Spatiotemporal characteristics of carbon emissions in energy-enriched areas and the evolution of regional types

There is great potential for carbon emission reduction in energy-enriched areas. It is important to master the spatiotemporal characteristics and driving factors of carbon emissions to achieve the goal of carbon emission reduction. Previous studies on carbon emissions mainly focused on the numerical...

Full description

Saved in:
Bibliographic Details
Published inEnergy reports Vol. 7; pp. 7224 - 7237
Main Authors Han, Xiaojia, Yu, Jialuo, Xia, Yu, Wang, Jijun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is great potential for carbon emission reduction in energy-enriched areas. It is important to master the spatiotemporal characteristics and driving factors of carbon emissions to achieve the goal of carbon emission reduction. Previous studies on carbon emissions mainly focused on the numerical changes in regional carbon emissions. There have been few studies on spatiotemporal characteristics, making it difficult to formulate carbon emission reduction strategies according to local conditions. This study is based on the carbon emission calculation method proposed by the Intergovernmental Panel on Climate Change (IPCC), taking the method of exploratory spatial data analysis (ESDA), standard deviation ellipse (SDE) analysis and the geographically weighted regression model (GWR) to analyse the spatiotemporal evolution characteristics and determinants and dividing regional types of carbon emissions. The results show that aggregate carbon emissions and other carbon emission indicators presented an upward trend from 2000 to 2016, and the growth momentum of carbon emissions was difficult to curb in the short term. The carbon emissions of the study area are relatively concentrated in spatial; the direction of carbon emissions presented a trend of “northeast–southwest”, and the main axis and centre of carbon emissions tend to move northward over time. There are six regional types of carbon emissions in the study area. The low total amount–low intensity–low pressure type (L-L-L) became the dominant regional type of carbon emissions. The results of the GWR model showed that the degree of influence of explanatory variables on carbon emissions in descending order is urbanization rate > industrial structure > population > population density > per capita GDP.
AbstractList There is great potential for carbon emission reduction in energy-enriched areas. It is important to master the spatiotemporal characteristics and driving factors of carbon emissions to achieve the goal of carbon emission reduction. Previous studies on carbon emissions mainly focused on the numerical changes in regional carbon emissions. There have been few studies on spatiotemporal characteristics, making it difficult to formulate carbon emission reduction strategies according to local conditions. This study is based on the carbon emission calculation method proposed by the Intergovernmental Panel on Climate Change (IPCC), taking the method of exploratory spatial data analysis (ESDA), standard deviation ellipse (SDE) analysis and the geographically weighted regression model (GWR) to analyse the spatiotemporal evolution characteristics and determinants and dividing regional types of carbon emissions. The results show that aggregate carbon emissions and other carbon emission indicators presented an upward trend from 2000 to 2016, and the growth momentum of carbon emissions was difficult to curb in the short term. The carbon emissions of the study area are relatively concentrated in spatial; the direction of carbon emissions presented a trend of “northeast–southwest”, and the main axis and centre of carbon emissions tend to move northward over time. There are six regional types of carbon emissions in the study area. The low total amount–low intensity–low pressure type (L-L-L) became the dominant regional type of carbon emissions. The results of the GWR model showed that the degree of influence of explanatory variables on carbon emissions in descending order is urbanization rate > industrial structure > population > population density > per capita GDP.
Author Yu, Jialuo
Wang, Jijun
Han, Xiaojia
Xia, Yu
Author_xml – sequence: 1
  givenname: Xiaojia
  surname: Han
  fullname: Han, Xiaojia
  email: hanxiaojia18@mails.ucas.ac.cn
  organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
– sequence: 2
  givenname: Jialuo
  surname: Yu
  fullname: Yu, Jialuo
  email: yujialuo18@mails.ucas.ac.cn
  organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
– sequence: 3
  givenname: Yu
  surname: Xia
  fullname: Xia, Yu
  email: ucas104@163.com
  organization: Institute of Soil and Water Conservation Northwest A&F University, Yangling 712100, Shaanxi, China
– sequence: 4
  givenname: Jijun
  surname: Wang
  fullname: Wang, Jijun
  email: jjwang@ms.iswc.ac.cn
  organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
BookMark eNp9kctqHDEQRYWxIY7jH8hKP9CT0qsf4E0weRgMWdhZi2p19YyGHmmQFMP8fdSeBEIWXhRVunAuqrrv2WWIgRj7KGAjQLSf9hvantJGghRV2MDQXbBrqYxsdK-7y3_md-w25z0AiEGCbtU1i09HLD4WOhxjwoW7HSZ0hZLPxbvM48wdpjEGTgefs48hc18fgdL21FBI3u1o4pgIM8cw8bIjTi9x-VVdw4on2tapWpfTkfIHdjXjkun2T79hP79-eb7_3jz--PZw__mxcVpAaaZZtqajrqW2F6OeHAzSzWTUNFTB6VrQKSMAlOw0oGzl3I_9CE4jgHPqhj2cfaeIe3tM_oDpZCN6-yrEtLWY6oYLWTBGdZPpR5JCz6jQTGqc20GSaaUcsHr1Zy-XYs6JZut8Wa8WSkK_WAF2zcHu7ZqDXXNYtZpDReV_6N-vvAndnSGqB3rxlGx2noKjySdypW7g38J_A-s8pVs
CitedBy_id crossref_primary_10_1007_s10668_023_04217_6
crossref_primary_10_1016_j_jenvman_2025_124609
crossref_primary_10_1016_j_eti_2024_103836
crossref_primary_10_1016_j_uclim_2024_102141
crossref_primary_10_1016_j_egyr_2022_08_263
crossref_primary_10_1016_j_energy_2024_131722
crossref_primary_10_1016_j_spc_2022_09_018
crossref_primary_10_1016_j_egyr_2022_05_023
crossref_primary_10_1016_j_biortech_2021_126518
crossref_primary_10_1016_j_techfore_2023_123124
crossref_primary_10_3389_fenvs_2022_880527
crossref_primary_10_3390_su14095243
crossref_primary_10_3390_ijerph19031824
crossref_primary_10_2139_ssrn_4192426
crossref_primary_10_3389_fenvs_2024_1414730
crossref_primary_10_3390_buildings12020163
crossref_primary_10_3390_land11070997
crossref_primary_10_1016_j_egyr_2022_06_039
crossref_primary_10_1016_j_psep_2023_01_008
crossref_primary_10_3390_app12094698
crossref_primary_10_1371_journal_pone_0312388
crossref_primary_10_1016_j_jenvman_2023_118870
crossref_primary_10_1016_j_heliyon_2024_e37245
crossref_primary_10_3389_fenvs_2024_1472558
crossref_primary_10_3390_su15053881
crossref_primary_10_1007_s11356_023_30807_y
crossref_primary_10_1007_s11356_023_31817_6
crossref_primary_10_1016_j_envpol_2024_124403
crossref_primary_10_1007_s11356_023_28917_8
crossref_primary_10_3390_ijerph20021496
crossref_primary_10_3390_land12081633
crossref_primary_10_1016_j_scitotenv_2023_162161
crossref_primary_10_3390_ijerph192214849
crossref_primary_10_3390_land12020437
crossref_primary_10_1007_s11356_023_30040_7
crossref_primary_10_3389_fenvs_2022_960464
crossref_primary_10_1016_j_egyr_2022_11_165
crossref_primary_10_1063_5_0167854
Cites_doi 10.1016/j.agsy.2017.07.015
10.1016/j.jclepro.2016.09.115
10.1007/s11442-014-1109-z
10.1016/j.habitatint.2017.10.004
10.1016/j.jclepro.2017.08.052
10.1021/acs.est.5b01732
10.1016/j.jclepro.2016.05.086
10.1016/j.enpol.2012.05.068
10.1016/j.jbusres.2016.10.018
10.1016/j.cor.2016.03.002
10.1016/j.jclepro.2015.04.037
10.1007/s11442-014-1110-6
10.1016/j.jclepro.2020.124116
10.1016/j.rser.2010.06.003
10.3390/su8030271
10.1016/j.energy.2019.116312
10.1016/j.energy.2019.06.168
10.1007/s40974-016-0015-x
10.1142/S0217590814500271
10.1016/j.scitotenv.2018.10.395
10.1016/j.apenergy.2015.01.072
10.1016/j.jclepro.2016.03.149
10.1007/s11769-014-0707-0
10.1016/j.resconrec.2019.06.032
10.1016/j.jclepro.2018.12.280
10.1021/acs.est.7b04608
10.1029/2007GL032887
10.1016/j.energy.2016.02.008
10.1016/j.jclepro.2016.04.046
10.1016/j.rser.2016.11.230
10.1002/2016GB005546
10.1038/nclimate3165
10.1016/j.jclepro.2019.117874
10.1016/j.resconrec.2016.03.016
10.1016/j.ecolind.2020.106487
10.1007/s11069-016-2248-6
10.1016/j.resconrec.2017.10.035
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyr.2021.10.097
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 7237
ExternalDocumentID oai_doaj_org_article_05537d58be214fa3a5d3bf692e56229a
10_1016_j_egyr_2021_10_097
S2352484721011148
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c410t-df2657e76e681b4dc092cfe53d9681c481c073510032740a262f8b8b0c4a00cc3
IEDL.DBID DOA
ISSN 2352-4847
IngestDate Wed Aug 27 01:21:40 EDT 2025
Thu Aug 14 00:17:06 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Sat Aug 30 17:16:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Driving factors
Regional types
Spatiotemporal evolution
Carbon emissions
Energy-enriched area
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-df2657e76e681b4dc092cfe53d9681c481c073510032740a262f8b8b0c4a00cc3
OpenAccessLink https://doaj.org/article/05537d58be214fa3a5d3bf692e56229a
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_05537d58be214fa3a5d3bf692e56229a
crossref_citationtrail_10_1016_j_egyr_2021_10_097
crossref_primary_10_1016_j_egyr_2021_10_097
elsevier_sciencedirect_doi_10_1016_j_egyr_2021_10_097
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wang, Wang, Xu, Yuan (b32) 2017; 71
Paustian, Ravindranath, Amstel (b29) 2006
Gregg, Andres, Marland (b13) 2008; 35
Wiboonchutikula, Chaivichayachat, Chontanawat (b35) 2014; 59
Xu, Lin (b42) 2016; 101
Feng, Hubacek (b12) 2016; 1
Wu, Huang, Zhang, Qiao, Zhan (b37) 2020; 190
Xu, Dong, Yang, Zhang, Wang, Du (b40) 2019; 214
Chen, Hadjikakou, Wiedmann (b2) 2017; 163
Fan, Wu, Li (b11) 2019; 185
Xu, S.C., He, Z.X., Long, R.Y., Chen, H., Han, H.M., Zhang, W.W.J.J.o.C.P., 2016. Comparative analysis of the regional contributions to carbon emissions in China. 127, 406–417.
Dong, Long, Li, Dai (b9) 2016; 82
Hao, Dong, Li, Yang, Li, Yu (b14) 2018; 52
Li, Zhang, Shi, Zhou (b18) 2017; 121
Zhang, Wei (b45) 2015; 146
Cheng, Wang, Ye, Wei (b4) 2014; 24
Mackenzie (b24) 2011
Michael, Kle, Poulsen (b25) 2015
Xianghong, Xiyong, Yuandong, Li (b38) 2015; 25
Dong, Yu, Hadachin, Dai, Wang, Zhang, Long (b10) 2018; 129
Zhu, Q., Peng, X., Wu, K.J.E.P., 2012. Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model. 48, 618–626.
Xiaojun, Changxin, Biying, Guocui, Chen (b39) 2018
Wei, Huang, Yang, Li, Hu, Zhang (b34) 2017; 163
Wang, Zhao (b33) 2017; 1
Zhou, X., Zhang, M., Zhou, M., Zhou, M.J.J.o.C.P., 2016. A comparative study on decoupling relationship and influence factors between China’s regional economic development and industrial energy–related carbon emissions. 142, 783–800.
Amri (b1) 2017; 69
Song, Zhao, Wang (b30) 2019; 238
Yang, T., Liu, W.J.H.I., 2017. Inequality of household carbon emissions and its influencing factors: Case study of urban China. 70, 61–71.
Dong, Li, Zhang, Wang, Sun (b8) 2019; 150
Ding, Huang, He, Zhuang (b6) 2021
Pan, Yan, Peng, Liu (b28) 2016; 8
Xu, Xu, Xu, Luo (b43) 2017; 166
Li, Zhao, Wang, Liu (b20) 2020
(b16) 2014
Oh (b27) 2010; 14
Li, Zhao, Liu, Zhao (b19) 2015; 102
Zhao, Y., Shi, Q., Li, H., Cao, Y., Wu, S.J.E.I., 2020. Temporal and spatial determinants of carbon intensity in exports of electronic and optical equipment sector of China. 116, 106487.
Ma, Zou, Zhao, Wen, Mi (b22) 2016; 36
(b17) 2021
Houghton, Nassikas (b15) 2017; 31
Chen, Peters, Andrew, Korsbakken, Peng (b3) 2017; 5
(b26) 2012
Wiedenhofer, Guan, Liu, Meng, Zhang, Wei (b36) 2016; 7
Lin, Liu, Hao, Jiang (b21) 2016; 72
Wang, Fang, Ma, Wang, Qin (b31) 2014; 24
Chuai, Huang, Zhang, Lu, Lu (b5) 2015; 49
Dong, Dai, Zhang, Zhang, Long (b7) 2019; 653
Machado, Seleme, Maceno, Zattar (b23) 2017; 157
Mackenzie (10.1016/j.egyr.2021.10.097_b24) 2011
Xu (10.1016/j.egyr.2021.10.097_b43) 2017; 166
Li (10.1016/j.egyr.2021.10.097_b18) 2017; 121
Wang (10.1016/j.egyr.2021.10.097_b32) 2017; 71
Ma (10.1016/j.egyr.2021.10.097_b22) 2016; 36
Chen (10.1016/j.egyr.2021.10.097_b2) 2017; 163
Houghton (10.1016/j.egyr.2021.10.097_b15) 2017; 31
Lin (10.1016/j.egyr.2021.10.097_b21) 2016; 72
Gregg (10.1016/j.egyr.2021.10.097_b13) 2008; 35
Song (10.1016/j.egyr.2021.10.097_b30) 2019; 238
Dong (10.1016/j.egyr.2021.10.097_b8) 2019; 150
10.1016/j.egyr.2021.10.097_b48
Dong (10.1016/j.egyr.2021.10.097_b9) 2016; 82
10.1016/j.egyr.2021.10.097_b46
Zhang (10.1016/j.egyr.2021.10.097_b45) 2015; 146
10.1016/j.egyr.2021.10.097_b47
10.1016/j.egyr.2021.10.097_b44
Feng (10.1016/j.egyr.2021.10.097_b12) 2016; 1
Amri (10.1016/j.egyr.2021.10.097_b1) 2017; 69
Ding (10.1016/j.egyr.2021.10.097_b6) 2021
Dong (10.1016/j.egyr.2021.10.097_b7) 2019; 653
Fan (10.1016/j.egyr.2021.10.097_b11) 2019; 185
Paustian (10.1016/j.egyr.2021.10.097_b29) 2006
Wang (10.1016/j.egyr.2021.10.097_b31) 2014; 24
Xiaojun (10.1016/j.egyr.2021.10.097_b39) 2018
Li (10.1016/j.egyr.2021.10.097_b19) 2015; 102
Wu (10.1016/j.egyr.2021.10.097_b37) 2020; 190
Chuai (10.1016/j.egyr.2021.10.097_b5) 2015; 49
Chen (10.1016/j.egyr.2021.10.097_b3) 2017; 5
Michael (10.1016/j.egyr.2021.10.097_b25) 2015
Li (10.1016/j.egyr.2021.10.097_b20) 2020
10.1016/j.egyr.2021.10.097_b41
Machado (10.1016/j.egyr.2021.10.097_b23) 2017; 157
Pan (10.1016/j.egyr.2021.10.097_b28) 2016; 8
Wiedenhofer (10.1016/j.egyr.2021.10.097_b36) 2016; 7
Hao (10.1016/j.egyr.2021.10.097_b14) 2018; 52
Wiboonchutikula (10.1016/j.egyr.2021.10.097_b35) 2014; 59
Xu (10.1016/j.egyr.2021.10.097_b40) 2019; 214
Xianghong (10.1016/j.egyr.2021.10.097_b38) 2015; 25
Xu (10.1016/j.egyr.2021.10.097_b42) 2016; 101
Cheng (10.1016/j.egyr.2021.10.097_b4) 2014; 24
(10.1016/j.egyr.2021.10.097_b26) 2012
(10.1016/j.egyr.2021.10.097_b17) 2021
Dong (10.1016/j.egyr.2021.10.097_b10) 2018; 129
(10.1016/j.egyr.2021.10.097_b16) 2014
Oh (10.1016/j.egyr.2021.10.097_b27) 2010; 14
Wang (10.1016/j.egyr.2021.10.097_b33) 2017; 1
Wei (10.1016/j.egyr.2021.10.097_b34) 2017; 163
References_xml – volume: 157
  start-page: 140
  year: 2017
  end-page: 145
  ident: b23
  article-title: Carbon footprint in the ethanol feedstocks cultivation – Agricultural CO2 emission assessment
  publication-title: Agric. Syst.
– year: 2006
  ident: b29
  article-title: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4 Agriculture, Forestry and Other Land Use
– volume: 214
  start-page: 615
  year: 2019
  end-page: 622
  ident: b40
  article-title: Temporal and spatial differences in carbon emissions in the Pearl River Delta based on multi-resolution emission inventory modeling
  publication-title: J. Cleaner Prod.
– volume: 146
  start-page: 409
  year: 2015
  end-page: 420
  ident: b45
  article-title: Dynamic total factor carbon emissions performance changes in the Chinese transportation industry
  publication-title: Appl. Energy
– volume: 102
  start-page: 103
  year: 2015
  end-page: 114
  ident: b19
  article-title: Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996–2012
  publication-title: J. Cleaner Prod.
– year: 2020
  ident: b20
  article-title: Spatial–temporal characteristics and drivers of the regional residential CO2 emissions in China during 2000–2017
  publication-title: J. Cleaner Prod.
– volume: 49
  year: 2015
  ident: b5
  article-title: Spatiotemporal changes of built-up land expansion and carbon emissions caused by the Chinese construction industry
  publication-title: Environ. Sci. Tech.
– volume: 150
  year: 2019
  ident: b8
  article-title: Sensitivity analysis and spatial–temporal heterogeneity of CO2 emission intensity: Evidence from China
  publication-title: Resour. Conserv. Recy.
– volume: 25
  start-page: 51
  year: 2015
  end-page: 61
  ident: b38
  article-title: Spatial–temporal characteristics of land use intensity of coastal zone in China during 2000–2010
  publication-title: Chin. Geogr. Sci
– volume: 82
  start-page: 1375
  year: 2016
  end-page: 1391
  ident: b9
  article-title: Analysis of carbon emission intensity, urbanization and energy mix: evidence from China
  publication-title: Nat. Hazards
– volume: 163
  start-page: 58
  year: 2017
  end-page: 68
  ident: b34
  article-title: Driving forces analysis of energy-related carbon dioxide (CO2) emissions in Beijing: an input–output structural decomposition analysis
  publication-title: J. Cleaner Prod.
– volume: 163
  start-page: 224
  year: 2017
  end-page: 240
  ident: b2
  article-title: Urban carbon transformations: unravelling spatial and inter-sectoral linkages for key city industries based on multi-region input–output analysis
  publication-title: J. Cleaner Prod.
– volume: 1
  start-page: 39
  year: 2016
  end-page: 44
  ident: b12
  article-title: Carbon implications of China’s urbanization
  publication-title: Energy Ecol. Environ.
– year: 2014
  ident: b16
  article-title: Greenhouse Gas Inventory: IPCC Guidelines for National Greenhouse Gas Inventories
– reference: Zhu, Q., Peng, X., Wu, K.J.E.P., 2012. Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model. 48, 618–626.
– volume: 36
  start-page: 162
  year: 2016
  end-page: 168
  ident: b22
  article-title: Temporal-spatial difference analysis of carbon emission from energy consumption and its regional type division in Northwest China
  publication-title: Econ. Geogr.
– volume: 238
  year: 2019
  ident: b30
  article-title: Spatial–temporal analysis of China’s regional carbon intensity based on ST-IDA from 2000 to 2015
  publication-title: J. Cleaner Prod.
– volume: 129
  start-page: 187
  year: 2018
  end-page: 201
  ident: b10
  article-title: Drivers of carbon emission intensity change in China
  publication-title: Resour. Conserv. Recy.
– volume: 190
  year: 2020
  ident: b37
  article-title: Multi-province comparison and typology of China’s CO2 emission: A spatial–temporal decomposition approach
  publication-title: Energy
– volume: 5
  year: 2017
  ident: b3
  article-title: Emissions embodied in global trade have plateaued due to structural changes in China
  publication-title: Earths Future
– reference: Yang, T., Liu, W.J.H.I., 2017. Inequality of household carbon emissions and its influencing factors: Case study of urban China. 70, 61–71.
– volume: 8
  year: 2016
  ident: b28
  article-title: Analysis of the threshold effect of financial development on China’s carbon intensity
  publication-title: Sustainability
– volume: 101
  start-page: 161
  year: 2016
  end-page: 173
  ident: b42
  article-title: Reducing CO2 emissions in China’s manufacturing industry: Evidence from nonparametric additive regression models
  publication-title: Energy
– year: 2012
  ident: b26
  article-title: Guidelines for the compilation of provincial greenhouse gas inventories
– reference: Xu, S.C., He, Z.X., Long, R.Y., Chen, H., Han, H.M., Zhang, W.W.J.J.o.C.P., 2016. Comparative analysis of the regional contributions to carbon emissions in China. 127, 406–417.
– volume: 31
  start-page: 456
  year: 2017
  end-page: 472
  ident: b15
  article-title: Global and regional fluxes of carbon from land use and land cover change 1850-2015
  publication-title: Glob. Biogeochem. Cycles
– start-page: 9
  year: 2015
  end-page: 10
  ident: b25
  article-title: Living Planet Report 2014, Vol. 109
– volume: 653
  start-page: 565
  year: 2019
  end-page: 577
  ident: b7
  article-title: Can a carbon emission trading scheme generate the porter effect? Evidence from pilot areas in China
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 612
  year: 2014
  end-page: 630
  ident: b31
  article-title: Spatial differences and multi-mechanism of carbon footprint based on GWR model in provincial China
  publication-title: J. Geogr. Sci.
– volume: 24
  start-page: 631
  year: 2014
  end-page: 650
  ident: b4
  article-title: Spatiotemporal dynamics of carbon intensity from energy consumption in China
  publication-title: J. Geogr. Sci.
– year: 2021
  ident: b6
  article-title: Spatial–temporal heterogeneity and driving factors of carbon emissions in China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 1
  start-page: 5
  year: 2017
  end-page: 26
  ident: b33
  article-title: Impacts of urbanization-related factors on CO 2 emissions: Evidence from China’s three regions with varied urbanization levels
  publication-title: Atmos. Pollut. Res.
– volume: 71
  start-page: 47
  year: 2017
  end-page: 54
  ident: b32
  article-title: R & D expenditures, ultimate ownership and future performance: Evidence from China
  publication-title: J. Bus. Res.
– volume: 35
  year: 2008
  ident: b13
  article-title: China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production
  publication-title: Geophys. Res. Lett.
– volume: 72
  start-page: 189
  year: 2016
  end-page: 203
  ident: b21
  article-title: A multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industry
  publication-title: Comput. Oper. Res.
– volume: 185
  start-page: 1235
  year: 2019
  end-page: 1249
  ident: b11
  article-title: Spatial–temporal analysis of carbon emissions embodied in interprovincial trade and optimization strategies: A case study of Hebei, China
  publication-title: Energy
– year: 2011
  ident: b24
  article-title: The Economics of Climate Change
– volume: 166
  start-page: 628
  year: 2017
  end-page: 640
  ident: b43
  article-title: Geographical analysis of CO2 emissions in China’s manufacturing industry: A geographically weighted regression model
  publication-title: J. Cleaner Prod.
– volume: 14
  start-page: 2697
  year: 2010
  end-page: 2709
  ident: b27
  article-title: Carbon capture and storage potential in coal-fired plant in Malaysia-A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 7
  start-page: 75
  year: 2016
  end-page: 80
  ident: b36
  article-title: Unequal household carbon footprints in China
  publication-title: Nature Clim. Change
– reference: Zhao, Y., Shi, Q., Li, H., Cao, Y., Wu, S.J.E.I., 2020. Temporal and spatial determinants of carbon intensity in exports of electronic and optical equipment sector of China. 116, 106487.
– volume: 52
  start-page: 346
  year: 2018
  end-page: 358
  ident: b14
  article-title: Multiregional input-output analysis of spatial-temporal evolution driving force for carbon emissions embodied in interprovincial trade and optimization policies: Case study of northeast industrial district in China
  publication-title: Environ. Sci. Technol.
– year: 2018
  ident: b39
  article-title: Carbon emissions from energy consumption in China: Its measurement and driving factors
– year: 2021
  ident: b17
  article-title: Summary for policymakers
  publication-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 59
  year: 2014
  ident: b35
  article-title: Sources of energy intensity change of Thailand’s steel industry in the decade of global turbulent time
  publication-title: Singap. Econ. Rev.
– volume: 69
  start-page: 527
  year: 2017
  end-page: 534
  ident: b1
  article-title: Intercourse across economic growth, trade and renewable energy consumption in developing and developed countries
  publication-title: Renew. Sustain. Energy Rev.
– volume: 121
  start-page: 11
  year: 2017
  end-page: 22
  ident: b18
  article-title: The prospects of China’s long-term economic development and CO2 emissions under fossil fuel supply constraints
  publication-title: Resour. Conserv. Recycl.
– reference: Zhou, X., Zhang, M., Zhou, M., Zhou, M.J.J.o.C.P., 2016. A comparative study on decoupling relationship and influence factors between China’s regional economic development and industrial energy–related carbon emissions. 142, 783–800.
– volume: 157
  start-page: 140
  year: 2017
  ident: 10.1016/j.egyr.2021.10.097_b23
  article-title: Carbon footprint in the ethanol feedstocks cultivation – Agricultural CO2 emission assessment
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2017.07.015
– ident: 10.1016/j.egyr.2021.10.097_b47
  doi: 10.1016/j.jclepro.2016.09.115
– volume: 24
  start-page: 612
  year: 2014
  ident: 10.1016/j.egyr.2021.10.097_b31
  article-title: Spatial differences and multi-mechanism of carbon footprint based on GWR model in provincial China
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-014-1109-z
– ident: 10.1016/j.egyr.2021.10.097_b44
  doi: 10.1016/j.habitatint.2017.10.004
– volume: 166
  start-page: 628
  year: 2017
  ident: 10.1016/j.egyr.2021.10.097_b43
  article-title: Geographical analysis of CO2 emissions in China’s manufacturing industry: A geographically weighted regression model
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2017.08.052
– volume: 49
  year: 2015
  ident: 10.1016/j.egyr.2021.10.097_b5
  article-title: Spatiotemporal changes of built-up land expansion and carbon emissions caused by the Chinese construction industry
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.5b01732
– volume: 163
  start-page: 58
  year: 2017
  ident: 10.1016/j.egyr.2021.10.097_b34
  article-title: Driving forces analysis of energy-related carbon dioxide (CO2) emissions in Beijing: an input–output structural decomposition analysis
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2016.05.086
– ident: 10.1016/j.egyr.2021.10.097_b48
  doi: 10.1016/j.enpol.2012.05.068
– volume: 71
  start-page: 47
  year: 2017
  ident: 10.1016/j.egyr.2021.10.097_b32
  article-title: R & D expenditures, ultimate ownership and future performance: Evidence from China
  publication-title: J. Bus. Res.
  doi: 10.1016/j.jbusres.2016.10.018
– year: 2006
  ident: 10.1016/j.egyr.2021.10.097_b29
– volume: 72
  start-page: 189
  year: 2016
  ident: 10.1016/j.egyr.2021.10.097_b21
  article-title: A multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industry
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.03.002
– volume: 36
  start-page: 162
  year: 2016
  ident: 10.1016/j.egyr.2021.10.097_b22
  article-title: Temporal-spatial difference analysis of carbon emission from energy consumption and its regional type division in Northwest China
  publication-title: Econ. Geogr.
– volume: 102
  start-page: 103
  year: 2015
  ident: 10.1016/j.egyr.2021.10.097_b19
  article-title: Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996–2012
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2015.04.037
– year: 2012
  ident: 10.1016/j.egyr.2021.10.097_b26
– volume: 24
  start-page: 631
  year: 2014
  ident: 10.1016/j.egyr.2021.10.097_b4
  article-title: Spatiotemporal dynamics of carbon intensity from energy consumption in China
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-014-1110-6
– year: 2020
  ident: 10.1016/j.egyr.2021.10.097_b20
  article-title: Spatial–temporal characteristics and drivers of the regional residential CO2 emissions in China during 2000–2017
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.124116
– volume: 14
  start-page: 2697
  year: 2010
  ident: 10.1016/j.egyr.2021.10.097_b27
  article-title: Carbon capture and storage potential in coal-fired plant in Malaysia-A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.06.003
– volume: 8
  year: 2016
  ident: 10.1016/j.egyr.2021.10.097_b28
  article-title: Analysis of the threshold effect of financial development on China’s carbon intensity
  publication-title: Sustainability
  doi: 10.3390/su8030271
– volume: 190
  year: 2020
  ident: 10.1016/j.egyr.2021.10.097_b37
  article-title: Multi-province comparison and typology of China’s CO2 emission: A spatial–temporal decomposition approach
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116312
– volume: 185
  start-page: 1235
  year: 2019
  ident: 10.1016/j.egyr.2021.10.097_b11
  article-title: Spatial–temporal analysis of carbon emissions embodied in interprovincial trade and optimization strategies: A case study of Hebei, China
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.168
– volume: 1
  start-page: 39
  year: 2016
  ident: 10.1016/j.egyr.2021.10.097_b12
  article-title: Carbon implications of China’s urbanization
  publication-title: Energy Ecol. Environ.
  doi: 10.1007/s40974-016-0015-x
– volume: 59
  year: 2014
  ident: 10.1016/j.egyr.2021.10.097_b35
  article-title: Sources of energy intensity change of Thailand’s steel industry in the decade of global turbulent time
  publication-title: Singap. Econ. Rev.
  doi: 10.1142/S0217590814500271
– volume: 653
  start-page: 565
  year: 2019
  ident: 10.1016/j.egyr.2021.10.097_b7
  article-title: Can a carbon emission trading scheme generate the porter effect? Evidence from pilot areas in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.395
– year: 2018
  ident: 10.1016/j.egyr.2021.10.097_b39
– volume: 146
  start-page: 409
  year: 2015
  ident: 10.1016/j.egyr.2021.10.097_b45
  article-title: Dynamic total factor carbon emissions performance changes in the Chinese transportation industry
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.072
– ident: 10.1016/j.egyr.2021.10.097_b41
  doi: 10.1016/j.jclepro.2016.03.149
– year: 2011
  ident: 10.1016/j.egyr.2021.10.097_b24
– volume: 25
  start-page: 51
  year: 2015
  ident: 10.1016/j.egyr.2021.10.097_b38
  article-title: Spatial–temporal characteristics of land use intensity of coastal zone in China during 2000–2010
  publication-title: Chin. Geogr. Sci
  doi: 10.1007/s11769-014-0707-0
– volume: 150
  year: 2019
  ident: 10.1016/j.egyr.2021.10.097_b8
  article-title: Sensitivity analysis and spatial–temporal heterogeneity of CO2 emission intensity: Evidence from China
  publication-title: Resour. Conserv. Recy.
  doi: 10.1016/j.resconrec.2019.06.032
– volume: 214
  start-page: 615
  year: 2019
  ident: 10.1016/j.egyr.2021.10.097_b40
  article-title: Temporal and spatial differences in carbon emissions in the Pearl River Delta based on multi-resolution emission inventory modeling
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.12.280
– volume: 52
  start-page: 346
  year: 2018
  ident: 10.1016/j.egyr.2021.10.097_b14
  article-title: Multiregional input-output analysis of spatial-temporal evolution driving force for carbon emissions embodied in interprovincial trade and optimization policies: Case study of northeast industrial district in China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04608
– volume: 35
  year: 2008
  ident: 10.1016/j.egyr.2021.10.097_b13
  article-title: China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL032887
– volume: 101
  start-page: 161
  year: 2016
  ident: 10.1016/j.egyr.2021.10.097_b42
  article-title: Reducing CO2 emissions in China’s manufacturing industry: Evidence from nonparametric additive regression models
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.008
– volume: 5
  year: 2017
  ident: 10.1016/j.egyr.2021.10.097_b3
  article-title: Emissions embodied in global trade have plateaued due to structural changes in China
  publication-title: Earths Future
– volume: 163
  start-page: 224
  year: 2017
  ident: 10.1016/j.egyr.2021.10.097_b2
  article-title: Urban carbon transformations: unravelling spatial and inter-sectoral linkages for key city industries based on multi-region input–output analysis
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2016.04.046
– year: 2014
  ident: 10.1016/j.egyr.2021.10.097_b16
– volume: 69
  start-page: 527
  year: 2017
  ident: 10.1016/j.egyr.2021.10.097_b1
  article-title: Intercourse across economic growth, trade and renewable energy consumption in developing and developed countries
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.230
– volume: 1
  start-page: 5
  year: 2017
  ident: 10.1016/j.egyr.2021.10.097_b33
  article-title: Impacts of urbanization-related factors on CO 2 emissions: Evidence from China’s three regions with varied urbanization levels
  publication-title: Atmos. Pollut. Res.
– volume: 31
  start-page: 456
  year: 2017
  ident: 10.1016/j.egyr.2021.10.097_b15
  article-title: Global and regional fluxes of carbon from land use and land cover change 1850-2015
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1002/2016GB005546
– start-page: 9
  year: 2015
  ident: 10.1016/j.egyr.2021.10.097_b25
– volume: 7
  start-page: 75
  year: 2016
  ident: 10.1016/j.egyr.2021.10.097_b36
  article-title: Unequal household carbon footprints in China
  publication-title: Nature Clim. Change
  doi: 10.1038/nclimate3165
– year: 2021
  ident: 10.1016/j.egyr.2021.10.097_b17
  article-title: Summary for policymakers
– year: 2021
  ident: 10.1016/j.egyr.2021.10.097_b6
  article-title: Spatial–temporal heterogeneity and driving factors of carbon emissions in China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 238
  year: 2019
  ident: 10.1016/j.egyr.2021.10.097_b30
  article-title: Spatial–temporal analysis of China’s regional carbon intensity based on ST-IDA from 2000 to 2015
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.117874
– volume: 121
  start-page: 11
  year: 2017
  ident: 10.1016/j.egyr.2021.10.097_b18
  article-title: The prospects of China’s long-term economic development and CO2 emissions under fossil fuel supply constraints
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2016.03.016
– ident: 10.1016/j.egyr.2021.10.097_b46
  doi: 10.1016/j.ecolind.2020.106487
– volume: 82
  start-page: 1375
  year: 2016
  ident: 10.1016/j.egyr.2021.10.097_b9
  article-title: Analysis of carbon emission intensity, urbanization and energy mix: evidence from China
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2248-6
– volume: 129
  start-page: 187
  year: 2018
  ident: 10.1016/j.egyr.2021.10.097_b10
  article-title: Drivers of carbon emission intensity change in China
  publication-title: Resour. Conserv. Recy.
  doi: 10.1016/j.resconrec.2017.10.035
SSID ssj0001920463
Score 2.4073853
Snippet There is great potential for carbon emission reduction in energy-enriched areas. It is important to master the spatiotemporal characteristics and driving...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 7224
SubjectTerms Carbon emissions
Driving factors
Energy-enriched area
Regional types
Spatiotemporal evolution
Title Spatiotemporal characteristics of carbon emissions in energy-enriched areas and the evolution of regional types
URI https://dx.doi.org/10.1016/j.egyr.2021.10.097
https://doaj.org/article/05537d58be214fa3a5d3bf692e56229a
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMbMjiO7SQjIKoKCRao1C3yK6hVlaK2IPHvuUvcKixlYcgQyy-dz7nPzt13hFxVXgieBc_wrMxkHiwDlJ8y_PZlDhTCKAwUfn7Rw5F8GqtxJ9UX-oS19MCt4G65UmnmVW6DSGRloK1PbaULEcByi6KBRmDzOoepaYtbkAqrySynBMxBZjFipnXuCu_fSAYqkht07ULGp45Vasj7O8apY3AG-2QvIkV6187wgOyE-pDMXxsP6EgoNaPuN98ynVfUmYWd1xTzuOFN2JJO4KWJ8GOgK-j56alBV3Rqak8B_9HwFfUPm2OmBkTnFC9nl0dkNHh8exiymDOBOZnwFfOV0CoLmQ4aAKn0jhfCVUGlvoACJ-GBTQ0bkadwHuVGaFHlNrfcScO5c-kx6dXzOpwQ6qU2uVY2VAAzpOAmCTzTHn_cGGms7pNkLbPSRUJxzGsxK9eeY9MS5VyinLEM5Nwn15s2Hy2dxtba97gUm5pIhd0UgIKUUUHKvxSkT9R6IcuIKlq0AF1Ntgx--h-Dn5Fd7LINXjwnvdXiM1wAilnZy0ZhfwCfi-3o
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+characteristics+of+carbon+emissions+in+energy-enriched+areas+and+the+evolution+of+regional+types&rft.jtitle=Energy+reports&rft.au=Xiaojia+Han&rft.au=Jialuo+Yu&rft.au=Yu+Xia&rft.au=Jijun+Wang&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=7&rft.spage=7224&rft.epage=7237&rft_id=info:doi/10.1016%2Fj.egyr.2021.10.097&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_05537d58be214fa3a5d3bf692e56229a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon