Techno-economic Analysis of Direct Air Carbon Capture with CO2 Utilisation

•Profitable DACC plant designed•LCOD range calculated between $493 & -$1783 tCO2−1•NPV range calculated between -$4.6B and $23.5B•Lifetime CO2 removal in excess of 24.2B kg CO2 Carbon capture technologies are crucial for mitigating climate change and play an important role in the net zero roadma...

Full description

Saved in:
Bibliographic Details
Published inCarbon Capture Science & Technology Vol. 2; p. 100025
Main Authors Daniel, Thorin, Masini, Alice, Milne, Cameron, Nourshagh, Neeka, Iranpour, Cameron, Xuan, Jin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Profitable DACC plant designed•LCOD range calculated between $493 & -$1783 tCO2−1•NPV range calculated between -$4.6B and $23.5B•Lifetime CO2 removal in excess of 24.2B kg CO2 Carbon capture technologies are crucial for mitigating climate change and play an important role in the net zero roadmap. Recently the greenhouse gas removal (GGR) technology has come under scrutiny as a negative emission solution which will remove CO2 from the atmosphere, either capturing it directly from the air or indirectly via biomass. This study proposed and designed a novel direct air carbon capture process integrated with a solid oxide electrolysis unit for the chemical utilisation of the captured CO2. A detailed techno-economic analysis is performed to determine if the addition of CO2 utilisation is able to offset the high cost of carbon capture. An initial net present value (NPV) and levelised cost of -$4.6B and $382 tCO2−1 were calculated, indicating the unfavourable techo-economics. However, a scenario analysis suggested that in the near future (i.e., in 4-5 years) the NPV could be positive and the levelised cost could be neutral with the advances of technology maturity and the net zero economy. A carbon emissions assessment calculated that during plant operation over 24.2B kg of carbon dioxide would be removed, and hence the real term carbon removal would be approximately 97% of the theoretical maximum.
AbstractList Carbon capture technologies are crucial for mitigating climate change and play an important role in the net zero roadmap. Recently the greenhouse gas removal (GGR) technology has come under scrutiny as a negative emission solution which will remove CO2 from the atmosphere, either capturing it directly from the air or indirectly via biomass. This study proposed and designed a novel direct air carbon capture process integrated with a solid oxide electrolysis unit for the chemical utilisation of the captured CO2. A detailed techno-economic analysis is performed to determine if the addition of CO2 utilisation is able to offset the high cost of carbon capture. An initial net present value (NPV) and levelised cost of -$4.6B and $382 tCO2−1 were calculated, indicating the unfavourable techo-economics. However, a scenario analysis suggested that in the near future (i.e., in 4-5 years) the NPV could be positive and the levelised cost could be neutral with the advances of technology maturity and the net zero economy. A carbon emissions assessment calculated that during plant operation over 24.2B kg of carbon dioxide would be removed, and hence the real term carbon removal would be approximately 97% of the theoretical maximum.
•Profitable DACC plant designed•LCOD range calculated between $493 & -$1783 tCO2−1•NPV range calculated between -$4.6B and $23.5B•Lifetime CO2 removal in excess of 24.2B kg CO2 Carbon capture technologies are crucial for mitigating climate change and play an important role in the net zero roadmap. Recently the greenhouse gas removal (GGR) technology has come under scrutiny as a negative emission solution which will remove CO2 from the atmosphere, either capturing it directly from the air or indirectly via biomass. This study proposed and designed a novel direct air carbon capture process integrated with a solid oxide electrolysis unit for the chemical utilisation of the captured CO2. A detailed techno-economic analysis is performed to determine if the addition of CO2 utilisation is able to offset the high cost of carbon capture. An initial net present value (NPV) and levelised cost of -$4.6B and $382 tCO2−1 were calculated, indicating the unfavourable techo-economics. However, a scenario analysis suggested that in the near future (i.e., in 4-5 years) the NPV could be positive and the levelised cost could be neutral with the advances of technology maturity and the net zero economy. A carbon emissions assessment calculated that during plant operation over 24.2B kg of carbon dioxide would be removed, and hence the real term carbon removal would be approximately 97% of the theoretical maximum.
ArticleNumber 100025
Author Milne, Cameron
Masini, Alice
Iranpour, Cameron
Xuan, Jin
Daniel, Thorin
Nourshagh, Neeka
Author_xml – sequence: 1
  givenname: Thorin
  surname: Daniel
  fullname: Daniel, Thorin
– sequence: 2
  givenname: Alice
  surname: Masini
  fullname: Masini, Alice
– sequence: 3
  givenname: Cameron
  surname: Milne
  fullname: Milne, Cameron
– sequence: 4
  givenname: Neeka
  surname: Nourshagh
  fullname: Nourshagh, Neeka
– sequence: 5
  givenname: Cameron
  surname: Iranpour
  fullname: Iranpour, Cameron
– sequence: 6
  givenname: Jin
  orcidid: 0000-0002-6718-9018
  surname: Xuan
  fullname: Xuan, Jin
  email: j.xuan@lboro.ac.uk
BookMark eNp9kM1OwzAQhC0EEqX0BTjlBVJsJ05siUtV_ooq9dKeLcdeU0dpXNkB1LcnaRDixGlWo53R7neDLlvfAkJ3BM8JJsV9Pdc6dnOKKekNjCm7QBNaljQtWMEv_8zXaBZjPaxwVghcTNDbFvS-9Slo3_qD08miVc0puph4mzy6ALpLFi4kSxUq3_Zy7D4CJF-u2yfLDU12nWtcVJ3z7S26sqqJMPvRKdo9P22Xr-l687JaLtapzgnuUqAEW8otYKtMZQpSKkOrnFJbMAIZN6LQpTYWrLVaWENyUwmowBArtMA8m6LV2Gu8quUxuIMKJ-mVk2fDh3epQud0AzJnzGQWc5OJKs84rTLBNeNZmXPBKMv7Ljp26eBjDGB_-wiWA1xZywGuHODKEW4fehhD0H_56SDIqB20GsyZV3-G-y_-DaRwg-g
CitedBy_id crossref_primary_10_1016_j_crcon_2023_10_003
crossref_primary_10_1016_j_ccst_2023_100126
crossref_primary_10_1016_j_jclepro_2024_141998
crossref_primary_10_1016_j_clet_2024_100746
crossref_primary_10_1016_j_enconman_2024_118739
crossref_primary_10_1039_D3EE02589F
crossref_primary_10_1016_j_egyr_2022_11_179
crossref_primary_10_1016_j_rcradv_2024_200213
crossref_primary_10_1016_j_scitotenv_2022_159088
crossref_primary_10_1039_D2RA07940B
crossref_primary_10_1016_j_biombioe_2022_106416
crossref_primary_10_1016_j_jenvman_2022_114779
crossref_primary_10_1016_j_apenergy_2023_122407
crossref_primary_10_1039_D3EE01471A
crossref_primary_10_1016_j_ccst_2022_100052
crossref_primary_10_3389_fenvs_2023_1204690
crossref_primary_10_1088_1748_9326_ad3b1f
crossref_primary_10_1016_j_chempr_2023_02_004
crossref_primary_10_1016_j_adapen_2022_100110
crossref_primary_10_1016_j_ccst_2022_100057
crossref_primary_10_1007_s41062_023_01147_0
crossref_primary_10_1016_j_cej_2023_145733
crossref_primary_10_1016_j_ccst_2022_100072
crossref_primary_10_2139_ssrn_4108848
crossref_primary_10_1039_D3TA06859E
crossref_primary_10_1016_j_apenergy_2024_123524
Cites_doi 10.1039/c1ee01311d
10.1016/j.enconman.2005.02.009
10.1016/j.oneear.2019.11.006
10.1016/j.scitotenv.2019.01.395
10.1016/j.apenergy.2020.115958
10.1115/AJTEC2011-44578
10.1016/j.ijhydene.2017.10.045
10.1016/j.resconrec.2016.05.016
10.1088/2516-1083/abf1ce
10.1007/s11027-019-9847-y
10.1016/j.egyr.2020.11.173
10.1039/C9SE00384C
10.1021/acs.chemrev.6b00173
10.1016/j.ijggc.2018.11.011
10.1016/j.joule.2019.08.010
10.1016/j.jclepro.2019.03.086
10.1016/j.joule.2018.05.006
10.6000/1929-4409.2020.09.74
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ccst.2021.100025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2772-6568
ExternalDocumentID oai_doaj_org_article_455d3f08d39b4382b398c58374895254
10_1016_j_ccst_2021_100025
S2772656821000257
GroupedDBID 6I.
AAFTH
AAXUO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
ROL
0SF
AALRI
AAYXX
ADVLN
AFJKZ
AITUG
CITATION
ID FETCH-LOGICAL-c410t-e210f28fe0fadbd617ad2b422f651e38d96c7cdfefffc9fd14db9ebed1f9c9083
IEDL.DBID DOA
ISSN 2772-6568
IngestDate Sun Sep 29 07:10:56 EDT 2024
Thu Sep 26 16:16:30 EDT 2024
Fri Feb 23 02:38:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Direct Air Carbon Capture
CCUS
Techno-economic Analysis
Net Present Value
Carbon Emissions Assessment
Levelized Cost
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-e210f28fe0fadbd617ad2b422f651e38d96c7cdfefffc9fd14db9ebed1f9c9083
ORCID 0000-0002-6718-9018
OpenAccessLink https://doaj.org/article/455d3f08d39b4382b398c58374895254
ParticipantIDs doaj_primary_oai_doaj_org_article_455d3f08d39b4382b398c58374895254
crossref_primary_10_1016_j_ccst_2021_100025
elsevier_sciencedirect_doi_10_1016_j_ccst_2021_100025
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Carbon Capture Science & Technology
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Alsabri, Al-Ghamdi (bib0003) 2020; 6
Schmidt, Gambhir, Staffell, Hawkes, Nelson, Few (bib0024) 2017; 42
Kim, Henao, Johnson, Dedrick, Miller, Stechel, Maravelias (bib0018) 2011; 4
(bib0020) 2019
Aldaco, Butnar, Margallo, Laso, Rumayor, Dominguez-Ramos, Irabien, Dodds (bib0002) 2019; 663
Cowie, Brandão, Soimakallio (bib0007) 2019
Wilcox (bib0028) 2012
de Jonge, Daemen, Loriaux, Steinmann, Huijbregts (bib0008) 2019; 80
Hai Do, D. And Specht, E. (2011) Numerical Simulation of Heat and Mass Transfer of Limestone Decomposition in Normal Shaft Kiln.
Sinnott, Towler (bib0026) 2013
Breyer, Fasihi, Bajamundi, Creutzig (bib0005) 2019; 3
Department for Business Energy and Industrial Strategy. (2020). ELECTRICITY GENERATION COSTS 2020.
Committee on Climate Change. (2019). Net Zero The UK's contribution to stopping global warming Committee on Climate Change.
Elyakov, Elyakova, Pakhomov (bib0010) 2020; 9
Al-Qahtani, Parkinson, Hellgardt, Shah, Guillen-Gosalbez (bib0001) 2021; 281
Gambhir, Tavoni (bib0013) 2019; 1
Hirst, D., & Keep, M. (2018). Carbon Price Floor (CPF) and the price support mechanism. 05927.
Quaschning, V. (2015). Specific Carbon Dioxide Emissions of Various Fuels.
Gao, Cheng, Quan, Zheng (bib0014) 2020; 273
Sanz-Pérez, Murdock, Didas, Jones (bib0023) 2016; 116
McQueen, Gomes, McCormick, Blumanthal, Pisciotta, Wilcox (bib0019) 2021; 3
Keith, Holmes, St Angelo, Heidel (bib0017) 2018; 2
Schulthoff, Rudnick, Bose, Gençer (bib0025) 2021; 8
Sagues, Park, Jameel, Sanchez (bib0022) 2019; 3
Breyer, C., Fasihi, M., & Aghahosseini, A. (2020). Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling. Mitigation and Adaptation Strategies for Global Change, 25(1), 43–65. https://doi.org/10.1007/s11027-019-9847-y
Fan, J., Hu, S., Chen, D., & Zhou, Y. (2017). Study on the construction and optimization of a resource-based industrial ecosystem. Resources, Conservation and Recycling, 119, 97–108. https://doi.org/10.1016/j.resconrec.2016.05.016
Fasihi, Efimova, Breyer (bib0012) 2019; 224
Teir, Eloneva, Zevenhoven (bib0027) 2005; 46
Fasihi (10.1016/j.ccst.2021.100025_bib0012) 2019; 224
Cowie (10.1016/j.ccst.2021.100025_bib0007) 2019
Gambhir (10.1016/j.ccst.2021.100025_bib0013) 2019; 1
10.1016/j.ccst.2021.100025_bib0011
Aldaco (10.1016/j.ccst.2021.100025_bib0002) 2019; 663
10.1016/j.ccst.2021.100025_bib0015
10.1016/j.ccst.2021.100025_bib0016
Kim (10.1016/j.ccst.2021.100025_bib0018) 2011; 4
Schmidt (10.1016/j.ccst.2021.100025_bib0024) 2017; 42
Sinnott (10.1016/j.ccst.2021.100025_bib0026) 2013
de Jonge (10.1016/j.ccst.2021.100025_bib0008) 2019; 80
Sanz-Pérez (10.1016/j.ccst.2021.100025_bib0023) 2016; 116
10.1016/j.ccst.2021.100025_bib0009
10.1016/j.ccst.2021.100025_bib0006
McQueen (10.1016/j.ccst.2021.100025_bib0019) 2021; 3
Alsabri (10.1016/j.ccst.2021.100025_bib0003) 2020; 6
Keith (10.1016/j.ccst.2021.100025_bib0017) 2018; 2
10.1016/j.ccst.2021.100025_bib0021
10.1016/j.ccst.2021.100025_bib0004
Gao (10.1016/j.ccst.2021.100025_bib0014) 2020; 273
Wilcox (10.1016/j.ccst.2021.100025_bib0028) 2012
Breyer (10.1016/j.ccst.2021.100025_bib0005) 2019; 3
Al-Qahtani (10.1016/j.ccst.2021.100025_bib0001) 2021; 281
Elyakov (10.1016/j.ccst.2021.100025_bib0010) 2020; 9
(10.1016/j.ccst.2021.100025_bib0020) 2019
Teir (10.1016/j.ccst.2021.100025_bib0027) 2005; 46
Sagues (10.1016/j.ccst.2021.100025_bib0022) 2019; 3
Schulthoff (10.1016/j.ccst.2021.100025_bib0025) 2021; 8
References_xml – year: 2019
  ident: bib0007
  article-title: 13 - Quantifying the climate effects of forest-based bioenergy (T. M. B. T.-M. G. W. Letcher (ed.); pp. 399–418)
  publication-title: Academic Press
  contributor:
    fullname: Soimakallio
– volume: 4
  start-page: 3122
  year: 2011
  end-page: 3132
  ident: bib0018
  article-title: Methanol production from CO2 using solar-thermal energy: Process development and techno-economic analysis
  publication-title: Energy and Environmental Science
  contributor:
    fullname: Maravelias
– volume: 9
  start-page: 790
  year: 2020
  end-page: 796
  ident: bib0010
  article-title: Forecast model of prices for liquefied natural gas in the world asian energy market
  publication-title: International Journal of Criminology and Sociology
  contributor:
    fullname: Pakhomov
– volume: 1
  start-page: 405
  year: 2019
  end-page: 409
  ident: bib0013
  article-title: Direct Air Carbon Capture and Sequestration: How It Works and How It Could Contribute to Climate-Change Mitigation
  publication-title: One Earth
  contributor:
    fullname: Tavoni
– volume: 3
  year: 2021
  ident: bib0019
  article-title: A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future
  publication-title: Progress in Energy
  contributor:
    fullname: Wilcox
– year: 2019
  ident: bib0020
  article-title: Negative emissions technologies and reliable sequestration: A research agenda
– volume: 3
  start-page: 3135
  year: 2019
  end-page: 3146
  ident: bib0022
  article-title: Enhanced carbon dioxide removal from coupled direct air capture-bioenergy systems
  publication-title: Sustainable Energy and Fuels
  contributor:
    fullname: Sanchez
– volume: 273
  year: 2020
  ident: bib0014
  article-title: Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst
  publication-title: Fuel
  contributor:
    fullname: Zheng
– volume: 281
  year: 2021
  ident: bib0001
  article-title: Uncovering the true cost of hydrogen production routes using life cycle monetisation
  publication-title: Applied Energy
  contributor:
    fullname: Guillen-Gosalbez
– volume: 663
  start-page: 738
  year: 2019
  end-page: 753
  ident: bib0002
  article-title: Bringing value to the chemical industry from capture, storage and use of CO2 : A dynamic LCA of formic acid production
  publication-title: Science of the Total Environment
  contributor:
    fullname: Dodds
– volume: 2
  start-page: 1573
  year: 2018
  end-page: 1594
  ident: bib0017
  article-title: A Process for Capturing CO2 from the Atmosphere
  publication-title: Joule
  contributor:
    fullname: Heidel
– start-page: 1
  year: 2012
  end-page: 34
  ident: bib0028
  article-title: Introduction to Carbon Capture
  publication-title: Carbon Capture
  contributor:
    fullname: Wilcox
– volume: 6
  start-page: 364
  year: 2020
  end-page: 370
  ident: bib0003
  article-title: Carbon footprint and embodied energy of PVC, PE, and PP piping: Perspective on environmental performance
  publication-title: Energy Reports
  contributor:
    fullname: Al-Ghamdi
– volume: 116
  start-page: 11840
  year: 2016
  end-page: 11876
  ident: bib0023
  article-title: Direct Capture of CO2 from Ambient Air
  publication-title: Chemical Reviews
  contributor:
    fullname: Jones
– volume: 46
  start-page: 2954
  year: 2005
  end-page: 2979
  ident: bib0027
  article-title: Production of precipitated calcium carbonate from calcium silicates and carbon dioxide
  publication-title: Energy Conversion and Management
  contributor:
    fullname: Zevenhoven
– volume: 224
  start-page: 957
  year: 2019
  end-page: 980
  ident: bib0012
  article-title: Techno-economic assessment of CO 2 direct air capture plants
  publication-title: Journal of Cleaner Production
  contributor:
    fullname: Breyer
– volume: 42
  start-page: 30470
  year: 2017
  end-page: 30492
  ident: bib0024
  article-title: Future cost and performance of water electrolysis: An expert elicitation study
  publication-title: International Journal of Hydrogen Energy
  contributor:
    fullname: Few
– volume: 80
  start-page: 25
  year: 2019
  end-page: 31
  ident: bib0008
  article-title: Life cycle carbon efficiency of Direct Air Capture systems with strong hydroxide sorbents
  publication-title: International Journal of Greenhouse Gas Control
  contributor:
    fullname: Huijbregts
– volume: 8
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0025
  article-title: Role of Hydrogen in a Low-Carbon Electric Power System: A Case Study
  publication-title: Frontiers in Energy Research
  contributor:
    fullname: Gençer
– year: 2013
  ident: bib0026
  article-title: Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design. 2
  contributor:
    fullname: Towler
– volume: 3
  start-page: 2053
  year: 2019
  end-page: 2057
  ident: bib0005
  article-title: Direct Air Capture of CO2: A Key Technology for Ambitious Climate Change Mitigation
  publication-title: Joule
  contributor:
    fullname: Creutzig
– volume: 4
  start-page: 3122
  issue: 9
  year: 2011
  ident: 10.1016/j.ccst.2021.100025_bib0018
  article-title: Methanol production from CO2 using solar-thermal energy: Process development and techno-economic analysis
  publication-title: Energy and Environmental Science
  doi: 10.1039/c1ee01311d
  contributor:
    fullname: Kim
– volume: 46
  start-page: 2954
  issue: 18–19
  year: 2005
  ident: 10.1016/j.ccst.2021.100025_bib0027
  article-title: Production of precipitated calcium carbonate from calcium silicates and carbon dioxide
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2005.02.009
  contributor:
    fullname: Teir
– start-page: 1
  year: 2012
  ident: 10.1016/j.ccst.2021.100025_bib0028
  article-title: Introduction to Carbon Capture
  publication-title: Carbon Capture
  contributor:
    fullname: Wilcox
– volume: 1
  start-page: 405
  issue: 4
  year: 2019
  ident: 10.1016/j.ccst.2021.100025_bib0013
  article-title: Direct Air Carbon Capture and Sequestration: How It Works and How It Could Contribute to Climate-Change Mitigation
  publication-title: One Earth
  doi: 10.1016/j.oneear.2019.11.006
  contributor:
    fullname: Gambhir
– year: 2019
  ident: 10.1016/j.ccst.2021.100025_bib0020
– ident: 10.1016/j.ccst.2021.100025_bib0009
– volume: 663
  start-page: 738
  year: 2019
  ident: 10.1016/j.ccst.2021.100025_bib0002
  article-title: Bringing value to the chemical industry from capture, storage and use of CO2 : A dynamic LCA of formic acid production
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2019.01.395
  contributor:
    fullname: Aldaco
– volume: 281
  year: 2021
  ident: 10.1016/j.ccst.2021.100025_bib0001
  article-title: Uncovering the true cost of hydrogen production routes using life cycle monetisation
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2020.115958
  contributor:
    fullname: Al-Qahtani
– ident: 10.1016/j.ccst.2021.100025_bib0015
  doi: 10.1115/AJTEC2011-44578
– volume: 42
  start-page: 30470
  issue: 52
  year: 2017
  ident: 10.1016/j.ccst.2021.100025_bib0024
  article-title: Future cost and performance of water electrolysis: An expert elicitation study
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.10.045
  contributor:
    fullname: Schmidt
– ident: 10.1016/j.ccst.2021.100025_bib0011
  doi: 10.1016/j.resconrec.2016.05.016
– year: 2013
  ident: 10.1016/j.ccst.2021.100025_bib0026
  contributor:
    fullname: Sinnott
– volume: 3
  issue: 3
  year: 2021
  ident: 10.1016/j.ccst.2021.100025_bib0019
  article-title: A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future
  publication-title: Progress in Energy
  doi: 10.1088/2516-1083/abf1ce
  contributor:
    fullname: McQueen
– ident: 10.1016/j.ccst.2021.100025_bib0004
  doi: 10.1007/s11027-019-9847-y
– ident: 10.1016/j.ccst.2021.100025_bib0006
– volume: 273
  issue: January
  year: 2020
  ident: 10.1016/j.ccst.2021.100025_bib0014
  article-title: Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst
  publication-title: Fuel
  contributor:
    fullname: Gao
– volume: 6
  start-page: 364
  year: 2020
  ident: 10.1016/j.ccst.2021.100025_bib0003
  article-title: Carbon footprint and embodied energy of PVC, PE, and PP piping: Perspective on environmental performance
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2020.11.173
  contributor:
    fullname: Alsabri
– volume: 3
  start-page: 3135
  issue: 11
  year: 2019
  ident: 10.1016/j.ccst.2021.100025_bib0022
  article-title: Enhanced carbon dioxide removal from coupled direct air capture-bioenergy systems
  publication-title: Sustainable Energy and Fuels
  doi: 10.1039/C9SE00384C
  contributor:
    fullname: Sagues
– ident: 10.1016/j.ccst.2021.100025_bib0021
– volume: 116
  start-page: 11840
  issue: 19
  year: 2016
  ident: 10.1016/j.ccst.2021.100025_bib0023
  article-title: Direct Capture of CO2 from Ambient Air
  publication-title: Chemical Reviews
  doi: 10.1021/acs.chemrev.6b00173
  contributor:
    fullname: Sanz-Pérez
– volume: 8
  start-page: 1
  issue: January
  year: 2021
  ident: 10.1016/j.ccst.2021.100025_bib0025
  article-title: Role of Hydrogen in a Low-Carbon Electric Power System: A Case Study
  publication-title: Frontiers in Energy Research
  contributor:
    fullname: Schulthoff
– volume: 80
  start-page: 25
  issue: November 2018
  year: 2019
  ident: 10.1016/j.ccst.2021.100025_bib0008
  article-title: Life cycle carbon efficiency of Direct Air Capture systems with strong hydroxide sorbents
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2018.11.011
  contributor:
    fullname: de Jonge
– ident: 10.1016/j.ccst.2021.100025_bib0016
– year: 2019
  ident: 10.1016/j.ccst.2021.100025_bib0007
  article-title: 13 - Quantifying the climate effects of forest-based bioenergy (T. M. B. T.-M. G. W. Letcher (ed.); pp. 399–418)
  publication-title: Academic Press
  contributor:
    fullname: Cowie
– volume: 3
  start-page: 2053
  issue: 9
  year: 2019
  ident: 10.1016/j.ccst.2021.100025_bib0005
  article-title: Direct Air Capture of CO2: A Key Technology for Ambitious Climate Change Mitigation
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.010
  contributor:
    fullname: Breyer
– volume: 224
  start-page: 957
  year: 2019
  ident: 10.1016/j.ccst.2021.100025_bib0012
  article-title: Techno-economic assessment of CO 2 direct air capture plants
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.03.086
  contributor:
    fullname: Fasihi
– volume: 2
  start-page: 1573
  issue: 8
  year: 2018
  ident: 10.1016/j.ccst.2021.100025_bib0017
  article-title: A Process for Capturing CO2 from the Atmosphere
  publication-title: Joule
  doi: 10.1016/j.joule.2018.05.006
  contributor:
    fullname: Keith
– volume: 9
  start-page: 790
  year: 2020
  ident: 10.1016/j.ccst.2021.100025_bib0010
  article-title: Forecast model of prices for liquefied natural gas in the world asian energy market
  publication-title: International Journal of Criminology and Sociology
  doi: 10.6000/1929-4409.2020.09.74
  contributor:
    fullname: Elyakov
SSID ssj0002856906
Score 2.3920577
Snippet •Profitable DACC plant designed•LCOD range calculated between $493 & -$1783 tCO2−1•NPV range calculated between -$4.6B and $23.5B•Lifetime CO2 removal in...
Carbon capture technologies are crucial for mitigating climate change and play an important role in the net zero roadmap. Recently the greenhouse gas removal...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 100025
SubjectTerms Carbon Emissions Assessment
CCUS
Direct Air Carbon Capture
Levelized Cost
Net Present Value
Techno-economic Analysis
Title Techno-economic Analysis of Direct Air Carbon Capture with CO2 Utilisation
URI https://dx.doi.org/10.1016/j.ccst.2021.100025
https://doaj.org/article/455d3f08d39b4382b398c58374895254
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBYlUzuUPmn6QkO3ImrLkm2NaUgIgbRLA9mEnpBQnJC6a397dZZdPLVLFxuMscx3tu50-u47hB6oV0zo8AMG_2AIM9YR4WhOFIiBKW-UtpAaWLzksyWbr_iq1-oLOGFRHjgC98Q4t5lPSpsJDZtWOhOl4WWjmsLD6qaZfVPeW0xtmpQRBwVe6CwXwkcSgpayrZiJ5C5jPoBISVNgCSTQJ7vnlRrx_p5z6jmc6Qk6biNFPIpveIoOXHWGjnr6gedoHhPjxLXVxbiTGMFbj-NkhkfrPR6rvd5W4bSD_QIMuVc8fqV4Wa_fWzrPBVpOJ2_jGWmbIxDD0qQmLqzVPC29S7yy2oZARFmqGaU-56nLSityUxjrnffeCG9TZrUIFrOpF0aEwOsSDapt5a4Q9oyJzOkkV1YwrVmZWa0ypkwBHBldDNFjB47cRQ0M2ZHDNhKglACljFAO0TPg93Mn6Fc3F4JVZWtV-ZdVh4h36Ms2FIguPjxq_cvg1_8x-A06pFDk0DDNbtGg3n-6uxB61Pq--crCcfE1-QazidO7
link.rule.ids 315,786,790,870,2115,27957,27958
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-economic+Analysis+of+Direct+Air+Carbon+Capture+with+CO2+Utilisation&rft.jtitle=Carbon+Capture+Science+%26+Technology&rft.au=Daniel%2C+Thorin&rft.au=Masini%2C+Alice&rft.au=Milne%2C+Cameron&rft.au=Nourshagh%2C+Neeka&rft.date=2022-03-01&rft.issn=2772-6568&rft.eissn=2772-6568&rft.volume=2&rft.spage=100025&rft_id=info:doi/10.1016%2Fj.ccst.2021.100025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ccst_2021_100025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-6568&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-6568&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-6568&client=summon