Spatiotemporal characteristics of carbon emissions in energy-enriched areas and the evolution of regional types
There is great potential for carbon emission reduction in energy-enriched areas. It is important to master the spatiotemporal characteristics and driving factors of carbon emissions to achieve the goal of carbon emission reduction. Previous studies on carbon emissions mainly focused on the numerical...
Saved in:
Published in | Energy reports Vol. 7; pp. 7224 - 7237 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is great potential for carbon emission reduction in energy-enriched areas. It is important to master the spatiotemporal characteristics and driving factors of carbon emissions to achieve the goal of carbon emission reduction. Previous studies on carbon emissions mainly focused on the numerical changes in regional carbon emissions. There have been few studies on spatiotemporal characteristics, making it difficult to formulate carbon emission reduction strategies according to local conditions. This study is based on the carbon emission calculation method proposed by the Intergovernmental Panel on Climate Change (IPCC), taking the method of exploratory spatial data analysis (ESDA), standard deviation ellipse (SDE) analysis and the geographically weighted regression model (GWR) to analyse the spatiotemporal evolution characteristics and determinants and dividing regional types of carbon emissions. The results show that aggregate carbon emissions and other carbon emission indicators presented an upward trend from 2000 to 2016, and the growth momentum of carbon emissions was difficult to curb in the short term. The carbon emissions of the study area are relatively concentrated in spatial; the direction of carbon emissions presented a trend of “northeast–southwest”, and the main axis and centre of carbon emissions tend to move northward over time. There are six regional types of carbon emissions in the study area. The low total amount–low intensity–low pressure type (L-L-L) became the dominant regional type of carbon emissions. The results of the GWR model showed that the degree of influence of explanatory variables on carbon emissions in descending order is urbanization rate > industrial structure > population > population density > per capita GDP. |
---|---|
AbstractList | There is great potential for carbon emission reduction in energy-enriched areas. It is important to master the spatiotemporal characteristics and driving factors of carbon emissions to achieve the goal of carbon emission reduction. Previous studies on carbon emissions mainly focused on the numerical changes in regional carbon emissions. There have been few studies on spatiotemporal characteristics, making it difficult to formulate carbon emission reduction strategies according to local conditions. This study is based on the carbon emission calculation method proposed by the Intergovernmental Panel on Climate Change (IPCC), taking the method of exploratory spatial data analysis (ESDA), standard deviation ellipse (SDE) analysis and the geographically weighted regression model (GWR) to analyse the spatiotemporal evolution characteristics and determinants and dividing regional types of carbon emissions. The results show that aggregate carbon emissions and other carbon emission indicators presented an upward trend from 2000 to 2016, and the growth momentum of carbon emissions was difficult to curb in the short term. The carbon emissions of the study area are relatively concentrated in spatial; the direction of carbon emissions presented a trend of “northeast–southwest”, and the main axis and centre of carbon emissions tend to move northward over time. There are six regional types of carbon emissions in the study area. The low total amount–low intensity–low pressure type (L-L-L) became the dominant regional type of carbon emissions. The results of the GWR model showed that the degree of influence of explanatory variables on carbon emissions in descending order is urbanization rate > industrial structure > population > population density > per capita GDP. |
Author | Yu, Jialuo Wang, Jijun Han, Xiaojia Xia, Yu |
Author_xml | – sequence: 1 givenname: Xiaojia surname: Han fullname: Han, Xiaojia email: hanxiaojia18@mails.ucas.ac.cn organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China – sequence: 2 givenname: Jialuo surname: Yu fullname: Yu, Jialuo email: yujialuo18@mails.ucas.ac.cn organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China – sequence: 3 givenname: Yu surname: Xia fullname: Xia, Yu email: ucas104@163.com organization: Institute of Soil and Water Conservation Northwest A&F University, Yangling 712100, Shaanxi, China – sequence: 4 givenname: Jijun surname: Wang fullname: Wang, Jijun email: jjwang@ms.iswc.ac.cn organization: Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China |
BookMark | eNp9kctqHDEQRYWxIY7jH8hKP9CT0qsf4E0weRgMWdhZi2p19YyGHmmQFMP8fdSeBEIWXhRVunAuqrrv2WWIgRj7KGAjQLSf9hvantJGghRV2MDQXbBrqYxsdK-7y3_md-w25z0AiEGCbtU1i09HLD4WOhxjwoW7HSZ0hZLPxbvM48wdpjEGTgefs48hc18fgdL21FBI3u1o4pgIM8cw8bIjTi9x-VVdw4on2tapWpfTkfIHdjXjkun2T79hP79-eb7_3jz--PZw__mxcVpAaaZZtqajrqW2F6OeHAzSzWTUNFTB6VrQKSMAlOw0oGzl3I_9CE4jgHPqhj2cfaeIe3tM_oDpZCN6-yrEtLWY6oYLWTBGdZPpR5JCz6jQTGqc20GSaaUcsHr1Zy-XYs6JZut8Wa8WSkK_WAF2zcHu7ZqDXXNYtZpDReV_6N-vvAndnSGqB3rxlGx2noKjySdypW7g38J_A-s8pVs |
CitedBy_id | crossref_primary_10_1007_s10668_023_04217_6 crossref_primary_10_1016_j_jenvman_2025_124609 crossref_primary_10_1016_j_eti_2024_103836 crossref_primary_10_1016_j_uclim_2024_102141 crossref_primary_10_1016_j_egyr_2022_08_263 crossref_primary_10_1016_j_energy_2024_131722 crossref_primary_10_1016_j_spc_2022_09_018 crossref_primary_10_1016_j_egyr_2022_05_023 crossref_primary_10_1016_j_biortech_2021_126518 crossref_primary_10_1016_j_techfore_2023_123124 crossref_primary_10_3389_fenvs_2022_880527 crossref_primary_10_3390_su14095243 crossref_primary_10_3390_ijerph19031824 crossref_primary_10_2139_ssrn_4192426 crossref_primary_10_3389_fenvs_2024_1414730 crossref_primary_10_3390_buildings12020163 crossref_primary_10_3390_land11070997 crossref_primary_10_1016_j_egyr_2022_06_039 crossref_primary_10_1016_j_psep_2023_01_008 crossref_primary_10_3390_app12094698 crossref_primary_10_1371_journal_pone_0312388 crossref_primary_10_1016_j_jenvman_2023_118870 crossref_primary_10_1016_j_heliyon_2024_e37245 crossref_primary_10_3389_fenvs_2024_1472558 crossref_primary_10_3390_su15053881 crossref_primary_10_1007_s11356_023_30807_y crossref_primary_10_1007_s11356_023_31817_6 crossref_primary_10_1016_j_envpol_2024_124403 crossref_primary_10_1007_s11356_023_28917_8 crossref_primary_10_3390_ijerph20021496 crossref_primary_10_3390_land12081633 crossref_primary_10_1016_j_scitotenv_2023_162161 crossref_primary_10_3390_ijerph192214849 crossref_primary_10_3390_land12020437 crossref_primary_10_1007_s11356_023_30040_7 crossref_primary_10_3389_fenvs_2022_960464 crossref_primary_10_1016_j_egyr_2022_11_165 crossref_primary_10_1063_5_0167854 |
Cites_doi | 10.1016/j.agsy.2017.07.015 10.1016/j.jclepro.2016.09.115 10.1007/s11442-014-1109-z 10.1016/j.habitatint.2017.10.004 10.1016/j.jclepro.2017.08.052 10.1021/acs.est.5b01732 10.1016/j.jclepro.2016.05.086 10.1016/j.enpol.2012.05.068 10.1016/j.jbusres.2016.10.018 10.1016/j.cor.2016.03.002 10.1016/j.jclepro.2015.04.037 10.1007/s11442-014-1110-6 10.1016/j.jclepro.2020.124116 10.1016/j.rser.2010.06.003 10.3390/su8030271 10.1016/j.energy.2019.116312 10.1016/j.energy.2019.06.168 10.1007/s40974-016-0015-x 10.1142/S0217590814500271 10.1016/j.scitotenv.2018.10.395 10.1016/j.apenergy.2015.01.072 10.1016/j.jclepro.2016.03.149 10.1007/s11769-014-0707-0 10.1016/j.resconrec.2019.06.032 10.1016/j.jclepro.2018.12.280 10.1021/acs.est.7b04608 10.1029/2007GL032887 10.1016/j.energy.2016.02.008 10.1016/j.jclepro.2016.04.046 10.1016/j.rser.2016.11.230 10.1002/2016GB005546 10.1038/nclimate3165 10.1016/j.jclepro.2019.117874 10.1016/j.resconrec.2016.03.016 10.1016/j.ecolind.2020.106487 10.1007/s11069-016-2248-6 10.1016/j.resconrec.2017.10.035 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.egyr.2021.10.097 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-4847 |
EndPage | 7237 |
ExternalDocumentID | oai_doaj_org_article_05537d58be214fa3a5d3bf692e56229a 10_1016_j_egyr_2021_10_097 S2352484721011148 |
GroupedDBID | 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ KQ8 M41 M~E O9- OK1 ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c410t-df2657e76e681b4dc092cfe53d9681c481c073510032740a262f8b8b0c4a00cc3 |
IEDL.DBID | DOA |
ISSN | 2352-4847 |
IngestDate | Wed Aug 27 01:21:40 EDT 2025 Thu Aug 14 00:17:06 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Sat Aug 30 17:16:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Driving factors Regional types Spatiotemporal evolution Carbon emissions Energy-enriched area |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-df2657e76e681b4dc092cfe53d9681c481c073510032740a262f8b8b0c4a00cc3 |
OpenAccessLink | https://doaj.org/article/05537d58be214fa3a5d3bf692e56229a |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_05537d58be214fa3a5d3bf692e56229a crossref_citationtrail_10_1016_j_egyr_2021_10_097 crossref_primary_10_1016_j_egyr_2021_10_097 elsevier_sciencedirect_doi_10_1016_j_egyr_2021_10_097 |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Energy reports |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Wang, Wang, Xu, Yuan (b32) 2017; 71 Paustian, Ravindranath, Amstel (b29) 2006 Gregg, Andres, Marland (b13) 2008; 35 Wiboonchutikula, Chaivichayachat, Chontanawat (b35) 2014; 59 Xu, Lin (b42) 2016; 101 Feng, Hubacek (b12) 2016; 1 Wu, Huang, Zhang, Qiao, Zhan (b37) 2020; 190 Xu, Dong, Yang, Zhang, Wang, Du (b40) 2019; 214 Chen, Hadjikakou, Wiedmann (b2) 2017; 163 Fan, Wu, Li (b11) 2019; 185 Xu, S.C., He, Z.X., Long, R.Y., Chen, H., Han, H.M., Zhang, W.W.J.J.o.C.P., 2016. Comparative analysis of the regional contributions to carbon emissions in China. 127, 406–417. Dong, Long, Li, Dai (b9) 2016; 82 Hao, Dong, Li, Yang, Li, Yu (b14) 2018; 52 Li, Zhang, Shi, Zhou (b18) 2017; 121 Zhang, Wei (b45) 2015; 146 Cheng, Wang, Ye, Wei (b4) 2014; 24 Mackenzie (b24) 2011 Michael, Kle, Poulsen (b25) 2015 Xianghong, Xiyong, Yuandong, Li (b38) 2015; 25 Dong, Yu, Hadachin, Dai, Wang, Zhang, Long (b10) 2018; 129 Zhu, Q., Peng, X., Wu, K.J.E.P., 2012. Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model. 48, 618–626. Xiaojun, Changxin, Biying, Guocui, Chen (b39) 2018 Wei, Huang, Yang, Li, Hu, Zhang (b34) 2017; 163 Wang, Zhao (b33) 2017; 1 Zhou, X., Zhang, M., Zhou, M., Zhou, M.J.J.o.C.P., 2016. A comparative study on decoupling relationship and influence factors between China’s regional economic development and industrial energy–related carbon emissions. 142, 783–800. Amri (b1) 2017; 69 Song, Zhao, Wang (b30) 2019; 238 Yang, T., Liu, W.J.H.I., 2017. Inequality of household carbon emissions and its influencing factors: Case study of urban China. 70, 61–71. Dong, Li, Zhang, Wang, Sun (b8) 2019; 150 Ding, Huang, He, Zhuang (b6) 2021 Pan, Yan, Peng, Liu (b28) 2016; 8 Xu, Xu, Xu, Luo (b43) 2017; 166 Li, Zhao, Wang, Liu (b20) 2020 (b16) 2014 Oh (b27) 2010; 14 Li, Zhao, Liu, Zhao (b19) 2015; 102 Zhao, Y., Shi, Q., Li, H., Cao, Y., Wu, S.J.E.I., 2020. Temporal and spatial determinants of carbon intensity in exports of electronic and optical equipment sector of China. 116, 106487. Ma, Zou, Zhao, Wen, Mi (b22) 2016; 36 (b17) 2021 Houghton, Nassikas (b15) 2017; 31 Chen, Peters, Andrew, Korsbakken, Peng (b3) 2017; 5 (b26) 2012 Wiedenhofer, Guan, Liu, Meng, Zhang, Wei (b36) 2016; 7 Lin, Liu, Hao, Jiang (b21) 2016; 72 Wang, Fang, Ma, Wang, Qin (b31) 2014; 24 Chuai, Huang, Zhang, Lu, Lu (b5) 2015; 49 Dong, Dai, Zhang, Zhang, Long (b7) 2019; 653 Machado, Seleme, Maceno, Zattar (b23) 2017; 157 Mackenzie (10.1016/j.egyr.2021.10.097_b24) 2011 Xu (10.1016/j.egyr.2021.10.097_b43) 2017; 166 Li (10.1016/j.egyr.2021.10.097_b18) 2017; 121 Wang (10.1016/j.egyr.2021.10.097_b32) 2017; 71 Ma (10.1016/j.egyr.2021.10.097_b22) 2016; 36 Chen (10.1016/j.egyr.2021.10.097_b2) 2017; 163 Houghton (10.1016/j.egyr.2021.10.097_b15) 2017; 31 Lin (10.1016/j.egyr.2021.10.097_b21) 2016; 72 Gregg (10.1016/j.egyr.2021.10.097_b13) 2008; 35 Song (10.1016/j.egyr.2021.10.097_b30) 2019; 238 Dong (10.1016/j.egyr.2021.10.097_b8) 2019; 150 10.1016/j.egyr.2021.10.097_b48 Dong (10.1016/j.egyr.2021.10.097_b9) 2016; 82 10.1016/j.egyr.2021.10.097_b46 Zhang (10.1016/j.egyr.2021.10.097_b45) 2015; 146 10.1016/j.egyr.2021.10.097_b47 10.1016/j.egyr.2021.10.097_b44 Feng (10.1016/j.egyr.2021.10.097_b12) 2016; 1 Amri (10.1016/j.egyr.2021.10.097_b1) 2017; 69 Ding (10.1016/j.egyr.2021.10.097_b6) 2021 Dong (10.1016/j.egyr.2021.10.097_b7) 2019; 653 Fan (10.1016/j.egyr.2021.10.097_b11) 2019; 185 Paustian (10.1016/j.egyr.2021.10.097_b29) 2006 Wang (10.1016/j.egyr.2021.10.097_b31) 2014; 24 Xiaojun (10.1016/j.egyr.2021.10.097_b39) 2018 Li (10.1016/j.egyr.2021.10.097_b19) 2015; 102 Wu (10.1016/j.egyr.2021.10.097_b37) 2020; 190 Chuai (10.1016/j.egyr.2021.10.097_b5) 2015; 49 Chen (10.1016/j.egyr.2021.10.097_b3) 2017; 5 Michael (10.1016/j.egyr.2021.10.097_b25) 2015 Li (10.1016/j.egyr.2021.10.097_b20) 2020 10.1016/j.egyr.2021.10.097_b41 Machado (10.1016/j.egyr.2021.10.097_b23) 2017; 157 Pan (10.1016/j.egyr.2021.10.097_b28) 2016; 8 Wiedenhofer (10.1016/j.egyr.2021.10.097_b36) 2016; 7 Hao (10.1016/j.egyr.2021.10.097_b14) 2018; 52 Wiboonchutikula (10.1016/j.egyr.2021.10.097_b35) 2014; 59 Xu (10.1016/j.egyr.2021.10.097_b40) 2019; 214 Xianghong (10.1016/j.egyr.2021.10.097_b38) 2015; 25 Xu (10.1016/j.egyr.2021.10.097_b42) 2016; 101 Cheng (10.1016/j.egyr.2021.10.097_b4) 2014; 24 (10.1016/j.egyr.2021.10.097_b26) 2012 (10.1016/j.egyr.2021.10.097_b17) 2021 Dong (10.1016/j.egyr.2021.10.097_b10) 2018; 129 (10.1016/j.egyr.2021.10.097_b16) 2014 Oh (10.1016/j.egyr.2021.10.097_b27) 2010; 14 Wang (10.1016/j.egyr.2021.10.097_b33) 2017; 1 Wei (10.1016/j.egyr.2021.10.097_b34) 2017; 163 |
References_xml | – volume: 157 start-page: 140 year: 2017 end-page: 145 ident: b23 article-title: Carbon footprint in the ethanol feedstocks cultivation – Agricultural CO2 emission assessment publication-title: Agric. Syst. – year: 2006 ident: b29 article-title: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4 Agriculture, Forestry and Other Land Use – volume: 214 start-page: 615 year: 2019 end-page: 622 ident: b40 article-title: Temporal and spatial differences in carbon emissions in the Pearl River Delta based on multi-resolution emission inventory modeling publication-title: J. Cleaner Prod. – volume: 146 start-page: 409 year: 2015 end-page: 420 ident: b45 article-title: Dynamic total factor carbon emissions performance changes in the Chinese transportation industry publication-title: Appl. Energy – volume: 102 start-page: 103 year: 2015 end-page: 114 ident: b19 article-title: Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996–2012 publication-title: J. Cleaner Prod. – year: 2020 ident: b20 article-title: Spatial–temporal characteristics and drivers of the regional residential CO2 emissions in China during 2000–2017 publication-title: J. Cleaner Prod. – volume: 49 year: 2015 ident: b5 article-title: Spatiotemporal changes of built-up land expansion and carbon emissions caused by the Chinese construction industry publication-title: Environ. Sci. Tech. – volume: 150 year: 2019 ident: b8 article-title: Sensitivity analysis and spatial–temporal heterogeneity of CO2 emission intensity: Evidence from China publication-title: Resour. Conserv. Recy. – volume: 25 start-page: 51 year: 2015 end-page: 61 ident: b38 article-title: Spatial–temporal characteristics of land use intensity of coastal zone in China during 2000–2010 publication-title: Chin. Geogr. Sci – volume: 82 start-page: 1375 year: 2016 end-page: 1391 ident: b9 article-title: Analysis of carbon emission intensity, urbanization and energy mix: evidence from China publication-title: Nat. Hazards – volume: 163 start-page: 58 year: 2017 end-page: 68 ident: b34 article-title: Driving forces analysis of energy-related carbon dioxide (CO2) emissions in Beijing: an input–output structural decomposition analysis publication-title: J. Cleaner Prod. – volume: 163 start-page: 224 year: 2017 end-page: 240 ident: b2 article-title: Urban carbon transformations: unravelling spatial and inter-sectoral linkages for key city industries based on multi-region input–output analysis publication-title: J. Cleaner Prod. – volume: 1 start-page: 39 year: 2016 end-page: 44 ident: b12 article-title: Carbon implications of China’s urbanization publication-title: Energy Ecol. Environ. – year: 2014 ident: b16 article-title: Greenhouse Gas Inventory: IPCC Guidelines for National Greenhouse Gas Inventories – reference: Zhu, Q., Peng, X., Wu, K.J.E.P., 2012. Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model. 48, 618–626. – volume: 36 start-page: 162 year: 2016 end-page: 168 ident: b22 article-title: Temporal-spatial difference analysis of carbon emission from energy consumption and its regional type division in Northwest China publication-title: Econ. Geogr. – volume: 238 year: 2019 ident: b30 article-title: Spatial–temporal analysis of China’s regional carbon intensity based on ST-IDA from 2000 to 2015 publication-title: J. Cleaner Prod. – volume: 129 start-page: 187 year: 2018 end-page: 201 ident: b10 article-title: Drivers of carbon emission intensity change in China publication-title: Resour. Conserv. Recy. – volume: 190 year: 2020 ident: b37 article-title: Multi-province comparison and typology of China’s CO2 emission: A spatial–temporal decomposition approach publication-title: Energy – volume: 5 year: 2017 ident: b3 article-title: Emissions embodied in global trade have plateaued due to structural changes in China publication-title: Earths Future – reference: Yang, T., Liu, W.J.H.I., 2017. Inequality of household carbon emissions and its influencing factors: Case study of urban China. 70, 61–71. – volume: 8 year: 2016 ident: b28 article-title: Analysis of the threshold effect of financial development on China’s carbon intensity publication-title: Sustainability – volume: 101 start-page: 161 year: 2016 end-page: 173 ident: b42 article-title: Reducing CO2 emissions in China’s manufacturing industry: Evidence from nonparametric additive regression models publication-title: Energy – year: 2012 ident: b26 article-title: Guidelines for the compilation of provincial greenhouse gas inventories – reference: Xu, S.C., He, Z.X., Long, R.Y., Chen, H., Han, H.M., Zhang, W.W.J.J.o.C.P., 2016. Comparative analysis of the regional contributions to carbon emissions in China. 127, 406–417. – volume: 31 start-page: 456 year: 2017 end-page: 472 ident: b15 article-title: Global and regional fluxes of carbon from land use and land cover change 1850-2015 publication-title: Glob. Biogeochem. Cycles – start-page: 9 year: 2015 end-page: 10 ident: b25 article-title: Living Planet Report 2014, Vol. 109 – volume: 653 start-page: 565 year: 2019 end-page: 577 ident: b7 article-title: Can a carbon emission trading scheme generate the porter effect? Evidence from pilot areas in China publication-title: Sci. Total Environ. – volume: 24 start-page: 612 year: 2014 end-page: 630 ident: b31 article-title: Spatial differences and multi-mechanism of carbon footprint based on GWR model in provincial China publication-title: J. Geogr. Sci. – volume: 24 start-page: 631 year: 2014 end-page: 650 ident: b4 article-title: Spatiotemporal dynamics of carbon intensity from energy consumption in China publication-title: J. Geogr. Sci. – year: 2021 ident: b6 article-title: Spatial–temporal heterogeneity and driving factors of carbon emissions in China publication-title: Environ. Sci. Pollut. Res. – volume: 1 start-page: 5 year: 2017 end-page: 26 ident: b33 article-title: Impacts of urbanization-related factors on CO 2 emissions: Evidence from China’s three regions with varied urbanization levels publication-title: Atmos. Pollut. Res. – volume: 71 start-page: 47 year: 2017 end-page: 54 ident: b32 article-title: R & D expenditures, ultimate ownership and future performance: Evidence from China publication-title: J. Bus. Res. – volume: 35 year: 2008 ident: b13 article-title: China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production publication-title: Geophys. Res. Lett. – volume: 72 start-page: 189 year: 2016 end-page: 203 ident: b21 article-title: A multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industry publication-title: Comput. Oper. Res. – volume: 185 start-page: 1235 year: 2019 end-page: 1249 ident: b11 article-title: Spatial–temporal analysis of carbon emissions embodied in interprovincial trade and optimization strategies: A case study of Hebei, China publication-title: Energy – year: 2011 ident: b24 article-title: The Economics of Climate Change – volume: 166 start-page: 628 year: 2017 end-page: 640 ident: b43 article-title: Geographical analysis of CO2 emissions in China’s manufacturing industry: A geographically weighted regression model publication-title: J. Cleaner Prod. – volume: 14 start-page: 2697 year: 2010 end-page: 2709 ident: b27 article-title: Carbon capture and storage potential in coal-fired plant in Malaysia-A review publication-title: Renew. Sustain. Energy Rev. – volume: 7 start-page: 75 year: 2016 end-page: 80 ident: b36 article-title: Unequal household carbon footprints in China publication-title: Nature Clim. Change – reference: Zhao, Y., Shi, Q., Li, H., Cao, Y., Wu, S.J.E.I., 2020. Temporal and spatial determinants of carbon intensity in exports of electronic and optical equipment sector of China. 116, 106487. – volume: 52 start-page: 346 year: 2018 end-page: 358 ident: b14 article-title: Multiregional input-output analysis of spatial-temporal evolution driving force for carbon emissions embodied in interprovincial trade and optimization policies: Case study of northeast industrial district in China publication-title: Environ. Sci. Technol. – year: 2018 ident: b39 article-title: Carbon emissions from energy consumption in China: Its measurement and driving factors – year: 2021 ident: b17 article-title: Summary for policymakers publication-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 59 year: 2014 ident: b35 article-title: Sources of energy intensity change of Thailand’s steel industry in the decade of global turbulent time publication-title: Singap. Econ. Rev. – volume: 69 start-page: 527 year: 2017 end-page: 534 ident: b1 article-title: Intercourse across economic growth, trade and renewable energy consumption in developing and developed countries publication-title: Renew. Sustain. Energy Rev. – volume: 121 start-page: 11 year: 2017 end-page: 22 ident: b18 article-title: The prospects of China’s long-term economic development and CO2 emissions under fossil fuel supply constraints publication-title: Resour. Conserv. Recycl. – reference: Zhou, X., Zhang, M., Zhou, M., Zhou, M.J.J.o.C.P., 2016. A comparative study on decoupling relationship and influence factors between China’s regional economic development and industrial energy–related carbon emissions. 142, 783–800. – volume: 157 start-page: 140 year: 2017 ident: 10.1016/j.egyr.2021.10.097_b23 article-title: Carbon footprint in the ethanol feedstocks cultivation – Agricultural CO2 emission assessment publication-title: Agric. Syst. doi: 10.1016/j.agsy.2017.07.015 – ident: 10.1016/j.egyr.2021.10.097_b47 doi: 10.1016/j.jclepro.2016.09.115 – volume: 24 start-page: 612 year: 2014 ident: 10.1016/j.egyr.2021.10.097_b31 article-title: Spatial differences and multi-mechanism of carbon footprint based on GWR model in provincial China publication-title: J. Geogr. Sci. doi: 10.1007/s11442-014-1109-z – ident: 10.1016/j.egyr.2021.10.097_b44 doi: 10.1016/j.habitatint.2017.10.004 – volume: 166 start-page: 628 year: 2017 ident: 10.1016/j.egyr.2021.10.097_b43 article-title: Geographical analysis of CO2 emissions in China’s manufacturing industry: A geographically weighted regression model publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2017.08.052 – volume: 49 year: 2015 ident: 10.1016/j.egyr.2021.10.097_b5 article-title: Spatiotemporal changes of built-up land expansion and carbon emissions caused by the Chinese construction industry publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.5b01732 – volume: 163 start-page: 58 year: 2017 ident: 10.1016/j.egyr.2021.10.097_b34 article-title: Driving forces analysis of energy-related carbon dioxide (CO2) emissions in Beijing: an input–output structural decomposition analysis publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2016.05.086 – ident: 10.1016/j.egyr.2021.10.097_b48 doi: 10.1016/j.enpol.2012.05.068 – volume: 71 start-page: 47 year: 2017 ident: 10.1016/j.egyr.2021.10.097_b32 article-title: R & D expenditures, ultimate ownership and future performance: Evidence from China publication-title: J. Bus. Res. doi: 10.1016/j.jbusres.2016.10.018 – year: 2006 ident: 10.1016/j.egyr.2021.10.097_b29 – volume: 72 start-page: 189 year: 2016 ident: 10.1016/j.egyr.2021.10.097_b21 article-title: A multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industry publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.03.002 – volume: 36 start-page: 162 year: 2016 ident: 10.1016/j.egyr.2021.10.097_b22 article-title: Temporal-spatial difference analysis of carbon emission from energy consumption and its regional type division in Northwest China publication-title: Econ. Geogr. – volume: 102 start-page: 103 year: 2015 ident: 10.1016/j.egyr.2021.10.097_b19 article-title: Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996–2012 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2015.04.037 – year: 2012 ident: 10.1016/j.egyr.2021.10.097_b26 – volume: 24 start-page: 631 year: 2014 ident: 10.1016/j.egyr.2021.10.097_b4 article-title: Spatiotemporal dynamics of carbon intensity from energy consumption in China publication-title: J. Geogr. Sci. doi: 10.1007/s11442-014-1110-6 – year: 2020 ident: 10.1016/j.egyr.2021.10.097_b20 article-title: Spatial–temporal characteristics and drivers of the regional residential CO2 emissions in China during 2000–2017 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.124116 – volume: 14 start-page: 2697 year: 2010 ident: 10.1016/j.egyr.2021.10.097_b27 article-title: Carbon capture and storage potential in coal-fired plant in Malaysia-A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.06.003 – volume: 8 year: 2016 ident: 10.1016/j.egyr.2021.10.097_b28 article-title: Analysis of the threshold effect of financial development on China’s carbon intensity publication-title: Sustainability doi: 10.3390/su8030271 – volume: 190 year: 2020 ident: 10.1016/j.egyr.2021.10.097_b37 article-title: Multi-province comparison and typology of China’s CO2 emission: A spatial–temporal decomposition approach publication-title: Energy doi: 10.1016/j.energy.2019.116312 – volume: 185 start-page: 1235 year: 2019 ident: 10.1016/j.egyr.2021.10.097_b11 article-title: Spatial–temporal analysis of carbon emissions embodied in interprovincial trade and optimization strategies: A case study of Hebei, China publication-title: Energy doi: 10.1016/j.energy.2019.06.168 – volume: 1 start-page: 39 year: 2016 ident: 10.1016/j.egyr.2021.10.097_b12 article-title: Carbon implications of China’s urbanization publication-title: Energy Ecol. Environ. doi: 10.1007/s40974-016-0015-x – volume: 59 year: 2014 ident: 10.1016/j.egyr.2021.10.097_b35 article-title: Sources of energy intensity change of Thailand’s steel industry in the decade of global turbulent time publication-title: Singap. Econ. Rev. doi: 10.1142/S0217590814500271 – volume: 653 start-page: 565 year: 2019 ident: 10.1016/j.egyr.2021.10.097_b7 article-title: Can a carbon emission trading scheme generate the porter effect? Evidence from pilot areas in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.395 – year: 2018 ident: 10.1016/j.egyr.2021.10.097_b39 – volume: 146 start-page: 409 year: 2015 ident: 10.1016/j.egyr.2021.10.097_b45 article-title: Dynamic total factor carbon emissions performance changes in the Chinese transportation industry publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.072 – ident: 10.1016/j.egyr.2021.10.097_b41 doi: 10.1016/j.jclepro.2016.03.149 – year: 2011 ident: 10.1016/j.egyr.2021.10.097_b24 – volume: 25 start-page: 51 year: 2015 ident: 10.1016/j.egyr.2021.10.097_b38 article-title: Spatial–temporal characteristics of land use intensity of coastal zone in China during 2000–2010 publication-title: Chin. Geogr. Sci doi: 10.1007/s11769-014-0707-0 – volume: 150 year: 2019 ident: 10.1016/j.egyr.2021.10.097_b8 article-title: Sensitivity analysis and spatial–temporal heterogeneity of CO2 emission intensity: Evidence from China publication-title: Resour. Conserv. Recy. doi: 10.1016/j.resconrec.2019.06.032 – volume: 214 start-page: 615 year: 2019 ident: 10.1016/j.egyr.2021.10.097_b40 article-title: Temporal and spatial differences in carbon emissions in the Pearl River Delta based on multi-resolution emission inventory modeling publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.12.280 – volume: 52 start-page: 346 year: 2018 ident: 10.1016/j.egyr.2021.10.097_b14 article-title: Multiregional input-output analysis of spatial-temporal evolution driving force for carbon emissions embodied in interprovincial trade and optimization policies: Case study of northeast industrial district in China publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04608 – volume: 35 year: 2008 ident: 10.1016/j.egyr.2021.10.097_b13 article-title: China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL032887 – volume: 101 start-page: 161 year: 2016 ident: 10.1016/j.egyr.2021.10.097_b42 article-title: Reducing CO2 emissions in China’s manufacturing industry: Evidence from nonparametric additive regression models publication-title: Energy doi: 10.1016/j.energy.2016.02.008 – volume: 5 year: 2017 ident: 10.1016/j.egyr.2021.10.097_b3 article-title: Emissions embodied in global trade have plateaued due to structural changes in China publication-title: Earths Future – volume: 163 start-page: 224 year: 2017 ident: 10.1016/j.egyr.2021.10.097_b2 article-title: Urban carbon transformations: unravelling spatial and inter-sectoral linkages for key city industries based on multi-region input–output analysis publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2016.04.046 – year: 2014 ident: 10.1016/j.egyr.2021.10.097_b16 – volume: 69 start-page: 527 year: 2017 ident: 10.1016/j.egyr.2021.10.097_b1 article-title: Intercourse across economic growth, trade and renewable energy consumption in developing and developed countries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.230 – volume: 1 start-page: 5 year: 2017 ident: 10.1016/j.egyr.2021.10.097_b33 article-title: Impacts of urbanization-related factors on CO 2 emissions: Evidence from China’s three regions with varied urbanization levels publication-title: Atmos. Pollut. Res. – volume: 31 start-page: 456 year: 2017 ident: 10.1016/j.egyr.2021.10.097_b15 article-title: Global and regional fluxes of carbon from land use and land cover change 1850-2015 publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2016GB005546 – start-page: 9 year: 2015 ident: 10.1016/j.egyr.2021.10.097_b25 – volume: 7 start-page: 75 year: 2016 ident: 10.1016/j.egyr.2021.10.097_b36 article-title: Unequal household carbon footprints in China publication-title: Nature Clim. Change doi: 10.1038/nclimate3165 – year: 2021 ident: 10.1016/j.egyr.2021.10.097_b17 article-title: Summary for policymakers – year: 2021 ident: 10.1016/j.egyr.2021.10.097_b6 article-title: Spatial–temporal heterogeneity and driving factors of carbon emissions in China publication-title: Environ. Sci. Pollut. Res. – volume: 238 year: 2019 ident: 10.1016/j.egyr.2021.10.097_b30 article-title: Spatial–temporal analysis of China’s regional carbon intensity based on ST-IDA from 2000 to 2015 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.117874 – volume: 121 start-page: 11 year: 2017 ident: 10.1016/j.egyr.2021.10.097_b18 article-title: The prospects of China’s long-term economic development and CO2 emissions under fossil fuel supply constraints publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2016.03.016 – ident: 10.1016/j.egyr.2021.10.097_b46 doi: 10.1016/j.ecolind.2020.106487 – volume: 82 start-page: 1375 year: 2016 ident: 10.1016/j.egyr.2021.10.097_b9 article-title: Analysis of carbon emission intensity, urbanization and energy mix: evidence from China publication-title: Nat. Hazards doi: 10.1007/s11069-016-2248-6 – volume: 129 start-page: 187 year: 2018 ident: 10.1016/j.egyr.2021.10.097_b10 article-title: Drivers of carbon emission intensity change in China publication-title: Resour. Conserv. Recy. doi: 10.1016/j.resconrec.2017.10.035 |
SSID | ssj0001920463 |
Score | 2.4073853 |
Snippet | There is great potential for carbon emission reduction in energy-enriched areas. It is important to master the spatiotemporal characteristics and driving... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 7224 |
SubjectTerms | Carbon emissions Driving factors Energy-enriched area Regional types Spatiotemporal evolution |
Title | Spatiotemporal characteristics of carbon emissions in energy-enriched areas and the evolution of regional types |
URI | https://dx.doi.org/10.1016/j.egyr.2021.10.097 https://doaj.org/article/05537d58be214fa3a5d3bf692e56229a |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMbMjiO7SQjIKoKCRao1C3yK6hVlaK2IPHvuUvcKixlYcgQyy-dz7nPzt13hFxVXgieBc_wrMxkHiwDlJ8y_PZlDhTCKAwUfn7Rw5F8GqtxJ9UX-oS19MCt4G65UmnmVW6DSGRloK1PbaULEcByi6KBRmDzOoepaYtbkAqrySynBMxBZjFipnXuCu_fSAYqkht07ULGp45Vasj7O8apY3AG-2QvIkV6187wgOyE-pDMXxsP6EgoNaPuN98ynVfUmYWd1xTzuOFN2JJO4KWJ8GOgK-j56alBV3Rqak8B_9HwFfUPm2OmBkTnFC9nl0dkNHh8exiymDOBOZnwFfOV0CoLmQ4aAKn0jhfCVUGlvoACJ-GBTQ0bkadwHuVGaFHlNrfcScO5c-kx6dXzOpwQ6qU2uVY2VAAzpOAmCTzTHn_cGGms7pNkLbPSRUJxzGsxK9eeY9MS5VyinLEM5Nwn15s2Hy2dxtba97gUm5pIhd0UgIKUUUHKvxSkT9R6IcuIKlq0AF1Ntgx--h-Dn5Fd7LINXjwnvdXiM1wAilnZy0ZhfwCfi-3o |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+characteristics+of+carbon+emissions+in+energy-enriched+areas+and+the+evolution+of+regional+types&rft.jtitle=Energy+reports&rft.au=Xiaojia+Han&rft.au=Jialuo+Yu&rft.au=Yu+Xia&rft.au=Jijun+Wang&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=7&rft.spage=7224&rft.epage=7237&rft_id=info:doi/10.1016%2Fj.egyr.2021.10.097&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_05537d58be214fa3a5d3bf692e56229a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon |