Investigation on ethylene glycol Nano fluid flow over a vertical permeable circular cylinder under effect of magnetic field
In this research, the mixed convection stationary point flow of an incompressible viscous Nano fluid into a vertical permeable circular cylinder along with electric conductivity is analyzed. Ethylene glycol is used as an ordinary liquid, while nanoparticles include copper and silver. The problem has...
Saved in:
Published in | Results in physics Vol. 9; pp. 1525 - 1533 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this research, the mixed convection stationary point flow of an incompressible viscous Nano fluid into a vertical permeable circular cylinder along with electric conductivity is analyzed. Ethylene glycol is used as an ordinary liquid, while nanoparticles include copper and silver. The problem has been calculated without the presence of an inductive and electrical magnetic field while taking into account homogeneous and heterogeneous reactions. The strong nonlinear systems calculations are presented using the Numerical Method after non-dimensionalization. Graphical analysis of the effective parameters such as Prandtl number (Pr), permeability parameter (Vw), Schmidt number (Sc), magnetic parameter (M), mixed convection parameter (λ) and curvature parameter (γ) is precisely investigated on the profiles of velocity, concentration and temperature for different nanoparticles. Conclusions indicate that: The thickness of the thermal boundary layer changes more than the thickness of the hydro-dynamic boundary layer for injection and suction. Also, due to the higher thermal conductivity of silver nanoparticles, the temperature increase in these nanoparticles is more than that of copper. In fact, this paper shows that the heat transfer rate increases with the addition of nanoparticles. In addition, the role of the curvature parameter (γ) on the concentration profile shows that the concentration profile decreases with the gradual increase of γ. |
---|---|
AbstractList | In this research, the mixed convection stationary point flow of an incompressible viscous Nano fluid into a vertical permeable circular cylinder along with electric conductivity is analyzed. Ethylene glycol is used as an ordinary liquid, while nanoparticles include copper and silver. The problem has been calculated without the presence of an inductive and electrical magnetic field while taking into account homogeneous and heterogeneous reactions. The strong nonlinear systems calculations are presented using the Numerical Method after non-dimensionalization. Graphical analysis of the effective parameters such as Prandtl number (Pr), permeability parameter (Vw), Schmidt number (Sc), magnetic parameter (M), mixed convection parameter (λ) and curvature parameter (γ) is precisely investigated on the profiles of velocity, concentration and temperature for different nanoparticles. Conclusions indicate that: The thickness of the thermal boundary layer changes more than the thickness of the hydro-dynamic boundary layer for injection and suction. Also, due to the higher thermal conductivity of silver nanoparticles, the temperature increase in these nanoparticles is more than that of copper. In fact, this paper shows that the heat transfer rate increases with the addition of nanoparticles. In addition, the role of the curvature parameter (γ) on the concentration profile shows that the concentration profile decreases with the gradual increase of γ. In this research, the mixed convection stationary point flow of an incompressible viscous Nano fluid into a vertical permeable circular cylinder along with electric conductivity is analyzed. Ethylene glycol is used as an ordinary liquid, while nanoparticles include copper and silver. The problem has been calculated without the presence of an inductive and electrical magnetic field while taking into account homogeneous and heterogeneous reactions. The strong nonlinear systems calculations are presented using the Numerical Method after non-dimensionalization. Graphical analysis of the effective parameters such as Prandtl number (Pr), permeability parameter (Vw), Schmidt number (Sc), magnetic parameter (M), mixed convection parameter (λ) and curvature parameter (γ) is precisely investigated on the profiles of velocity, concentration and temperature for different nanoparticles. Conclusions indicate that: The thickness of the thermal boundary layer changes more than the thickness of the hydro-dynamic boundary layer for injection and suction. Also, due to the higher thermal conductivity of silver nanoparticles, the temperature increase in these nanoparticles is more than that of copper. In fact, this paper shows that the heat transfer rate increases with the addition of nanoparticles. In addition, the role of the curvature parameter (γ) on the concentration profile shows that the concentration profile decreases with the gradual increase of γ. Keywords: Nano fluids, Mixed convection, Vertical permeable cylinder, Stagnation point flow, Magnetic field |
Author | Hosseinzadeh, Kh Ganji, D.D. Gholinia, M. Gholinia, S. |
Author_xml | – sequence: 1 givenname: M. surname: Gholinia fullname: Gholinia, M. organization: Mazandaran University of Science and Technology, Department of Mechanical Engineering, Babol, Iran – sequence: 2 givenname: S. surname: Gholinia fullname: Gholinia, S. organization: Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol, Iran – sequence: 3 givenname: Kh surname: Hosseinzadeh fullname: Hosseinzadeh, Kh organization: Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol, Iran – sequence: 4 givenname: D.D. surname: Ganji fullname: Ganji, D.D. email: mirgang@nit.ac.ir organization: Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol, Iran |
BookMark | eNp9kdGKUzEQhoOs4LruC3iVF-gxc05OkoI3sqhbWPRGr8M0mdSUNCk5p5Xiy5u2CuLFwvAnJPmGzP-_Zje5ZGLsLYgOBKh3267GvO96AaYTshNavGC3fQ-wGPRS3_yzf8Xup2krRKPkOALcsl-rfKRpjhucY8m8Fc0_Toky8U06uZL4F8yFh3SIvmn5ycuRKkfedI4OE99T3RGuE3EXqzskrNydUsy-PTtclEIgN_MS-A43mRrGQ6Tk37CXAdNE93_WO_b908dvD4-Lp6-fVw8fnhZOgpgXpMkb3Urq3jsP0mhqE6zRhPVyHJQb0eh2SxqVGdQgUFG_HFXwDlWPONyx1bWvL7i1-xp3WE-2YLSXg1I3Fs_DJLKAJJQOw-iNkCAHYwgA1IBLN0oiaL3MtZerZZoqBevifPFurhiTBWHPmditPWdiz5lYIW3LpKH9f-jfrzwLvb9C1Aw6Rqp2cpGyIx9rM7VNEJ_DfwNB6ql5 |
CitedBy_id | crossref_primary_10_1007_s12648_020_01950_w crossref_primary_10_1093_jcde_qwae091 crossref_primary_10_1016_j_ijhydene_2019_08_191 crossref_primary_10_1002_htj_21404 crossref_primary_10_3390_sym16121558 crossref_primary_10_1016_j_aej_2020_05_008 crossref_primary_10_1016_j_jrras_2024_101268 crossref_primary_10_1016_j_matcom_2020_06_018 crossref_primary_10_1002_htj_22336 crossref_primary_10_1002_htj_21483 crossref_primary_10_1002_htj_22216 crossref_primary_10_1155_2021_6641835 crossref_primary_10_1139_cjp_2018_0526 crossref_primary_10_1016_j_fuel_2022_123943 crossref_primary_10_1140_epjp_i2019_12760_5 crossref_primary_10_1002_htj_21482 crossref_primary_10_1016_j_ijhydene_2019_04_171 crossref_primary_10_1016_j_csite_2020_100598 crossref_primary_10_1007_s12043_020_01971_4 crossref_primary_10_1108_HFF_07_2020_0423 crossref_primary_10_1016_j_csite_2019_100460 crossref_primary_10_1108_MMMS_11_2019_0198 crossref_primary_10_1108_WJE_06_2018_0204 crossref_primary_10_1088_1402_4896_ab4637 crossref_primary_10_1002_htj_21778 crossref_primary_10_1016_j_molliq_2018_10_049 crossref_primary_10_1007_s10483_021_2713_9 crossref_primary_10_1080_02286203_2021_2004296 crossref_primary_10_3390_sym15091731 crossref_primary_10_1080_01430750_2020_1749125 crossref_primary_10_1002_htj_22063 crossref_primary_10_1108_MMMS_11_2019_0191 crossref_primary_10_1016_j_icheatmasstransfer_2020_104499 crossref_primary_10_1007_s40430_019_1974_6 crossref_primary_10_1016_j_rineng_2024_103031 crossref_primary_10_1615_NanoSciTechnolIntJ_2024050935 crossref_primary_10_1108_MMMS_11_2019_0202 crossref_primary_10_1007_s00521_019_04221_w crossref_primary_10_1016_j_ijhydene_2020_03_123 crossref_primary_10_1002_mma_8482 crossref_primary_10_1016_j_csite_2018_11_007 crossref_primary_10_32604_cmes_2021_014980 crossref_primary_10_1177_1687814020924894 crossref_primary_10_1115_1_4041497 crossref_primary_10_1016_j_rineng_2022_100702 crossref_primary_10_1002_htj_21585 crossref_primary_10_1002_htj_21341 crossref_primary_10_1038_s41598_020_65278_5 crossref_primary_10_1140_epjp_s13360_023_03746_3 crossref_primary_10_1063_5_0089143 crossref_primary_10_1002_htj_21586 crossref_primary_10_1016_j_csite_2019_100439 crossref_primary_10_3390_app11093819 crossref_primary_10_1515_nleng_2021_0013 crossref_primary_10_1016_j_cplett_2022_139860 crossref_primary_10_1002_num_22445 crossref_primary_10_1007_s12648_020_01805_4 crossref_primary_10_1016_j_matcom_2021_12_022 crossref_primary_10_1016_j_csite_2018_100384 crossref_primary_10_1016_j_sajce_2024_06_002 crossref_primary_10_1016_j_csite_2024_105493 crossref_primary_10_1016_j_molliq_2018_11_109 crossref_primary_10_1016_j_hybadv_2024_100273 crossref_primary_10_1016_j_aej_2023_03_025 crossref_primary_10_1080_10407790_2024_2345697 crossref_primary_10_1002_htj_21994 crossref_primary_10_1177_16878140211011890 crossref_primary_10_1016_j_icheatmasstransfer_2020_104913 crossref_primary_10_1016_j_arabjc_2022_104166 crossref_primary_10_1088_1402_4896_ac3b67 crossref_primary_10_1142_S0217979224503971 crossref_primary_10_1016_j_tsep_2019_04_006 crossref_primary_10_1002_htj_21871 crossref_primary_10_1016_j_aej_2021_06_014 crossref_primary_10_1002_htj_21591 crossref_primary_10_1108_HFF_06_2018_0302 crossref_primary_10_1088_1402_4896_acfb4e crossref_primary_10_1080_15376494_2018_1525780 crossref_primary_10_1007_s12648_020_01745_z crossref_primary_10_1016_j_icheatmasstransfer_2022_106379 crossref_primary_10_1063_1_5100892 crossref_primary_10_1016_j_ijft_2023_100283 crossref_primary_10_1016_j_icheatmasstransfer_2021_105204 crossref_primary_10_1016_j_cjph_2020_07_009 crossref_primary_10_1016_j_icheatmasstransfer_2021_105568 crossref_primary_10_1108_HFF_05_2019_0441 crossref_primary_10_1016_j_csite_2019_100490 crossref_primary_10_1080_01430750_2019_1681294 crossref_primary_10_1088_1361_6528_ab81c5 crossref_primary_10_1016_j_ijft_2023_100449 crossref_primary_10_1109_ACCESS_2019_2928030 crossref_primary_10_1007_s42452_019_1325_3 crossref_primary_10_1038_s41598_023_31920_1 crossref_primary_10_1080_25765299_2022_2115688 crossref_primary_10_1007_s12668_020_00773_7 crossref_primary_10_1002_htj_22375 crossref_primary_10_1016_j_matcom_2019_10_019 crossref_primary_10_1016_j_csite_2022_101760 crossref_primary_10_1016_j_csite_2023_103424 crossref_primary_10_1002_zamm_202300536 crossref_primary_10_1007_s10237_020_01337_0 crossref_primary_10_1080_17455030_2022_2152903 crossref_primary_10_1177_0954408920948194 crossref_primary_10_1038_s41598_022_27214_7 crossref_primary_10_1016_j_matcom_2020_09_014 crossref_primary_10_1155_2020_5734979 crossref_primary_10_1166_jon_2022_1873 crossref_primary_10_1016_j_jtice_2019_01_028 crossref_primary_10_1016_j_jmrt_2020_07_023 crossref_primary_10_1140_epjp_i2018_12180_1 crossref_primary_10_1002_htj_23117 crossref_primary_10_1016_j_icheatmasstransfer_2020_104737 crossref_primary_10_1007_s12648_021_02216_9 crossref_primary_10_3390_sym14112335 crossref_primary_10_1177_09544089241258019 crossref_primary_10_1007_s10973_024_13050_6 crossref_primary_10_1007_s40819_020_00948_6 crossref_primary_10_1007_s12648_022_02420_1 crossref_primary_10_1007_s10483_020_2638_6 crossref_primary_10_1177_23977914231151481 crossref_primary_10_1016_j_hybadv_2024_100183 crossref_primary_10_1080_17455030_2022_2077470 crossref_primary_10_1002_zamm_202300369 crossref_primary_10_1142_S0217979223502466 crossref_primary_10_1002_htj_21824 crossref_primary_10_1002_htj_21541 crossref_primary_10_1016_j_rinp_2020_103224 crossref_primary_10_1007_s12043_024_02812_4 crossref_primary_10_1016_j_heliyon_2024_e31914 crossref_primary_10_1007_s12043_020_02075_9 crossref_primary_10_1016_j_aej_2022_04_011 crossref_primary_10_1177_09544089231215239 crossref_primary_10_36963_IJTST_2021080202 crossref_primary_10_1155_2020_5739648 crossref_primary_10_1002_htj_21719 crossref_primary_10_1007_s40010_022_00782_z crossref_primary_10_1016_j_csite_2019_100482 crossref_primary_10_1080_01430750_2019_1662843 crossref_primary_10_1166_jon_2022_1899 crossref_primary_10_1007_s42452_019_1246_1 crossref_primary_10_32604_EE_2021_017657 crossref_primary_10_1002_htj_22927 crossref_primary_10_1016_j_jics_2022_100558 crossref_primary_10_1007_s10973_022_11489_z crossref_primary_10_1108_WJE_09_2018_0306 crossref_primary_10_26565_2312_4334_2024_2_19 crossref_primary_10_1016_j_aej_2020_10_035 crossref_primary_10_1080_17455030_2019_1686550 crossref_primary_10_1002_htj_21794 crossref_primary_10_1002_zamm_70013 crossref_primary_10_1007_s10973_022_11430_4 crossref_primary_10_1080_16583655_2024_2336327 |
Cites_doi | 10.1016/j.molliq.2016.10.057 10.1016/j.nucengdes.2013.11.072 10.1016/j.ijheatmasstransfer.2018.01.080 10.1016/j.rinp.2018.01.005 10.1016/j.csite.2016.11.005 10.1016/j.tsep.2017.12.010 10.1016/j.molliq.2017.02.030 10.1016/j.csite.2014.10.003 10.1016/j.molliq.2016.09.019 10.1016/j.rinp.2018.01.018 10.1016/j.molliq.2015.11.052 10.1016/j.energy.2013.01.036 10.1016/j.csite.2017.07.003 10.1016/j.ijheatmasstransfer.2015.08.066 10.1016/j.ijheatmasstransfer.2017.12.069 10.1016/j.rser.2014.11.020 10.1016/j.physe.2016.07.020 10.1016/j.ijheatmasstransfer.2013.11.058 10.1016/j.jtice.2014.05.018 10.1016/j.ijheatmasstransfer.2017.10.126 10.1016/j.jtice.2016.09.029 10.1016/j.jmmm.2014.08.004 10.1016/j.csite.2018.04.009 10.2298/TSCI120225165D 10.1007/s00231-014-1467-1 10.1016/j.molliq.2016.04.032 10.1016/j.physa.2009.09.008 10.1016/j.powtec.2017.10.043 10.1016/j.molliq.2018.01.186 10.1016/j.molliq.2016.02.093 10.1016/j.molliq.2016.03.046 10.1016/j.euromechflu.2016.11.016 10.1016/j.apt.2016.12.016 10.1016/j.csite.2018.04.008 10.1016/j.molliq.2017.05.043 10.1016/j.molliq.2017.05.024 10.1016/j.jmmm.2016.05.026 10.1016/j.csite.2017.11.001 10.1155/2011/506574 10.1016/j.csite.2015.04.002 10.1016/j.ijheatmasstransfer.2017.11.117 10.1016/j.jfranklin.2013.04.027 10.1016/j.rinp.2017.12.013 10.1016/j.rser.2016.01.055 10.1016/j.powtec.2016.12.058 10.1007/s40430-015-0459-5 |
ContentType | Journal Article |
Copyright | 2018 The Authors |
Copyright_xml | – notice: 2018 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2018.04.070 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
EndPage | 1533 |
ExternalDocumentID | oai_doaj_org_article_1ae067f35d80414388e11163a9c54ee1 10_1016_j_rinp_2018_04_070 S2211379718306235 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-e7ed87d87472dcd1487e001ba8fb9536c5a87874e7a683630a6e2956fdca62aa3 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:31:40 EDT 2025 Thu Apr 24 23:10:41 EDT 2025 Tue Jul 01 01:33:40 EDT 2025 Wed May 17 01:21:44 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stagnation point flow Mixed convection Magnetic field Vertical permeable cylinder Nano fluids |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-e7ed87d87472dcd1487e001ba8fb9536c5a87874e7a683630a6e2956fdca62aa3 |
OpenAccessLink | https://doaj.org/article/1ae067f35d80414388e11163a9c54ee1 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1ae067f35d80414388e11163a9c54ee1 crossref_citationtrail_10_1016_j_rinp_2018_04_070 crossref_primary_10_1016_j_rinp_2018_04_070 elsevier_sciencedirect_doi_10_1016_j_rinp_2018_04_070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationTitle | Results in physics |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Hussain, Malik, Salahuddin, Bilal, Bilal, Awais (b0200) 2017; 231 Gerdroodbary, Rahimi, Ganji (b0040) 2015; 6 Crane (b0115) 1970; 21 Sheikholeslami, Ganji, Rashidi (b0085) 2016; 416 Hayat, Javed, Imtiaz, Alsaedi (b0145) 2017; 240 Ashorynejad, Shahriari (b0110) 2018; 9 Sheikholeslami, Ashorynejad, Rana (b0090) 2016; 214 Ishak, Nazar, Bachok, Pop (b0265) 2010; 389 Khan, Malik, Salahuddin, Hussian (b0175) 2018; 8 Hayat, Tanveer, Alsaedi (b0045) 2016; 224 Hussein, Dawood, Bakara, Kadirgamaa (b0055) 2017; 9 Devendiran, Amirtham (b0025) 2016; 60 Rashidi, Kavyani, Abelman (b0135) 2014; 70 Xuan, Ganguly, Sundar (b0015) 2015; 374 Dogonchi, Ganji (b0150) 2016; 69 Hosseinzadeh, Jafarian Amiri, Saedi Ardahaie, Ganji (b0160) 2017; 10 Lu, Farooq, Hayat, Rashidi, Ramzan (b0105) 2018; 122 Ramana Reddy, Sugunamma, Sandeep (b0155) 2017 Yu, Xie (b0010) 2011; 2012 Choi (b0005) 1995; 231 Dinarvand, Hosseini, Pop, Abbassi (b0125) 2015; 19 Sheikholeslami, Vajravelu, Rashidi (b0195) 2016; 92 Hashim, Khan Hamid (b0065) 2018; 118 Maxwell (b0245) 1904 Sheikholeslami, Rashidi, Hayat, Ganji (b0100) 2016; 218 Gireesha, Mahanthesh, Thammanna, Sampathkumar (b0210) 2018; 256 Nojoomizadeh, Karimipour (b0060) 2016; 84 Tlili, Khan, Khan (b0170) 2018; 8 Hayat, Khan, Farooq, Alsaedi, Khan (b0240) 2016; 223 Ghadikolaei, Hosseinzadeh, Yassari, Sadeghi, Ganji (b0225) 2018; 5 Shahid, Malik, Salahuddin, Khan (b0180) 2018; 8 Hajmohammadi (b0050) 2017; 240 Ashjaee, Goharkhah, Azizi Khadem, Ahmadi (b0035) 2015; 51 Hatami, Hosseinzadeh, Ganji, Behnamfar (b0190) 2014; 45 Hosseinzadeh, Afsharpanah, Zamani, Gholinia, Ganji (b0220) 2018; 12 Dinarvand, Pop (b0250) 2017; 28 Ashorynejad, Hoseinpour (b0030) 2017; 62 Fakour, Ganji, Abbasi (b0255) 2014; 4 Ashorynejad, Javaherdeh, Sheikholeslami, Ganji (b0185) 2014; 351 Dinarvand, Hosseini, Pop (b0260) 2017; 311 Hussein, Ashorynejad, Shikholeslami, Sivasankaran (b0075) 2014; 268 Kumar, Kumar, Shehzad, Sheikholeslami (b0215) 2018; 120 Ghadikolaei, Hosseinzadeh, Ganji, Jafari (b0230) 2018; 12 Hayat, Khan, Farooq, Yasmeen, Alsaedi (b0235) 2016; 220 Hosseini, Sheikholeslami, Ghasemian, Ganji (b0070) 2018; 324 Ashorynejad, Zarghami (b0205) 2018; 119 Anwar, Shafie, Salleh (b0120) 2014; 11 Yu, Xie (b0020) 2015; 43 Rashidi, Ali, Freidoonimehr, Nazari (b0130) 2013; 55 Mustafa, Javed, Ghaffari (b0140) 2016; 219 Sheikholeslami, Bandpy, Ashorynejad (b0080) 2015; 432 Rehman, Malik, Malik, Saba (b0165) 2017; 10 Sheikholeslami, Rashidi (b0095) 2016; 38 Hatami (10.1016/j.rinp.2018.04.070_b0190) 2014; 45 Ghadikolaei (10.1016/j.rinp.2018.04.070_b0225) 2018; 5 Sheikholeslami (10.1016/j.rinp.2018.04.070_b0100) 2016; 218 Nojoomizadeh (10.1016/j.rinp.2018.04.070_b0060) 2016; 84 Hussein (10.1016/j.rinp.2018.04.070_b0055) 2017; 9 Crane (10.1016/j.rinp.2018.04.070_b0115) 1970; 21 Khan (10.1016/j.rinp.2018.04.070_b0175) 2018; 8 Hashim (10.1016/j.rinp.2018.04.070_b0065) 2018; 118 Sheikholeslami (10.1016/j.rinp.2018.04.070_b0085) 2016; 416 Fakour (10.1016/j.rinp.2018.04.070_b0255) 2014; 4 Hosseinzadeh (10.1016/j.rinp.2018.04.070_b0160) 2017; 10 Yu (10.1016/j.rinp.2018.04.070_b0010) 2011; 2012 Dinarvand (10.1016/j.rinp.2018.04.070_b0125) 2015; 19 Sheikholeslami (10.1016/j.rinp.2018.04.070_b0195) 2016; 92 Ashjaee (10.1016/j.rinp.2018.04.070_b0035) 2015; 51 Sheikholeslami (10.1016/j.rinp.2018.04.070_b0080) 2015; 432 Dinarvand (10.1016/j.rinp.2018.04.070_b0260) 2017; 311 Ishak (10.1016/j.rinp.2018.04.070_b0265) 2010; 389 Hosseini (10.1016/j.rinp.2018.04.070_b0070) 2018; 324 Hayat (10.1016/j.rinp.2018.04.070_b0145) 2017; 240 Rashidi (10.1016/j.rinp.2018.04.070_b0130) 2013; 55 Rashidi (10.1016/j.rinp.2018.04.070_b0135) 2014; 70 Anwar (10.1016/j.rinp.2018.04.070_b0120) 2014; 11 Maxwell (10.1016/j.rinp.2018.04.070_b0245) 1904 Lu (10.1016/j.rinp.2018.04.070_b0105) 2018; 122 Dinarvand (10.1016/j.rinp.2018.04.070_b0250) 2017; 28 Gerdroodbary (10.1016/j.rinp.2018.04.070_b0040) 2015; 6 Xuan (10.1016/j.rinp.2018.04.070_b0015) 2015; 374 Hayat (10.1016/j.rinp.2018.04.070_b0045) 2016; 224 Ashorynejad (10.1016/j.rinp.2018.04.070_b0185) 2014; 351 Shahid (10.1016/j.rinp.2018.04.070_b0180) 2018; 8 Devendiran (10.1016/j.rinp.2018.04.070_b0025) 2016; 60 Hayat (10.1016/j.rinp.2018.04.070_b0235) 2016; 220 Ashorynejad (10.1016/j.rinp.2018.04.070_b0205) 2018; 119 Hosseinzadeh (10.1016/j.rinp.2018.04.070_b0220) 2018; 12 Mustafa (10.1016/j.rinp.2018.04.070_b0140) 2016; 219 Yu (10.1016/j.rinp.2018.04.070_b0020) 2015; 43 Hajmohammadi (10.1016/j.rinp.2018.04.070_b0050) 2017; 240 Kumar (10.1016/j.rinp.2018.04.070_b0215) 2018; 120 Sheikholeslami (10.1016/j.rinp.2018.04.070_b0095) 2016; 38 Ramana Reddy (10.1016/j.rinp.2018.04.070_b0155) 2017 Ashorynejad (10.1016/j.rinp.2018.04.070_b0030) 2017; 62 Hussein (10.1016/j.rinp.2018.04.070_b0075) 2014; 268 Sheikholeslami (10.1016/j.rinp.2018.04.070_b0090) 2016; 214 Ghadikolaei (10.1016/j.rinp.2018.04.070_b0230) 2018; 12 Hayat (10.1016/j.rinp.2018.04.070_b0240) 2016; 223 Hussain (10.1016/j.rinp.2018.04.070_b0200) 2017; 231 Rehman (10.1016/j.rinp.2018.04.070_b0165) 2017; 10 Dogonchi (10.1016/j.rinp.2018.04.070_b0150) 2016; 69 Choi (10.1016/j.rinp.2018.04.070_b0005) 1995; 231 Ashorynejad (10.1016/j.rinp.2018.04.070_b0110) 2018; 9 Tlili (10.1016/j.rinp.2018.04.070_b0170) 2018; 8 Gireesha (10.1016/j.rinp.2018.04.070_b0210) 2018; 256 |
References_xml | – volume: 6 start-page: 28 year: 2015 end-page: 39 ident: b0040 article-title: Investigation of thermal radiation on traditional Jeffery-Hamel flow to stretchable convergent/divergent channels publication-title: Case Stud Therm Eng – volume: 12 start-page: 228 year: 2018 end-page: 236 ident: b0220 article-title: A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption publication-title: Case Stud Therm Eng – volume: 432 start-page: 58 year: 2015 end-page: 70 ident: b0080 article-title: Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of Nano fluid in a cubic cavity publication-title: Results Phys – volume: 8 start-page: 1124 year: 2018 end-page: 1130 ident: b0180 article-title: Chemical reaction for Carreau-Yasuda nanofluid flow past a nonlinear stretching foil considering Joule heating publication-title: Results Phys – volume: 374 start-page: 125 year: 2015 end-page: 138 ident: b0015 article-title: Flow and heat transfer characteristics of magnetic Nano fluids: a review publication-title: J Magn Magn Mater – volume: 119 start-page: 247 year: 2018 end-page: 258 ident: b0205 article-title: Magneto hydrodynamics flow and heat transfer of Cu-water Nano fluid through a partially porous wavy channel publication-title: Int J Heat Mass Transf – volume: 60 start-page: 21 year: 2016 end-page: 40 ident: b0025 article-title: A review on preparation, characterization, properties and applications of nanofluids publication-title: Renew Sustain Energy Rev – volume: 224 start-page: 944 year: 2016 end-page: 953 ident: b0045 article-title: Numerical analysis of partial slip on peristalsis of MHD Jeffery nanofluid in curved channel with porous space publication-title: J Mol Liq – volume: 214 start-page: 86 year: 2016 end-page: 95 ident: b0090 article-title: Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation publication-title: J Mol Liq – volume: 70 start-page: 892 year: 2014 end-page: 917 ident: b0135 article-title: Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties publication-title: Int J Heat Mass Transf – volume: 69 start-page: 1 year: 2016 end-page: 13 ident: b0150 article-title: Study of nanofluid flow and heat transfer between non-parallel stretching walls considering Brownian motion publication-title: J Taiwan Inst Chem Eng – volume: 231 start-page: 99 year: 1995 end-page: 105 ident: b0005 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: ASME Int Mech Eng Congr Exposition – volume: 324 start-page: 36 year: 2018 end-page: 47 ident: b0070 article-title: Nanofluid heat transfer analysis in a microchannel heat sink (MCHS) under the effect of magnetic field by means of KKL model publication-title: Powder Technol – volume: 389 start-page: 40 year: 2010 end-page: 46 ident: b0265 article-title: MHD mixed convection flow near the stagnation-point on a vertical permeable surface publication-title: Physica A – volume: 9 start-page: 440 year: 2018 end-page: 455 ident: b0110 article-title: MHD natural convection of hybrid Nano fluid in an open wavy cavity publication-title: Physica A – volume: 4 start-page: 202 year: 2014 end-page: 214 ident: b0255 article-title: Scrutiny of underdeveloped nanofluid MHD flow and heat conduction in a channel with porous walls publication-title: Case Stud Therm Eng – volume: 21 start-page: 645 year: 1970 end-page: 647 ident: b0115 article-title: Flow past a stretching plate publication-title: Z Angew Math Mech – volume: 220 start-page: 49 year: 2016 end-page: 55 ident: b0235 article-title: Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions publication-title: J Mol Liq – volume: 416 start-page: 164 year: 2016 end-page: 173 ident: b0085 article-title: Magnetic field effect on unsteady Nano fluid flow and heat transfer using Buongiorno model publication-title: J Magn Magn Mater – volume: 118 start-page: 480 year: 2018 end-page: 491 ident: b0065 article-title: Numerical investigation on time-dependent flow of Williamson Nano fluid along with heat and mass transfer characteristics past a wedge geometry publication-title: Int J Heat Mass Transf – volume: 19 start-page: 549 year: 2015 end-page: 561 ident: b0125 article-title: Homotopy analysis method for mixed convective boundary layer flow of a Nano fluid over a vertical circular cylinder with prescribed surface temperature publication-title: Therm Sci – volume: 5 start-page: 309 year: 2018 end-page: 316 ident: b0225 article-title: Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet publication-title: Therm Sci Eng Prog – volume: 218 start-page: 393 year: 2016 end-page: 399 ident: b0100 article-title: Free convection of magnetic Nano fluid considering MFD viscosity effect publication-title: J Mol Liq – volume: 231 start-page: 341 year: 2017 end-page: 352 ident: b0200 article-title: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder publication-title: J Mol Liq – volume: 12 start-page: 176 year: 2018 end-page: 187 ident: b0230 article-title: Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet publication-title: Case Stud Therm Eng – volume: 28 start-page: 900 year: 2017 end-page: 909 ident: b0250 article-title: Free-convective flow of copper/water nanofluid about a rotating down-pointing cone using Tiwari-Das nanofluid scheme publication-title: Adv Powder Technol – volume: 240 start-page: 291 year: 2017 end-page: 302 ident: b0145 article-title: Convective flow of Jeffrey nanofluid due to two stretchable rotating disks publication-title: J Mol Liq – volume: 38 start-page: 1171 year: 2016 end-page: 1184 ident: b0095 article-title: Non-uniform magnetic field effect on Nano fluid hydrothermal treatment considering Brownian motion and thermophoresis effects publication-title: J Braz Soc Mech Sci Eng – volume: 240 start-page: 45 year: 2017 end-page: 55 ident: b0050 article-title: Cylindrical Couette flow and heat transfer properties of nanofluids; Single-phase and two-phase analyses publication-title: J Mol Liq – volume: 120 start-page: 540 year: 2018 end-page: 551 ident: b0215 article-title: Rotating frame analysis of radiating and reacting ferro-nanofluid considering Joule heating and viscous dissipation publication-title: Int J Heat Mass Transf – volume: 122 start-page: 222 year: 2018 end-page: 228 ident: b0105 article-title: Computational analysis of three layer fluid model including a nanomaterial layer publication-title: Int J Heat Mass Transf – volume: 256 start-page: 139 year: 2018 end-page: 147 ident: b0210 article-title: Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model publication-title: J Mol Liq – volume: 51 start-page: 953 year: 2015 end-page: 964 ident: b0035 article-title: Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink publication-title: Heat Mass Transf – volume: 10 start-page: 244 year: 2017 end-page: 254 ident: b0165 article-title: Mutual effects of thermal radiations and thermal stratification on tangent hyperbolic fluid flow yields by both cylindrical and flat surfaces publication-title: Case Stud Therm Eng – volume: 92 start-page: 339 year: 2016 end-page: 348 ident: b0195 article-title: Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field publication-title: Int J Heat Mass Transf – volume: 55 start-page: 497 year: 2013 end-page: 510 ident: b0130 article-title: Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm publication-title: Energy – volume: 219 start-page: 526 year: 2016 end-page: 532 ident: b0140 article-title: Heat transfer in MHD stagnation point flow of a ferrofluid over a stretchable rotating disk publication-title: J Mol Liq – volume: 268 start-page: 10 year: 2014 end-page: 17 ident: b0075 article-title: Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water Nano fluid in a presence of magnetic field publication-title: Nucl Eng Des – volume: 62 start-page: 86 year: 2017 end-page: 93 ident: b0030 article-title: Investigation of different Nano fluids effect on entropy generation on natural convection in a porous cavity publication-title: Eur J Mech B Fluids – volume: 84 start-page: 423 year: 2016 end-page: 433 ident: b0060 article-title: The effects of porosity and permeability on fluid flow and heat transfer of multi walled carbon nano tubes suspended in oil (MWCNT/Oil nano fluid) in a microchannel filled with a porous medium publication-title: Physica E – start-page: 435e41 year: 1904 ident: b0245 article-title: A treatise on electricity and magnetism – volume: 11 start-page: 569 year: 2014 end-page: 591 ident: b0120 article-title: Radiation effect on MHD stagnation-point flow of a Nano fluid over an exponentially stretching sheet publication-title: Walailak J Sci Tech – volume: 9 start-page: 72 year: 2017 end-page: 78 ident: b0055 article-title: Numerical study on turbulent forced convective heat transfer using nanofluids TiO publication-title: Case Stud Therm Eng – volume: 45 start-page: 2238 year: 2014 end-page: 2245 ident: b0190 article-title: Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates publication-title: J Taiwan Inst Chem Eng – volume: 43 start-page: 584 year: 2015 end-page: 598 ident: b0020 article-title: A review on the applications of nanofluids in solar energy systems publication-title: Renew Sustain Energy Rev – volume: 223 start-page: 960 year: 2016 end-page: 968 ident: b0240 article-title: Homogeneous-heterogeneous reactions and melting heat transfer effects in the MHD flow by a stretching surface with variable thickness publication-title: J Mol Liq – volume: 311 start-page: 147 year: 2017 end-page: 156 ident: b0260 article-title: Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari publication-title: Powder Technol – volume: 351 start-page: 701 year: 2014 end-page: 712 ident: b0185 article-title: Investigation of the heat transfer of a non-Newtonian fluid flow in an axisymmetric channel with porous wall using Parameterized Perturbation Method (PPM) publication-title: J Franklin Inst – volume: 8 start-page: 213 year: 2018 end-page: 222 ident: b0170 article-title: Multiple slips effects on MHD SA-Al publication-title: Results Phys – volume: 8 start-page: 862 year: 2018 end-page: 868 ident: b0175 article-title: Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet publication-title: Results Phys – year: 2017 ident: b0155 article-title: Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects publication-title: Alex Eng J – volume: 10 start-page: 595 year: 2017 end-page: 610 ident: b0160 article-title: Effect of variable lorentz forces on nanofluid flow in movable parallel plates utilizing analytical method publication-title: Case Stud Therm Eng – volume: 2012 start-page: 1 year: 2011 end-page: 17 ident: b0010 article-title: A review on nanofluids: preparation, stability mechanisms, and applications publication-title: J Nanomater – volume: 224 start-page: 944 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0045 article-title: Numerical analysis of partial slip on peristalsis of MHD Jeffery nanofluid in curved channel with porous space publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.10.057 – volume: 268 start-page: 10 year: 2014 ident: 10.1016/j.rinp.2018.04.070_b0075 article-title: Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water Nano fluid in a presence of magnetic field publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2013.11.072 – volume: 122 start-page: 222 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0105 article-title: Computational analysis of three layer fluid model including a nanomaterial layer publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.01.080 – volume: 11 start-page: 569 year: 2014 ident: 10.1016/j.rinp.2018.04.070_b0120 article-title: Radiation effect on MHD stagnation-point flow of a Nano fluid over an exponentially stretching sheet publication-title: Walailak J Sci Tech – volume: 8 start-page: 862 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0175 article-title: Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet publication-title: Results Phys doi: 10.1016/j.rinp.2018.01.005 – volume: 9 start-page: 72 year: 2017 ident: 10.1016/j.rinp.2018.04.070_b0055 article-title: Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2016.11.005 – volume: 5 start-page: 309 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0225 article-title: Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet publication-title: Therm Sci Eng Prog doi: 10.1016/j.tsep.2017.12.010 – volume: 231 start-page: 341 year: 2017 ident: 10.1016/j.rinp.2018.04.070_b0200 article-title: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.02.030 – volume: 4 start-page: 202 year: 2014 ident: 10.1016/j.rinp.2018.04.070_b0255 article-title: Scrutiny of underdeveloped nanofluid MHD flow and heat conduction in a channel with porous walls publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2014.10.003 – volume: 223 start-page: 960 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0240 article-title: Homogeneous-heterogeneous reactions and melting heat transfer effects in the MHD flow by a stretching surface with variable thickness publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.09.019 – volume: 8 start-page: 1124 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0180 article-title: Chemical reaction for Carreau-Yasuda nanofluid flow past a nonlinear stretching foil considering Joule heating publication-title: Results Phys doi: 10.1016/j.rinp.2018.01.018 – volume: 214 start-page: 86 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0090 article-title: Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation publication-title: J Mol Liq doi: 10.1016/j.molliq.2015.11.052 – volume: 55 start-page: 497 year: 2013 ident: 10.1016/j.rinp.2018.04.070_b0130 article-title: Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2013.01.036 – volume: 10 start-page: 244 year: 2017 ident: 10.1016/j.rinp.2018.04.070_b0165 article-title: Mutual effects of thermal radiations and thermal stratification on tangent hyperbolic fluid flow yields by both cylindrical and flat surfaces publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2017.07.003 – volume: 92 start-page: 339 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0195 article-title: Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.08.066 – start-page: 435e41 year: 1904 ident: 10.1016/j.rinp.2018.04.070_b0245 – volume: 120 start-page: 540 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0215 article-title: Rotating frame analysis of radiating and reacting ferro-nanofluid considering Joule heating and viscous dissipation publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.12.069 – volume: 21 start-page: 645 year: 1970 ident: 10.1016/j.rinp.2018.04.070_b0115 article-title: Flow past a stretching plate publication-title: Z Angew Math Mech – volume: 43 start-page: 584 year: 2015 ident: 10.1016/j.rinp.2018.04.070_b0020 article-title: A review on the applications of nanofluids in solar energy systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.11.020 – volume: 84 start-page: 423 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0060 article-title: The effects of porosity and permeability on fluid flow and heat transfer of multi walled carbon nano tubes suspended in oil (MWCNT/Oil nano fluid) in a microchannel filled with a porous medium publication-title: Physica E doi: 10.1016/j.physe.2016.07.020 – volume: 70 start-page: 892 year: 2014 ident: 10.1016/j.rinp.2018.04.070_b0135 article-title: Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2013.11.058 – year: 2017 ident: 10.1016/j.rinp.2018.04.070_b0155 article-title: Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects publication-title: Alex Eng J – volume: 45 start-page: 2238 year: 2014 ident: 10.1016/j.rinp.2018.04.070_b0190 article-title: Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2014.05.018 – volume: 118 start-page: 480 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0065 article-title: Numerical investigation on time-dependent flow of Williamson Nano fluid along with heat and mass transfer characteristics past a wedge geometry publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.10.126 – volume: 69 start-page: 1 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0150 article-title: Study of nanofluid flow and heat transfer between non-parallel stretching walls considering Brownian motion publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2016.09.029 – volume: 374 start-page: 125 year: 2015 ident: 10.1016/j.rinp.2018.04.070_b0015 article-title: Flow and heat transfer characteristics of magnetic Nano fluids: a review publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2014.08.004 – volume: 12 start-page: 176 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0230 article-title: Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2018.04.009 – volume: 19 start-page: 549 year: 2015 ident: 10.1016/j.rinp.2018.04.070_b0125 article-title: Homotopy analysis method for mixed convective boundary layer flow of a Nano fluid over a vertical circular cylinder with prescribed surface temperature publication-title: Therm Sci doi: 10.2298/TSCI120225165D – volume: 51 start-page: 953 year: 2015 ident: 10.1016/j.rinp.2018.04.070_b0035 article-title: Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink publication-title: Heat Mass Transf doi: 10.1007/s00231-014-1467-1 – volume: 220 start-page: 49 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0235 article-title: Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.04.032 – volume: 389 start-page: 40 year: 2010 ident: 10.1016/j.rinp.2018.04.070_b0265 article-title: MHD mixed convection flow near the stagnation-point on a vertical permeable surface publication-title: Physica A doi: 10.1016/j.physa.2009.09.008 – volume: 324 start-page: 36 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0070 article-title: Nanofluid heat transfer analysis in a microchannel heat sink (MCHS) under the effect of magnetic field by means of KKL model publication-title: Powder Technol doi: 10.1016/j.powtec.2017.10.043 – volume: 231 start-page: 99 year: 1995 ident: 10.1016/j.rinp.2018.04.070_b0005 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: ASME Int Mech Eng Congr Exposition – volume: 256 start-page: 139 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0210 article-title: Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.01.186 – volume: 218 start-page: 393 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0100 article-title: Free convection of magnetic Nano fluid considering MFD viscosity effect publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.02.093 – volume: 219 start-page: 526 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0140 article-title: Heat transfer in MHD stagnation point flow of a ferrofluid over a stretchable rotating disk publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.03.046 – volume: 9 start-page: 440 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0110 article-title: MHD natural convection of hybrid Nano fluid in an open wavy cavity publication-title: Physica A – volume: 62 start-page: 86 year: 2017 ident: 10.1016/j.rinp.2018.04.070_b0030 article-title: Investigation of different Nano fluids effect on entropy generation on natural convection in a porous cavity publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2016.11.016 – volume: 432 start-page: 58 year: 2015 ident: 10.1016/j.rinp.2018.04.070_b0080 article-title: Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of Nano fluid in a cubic cavity publication-title: Results Phys – volume: 28 start-page: 900 year: 2017 ident: 10.1016/j.rinp.2018.04.070_b0250 article-title: Free-convective flow of copper/water nanofluid about a rotating down-pointing cone using Tiwari-Das nanofluid scheme publication-title: Adv Powder Technol doi: 10.1016/j.apt.2016.12.016 – volume: 12 start-page: 228 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0220 article-title: A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2018.04.008 – volume: 240 start-page: 45 year: 2017 ident: 10.1016/j.rinp.2018.04.070_b0050 article-title: Cylindrical Couette flow and heat transfer properties of nanofluids; Single-phase and two-phase analyses publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.05.043 – volume: 240 start-page: 291 year: 2017 ident: 10.1016/j.rinp.2018.04.070_b0145 article-title: Convective flow of Jeffrey nanofluid due to two stretchable rotating disks publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.05.024 – volume: 416 start-page: 164 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0085 article-title: Magnetic field effect on unsteady Nano fluid flow and heat transfer using Buongiorno model publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2016.05.026 – volume: 10 start-page: 595 year: 2017 ident: 10.1016/j.rinp.2018.04.070_b0160 article-title: Effect of variable lorentz forces on nanofluid flow in movable parallel plates utilizing analytical method publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2017.11.001 – volume: 2012 start-page: 1 year: 2011 ident: 10.1016/j.rinp.2018.04.070_b0010 article-title: A review on nanofluids: preparation, stability mechanisms, and applications publication-title: J Nanomater doi: 10.1155/2011/506574 – volume: 6 start-page: 28 year: 2015 ident: 10.1016/j.rinp.2018.04.070_b0040 article-title: Investigation of thermal radiation on traditional Jeffery-Hamel flow to stretchable convergent/divergent channels publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2015.04.002 – volume: 119 start-page: 247 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0205 article-title: Magneto hydrodynamics flow and heat transfer of Cu-water Nano fluid through a partially porous wavy channel publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.11.117 – volume: 351 start-page: 701 year: 2014 ident: 10.1016/j.rinp.2018.04.070_b0185 article-title: Investigation of the heat transfer of a non-Newtonian fluid flow in an axisymmetric channel with porous wall using Parameterized Perturbation Method (PPM) publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2013.04.027 – volume: 8 start-page: 213 year: 2018 ident: 10.1016/j.rinp.2018.04.070_b0170 article-title: Multiple slips effects on MHD SA-Al2O3 and SA-Cu non-Newtonian Nano fluids flow over a stretching cylinder in porous medium with radiation and chemical reaction publication-title: Results Phys doi: 10.1016/j.rinp.2017.12.013 – volume: 60 start-page: 21 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0025 article-title: A review on preparation, characterization, properties and applications of nanofluids publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.01.055 – volume: 311 start-page: 147 year: 2017 ident: 10.1016/j.rinp.2018.04.070_b0260 article-title: Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model publication-title: Powder Technol doi: 10.1016/j.powtec.2016.12.058 – volume: 38 start-page: 1171 year: 2016 ident: 10.1016/j.rinp.2018.04.070_b0095 article-title: Non-uniform magnetic field effect on Nano fluid hydrothermal treatment considering Brownian motion and thermophoresis effects publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-015-0459-5 |
SSID | ssj0001645511 |
Score | 2.4859817 |
Snippet | In this research, the mixed convection stationary point flow of an incompressible viscous Nano fluid into a vertical permeable circular cylinder along with... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1525 |
SubjectTerms | Magnetic field Mixed convection Nano fluids Stagnation point flow Vertical permeable cylinder |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS-UwEA6LIOxlUXfF56rksLelbNukSTyqKCLsnlbwFqbJRN7ytpW37yHin9-ZtE960otQcihpUmYmmZn2yzdCfINQpRS1LlTSptApYgERXIFlsq2CUDaODyf__GWub_XNXXM3KfXFmLCBHngQ3I8KkDbUpJrITDlaOYe0PI2C09BoxJz4kM-bJFP564rRFApwtlXXzNNnT-14YmYAdy3nHZNVVi7znHKl4olXyuT9E-c0cThXO-LTGCnKs-ENd8UH7PbEdkZshn-fxfOEIaPvJF1IMicfgvJ-8UTqlbRx9jIt1vNIbf8oGawpQeYCzKQZ-UCbMvLJKRnmywxHleFpwfSJS7nO7QD2kH2Sf-G-4-OOMiPevojbq8vfF9fFWEmhCLoqVwVajM7SpW0dQ6QUyCIJqQWXWv5_GxpwtHI1WjBOGVWCwZoypxQDmBpA7Yutru_wQMi6Ick724K1qFWJbXIhGAPOKd02Mc1EtZGkDyPNOFe7WPgNnuyPZ-l7lr4vtSfpz8T3l2ceBpKNV3ufs4JeejJBdr5BZuNHs_Fvmc1MNBv1-jHWGGIIGmr-yuSH7zH5V_GRhxwQZ0dia7Vc4zHFNqv2JJvxf_VG9pk priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9Em3L3TorZi1LVlSjk1oCIX20gb2JsbSaHHZ2ouzSwn9852Rven2kkNBCCwkW8zIM5L9zTdCvIdQpRS1LlTSptApYgERXIFlsq2CUDaOg5O_fDVX1_rzqlmdiItDLAzDKmfbP9n0bK3nluUszeW265bfajq7KHtGxpW2vbXiQHOlXQ7iW53__c5iNG0K-NzF_QseMMfOTDCvseuZtrJymfGUcxYf-adM43_kpo5cz-Vj8WjeM8qP07SeiBPsn4oHGbsZbp6J30dcGUMvqSBJn7wJyvXmlhQtyYQOMm32XaR6-CUZtilB5lTMpCO5JfOMHEMlQzdmYKoMtxsmUhzlPtcT7EMOSf6Edc-BjzJj356L68tP3y-uijmnQhF0Ve4KtBidpaJtHUOkw5BFElILLrX8Jzc04Ogd1mjBOGVUCQZrOkOlGMDUAOqFOO2HHl8KWTdwFpxtwVrUqsQ2uRCMAeeUbpuYFqI6SNKHmXCc815s_AFZ9sOz9D1L35fak_QX4sPdmO1Et3Fv73NW0F1PpsrODcO49vNa8RUgeeSkmshUS1o5h2TfjaLJNxqxWojmoF7_z8qjW3X3PPzVf457LR7y1QQ3eyNOd-Me39LGZte-yyv3D45J-CY priority: 102 providerName: Elsevier |
Title | Investigation on ethylene glycol Nano fluid flow over a vertical permeable circular cylinder under effect of magnetic field |
URI | https://dx.doi.org/10.1016/j.rinp.2018.04.070 https://doaj.org/article/1ae067f35d80414388e11163a9c54ee1 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDDelY7CXsU9221r80LeRkcSO7T6M0ZaVrtA97eDejGPLx40sadM7tqP_fCUn196gFAbGkOA4RoosyZF-YuzA-SLGIGUmolSZjAEyF5zJII-6Fs7nlaHk5Isf6mwqz2fVbIdtyh2NBLx-0LWjelLTvvn892r9FQX-y32sVr9oCXuyMAm2VKML_wQ1kyZBvRjN_XTmoiQaCOSDlSWh9-lDPebRPDzNP7oqQfpvqawtNXT6gj0f7Ud-NDD8JduB9hV7muI4_fVrdrOFm9G1HBsgJ1CzAJ83a2Q6x-2047FZLQL23R9OIZzc8VSWGfnFL3GrBsqn4n7RpyBV7tcNgSr2fJX6IQSEd5H_dvOWkiB5ioN7w6an336enGVjfYXMyyJfZqAhGI1N6jL4gI6RBiRS7Uys6a-ur5xBeZagnTJCidwpKNGfisE7VTon3rLdtmvhHeNl5Q690bXTGqTIoY7Ge6WcMULWVYgTVmwoaf0IPk41MBq7iTL7ZYn6lqhvc2mR-hP26e6ZywF649HRx8Sgu5EEm51udP3cjlJoCweonaOoAsEuSWEM4F6vBC6-kgDFhFUb9trRAhksC5xq8cjL3__XUj-wZ3Q1BJx9ZLvLfgV7aNos6_10JID999nxfvp2bwHhWPnt |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4im2vHzghqJNYsd2j7Si2kLbC620N8uxx6tUS7IKu6oq_jwzTrYslx6QLB8cO7HGzsw4-eYbxj45X8QYpMxElCqTMUDmgjMZ5FHXwvm8MhScfH6hZlfy27ya77HjbSwMwSpH3T_o9KStx5bpKM3pqmmmP0o8uwh9iMoV3d5SVA_YQ_QGNOVvOJ0f_f3QoiR6BXTwogEZjRiDZwacV9-0xFtZmER5SkmLdwxU4vHfsVM7tufkGXs6Oo38yzCv52wP2hfsUQJv-l8v2e8dsoyu5VgAxY_mBPhieYsrzVGHdjwuN03AurvhhNvkjqdczLhIfIX6GSiIivumT8hU7m-XxKTY802qB9wH7yL_6RYtRT7yBH57xa5Ovl4ez7IxqULmZZGvM9AQjMYidRl8wNOQBhRS7Uys6Veur5zBl1iCdsoIJXKnoMRDVAzeqdI58Zrtt10LbxgvK3foja6d1iBFDnU03ivljBGyrkKcsGIrSetHxnFKfLG0W2jZtSXpW5K-zaVF6U_Y57sxq4Fv497eR7RAdz2JKzs1dP3CjpvFFg7QJEdRBeJaksIYQAWvBE6-kgDFhFXb5bX_bD28VXPPww_-c9xH9nh2eX5mz04vvr9lT-jKgD17x_bX_Qbeo5ezrj-kXfwHCtH7RQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+ethylene+glycol+Nano+fluid+flow+over+a+vertical+permeable+circular+cylinder+under+effect+of+magnetic+field&rft.jtitle=Results+in+physics&rft.au=Gholinia%2C+M.&rft.au=Gholinia%2C+S.&rft.au=Hosseinzadeh%2C+Kh&rft.au=Ganji%2C+D.D.&rft.date=2018-06-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=9&rft.spage=1525&rft.epage=1533&rft_id=info:doi/10.1016%2Fj.rinp.2018.04.070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2018_04_070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |