_bib151) 2016; 353 Naguib (10.1016/j.esci.2023.100141_bib52) 2014; 26 Sabatier (10.1016/j.esci.2023.100141_bib8) 1920 Dionigi (10.1016/j.esci.2023.100141_bib61) 2020; 11 Zhu (10.1016/j.esci.2023.100141_bib76) 2020; 10 Qian (10.1016/j.esci.2023.100141_bib101) 2019; 250 Dong (10.1016/j.esci.2023.100141_bib47) 2013; 257 Liu (10.1016/j.esci.2023.100141_bib87) 2011; 50 Duan (10.1016/j.esci.2023.100141_bib124) 2020; 59 Nørskov (10.1016/j.esci.2023.100141_bib15) 2004; 108 Oyama (10.1016/j.esci.2023.100141_bib55) 2009; 143 Zamora Zeledón (10.1016/j.esci.2023.100141_bib4) 2021; 12 Nie (10.1016/j.esci.2023.100141_bib21) 2015; 44 Dinh (10.1016/j.esci.2023.100141_bib46) 2019; 25 Yang (10.1016/j.esci.2023.100141_bib77) 2016; 2 Paraknowitsch (10.1016/j.esci.2023.100141_bib90) 2013; 6 Petrie (10.1016/j.esci.2023.100141_bib145) 2016; 138 Peng (10.1016/j.esci.2023.100141_bib72) 2014; 4 Naguib (10.1016/j.esci.2023.100141_bib49) 2011; 23 Gao (10.1016/j.esci.2023.100141_bib37) 2014; 7 Xu (10.1016/j.esci.2023.100141_bib71) 2018; 1 Lim (10.1016/j.esci.2023.100141_bib58) 2015; 3 Rossmeisl (10.1016/j.esci.2023.100141_bib22) 2007; 607 Guo (10.1016/j.esci.2023.100141_bib104) 2018; 12 Li (10.1016/j.esci.2023.100141_bib64) 2017; 13 Zhang (10.1016/j.esci.2023.100141_bib69) 2021; 11 Zhang (10.1016/j.esci.2023.100141_bib99) 2021; 50 Su (10.1016/j.esci.2023.100141_bib84) 2013; 113 Zhuang (10.1016/j.esci.2023.100141_bib127) 2017; 29 Wang (10.1016/j.esci.2023.100141_bib65) 2017; 56 Yuan (10.1016/j.esci.2023.100141_bib122) 2020; 142 Tang (10.1016/j.esci.2023.100141_bib29) 2018; 51 Sun (10.1016/j.esci.2023.100141_bib9) 2015; 44 Sickafus (10.1016/j.esci.2023.100141_bib42) 1999; 82 Noh (10.1016/j.esci.2023.100141_bib141) 2022; 12 Suntivich (10.1016/j.esci.2023.100141_bib32) 2011; 334 Bode (10.1016/j.esci.2023.100141_bib41) 1966; 11 Wang (10.1016/j.esci.2023.100141_bib105) 2022; 134 Fu (10.1016/j.esci.2023.100141_bib75) 2019; 9 Das (10.1016/j.esci.2023.100141_bib137) 2022; 18 Calle-Vallejo (10.1016/j.esci.2023.100141_bib23) 2011; 13 Zhao (10.1016/j.esci.2023.100141_bib80) 2019; 31 Liu (10.1016/j.esci.2023.100141_bib138) 2014; 136 Zhao (10.1016/j.esci.2023.100141_bib70) 2021; 60 Hu (10.1016/j.esci.2023.100141_bib81) 2016; 55 Tyson (10.1016/j.esci.2023.100141_bib24) 1999; 60 Huang (10.1016/j.esci.2023.100141_bib62) 2019; 40 Tan (10.1016/j.esci.2023.100141_bib67) 2016; 18 Hu (10.1016/j.esci.2023.100141_bib135) 2018; 47 Man (10.1016/j.esci.2023.100141_bib31) 2011; 3 Naguib (10.1016/j.esci.2023.100141_bib50) 2012; 6 Shen (10.1016/j.esci.2023.100141_bib94) 2014; 126 Hou (10.1016/j.esci.2023.100141_bib103) 2019; 10 Maiyalagan (10.1016/j.esci.2023.100141_bib5) 2014; 5 Liu (10.1016/j.esci.2023.100141_bib28) 2016; 1 Yu (10.1016/j.esci.2023.100141_bib116) 2021; 11 Tao (10.1016/j.esci.2023.100141_bib134) 2016; 138 Zhao (10.1016/j.esci.2023.100141_bib106) 2015; 27 Hou (10.1016/j.esci.2023.100141_bib140) 2020; 132 Sa (10.1016/j.esci.2023.100141_bib83) 2014; 126 Pomerantseva (10.1016/j.esci.2023.100141_bib7) 2019; 366 Zhang (10.1016/j.esci.2023.100141_bib121) 2019; 141 Zhu (10.1016/j.esci.2023.100141_bib136) 2018; 47 Sun (10.1016/j.esci.2023.100141_bib142) 2018; 5 Debe (10.1016/j.esci.2023.100141_bib2) 2012; 486 Yu (10.1016/j.esci.2023.100141_bib109) 2017; 29 Doyle (10.1016/j.esci.2023.100141_bib40) 2013; 15 Tam (10.1016/j.esci.2023.100141_bib86) 2019; 9 Qiu (10.1016/j.esci.2023.100141_bib57) 2018; 28 Xu (10.1016/j.esci.2023.100141_bib149) 2021; 14 Yang (10.1016/j.esci.2023.100141_bib11) 2021; 31 Zhang (10.1016/j.esci.2023.100141_bib78) 2015; 10 Xu (10.1016/j.esci.2023.100141_bib128) 2016; 128 Kuang (10.1016/j.esci.2023.100141_bib126) 2018; 28 Jiang (10.1016/j.esci.2023.100141_bib154) 2018; 8 Xu (10.1016/j.esci.2023.100141_bib38) 2019; 9 Aronsson (10.1016/j.esci.2023.100141_bib54) 1965 Wang (10.1016/j.esci.2023.100141_bib12) 2018; 28 Minot (10.1016/j.esci.2023.100141_bib147) 2003; 90 Han (10.1016/j.esci.2023.100141_bib115) 2019; 31 Mu (10.1016/j.esci.2023.100141_bib43) 2020; 32 Lu (10.1016/j.esci.2023.100141_bib97) 2017; 42 Yang (10.1016/j.esci.2023.100141_bib155) 2019; 141 Wang (10.1016/j.esci.2023.100141_bib68) 2020; 32 Jung (10.1016/j.esci.2023.100141_bib123) 2020; 19 Wang (10.1016/j.esci.2023.100141_bib3) 2021; 33 Gao (10.1016/j.esci.2023.100141_bib146) 2020; 22 Huang (10.1016/j.esci.2023.100141_bib110) 2015; 51 Luo (10.1016/j.esci.2023.100141_bib143) 2017; 2 Houston (10.1016/j.esci.2023.100141_bib48) 1974; 185 Liu (10.1016/j.esci.2023.100141_bib13) 2020; 7 Grimaud (10.1016/j.esci.2023.100141_bib30) 2016; 15 Zhu (10.1016/j.esci.2023.100141_bib66) 2017; 9 Wang (10.1016/j.esci.2023.100141_bib114) 2018; 11 Wang (10.1016/j.esci.2023.100141_bib144) 2016; 354 Greeley (10.1016/j.esci.2023.100141_bib27) 2009; 1 Pan (10.1016/j.esci.2023.100141_bib36) 2002; 11 Jin (10.1016/j.esci.2023.100141_bib150) 2012; 4 Song (10.1016/j.esci.2023.100141_bib34) 2020; 49 Cui (10.1016/j.esci.2023.100141_bib92) 2017; 4 Zhao (10.1016/j.esci.2023.100141_bib152) 2021; 5 Jiang (10.1016/j.esci.2023.100141_bib132) 2018; 140 Song (10.1016/j.esci.2023.100141_bib139) 2015; 300 Wang (10.1016/j.esci.2023.100141_bib95) 2018; 15 Hwang (10.1016/j.esci.2023.100141_bib10) 2017; 358 Guo (10.1016/j.esci.2023.100141_bib107) 2018; 28 Hall (10.1016/j.esci.2023.100141_bib59) 2015; 471 Liu (10.1016/j.esci.2023.100141_bib102) 2019; 141 Cheng (10.1016/j.esci.2023.100141_bib18) 2012; 41 Liu (10.1016/j.esci.2023.100141_bib131) 2020; 11 Tang (10.1016/j.esci.2023.100141_bib120) 2020; 132 Zhu (10.1016/j.esci.2023.100141_bib91) 2017; 50 Chen (10.1016/j.esci.2023.100141_bib119) 2019; 1 Grimaud (10.1016/j.esci.2023.100141_bib33) 2013; 4 Fei (10.1016/j.esci.2023.100141_bib73) 2018; 1 Liu (10.1016/j.esci.2023.100141_bib117) 2019; 58 Lei (10.1016/j.esci.2023.100141_bib88) 2018; 8 Jeon (10.1016/j.esci.2023.100141_bib89) 2013; 25 Shao (10.1016/j.esci.2023.100141_bib157) 2019; 29 Zhu (10.1016/j.esci.2023.100141_bib112) 2020; 10 Suen (10.1016/j.esci.2023.100141_bib44) 2017; 46 Liu (10.1016/j.esci.2023.100141_bib45) 2021; 53 Zinola (10.1016/j.esci.2023.100141_bib19) 1994; 98 Zhu (10.1016/j.esci.2023.100141_bib20) 2016; 45 Wang (10.1016/j.esci.2023.100141_bib125) 2014; 4 Pu (10.1016/j.esci.2023.100141_bib56) 2020; 30 Zhang (10.1016/j.esci.2023.100141_bib63) 2016; 352 Chai (10.1016/j.esci.2023.100141_bib93) 2017; 10 Sun (10.1016/j.esci.2023.100141_bib51) 2022 Zhu (10.1016/j.esci.2023.100141_bib130) 2016; 28 Grimaud (10.1016/j.esci.2023.100141_bib35) 2016; 2 Lu (10.1016/j.esci.2023.100141_bib158) 2019; 31 Trotochaud (10.1016/j.esci.2023.100141_bib60) 2014; 136 Hammer (10.1016/j.esci.2023.100141_bib26) 2000 Guo (10.1016/j.esci.2023.100141_bib17) 2016; 351 Yuan (10.1016/j.esci.2023.100141_bib6) 2020; 19 Shang (10.1016/j.esci.2023.100141_bib118) 2020; 11 Ling (10.1016/j.esci.2023.100141_bib129) 2016; 7 Zhu (10.1016/j.esci.2023.100141_bib100) 2018; 30 Tang (10.1016/j.esci.2023.100141_bib79) 2017; 29 |
References_xml | – volume: 33 year: 2021 ident: 10.1016/j.esci.2023.100141_bib111 article-title: Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions publication-title: Adv. Mater. doi: 10.1002/adma.202003075 – volume: 29 year: 2017 ident: 10.1016/j.esci.2023.100141_bib127 article-title: Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201606793 – volume: 12 start-page: 1894 year: 2018 ident: 10.1016/j.esci.2023.100141_bib104 article-title: Carbon nanosheets containing discrete Co-N x-B y-C active sites for efficient oxygen electrocatalysis and rechargeable Zn–Air Batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b08721 – volume: 98 start-page: 7566 year: 1994 ident: 10.1016/j.esci.2023.100141_bib19 article-title: A quantum chemical approach to the influence of platinum surface structure on the oxygen electroreduction reaction publication-title: J. Phys. Chem. doi: 10.1021/j100082a030 – volume: 29 year: 2019 ident: 10.1016/j.esci.2023.100141_bib108 article-title: Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis publication-title: Adv. Funct. Mater. – volume: 28 year: 2018 ident: 10.1016/j.esci.2023.100141_bib57 article-title: Fabrication of nickel–cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706008 – volume: 13 year: 2017 ident: 10.1016/j.esci.2023.100141_bib64 article-title: Anionic regulated NiFe (oxy) sulfide electrocatalysts for water oxidation publication-title: Small – volume: 32 year: 2020 ident: 10.1016/j.esci.2023.100141_bib68 article-title: Lattice-strain engineering of homogeneous NiS0.5Se0.5 core–shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting publication-title: Adv. Mater. – volume: 31 year: 2019 ident: 10.1016/j.esci.2023.100141_bib80 article-title: Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage publication-title: Adv. Mater. – volume: 55 start-page: 11736 year: 2016 ident: 10.1016/j.esci.2023.100141_bib81 article-title: Carbon-based metal-free catalysts for electrocatalysis beyond the ORR publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509982 – volume: 4 start-page: 3797 year: 2014 ident: 10.1016/j.esci.2023.100141_bib72 article-title: Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application publication-title: ACS Catal. doi: 10.1021/cs500744x – volume: 607 start-page: 83 year: 2007 ident: 10.1016/j.esci.2023.100141_bib22 article-title: Electrolysis of water on oxide surfaces publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 30 year: 2020 ident: 10.1016/j.esci.2023.100141_bib56 article-title: Transition-metal phosphides: activity origin, energy-related electrocatalysis applications, and synthetic strategies publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004009 – volume: 3 start-page: 546 year: 2011 ident: 10.1016/j.esci.2023.100141_bib16 article-title: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries publication-title: Nat. Chem. doi: 10.1038/nchem.1069 – volume: 11 start-page: 1079 year: 1966 ident: 10.1016/j.esci.2023.100141_bib41 article-title: Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat publication-title: Electrochim. Acta doi: 10.1016/0013-4686(66)80045-2 – volume: 4 start-page: 945 year: 2017 ident: 10.1016/j.esci.2023.100141_bib82 article-title: Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design publication-title: Mater. Horiz. doi: 10.1039/C7MH00358G – volume: 15 start-page: 124 year: 2018 ident: 10.1016/j.esci.2023.100141_bib95 article-title: Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries publication-title: Energy Stor. Mater. – volume: 11 year: 2021 ident: 10.1016/j.esci.2023.100141_bib116 article-title: Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101242 – volume: 28 start-page: 6845 year: 2016 ident: 10.1016/j.esci.2023.100141_bib133 article-title: Topological defects in metal-free nanocarbon for oxygen electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201601406 – volume: 9 start-page: 1161 year: 2019 ident: 10.1016/j.esci.2023.100141_bib38 article-title: Recent advances in oxygen electrocatalysts based on perovskite oxides publication-title: Nanomaterials doi: 10.3390/nano9081161 – volume: 23 start-page: 4248 year: 2011 ident: 10.1016/j.esci.2023.100141_bib49 article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 8 year: 2018 ident: 10.1016/j.esci.2023.100141_bib154 article-title: Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable zn–air batteries publication-title: Adv. Energy Mater. – volume: 12 start-page: 7994 year: 2022 ident: 10.1016/j.esci.2023.100141_bib141 article-title: Molecularly engineered carbon platform to anchor edge-hosted single-atomic M–N/C (M= Fe, Co, Ni, Cu) electrocatalysts of outstanding durability publication-title: ACS Catal. doi: 10.1021/acscatal.2c00697 – volume: 6 start-page: 2839 year: 2013 ident: 10.1016/j.esci.2023.100141_bib90 article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41444b – volume: 138 start-page: 9978 year: 2016 ident: 10.1016/j.esci.2023.100141_bib134 article-title: Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05398 – volume: 366 year: 2019 ident: 10.1016/j.esci.2023.100141_bib7 article-title: Energy storage: the future enabled by nanomaterials publication-title: Science doi: 10.1126/science.aan8285 – volume: 60 start-page: 4448 year: 2021 ident: 10.1016/j.esci.2023.100141_bib70 article-title: Intrinsic electrocatalytic activity regulation of M–N–C single-atom catalysts for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003917 – volume: 53 start-page: 290 year: 2021 ident: 10.1016/j.esci.2023.100141_bib45 article-title: Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.04.012 – volume: 141 start-page: 20118 year: 2019 ident: 10.1016/j.esci.2023.100141_bib121 article-title: Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09352 – volume: 50 start-page: 9817 year: 2021 ident: 10.1016/j.esci.2023.100141_bib99 article-title: Doping regulation in transition metal compounds for electrocatalysis publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00330E – volume: 1 start-page: 139 year: 2019 ident: 10.1016/j.esci.2023.100141_bib119 article-title: Tailoring electronic structure of atomically dispersed metal–N3S1 active sites for highly efficient oxygen reduction catalysis publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00094 – volume: 29 year: 2019 ident: 10.1016/j.esci.2023.100141_bib157 article-title: Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806419 – volume: 354 start-page: 1031 year: 2016 ident: 10.1016/j.esci.2023.100141_bib144 article-title: Direct and continuous strain control of catalysts with tunable battery electrode materials publication-title: Science doi: 10.1126/science.aaf7680 – volume: 59 start-page: 8181 year: 2020 ident: 10.1016/j.esci.2023.100141_bib124 article-title: Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914967 – volume: 33 year: 2021 ident: 10.1016/j.esci.2023.100141_bib3 article-title: Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions publication-title: Adv. Mater. – volume: 2 start-page: 1 year: 2016 ident: 10.1016/j.esci.2023.100141_bib35 article-title: Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction publication-title: Nat. Energy doi: 10.1038/nenergy.2016.189 – volume: 40 start-page: 1822 year: 2019 ident: 10.1016/j.esci.2023.100141_bib62 article-title: Electronic structure regulation on layered double hydroxides for oxygen evolution reaction publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63284-5 – volume: 33 year: 2021 ident: 10.1016/j.esci.2023.100141_bib14 article-title: Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications publication-title: Adv. Mater. – volume: 128 start-page: 5363 year: 2016 ident: 10.1016/j.esci.2023.100141_bib128 article-title: Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201600687 – volume: 5 year: 2018 ident: 10.1016/j.esci.2023.100141_bib142 article-title: B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions publication-title: Adv. Sci. doi: 10.1002/advs.201800036 – volume: 11 start-page: 2522 year: 2020 ident: 10.1016/j.esci.2023.100141_bib61 article-title: In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-020-16237-1 – volume: 50 start-page: 915 year: 2017 ident: 10.1016/j.esci.2023.100141_bib91 article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00635 – volume: 11 start-page: 2002 year: 2002 ident: 10.1016/j.esci.2023.100141_bib36 article-title: Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation publication-title: Nat. Commun. doi: 10.1038/s41467-020-15873-x – volume: 471 year: 2015 ident: 10.1016/j.esci.2023.100141_bib59 article-title: Nickel hydroxides and related materials: a review of their structures, synthesis and properties publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci. doi: 10.1098/rspa.2014.0792 – volume: 126 start-page: 4186 year: 2014 ident: 10.1016/j.esci.2023.100141_bib83 article-title: Carbon nanotubes/heteroatom-doped carbon core–sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201307203 – volume: 353 start-page: aac9439 year: 2016 ident: 10.1016/j.esci.2023.100141_bib151 article-title: 2D materials and van der Waals heterostructures publication-title: Science doi: 10.1126/science.aac9439 – volume: 140 start-page: 11594 year: 2018 ident: 10.1016/j.esci.2023.100141_bib132 article-title: Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07294 – volume: 22 start-page: 2457 year: 2020 ident: 10.1016/j.esci.2023.100141_bib146 article-title: Strain effects on Co, N co-decorated graphyne catalysts for overall water splitting electrocatalysis publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP05548G – volume: 6 start-page: 1322 year: 2012 ident: 10.1016/j.esci.2023.100141_bib50 article-title: Two-dimensional transition metal carbides publication-title: ACS Nano doi: 10.1021/nn204153h – volume: 1 start-page: 552 year: 2009 ident: 10.1016/j.esci.2023.100141_bib27 article-title: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts publication-title: Nat. Chem. doi: 10.1038/nchem.367 – volume: 141 start-page: 8136 year: 2019 ident: 10.1016/j.esci.2023.100141_bib102 article-title: Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13701 – volume: 132 start-page: 7454 year: 2020 ident: 10.1016/j.esci.2023.100141_bib140 article-title: Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202002665 – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.esci.2023.100141_bib143 article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.59 – volume: 10 start-page: 9634 year: 2020 ident: 10.1016/j.esci.2023.100141_bib74 article-title: Recent developments on the single atom supported at 2D materials beyond graphene as catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.0c02388 – volume: 28 year: 2018 ident: 10.1016/j.esci.2023.100141_bib126 article-title: Electronic tuning of Co, Ni-based nanostructured (Hydr) oxides for aqueous electrocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804886 – volume: 1 start-page: 63 year: 2018 ident: 10.1016/j.esci.2023.100141_bib73 article-title: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 51 start-page: 881 year: 2018 ident: 10.1016/j.esci.2023.100141_bib29 article-title: Multiscale principles to boost reactivity in gas-involving energy electrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00616 – volume: 14 year: 2021 ident: 10.1016/j.esci.2023.100141_bib149 article-title: Strain engineering of two-dimensional materials for advanced electrocatalysts, Mater publication-title: Today Nano – volume: 11 year: 2021 ident: 10.1016/j.esci.2023.100141_bib69 article-title: Coordination engineering of single-atom catalysts for the oxygen reduction reaction: a review publication-title: Adv. Energy Mater. – volume: 11 start-page: 3049 year: 2020 ident: 10.1016/j.esci.2023.100141_bib118 article-title: Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity publication-title: Nat. Commun. doi: 10.1038/s41467-020-16848-8 – volume: 13 start-page: 15639 year: 2011 ident: 10.1016/j.esci.2023.100141_bib23 article-title: Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21228a – volume: 29 year: 2017 ident: 10.1016/j.esci.2023.100141_bib109 article-title: Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc–air batteries publication-title: Adv. Mater. doi: 10.1002/adma.201602868 – volume: 334 start-page: 1383 year: 2011 ident: 10.1016/j.esci.2023.100141_bib32 article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles publication-title: Science doi: 10.1126/science.1212858 – volume: 7 start-page: 2448 year: 2014 ident: 10.1016/j.esci.2023.100141_bib37 article-title: Organohalide lead perovskites for photovoltaic applications publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00942H – volume: 82 start-page: 3279 year: 1999 ident: 10.1016/j.esci.2023.100141_bib42 article-title: Structure of spinel publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb02241.x – volume: 5 start-page: 1033 year: 2021 ident: 10.1016/j.esci.2023.100141_bib152 article-title: Interface engineering in transition metal-based heterostructures for oxygen electrocatalysis publication-title: Mater. Chem. Front. doi: 10.1039/D0QM00729C – year: 2022 ident: 10.1016/j.esci.2023.100141_bib51 article-title: Redox-active metaphosphate-like terminals enable high-capacity MXene anodes for ultrafast Na-ion storage publication-title: Adv. Mater. – volume: 136 start-page: 6744 year: 2014 ident: 10.1016/j.esci.2023.100141_bib60 article-title: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502379c – volume: 329 start-page: 544 year: 2010 ident: 10.1016/j.esci.2023.100141_bib148 article-title: Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles publication-title: Science doi: 10.1126/science.1191700 – volume: 138 start-page: 7965 year: 2016 ident: 10.1016/j.esci.2023.100141_bib98 article-title: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03714 – volume: 26 start-page: 992 year: 2014 ident: 10.1016/j.esci.2023.100141_bib52 article-title: 25th anniversary article: MXenes: a new family of two-dimensional materials publication-title: Adv. Mater. doi: 10.1002/adma.201304138 – volume: 250 start-page: 71 year: 2019 ident: 10.1016/j.esci.2023.100141_bib101 article-title: Bifunctional porous Co-doped NiO nanoflowers electrocatalysts for rechargeable zinc-air batteries publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.03.021 – volume: 134 year: 2022 ident: 10.1016/j.esci.2023.100141_bib105 article-title: Atomically dispersed pentacoordinated-zirconium catalyst with axial oxygen ligand for oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – year: 1920 ident: 10.1016/j.esci.2023.100141_bib8 – volume: 28 year: 2018 ident: 10.1016/j.esci.2023.100141_bib12 article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−air batteries publication-title: Adv. Funct. Mater. – volume: 3 start-page: 11920 year: 2015 ident: 10.1016/j.esci.2023.100141_bib58 article-title: Layered transition metal oxyhydroxides as tri-functional electrocatalysts publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02063H – volume: 19 start-page: 436 year: 2020 ident: 10.1016/j.esci.2023.100141_bib123 article-title: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production publication-title: Nat. Mater. doi: 10.1038/s41563-019-0571-5 – volume: 131 start-page: 2648 year: 2019 ident: 10.1016/j.esci.2023.100141_bib113 article-title: An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201810175 – volume: 32 year: 2020 ident: 10.1016/j.esci.2023.100141_bib156 article-title: Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis publication-title: Adv. Mater. – volume: 2 year: 2016 ident: 10.1016/j.esci.2023.100141_bib77 article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst publication-title: Sci. Adv. doi: 10.1126/sciadv.1501122 – volume: 32 year: 2020 ident: 10.1016/j.esci.2023.100141_bib43 article-title: Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201907168 – volume: 7 year: 2016 ident: 10.1016/j.esci.2023.100141_bib129 article-title: Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis publication-title: Nat. Commun. doi: 10.1038/ncomms12876 – volume: 31 year: 2019 ident: 10.1016/j.esci.2023.100141_bib158 article-title: Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries publication-title: Adv. Mater. – volume: 7 year: 2020 ident: 10.1016/j.esci.2023.100141_bib13 article-title: Progress and challenges toward the rational design of oxygen electrocatalysts based on a descriptor approach publication-title: Adv. Sci. – volume: 19 start-page: 282 year: 2020 ident: 10.1016/j.esci.2023.100141_bib6 article-title: Zirconium nitride catalysts surpass platinum for oxygen reduction publication-title: Nat. Mater. doi: 10.1038/s41563-019-0535-9 – volume: 25 start-page: 99 year: 2019 ident: 10.1016/j.esci.2023.100141_bib46 article-title: Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion publication-title: Nano Today doi: 10.1016/j.nantod.2019.02.008 – volume: 49 start-page: 2196 year: 2020 ident: 10.1016/j.esci.2023.100141_bib34 article-title: A review on fundamentals for designing oxygen evolution electrocatalysts publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00607A – volume: 10 start-page: 444 year: 2015 ident: 10.1016/j.esci.2023.100141_bib78 article-title: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.48 – volume: 11 start-page: 2275 year: 2017 ident: 10.1016/j.esci.2023.100141_bib153 article-title: NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn–air batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b00417 – volume: 132 start-page: 9256 year: 2020 ident: 10.1016/j.esci.2023.100141_bib120 article-title: Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202003842 – volume: 4 start-page: 7 year: 2017 ident: 10.1016/j.esci.2023.100141_bib92 article-title: Heteroatom-doped graphene as electrocatalysts for air cathodes publication-title: Mater. Horiz. doi: 10.1039/C6MH00358C – volume: 4 start-page: 2439 year: 2013 ident: 10.1016/j.esci.2023.100141_bib33 article-title: Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution publication-title: Nat. Commun. doi: 10.1038/ncomms3439 – volume: 24 start-page: 5956 year: 2014 ident: 10.1016/j.esci.2023.100141_bib85 article-title: Toward full exposure of “active sites”: nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401264 – volume: 369 start-page: 979 year: 2020 ident: 10.1016/j.esci.2023.100141_bib53 article-title: Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes publication-title: Science doi: 10.1126/science.aba8311 – volume: 27 start-page: 6834 year: 2015 ident: 10.1016/j.esci.2023.100141_bib106 article-title: Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries publication-title: Adv. Mater. doi: 10.1002/adma.201503211 – volume: 25 start-page: 6138 year: 2013 ident: 10.1016/j.esci.2023.100141_bib89 article-title: Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect publication-title: Adv. Mater. doi: 10.1002/adma.201302753 – volume: 42 start-page: 334 year: 2017 ident: 10.1016/j.esci.2023.100141_bib97 article-title: N, B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.004 – volume: 351 start-page: 361 year: 2016 ident: 10.1016/j.esci.2023.100141_bib17 article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts publication-title: Science doi: 10.1126/science.aad0832 – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.esci.2023.100141_bib28 article-title: Carbon-based metal-free catalysts publication-title: Nat. Rev. Mater. – volume: 41 start-page: 2172 year: 2012 ident: 10.1016/j.esci.2023.100141_bib18 article-title: Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15228a – volume: 9 year: 2019 ident: 10.1016/j.esci.2023.100141_bib75 article-title: Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell publication-title: Adv. Energy Mater. – volume: 90 year: 2003 ident: 10.1016/j.esci.2023.100141_bib147 article-title: Tuning carbon nanotube band gaps with strain publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.156401 – volume: 47 start-page: 4332 year: 2018 ident: 10.1016/j.esci.2023.100141_bib136 article-title: TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00705A – volume: 136 start-page: 15670 year: 2014 ident: 10.1016/j.esci.2023.100141_bib138 article-title: Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5085157 – year: 1965 ident: 10.1016/j.esci.2023.100141_bib54 – volume: 10 year: 2020 ident: 10.1016/j.esci.2023.100141_bib76 article-title: Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion publication-title: Adv. Energy Mater. – volume: 185 start-page: 258 year: 1974 ident: 10.1016/j.esci.2023.100141_bib48 article-title: Surface electronic properties of tungsten, tungsten carbide, and platinum publication-title: Science doi: 10.1126/science.185.4147.258 – volume: 18 year: 2022 ident: 10.1016/j.esci.2023.100141_bib137 article-title: Transition metal non-oxides as electrocatalysts: advantages and challenges publication-title: Small doi: 10.1002/smll.202202033 – volume: 44 start-page: 623 year: 2015 ident: 10.1016/j.esci.2023.100141_bib9 article-title: Atomically-thin two-dimensional sheets for understanding active sites in catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00236A – volume: 108 start-page: 17886 year: 2004 ident: 10.1016/j.esci.2023.100141_bib15 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 143 start-page: 94 year: 2009 ident: 10.1016/j.esci.2023.100141_bib55 article-title: Transition metal phosphide hydroprocessing catalysts: a review publication-title: Catal. Today doi: 10.1016/j.cattod.2008.09.019 – volume: 126 start-page: 10980 year: 2014 ident: 10.1016/j.esci.2023.100141_bib94 article-title: Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201406695 – volume: 3 start-page: 1159 year: 2011 ident: 10.1016/j.esci.2023.100141_bib31 article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 11 start-page: 938 year: 2020 ident: 10.1016/j.esci.2023.100141_bib131 article-title: Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction publication-title: Nat. Commun. doi: 10.1038/s41467-020-14565-w – volume: 28 start-page: 1691 year: 2016 ident: 10.1016/j.esci.2023.100141_bib130 article-title: Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04457 – volume: 10 year: 2020 ident: 10.1016/j.esci.2023.100141_bib112 article-title: Single-atom catalysts: engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion publication-title: Adv. Energy Mater. – volume: 28 year: 2018 ident: 10.1016/j.esci.2023.100141_bib107 article-title: N, P-doped CoS2 embedded in TiO2 Nanoporous films for Zn–air batteries publication-title: Adv. Funct. Mater. – volume: 50 start-page: 3257 year: 2011 ident: 10.1016/j.esci.2023.100141_bib87 article-title: Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201006768 – volume: 9 start-page: 19807 year: 2017 ident: 10.1016/j.esci.2023.100141_bib66 article-title: Au promoted nickel–iron layered double hydroxide nanoarrays: a modular catalyst enabling high-performance oxygen evolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03033 – volume: 29 year: 2017 ident: 10.1016/j.esci.2023.100141_bib96 article-title: In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis publication-title: Adv. Mater. – volume: 10 start-page: 1186 year: 2017 ident: 10.1016/j.esci.2023.100141_bib93 article-title: Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03446B – volume: 352 start-page: 333 year: 2016 ident: 10.1016/j.esci.2023.100141_bib63 article-title: Homogeneously dispersed multimetal oxygen-evolving catalysts publication-title: Science doi: 10.1126/science.aaf1525 – volume: 141 start-page: 10417 year: 2019 ident: 10.1016/j.esci.2023.100141_bib155 article-title: Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04492 – volume: 15 start-page: 121 year: 2016 ident: 10.1016/j.esci.2023.100141_bib30 article-title: Anionic redox processes for electrochemical devices publication-title: Nat. Mater. doi: 10.1038/nmat4551 – volume: 29 year: 2017 ident: 10.1016/j.esci.2023.100141_bib39 article-title: Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels publication-title: Adv. Mater. doi: 10.1002/adma.201606800 – volume: 8 start-page: 2464 year: 2018 ident: 10.1016/j.esci.2023.100141_bib88 article-title: Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc-air batteries publication-title: ACS Catal. doi: 10.1021/acscatal.7b02739 – volume: 12 start-page: 620 year: 2021 ident: 10.1016/j.esci.2023.100141_bib4 article-title: Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction publication-title: Nat. Commun. doi: 10.1038/s41467-021-20923-z – volume: 358 start-page: 751 year: 2017 ident: 10.1016/j.esci.2023.100141_bib10 article-title: Perovskites in catalysis and electrocatalysis publication-title: Science doi: 10.1126/science.aam7092 – volume: 10 start-page: 1392 year: 2019 ident: 10.1016/j.esci.2023.100141_bib103 article-title: Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-019-09394-5 – volume: 45 start-page: 517 year: 2016 ident: 10.1016/j.esci.2023.100141_bib20 article-title: Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00670H – volume: 138 start-page: 2488 year: 2016 ident: 10.1016/j.esci.2023.100141_bib145 article-title: Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11713 – volume: 300 start-page: 279 year: 2015 ident: 10.1016/j.esci.2023.100141_bib139 article-title: Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.081 – volume: 30 year: 2018 ident: 10.1016/j.esci.2023.100141_bib100 article-title: A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc–air batteries publication-title: Adv. Mater. doi: 10.1002/adma.201805268 – volume: 355 year: 2017 ident: 10.1016/j.esci.2023.100141_bib1 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 1 start-page: 339 year: 2018 ident: 10.1016/j.esci.2023.100141_bib71 article-title: A universal principle for a rational design of single-atom electrocatalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 11 start-page: 3375 year: 2018 ident: 10.1016/j.esci.2023.100141_bib114 article-title: Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02656D – volume: 56 start-page: 8902 year: 1997 ident: 10.1016/j.esci.2023.100141_bib25 article-title: Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.8902 – volume: 56 start-page: 5867 year: 2017 ident: 10.1016/j.esci.2023.100141_bib65 article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701477 – volume: 51 start-page: 7903 year: 2015 ident: 10.1016/j.esci.2023.100141_bib110 article-title: High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity publication-title: Chem. Commun. doi: 10.1039/C5CC01841B – volume: 257 start-page: 1946 year: 2013 ident: 10.1016/j.esci.2023.100141_bib47 article-title: Nanostructured transition metal nitrides for energy storage and fuel cells publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2012.12.012 – volume: 9 year: 2019 ident: 10.1016/j.esci.2023.100141_bib86 article-title: Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn−air batteries and overall water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900945 – volume: 31 year: 2019 ident: 10.1016/j.esci.2023.100141_bib115 article-title: Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution publication-title: Adv. Mater. doi: 10.1002/adma.201905622 – volume: 46 start-page: 337 year: 2017 ident: 10.1016/j.esci.2023.100141_bib44 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 5 start-page: 3949 year: 2014 ident: 10.1016/j.esci.2023.100141_bib5 article-title: Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions publication-title: Nat. Commun. doi: 10.1038/ncomms4949 – volume: 15 start-page: 13737 year: 2013 ident: 10.1016/j.esci.2023.100141_bib40 article-title: Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51213d – volume: 29 year: 2017 ident: 10.1016/j.esci.2023.100141_bib79 article-title: Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects publication-title: Adv. Mater. doi: 10.1002/adma.201604103 – volume: 31 year: 2021 ident: 10.1016/j.esci.2023.100141_bib11 article-title: Advanced oxygen electrocatalysis in energy conversion and storage publication-title: Adv. Funct. Mater. – start-page: 71 year: 2000 ident: 10.1016/j.esci.2023.100141_bib26 article-title: Theoretical surface science and catalysis—calculations and concepts doi: 10.1016/S0360-0564(02)45013-4 – volume: 60 start-page: 4665 year: 1999 ident: 10.1016/j.esci.2023.100141_bib24 article-title: Valence state of Mn in Ca-doped LaMnO3 studied by high-resolution Mn K β emission spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.4665 – volume: 4 year: 2014 ident: 10.1016/j.esci.2023.100141_bib125 article-title: Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400696 – volume: 486 start-page: 43 year: 2012 ident: 10.1016/j.esci.2023.100141_bib2 article-title: Electrocatalyst approaches and challenges for automotive fuel cells publication-title: Nature doi: 10.1038/nature11115 – volume: 18 start-page: 1699 year: 2016 ident: 10.1016/j.esci.2023.100141_bib67 article-title: Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP06682D – volume: 44 start-page: 2168 year: 2015 ident: 10.1016/j.esci.2023.100141_bib21 article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00484A – volume: 142 start-page: 2404 year: 2020 ident: 10.1016/j.esci.2023.100141_bib122 article-title: Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11852 – volume: 58 start-page: 277 year: 2019 ident: 10.1016/j.esci.2023.100141_bib117 article-title: Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.011 – volume: 47 start-page: 3100 year: 2018 ident: 10.1016/j.esci.2023.100141_bib135 article-title: Two-dimensional transition metal dichalcogenides: interface and defect engineering publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00024G – volume: 113 start-page: 5782 year: 2013 ident: 10.1016/j.esci.2023.100141_bib84 article-title: Nanocarbons for the development of advanced catalysts publication-title: Chem. Rev. doi: 10.1021/cr300367d – volume: 4 start-page: 6455 year: 2012 ident: 10.1016/j.esci.2023.100141_bib150 article-title: Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction publication-title: Nanoscale doi: 10.1039/c2nr31858j |
SSID | ssj0002811347 |
Score | 2.5970106 |
SecondaryResourceType | review_article |
Snippet | Developing highly efficient, inexpensive catalysts for oxygen electrocatalysis in alkaline electrolytes (i.e., the oxygen reduction reaction (ORR) and the... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 100141 |
SubjectTerms | Active sites Electronic structure Intrinsic activity Noble metal-free electrocatalysts Oxygen electrocatalysts |
Title | Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis |
URI | https://doaj.org/article/15a75a58ed2e4601962b1735dc1a3547 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOXiT1c02j92jSksR9GShtyWP2UOtrZQV9N87s9mW9aIXb8uShPBlyMyEme9j7CpzxKGe6cRAjgmK8CEpTKESD0JWxgRhPPUOPz3r8UQ-TtW0I_VFNWGRHjgCdyuUNcqqHEIGUhObS-aEGajghR0o2fSRo8_rJFOz5slIUI8kKctpvAmEFKbtmInFXYD-5YaUwxsOIil-eKUOeX_jZUZ7bLcND_ld3NY-24LFAdvpkAYeMhhulGt4ZH_9WAFfRU15RJkvK74glRj-BhhZJ9UK8NPW0dR43dTJcjt_tRRh8uXnF9oQb-VwmtccIik5YpPR8OVhnLRiCYmXIq0TKKzMIJXBSVPZYEKRp5lTIuSgc-lc5ioXtPNUBGN08EY7rWVIjcN7JhR-cMx6i-UCThivJFgthFXo3HExTMm09aYwQVUIelB9JtZglb5lEidBi3m5LhmblQRwSQCXEeA-u97MeY88Gr-Ovqcz2IwkDuzmB1pG2VpG-ZdlnP7HImdsm_YVS_7OWQ-PFS4wDKndZWNx39C82Ps |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+structure+regulation+of+noble+metal-free+materials+toward+alkaline+oxygen+electrocatalysis&rft.jtitle=eScience+%28Beijing%29&rft.au=Xia+Wang&rft.au=Minghao+Yu&rft.au=Xinliang+Feng&rft.date=2023-08-01&rft.pub=KeAi+Communications+Co.+Ltd&rft.issn=2667-1417&rft.eissn=2667-1417&rft.volume=3&rft.issue=4&rft.spage=100141&rft_id=info:doi/10.1016%2Fj.esci.2023.100141&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_15a75a58ed2e4601962b1735dc1a3547 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-1417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-1417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-1417&client=summon |