Highly efficient luminescence from space-confined charge-transfer emitters

Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 19; no. 12; pp. 1332 - 1338
Main Authors Tang, Xun, Cui, Lin-Song, Li, Hong-Cheng, Gillett, Alexander J., Auras, Florian, Qu, Yang-Kun, Zhong, Cheng, Jones, Saul T. E., Jiang, Zuo-Quan, Friend, Richard H., Liao, Liang-Sheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m −2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m −2 . As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties. The use of rigid linkers to control the relative position and interaction of donor and acceptor units in exciplex emitters leads to the realization of organic light-emitting devices with enhanced external quantum efficiency.
AbstractList Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m−2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m−2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.
Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m . As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.
Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m −2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m −2 . As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties. The use of rigid linkers to control the relative position and interaction of donor and acceptor units in exciplex emitters leads to the realization of organic light-emitting devices with enhanced external quantum efficiency.
Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m−2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m−2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.The use of rigid linkers to control the relative position and interaction of donor and acceptor units in exciplex emitters leads to the realization of organic light-emitting devices with enhanced external quantum efficiency.
Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m-2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m-2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m-2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m-2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.
Author Liao, Liang-Sheng
Qu, Yang-Kun
Auras, Florian
Jiang, Zuo-Quan
Tang, Xun
Friend, Richard H.
Cui, Lin-Song
Zhong, Cheng
Li, Hong-Cheng
Gillett, Alexander J.
Jones, Saul T. E.
Author_xml – sequence: 1
  givenname: Xun
  surname: Tang
  fullname: Tang, Xun
  organization: Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University
– sequence: 2
  givenname: Lin-Song
  orcidid: 0000-0001-6577-3432
  surname: Cui
  fullname: Cui, Lin-Song
  email: lc724@cam.ac.uk
  organization: Cavendish Laboratory, University of Cambridge
– sequence: 3
  givenname: Hong-Cheng
  surname: Li
  fullname: Li, Hong-Cheng
  organization: Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University
– sequence: 4
  givenname: Alexander J.
  orcidid: 0000-0001-7572-7333
  surname: Gillett
  fullname: Gillett, Alexander J.
  organization: Cavendish Laboratory, University of Cambridge
– sequence: 5
  givenname: Florian
  orcidid: 0000-0003-1709-4384
  surname: Auras
  fullname: Auras, Florian
  organization: Cavendish Laboratory, University of Cambridge
– sequence: 6
  givenname: Yang-Kun
  orcidid: 0000-0003-0241-308X
  surname: Qu
  fullname: Qu, Yang-Kun
  organization: Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University
– sequence: 7
  givenname: Cheng
  surname: Zhong
  fullname: Zhong, Cheng
  organization: Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University
– sequence: 8
  givenname: Saul T. E.
  orcidid: 0000-0001-6007-2530
  surname: Jones
  fullname: Jones, Saul T. E.
  organization: Cavendish Laboratory, University of Cambridge
– sequence: 9
  givenname: Zuo-Quan
  orcidid: 0000-0003-4447-2408
  surname: Jiang
  fullname: Jiang, Zuo-Quan
  email: zqjiang@suda.edu.cn
  organization: Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University
– sequence: 10
  givenname: Richard H.
  orcidid: 0000-0001-6565-6308
  surname: Friend
  fullname: Friend, Richard H.
  email: rhf10@cam.ac.uk
  organization: Cavendish Laboratory, University of Cambridge
– sequence: 11
  givenname: Liang-Sheng
  orcidid: 0000-0002-2352-9666
  surname: Liao
  fullname: Liao, Liang-Sheng
  email: lsliao@suda.edu.cn
  organization: Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32541938$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-210911$$DView record from Swedish Publication Index
BookMark eNp9kU9v1DAQxS1URNuFD8AFReLCJeDx3-RYFWiLKnEBrpbjjLeuEnuxE6H20-NqtyBVgtNYmt8bz7x3So5iikjIa6DvgfLuQxEgFW8poy3VQNv7Z-QEhFatUIoeHd4AjB2T01JuKWUgpXpBjjmTAnrenZAvl2F7M9016H1wAePSTOscIhaH0WHjc5qbsrMOW5eir42xcTc2b7Fdso3FY25wDsuCubwkz72dCr461A35_vnTt_PL9vrrxdX52XXrBNClHT0d5aAYY1p2nEoFTDOvBaV2QD9o8D231upRObBSKTn0nA1Cai7GTjnFN6Tdzy2_cLcOZpfDbPOdSTaYj-HHmUl5a6awGga0B6j8uz2_y-nnimUxc6jnTZONmNZimID6ueyqIRvy9gl6m9Yc6zWV0qLvOspppd4cqHWYcfyzwKOrFdB7wOVUSkZvXFjsElKspoXJADUP-Zl9fqbmZx7yM_dVCU-Uj8P_p2EHPyobt5j_Lv1v0W-l76vd
CitedBy_id crossref_primary_10_1002_ange_202415680
crossref_primary_10_1002_adfm_202104980
crossref_primary_10_1016_j_jwpe_2022_103181
crossref_primary_10_1021_acsami_2c22266
crossref_primary_10_1002_adfm_202309770
crossref_primary_10_1002_ange_202209425
crossref_primary_10_1002_ange_202015411
crossref_primary_10_1039_D4TA06978A
crossref_primary_10_1002_adma_202102812
crossref_primary_10_1016_j_molstruc_2024_138197
crossref_primary_10_1002_anie_202013051
crossref_primary_10_1002_adom_202300432
crossref_primary_10_1002_anie_202408712
crossref_primary_10_1039_D1NR08523A
crossref_primary_10_1039_D2TC00460G
crossref_primary_10_1007_s11426_020_9841_5
crossref_primary_10_1021_acs_joc_3c01351
crossref_primary_10_1002_ange_202304931
crossref_primary_10_1021_acs_chemmater_4c00129
crossref_primary_10_1038_s41467_022_32967_w
crossref_primary_10_1002_adom_202402464
crossref_primary_10_1021_acsami_2c16702
crossref_primary_10_1002_anie_202201886
crossref_primary_10_3390_mi13122150
crossref_primary_10_1016_j_cclet_2021_08_064
crossref_primary_10_1016_j_cej_2024_151314
crossref_primary_10_1126_sciadv_adf4060
crossref_primary_10_1039_D2QO01261H
crossref_primary_10_1002_adma_202201337
crossref_primary_10_1021_jacs_4c07730
crossref_primary_10_1039_D4MH00400K
crossref_primary_10_1039_D2QM00175F
crossref_primary_10_1016_j_dyepig_2022_110329
crossref_primary_10_1039_D4EE04519J
crossref_primary_10_1002_anie_202300256
crossref_primary_10_1021_acsami_3c18880
crossref_primary_10_1002_anie_202418422
crossref_primary_10_1016_j_cej_2022_141074
crossref_primary_10_1016_j_xcrp_2021_100630
crossref_primary_10_1021_acs_jpcb_3c05879
crossref_primary_10_1002_adpr_202200203
crossref_primary_10_1002_chem_202302371
crossref_primary_10_1002_adfm_202104529
crossref_primary_10_1039_D3MH01337E
crossref_primary_10_1002_anie_202217080
crossref_primary_10_1016_j_saa_2022_122131
crossref_primary_10_1002_adma_202403061
crossref_primary_10_1002_adom_202002204
crossref_primary_10_1002_adom_202301784
crossref_primary_10_1038_s41467_024_45717_x
crossref_primary_10_1002_ange_202104145
crossref_primary_10_1016_j_dyepig_2022_110463
crossref_primary_10_1002_adma_202305310
crossref_primary_10_1002_advs_202301112
crossref_primary_10_1016_j_mtchem_2024_102129
crossref_primary_10_1002_adom_202401237
crossref_primary_10_1002_adom_202401479
crossref_primary_10_1016_j_cej_2025_160880
crossref_primary_10_1039_D2SC05804A
crossref_primary_10_1016_j_mtchem_2024_102249
crossref_primary_10_1038_s41467_022_29076_z
crossref_primary_10_1016_j_jlumin_2023_120413
crossref_primary_10_1002_smo_20240055
crossref_primary_10_1021_acs_jpclett_1c03541
crossref_primary_10_1016_j_cej_2022_135898
crossref_primary_10_1002_advs_202309068
crossref_primary_10_1021_acsami_2c12017
crossref_primary_10_1002_adem_202301584
crossref_primary_10_1002_adom_202102275
crossref_primary_10_1002_ange_202210864
crossref_primary_10_1002_adma_202407882
crossref_primary_10_1002_anie_202414488
crossref_primary_10_1002_asia_202401488
crossref_primary_10_1002_qua_27354
crossref_primary_10_1002_anie_202312297
crossref_primary_10_1016_j_dyepig_2022_110876
crossref_primary_10_1021_acs_joc_0c01200
crossref_primary_10_1002_adom_202100180
crossref_primary_10_1007_s40843_023_2561_8
crossref_primary_10_1016_j_dyepig_2021_109495
crossref_primary_10_1039_D1TC01713F
crossref_primary_10_1039_D4TC04002C
crossref_primary_10_1016_j_optmat_2022_113106
crossref_primary_10_1021_acsenergylett_0c01560
crossref_primary_10_1016_j_dyepig_2022_110407
crossref_primary_10_1038_s41467_024_44981_1
crossref_primary_10_1002_anie_202015411
crossref_primary_10_1002_ange_202011384
crossref_primary_10_1002_adfm_202010547
crossref_primary_10_1002_ange_202408712
crossref_primary_10_1002_ange_202103187
crossref_primary_10_1002_asia_202300899
crossref_primary_10_1002_adfm_202209708
crossref_primary_10_1002_cptc_202400235
crossref_primary_10_1016_j_scib_2020_07_004
crossref_primary_10_1002_cptc_202200287
crossref_primary_10_1002_anie_202104145
crossref_primary_10_1039_D0TC03965A
crossref_primary_10_1002_anie_202304931
crossref_primary_10_1002_anie_202413295
crossref_primary_10_1016_j_molstruc_2022_134213
crossref_primary_10_2139_ssrn_3995900
crossref_primary_10_1002_chem_202500644
crossref_primary_10_1039_D1TC00428J
crossref_primary_10_1002_adom_202102339
crossref_primary_10_1021_acs_chemrev_1c00980
crossref_primary_10_1016_j_seppur_2023_123918
crossref_primary_10_1039_D5CC00059A
crossref_primary_10_1021_acsaom_3c00370
crossref_primary_10_1002_ange_202013332
crossref_primary_10_1016_j_dyepig_2021_110018
crossref_primary_10_1002_adom_202302789
crossref_primary_10_1002_adom_202302677
crossref_primary_10_1002_adfm_202409244
crossref_primary_10_1002_advs_202200525
crossref_primary_10_1002_chem_202404238
crossref_primary_10_1002_anie_202103187
crossref_primary_10_1002_anie_202415680
crossref_primary_10_1002_ange_202414488
crossref_primary_10_1002_anie_202301896
crossref_primary_10_1039_D2TC00212D
crossref_primary_10_1002_ange_202413295
crossref_primary_10_1039_D1JA00319D
crossref_primary_10_1016_j_cej_2024_148567
crossref_primary_10_1039_D2TC02329F
crossref_primary_10_1002_agt2_726
crossref_primary_10_1039_D2BM01838A
crossref_primary_10_1016_j_optmat_2023_113541
crossref_primary_10_1007_s11426_023_1669_9
crossref_primary_10_1002_anie_202013332
crossref_primary_10_1002_adfm_202102315
crossref_primary_10_1002_adts_202200400
crossref_primary_10_1016_j_cej_2022_135571
crossref_primary_10_1039_D2TC01435A
crossref_primary_10_1002_ange_202301896
crossref_primary_10_1038_s41557_023_01357_0
crossref_primary_10_34133_2021_9525802
crossref_primary_10_1016_j_matt_2023_10_034
crossref_primary_10_1002_adom_202400210
crossref_primary_10_1021_acs_jpca_1c10386
crossref_primary_10_1039_D3PY00325F
crossref_primary_10_1016_j_cplett_2023_140937
crossref_primary_10_1039_D2QM01363K
crossref_primary_10_1002_pol_20210870
crossref_primary_10_1016_j_saa_2023_123684
crossref_primary_10_1080_00268976_2024_2443533
crossref_primary_10_1088_1674_4926_42_5_050201
crossref_primary_10_1039_D4ME00131A
crossref_primary_10_1016_j_cej_2022_139387
crossref_primary_10_1016_j_cej_2022_138174
crossref_primary_10_1016_j_dyepig_2023_111528
crossref_primary_10_1021_acs_jpcc_4c01167
crossref_primary_10_1021_acs_chemmater_0c03783
crossref_primary_10_1002_anie_202109229
crossref_primary_10_1002_advs_202200825
crossref_primary_10_1002_adfm_202412267
crossref_primary_10_1002_adom_202301242
crossref_primary_10_1002_ange_202304773
crossref_primary_10_1038_s41467_024_53740_1
crossref_primary_10_1002_ange_202111172
crossref_primary_10_1039_D2TC00238H
crossref_primary_10_1002_cctc_202301732
crossref_primary_10_1002_ange_202418422
crossref_primary_10_1039_D1CE00656H
crossref_primary_10_1002_adfm_202402578
crossref_primary_10_1039_D2TB00422D
crossref_primary_10_1002_adfm_202008790
crossref_primary_10_1016_j_ccr_2024_216066
crossref_primary_10_1039_D1CP02565A
crossref_primary_10_1021_acs_jpclett_1c00772
crossref_primary_10_1021_acsmaterialslett_3c00310
crossref_primary_10_1002_anie_202401120
crossref_primary_10_1002_adom_202300017
crossref_primary_10_1002_adom_202400794
crossref_primary_10_1002_anie_202100423
crossref_primary_10_1016_j_orgel_2021_106184
crossref_primary_10_1039_D1TC01537K
crossref_primary_10_1016_j_cej_2020_127979
crossref_primary_10_1039_D4TC05428H
crossref_primary_10_1002_ange_202201886
crossref_primary_10_1021_acs_jpclett_2c01917
crossref_primary_10_1002_adfm_202313726
crossref_primary_10_1021_acs_jpcc_4c04336
crossref_primary_10_1002_adom_202302354
crossref_primary_10_1002_chem_202400998
crossref_primary_10_1016_j_cej_2021_134314
crossref_primary_10_1002_chem_202103285
crossref_primary_10_1007_s11426_023_1894_1
crossref_primary_10_1002_adom_202401754
crossref_primary_10_1002_anie_202310943
crossref_primary_10_1016_j_orgel_2021_106199
crossref_primary_10_1021_acsami_4c01219
crossref_primary_10_3389_fchem_2020_00716
crossref_primary_10_1016_j_apcatb_2024_123918
crossref_primary_10_1002_ange_202312297
crossref_primary_10_1021_acs_jpcc_4c04350
crossref_primary_10_1039_D3QM00131H
crossref_primary_10_1002_adma_202301929
crossref_primary_10_1021_acsmaterialslett_4c02232
crossref_primary_10_1002_adom_202302218
crossref_primary_10_1016_j_dyepig_2023_111856
crossref_primary_10_1002_adma_202306492
crossref_primary_10_1002_asia_202100091
crossref_primary_10_1002_adom_202302343
crossref_primary_10_1002_ajoc_202400284
crossref_primary_10_1039_D3CS00871A
crossref_primary_10_1039_D4TC00591K
crossref_primary_10_1038_s41467_021_23067_2
crossref_primary_10_1021_acs_chemmater_4c01379
crossref_primary_10_1016_j_cej_2023_145867
crossref_primary_10_1038_s41467_021_25013_8
crossref_primary_10_1039_D4CC02880E
crossref_primary_10_1016_j_molliq_2023_121497
crossref_primary_10_1002_anie_202402774
crossref_primary_10_1002_anie_202218947
crossref_primary_10_1039_D5QM00029G
crossref_primary_10_1002_chem_202102136
crossref_primary_10_1016_j_cej_2022_134731
crossref_primary_10_1039_D2TC03716E
crossref_primary_10_1002_adfm_202202364
crossref_primary_10_1016_j_dyepig_2023_111572
crossref_primary_10_1002_adom_202402820
crossref_primary_10_1039_D3CC05109A
crossref_primary_10_1039_D4CC04537H
crossref_primary_10_1002_adma_202310417
crossref_primary_10_1002_adom_202402822
crossref_primary_10_1002_chem_202004719
crossref_primary_10_1360_TB_2024_0349
crossref_primary_10_1002_ange_202300256
crossref_primary_10_1016_j_cplett_2021_138750
crossref_primary_10_1002_ange_202217080
crossref_primary_10_1002_ange_202501895
crossref_primary_10_1021_acs_chemrev_3c00755
crossref_primary_10_1126_sciadv_abj2504
crossref_primary_10_1002_advs_202404698
crossref_primary_10_1016_j_cej_2023_143557
crossref_primary_10_1021_acs_jpclett_4c00608
crossref_primary_10_1016_j_ccr_2022_214768
crossref_primary_10_1039_D3CP05495K
crossref_primary_10_1002_advs_202206687
crossref_primary_10_1021_jacsau_1c00290
crossref_primary_10_1016_j_cclet_2022_03_102
crossref_primary_10_1016_j_cej_2021_131186
crossref_primary_10_1038_s41467_023_39795_6
crossref_primary_10_1002_anie_202424694
crossref_primary_10_1016_j_cej_2024_149150
crossref_primary_10_1039_D0TC05099G
crossref_primary_10_1002_adfm_202105092
crossref_primary_10_1016_j_dyepig_2022_110377
crossref_primary_10_1002_anie_202202381
crossref_primary_10_1016_j_jinorgbio_2022_112030
crossref_primary_10_1021_jacs_4c10890
crossref_primary_10_1021_acsami_1c05646
crossref_primary_10_1016_j_seppur_2022_121947
crossref_primary_10_1039_D1SC04188F
crossref_primary_10_1002_adpr_202000155
crossref_primary_10_1016_j_apcatb_2023_122751
crossref_primary_10_1002_ange_202416154
crossref_primary_10_1002_adom_202400976
crossref_primary_10_1021_acs_chemrev_3c00761
crossref_primary_10_1002_agt2_14
crossref_primary_10_1002_ange_202217195
crossref_primary_10_1016_j_cej_2020_127418
crossref_primary_10_1016_j_cej_2023_144759
crossref_primary_10_1016_j_dyepig_2022_110389
crossref_primary_10_1002_anie_202404978
crossref_primary_10_1002_ange_202108943
crossref_primary_10_1016_j_cej_2024_153511
crossref_primary_10_1039_D2CP01698B
crossref_primary_10_1016_j_isci_2021_102123
crossref_primary_10_1002_adom_202400860
crossref_primary_10_1002_ange_202213823
crossref_primary_10_1039_D1TC04171A
crossref_primary_10_3390_ijms241512362
crossref_primary_10_1007_s11426_024_2355_0
crossref_primary_10_1039_D4TC03149K
crossref_primary_10_1002_adfm_202110207
crossref_primary_10_1002_adom_202401832
crossref_primary_10_1039_D4CP02801E
crossref_primary_10_1002_advs_202103428
crossref_primary_10_1002_anie_202412691
crossref_primary_10_1039_D2PY01306A
crossref_primary_10_1002_adom_202202610
crossref_primary_10_1039_D4SC05516K
crossref_primary_10_1039_D3RA05518C
crossref_primary_10_1002_anie_202204652
crossref_primary_10_1002_anie_202200059
crossref_primary_10_1016_j_saa_2021_119830
crossref_primary_10_1002_adts_202200494
crossref_primary_10_1016_j_dyepig_2022_110397
crossref_primary_10_1039_D3RA07937F
crossref_primary_10_1016_j_cclet_2024_110066
crossref_primary_10_1016_j_jhazmat_2021_127292
crossref_primary_10_1007_s11426_024_2015_9
crossref_primary_10_1002_anie_202207619
crossref_primary_10_1002_smll_202203961
crossref_primary_10_1002_ange_202204652
crossref_primary_10_1021_acs_macromol_4c01761
crossref_primary_10_1039_D0TC05624C
crossref_primary_10_1002_ange_202310943
crossref_primary_10_1002_ange_202401833
crossref_primary_10_1039_D2CP05848K
crossref_primary_10_1039_D1TC02778F
crossref_primary_10_1002_ange_202424950
crossref_primary_10_1002_ange_202200059
crossref_primary_10_1002_smll_202201548
crossref_primary_10_1002_ange_202414905
crossref_primary_10_1002_anie_202318245
crossref_primary_10_1021_acs_macromol_0c02494
crossref_primary_10_1002_adma_202313602
crossref_primary_10_1016_j_dyepig_2023_111371
crossref_primary_10_1039_D2CC05789A
crossref_primary_10_1016_j_cej_2023_147562
crossref_primary_10_1016_j_orgel_2021_106366
crossref_primary_10_1021_acsami_1c17707
crossref_primary_10_7498_aps_71_20211171
crossref_primary_10_1002_anie_202411588
crossref_primary_10_1021_acs_jpclett_4c02702
crossref_primary_10_1002_adfm_202211696
crossref_primary_10_1002_lpor_202200908
crossref_primary_10_1002_anie_202400661
crossref_primary_10_1002_adfm_202422927
crossref_primary_10_1038_s41467_024_53297_z
crossref_primary_10_1021_accountsmr_1c00208
crossref_primary_10_1016_j_orgel_2024_107045
crossref_primary_10_1021_acsami_1c23494
crossref_primary_10_1039_D3CC02347H
crossref_primary_10_1002_anie_202110180
crossref_primary_10_1002_anie_202111172
crossref_primary_10_1039_D3QM00051F
crossref_primary_10_1002_anie_202500022
crossref_primary_10_1039_D2CP05054D
crossref_primary_10_1002_anie_202206861
crossref_primary_10_1021_acs_inorgchem_3c03764
crossref_primary_10_1002_ange_202109041
crossref_primary_10_1002_adma_202204253
crossref_primary_10_1002_anie_202213157
crossref_primary_10_1039_D2CS00993E
crossref_primary_10_1016_j_cej_2024_158969
crossref_primary_10_1021_acs_chemmater_2c01938
crossref_primary_10_1002_adom_202302192
crossref_primary_10_1016_j_cclet_2022_06_057
crossref_primary_10_1038_s41467_023_39697_7
crossref_primary_10_1039_D1TC03998A
crossref_primary_10_1016_j_pmatsci_2021_100914
crossref_primary_10_1002_agt2_244
crossref_primary_10_1002_ange_202500022
crossref_primary_10_1002_ange_202418008
crossref_primary_10_1016_j_mtener_2021_100818
crossref_primary_10_1016_j_cej_2021_130470
crossref_primary_10_1039_D1QM01588E
crossref_primary_10_1039_D2CP01574A
crossref_primary_10_1016_j_cej_2024_158958
crossref_primary_10_2139_ssrn_4003996
crossref_primary_10_1002_adfm_202304604
crossref_primary_10_1016_j_cej_2021_129366
crossref_primary_10_1002_adma_202008032
crossref_primary_10_1039_D2TC02914F
crossref_primary_10_1016_j_orgel_2023_106963
crossref_primary_10_1002_cjoc_202200359
crossref_primary_10_1021_acsmaterialslett_3c00626
crossref_primary_10_1002_anie_202420489
crossref_primary_10_1002_ange_202400661
crossref_primary_10_34133_2022_9892802
crossref_primary_10_1039_D4SC00650J
crossref_primary_10_1021_acs_analchem_1c03907
crossref_primary_10_1016_j_cej_2024_153493
crossref_primary_10_1039_D3OB01130E
crossref_primary_10_6023_A22070335
crossref_primary_10_3389_fchem_2022_952116
crossref_primary_10_1016_j_cclet_2024_109809
crossref_primary_10_1002_prep_202300069
crossref_primary_10_1002_adma_202401789
crossref_primary_10_1021_acsnano_4c14887
crossref_primary_10_1039_D4SC08094G
crossref_primary_10_1126_sciadv_abn8106
crossref_primary_10_1016_j_snb_2024_136726
crossref_primary_10_1002_adma_202415951
crossref_primary_10_1002_adom_202202477
crossref_primary_10_1039_D3NJ00423F
crossref_primary_10_1039_D3TC03676F
crossref_primary_10_1002_adma_202205166
crossref_primary_10_1021_acs_jpclett_1c03044
crossref_primary_10_1002_anie_202109041
crossref_primary_10_1016_j_physb_2024_415984
crossref_primary_10_1016_j_cej_2024_155549
crossref_primary_10_1002_anie_202401833
crossref_primary_10_1021_acsmaterialslett_4c01758
crossref_primary_10_1039_D1TC03898B
crossref_primary_10_1016_j_orgel_2022_106462
crossref_primary_10_1002_ange_202402704
crossref_primary_10_1002_anie_202304494
crossref_primary_10_1002_anie_202216473
crossref_primary_10_1039_D3CP05670H
crossref_primary_10_1002_anie_202414905
crossref_primary_10_1016_j_cej_2022_139120
crossref_primary_10_1021_acsenergylett_3c02050
crossref_primary_10_1016_j_dyepig_2021_109711
crossref_primary_10_1021_acs_accounts_3c00175
crossref_primary_10_1039_D1TC05159H
crossref_primary_10_1002_agt2_164
crossref_primary_10_1039_D4TC00038B
crossref_primary_10_1016_j_orgel_2024_107114
crossref_primary_10_1002_ange_202110180
crossref_primary_10_1002_ange_202420489
crossref_primary_10_1002_ange_202304494
crossref_primary_10_1002_adfm_202208082
crossref_primary_10_1016_j_cej_2021_131487
crossref_primary_10_1016_j_cclet_2021_05_054
crossref_primary_10_1039_D1MH01651B
crossref_primary_10_1016_j_saa_2024_124560
crossref_primary_10_1088_1361_6633_ace06a
crossref_primary_10_1002_anie_202424950
crossref_primary_10_1039_D3QO01735D
crossref_primary_10_1002_agt2_171
crossref_primary_10_1002_anie_202402704
crossref_primary_10_1039_D1TC04156H
crossref_primary_10_1039_D2TC00702A
crossref_primary_10_1039_D1TC05027C
crossref_primary_10_1016_j_saa_2025_125827
crossref_primary_10_1039_D4TC05181E
crossref_primary_10_1002_anie_202418008
crossref_primary_10_1021_acs_chemmater_4c00641
crossref_primary_10_1002_anie_202501895
crossref_primary_10_1016_j_isci_2025_111982
crossref_primary_10_1016_j_cplett_2024_141835
crossref_primary_10_1039_D4SC02178A
crossref_primary_10_1002_slct_202302652
crossref_primary_10_1016_j_jlumin_2021_118088
crossref_primary_10_1002_anie_202011384
crossref_primary_10_1002_adom_202201071
crossref_primary_10_3390_molecules26134079
crossref_primary_10_1016_j_saa_2022_121899
crossref_primary_10_1002_ange_202216473
crossref_primary_10_1039_D1TC04484B
crossref_primary_10_1002_cptc_202400264
crossref_primary_10_1021_acs_jpca_2c02701
crossref_primary_10_1016_j_cclet_2024_110555
crossref_primary_10_1002_anie_202210864
crossref_primary_10_1007_s40843_023_2563_2
crossref_primary_10_1002_cptc_202400141
crossref_primary_10_1021_acs_jpcb_2c00144
crossref_primary_10_1016_j_cej_2021_129628
crossref_primary_10_1039_D4TB00535J
crossref_primary_10_1002_chem_202304263
crossref_primary_10_1039_D4SC03111C
crossref_primary_10_1021_acs_chemmater_2c01301
crossref_primary_10_1021_jacs_0c08980
crossref_primary_10_1002_ange_202402774
crossref_primary_10_1002_adma_202406083
crossref_primary_10_1039_D3SC03812B
crossref_primary_10_1002_anie_202108943
crossref_primary_10_1016_j_cej_2022_135234
crossref_primary_10_1016_j_orgel_2021_106417
crossref_primary_10_1016_j_dyepig_2021_109208
crossref_primary_10_1002_adom_202101122
crossref_primary_10_1002_cptc_202400156
crossref_primary_10_1002_ange_202412691
crossref_primary_10_1002_cptc_202400273
crossref_primary_10_1002_smll_202305589
crossref_primary_10_1016_j_apcatb_2024_124312
crossref_primary_10_1021_acsmaterialslett_4c00749
crossref_primary_10_1021_acs_orglett_4c01493
crossref_primary_10_34133_research_0009
crossref_primary_10_1016_j_jhazmat_2021_126338
crossref_primary_10_1021_jacs_3c08909
crossref_primary_10_1039_D3TC03752E
crossref_primary_10_1002_adfm_202306880
crossref_primary_10_1039_D3SC04264B
crossref_primary_10_1016_j_dyepig_2021_109474
crossref_primary_10_1016_j_cej_2022_136219
crossref_primary_10_1021_acs_inorgchem_0c03331
crossref_primary_10_1021_acs_chemmater_3c02714
crossref_primary_10_1002_adom_202403139
crossref_primary_10_1016_j_mtchem_2022_100785
crossref_primary_10_1002_smll_202304367
crossref_primary_10_1039_D3TC04713J
crossref_primary_10_1002_slct_202402291
crossref_primary_10_1021_acsmaterialslett_4c00614
crossref_primary_10_1002_adma_202401724
crossref_primary_10_1039_D3MH01538F
crossref_primary_10_1002_ange_202207619
crossref_primary_10_1021_jacs_3c01267
crossref_primary_10_1039_D3SC00588G
crossref_primary_10_1016_j_chempr_2024_10_020
crossref_primary_10_1016_j_molliq_2022_120477
crossref_primary_10_1021_acs_inorgchem_3c00420
crossref_primary_10_1063_5_0206023
crossref_primary_10_1002_ange_202411588
crossref_primary_10_1039_D2QM01379G
crossref_primary_10_1002_chem_202404542
crossref_primary_10_1039_D1TC04330G
crossref_primary_10_1016_j_dyepig_2023_111185
crossref_primary_10_1016_j_comptc_2024_114832
crossref_primary_10_1021_acsami_2c12778
crossref_primary_10_1038_s41563_022_01321_2
crossref_primary_10_1002_agt2_411
crossref_primary_10_1021_acs_jpclett_3c01277
crossref_primary_10_1021_acs_jpclett_3c02245
crossref_primary_10_2139_ssrn_4176049
crossref_primary_10_1002_asia_202400679
crossref_primary_10_1039_D1TC03564A
crossref_primary_10_1016_j_jlumin_2024_120921
crossref_primary_10_1039_D2TC03421B
crossref_primary_10_1002_adom_202300504
crossref_primary_10_1016_j_chempr_2024_05_005
crossref_primary_10_1016_j_cjsc_2024_100270
crossref_primary_10_1021_acs_jpcb_4c01744
crossref_primary_10_1038_s41528_022_00212_5
crossref_primary_10_1021_acs_orglett_3c02168
crossref_primary_10_1039_D2QI01779B
crossref_primary_10_1039_D0MH01252A
crossref_primary_10_1002_adom_202101794
crossref_primary_10_1021_acs_langmuir_3c03376
crossref_primary_10_1021_acsmaterialslett_4c00955
crossref_primary_10_1021_acsami_1c12958
crossref_primary_10_1002_anie_202416154
crossref_primary_10_1021_acsestengg_4c00265
crossref_primary_10_1002_anie_202217195
crossref_primary_10_1016_j_jece_2021_105728
crossref_primary_10_1016_j_cej_2021_128457
crossref_primary_10_1002_ange_202206861
crossref_primary_10_1016_j_dyepig_2025_112770
crossref_primary_10_1016_j_jlumin_2024_120812
crossref_primary_10_1002_ange_202401120
crossref_primary_10_1002_adom_202300981
crossref_primary_10_1002_ange_202213157
crossref_primary_10_1021_acs_jpca_4c06357
crossref_primary_10_1002_adom_202402490
crossref_primary_10_1021_acs_jpclett_1c02104
crossref_primary_10_1016_j_cclet_2024_110520
crossref_primary_10_1007_s41061_023_00436_7
crossref_primary_10_1039_D1CC02311J
crossref_primary_10_1002_anie_202213823
crossref_primary_10_1002_anie_202304773
crossref_primary_10_2139_ssrn_4112736
crossref_primary_10_1016_j_chempr_2022_02_017
crossref_primary_10_1016_j_cej_2023_148314
crossref_primary_10_1021_acsami_1c12627
crossref_primary_10_1016_j_cej_2021_131510
crossref_primary_10_1002_ange_202013051
crossref_primary_10_1002_ange_202318245
crossref_primary_10_1002_chem_202301921
crossref_primary_10_1007_s10895_024_03661_5
crossref_primary_10_1039_D3QM00653K
crossref_primary_10_1002_ange_202424694
crossref_primary_10_1007_s11426_022_1382_5
crossref_primary_10_1002_adom_202203030
crossref_primary_10_1002_adom_202401270
crossref_primary_10_1039_D3RA00600J
crossref_primary_10_1002_adfm_202009488
crossref_primary_10_1016_j_orgel_2021_106309
crossref_primary_10_1016_j_chemosphere_2022_133700
crossref_primary_10_1016_j_orgel_2024_107072
crossref_primary_10_1002_ange_202202381
crossref_primary_10_1002_adom_202101410
crossref_primary_10_1002_ange_202100423
crossref_primary_10_1016_j_orgel_2020_106023
crossref_primary_10_1002_adfm_202411957
crossref_primary_10_1021_acsami_0c20128
crossref_primary_10_1002_adma_202306617
crossref_primary_10_1002_advs_202106018
crossref_primary_10_1007_s12274_023_5674_2
crossref_primary_10_1016_j_dyepig_2024_112496
crossref_primary_10_1002_ejoc_202100134
crossref_primary_10_2139_ssrn_4055904
crossref_primary_10_1002_advs_202203870
crossref_primary_10_1038_s41467_024_55564_5
crossref_primary_10_1002_agt2_2
crossref_primary_10_1002_anie_202209425
crossref_primary_10_1039_D4QM00720D
crossref_primary_10_1002_ange_202109229
crossref_primary_10_1039_D1CS00993A
crossref_primary_10_1002_adma_202104125
crossref_primary_10_1002_ange_202404978
crossref_primary_10_1007_s11426_023_1869_4
crossref_primary_10_1002_ange_202218947
crossref_primary_10_1016_j_orgel_2021_106312
crossref_primary_10_1021_acs_jpclett_2c01025
crossref_primary_10_1016_j_cej_2023_146484
Cites_doi 10.1038/nphoton.2014.12
10.1016/S0009-2614(97)01466-8
10.1038/nmat4154
10.1038/nphoton.2016.230
10.1038/ncomms9476
10.1063/1.1675677
10.1002/9783527691722
10.1002/anie.201804483
10.1038/natrevmats.2018.20
10.1021/cr00032a005
10.1021/acs.jpclett.7b00688
10.1002/anie.201708876
10.1021/acs.jctc.5b00431
10.1039/C8CC04594A
10.1002/adma.201601675
10.1038/s41566-019-0476-5
10.1016/j.solmat.2012.12.007
10.1039/c2cc31468a
10.1002/anie.201813604
10.1002/jcc.21759
10.1002/adma.201605444
10.1021/jacs.5b07932
10.1021/jacs.7b00873
10.1021/jacs.7b10257
10.1038/nature11687
10.1063/1.1712006
10.1038/nphoton.2012.31
10.1016/j.cplett.2015.11.042
10.1002/bbpc.19630670810
10.1021/ja00314a028
10.1021/jp076480z
10.1039/C3CC44179B
10.1021/acs.jpcc.7b02369
10.1002/anie.201206289
10.1002/anie.201609459
10.1126/sciadv.1501470
10.1038/nmat4717
10.1021/ja00794a040
10.1002/jcc.22885
10.1038/s41566-019-0415-5
10.1002/anie.201601136
10.1039/C9TC01449G
10.1021/ct4009975
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
ADTPV
AOWAS
DG8
DOI 10.1038/s41563-020-0710-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 1338
ExternalDocumentID oai_DiVA_org_liu_210911
32541938
10_1038_s41563_020_0710_z
Genre Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China (No. 2016YFB0400700);
– fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: BK20181442; BK20181442
  funderid: https://doi.org/10.13039/501100004608
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/M01083X/1, EP/M005143/1; EP/M01083X/1, EP/M005143/1; EP/M01083X/1, EP/M005143/1
  funderid: https://doi.org/10.13039/501100000266
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 670405
  funderid: https://doi.org/10.13039/100010663
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 51773141, 61961160731, and 51873139; 51773141, 61961160731, and 51873139; 51773141, 61961160731, and 51873139; 51773141, 61961160731, and 51873139; 51773141, 61961160731, and 51873139
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key R&D Program of China (No. 2016YFB0400700);Collaborative Innovation Center of Suzhou Nano Science & Technology;Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD);“111” Project.
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 670405
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 51773141, 61961160731, and 51873139
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/M01083X/1, EP/M005143/1
– fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: BK20181442
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ADTPV
AOWAS
DG8
NFIDA
ID FETCH-LOGICAL-c410t-df0d5b622275830561272f7400abefb71f93aaa7d6c1a5665b932b45734d86c63
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Thu Aug 21 07:29:52 EDT 2025
Fri Jul 11 02:01:26 EDT 2025
Sat Aug 23 14:36:11 EDT 2025
Wed Feb 19 02:30:09 EST 2025
Thu Apr 24 23:07:18 EDT 2025
Tue Jul 01 02:14:01 EDT 2025
Fri Feb 21 02:40:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-df0d5b622275830561272f7400abefb71f93aaa7d6c1a5665b932b45734d86c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4447-2408
0000-0001-6007-2530
0000-0003-0241-308X
0000-0001-6565-6308
0000-0001-7572-7333
0000-0002-2352-9666
0000-0001-6577-3432
0000-0003-1709-4384
PMID 32541938
PQID 2474988030
PQPubID 27576
PageCount 7
ParticipantIDs swepub_primary_oai_DiVA_org_liu_210911
proquest_miscellaneous_2414005819
proquest_journals_2474988030
pubmed_primary_32541938
crossref_citationtrail_10_1038_s41563_020_0710_z
crossref_primary_10_1038_s41563_020_0710_z
springer_journals_10_1038_s41563_020_0710_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Nasu (CR41) 2013; 49
Bertho (CR39) 2013; 110
Sun, Autschbach (CR45) 2014; 10
Leonhardt, Weller (CR1) 1963; 67
Ahn (CR12) 2019; 13
Hirata (CR6) 2015; 14
Kaji (CR15) 2015; 6
Tsujimoto (CR24) 2017; 139
CR36
Cui (CR7) 2017; 56
Beens, Knibbe, Weller, H., A. (CR2) 1967; 47
Lin (CR5) 2018; 9
Sicard (CR31) 2019; 58
Kawasumi (CR23) 2015; 137
Reichardt (CR34) 1994; 94
Lin (CR9) 2016; 28
Cui (CR10) 2017; 8
Nakanotani, Furukawa, Morimoto, Adachi (CR29) 2016; 2
Grimme, Ehrlich, Goerigk (CR44) 2011; 32
Spuling, Sharma, Samuel, Zysman-Colman, Bräse (CR27) 2018; 54
Méhes, Nomura, Zhang, Nakagawa, Adachi (CR42) 2012; 51
Wong, Zysman-Colman (CR19) 2017; 29
Kulkarni, Jenekhe (CR33) 2008; 112
Nakagawa, Ku, Wong, Adachi (CR8) 2012; 48
Kim, Park, Suh (CR40) 2017; 121
Liu, Li, Ren, Yan, Bryce (CR11) 2018; 3
Itoh, Mimura, Usui, Okamoto (CR21) 1973; 95
CR28
Uoyama, Goushi, Shizu, Nomura, Adachi (CR16) 2012; 492
Cui, Kim, Nomura, Nakanotani, Adachi (CR17) 2016; 55
Shao (CR26) 2017; 139
Inoue (CR30) 2016; 644
Geng (CR22) 2017; 56
Kondo (CR13) 2019; 13
Ly (CR18) 2017; 11
Shi (CR25) 2018; 57
Gómez-Bombarelli (CR43) 2016; 15
Cox, Turro, Yang, Chen (CR20) 1984; 106
Lu, Chen (CR46) 2012; 33
Goushi, Yoshida, Sato, Adachi (CR4) 2012; 6
Zhang (CR14) 2014; 8
Sun (CR38) 2017; 8
Hussain, Yuan, Li, Zhang (CR35) 2019; 7
Sun, Zhong, Brédas (CR37) 2015; 11
Benedict (CR32) 1998; 286
Potashnik, Goldschmidt, Ottolenghi, Weller (CR3) 1971; 55
TC Lin (710_CR5) 2018; 9
LS Cui (710_CR17) 2016; 55
H Uoyama (710_CR16) 2012; 492
H Sun (710_CR37) 2015; 11
Y Liu (710_CR11) 2018; 3
T Lu (710_CR46) 2012; 33
LS Cui (710_CR7) 2017; 56
AP Kulkarni (710_CR33) 2008; 112
710_CR28
GS Cox (710_CR20) 1984; 106
M Itoh (710_CR21) 1973; 95
H Tsujimoto (710_CR24) 2017; 139
R Gómez-Bombarelli (710_CR43) 2016; 15
KT Ly (710_CR18) 2017; 11
LJ Sicard (710_CR31) 2019; 58
DH Ahn (710_CR12) 2019; 13
Y Geng (710_CR22) 2017; 56
YZ Shi (710_CR25) 2018; 57
S Shao (710_CR26) 2017; 139
R Potashnik (710_CR3) 1971; 55
Y Kondo (710_CR13) 2019; 13
H Beens (710_CR2) 1967; 47
K Goushi (710_CR4) 2012; 6
A Hussain (710_CR35) 2019; 7
H Sun (710_CR45) 2014; 10
S Hirata (710_CR6) 2015; 14
H Sun (710_CR38) 2017; 8
TA Lin (710_CR9) 2016; 28
Q Zhang (710_CR14) 2014; 8
K Nasu (710_CR41) 2013; 49
T Nakagawa (710_CR8) 2012; 48
E Spuling (710_CR27) 2018; 54
S Grimme (710_CR44) 2011; 32
C Reichardt (710_CR34) 1994; 94
HS Kim (710_CR40) 2017; 121
710_CR36
S Bertho (710_CR39) 2013; 110
H Leonhardt (710_CR1) 1963; 67
MY Wong (710_CR19) 2017; 29
H Nakanotani (710_CR29) 2016; 2
G Méhes (710_CR42) 2012; 51
LS Cui (710_CR10) 2017; 8
M Inoue (710_CR30) 2016; 644
K Kawasumi (710_CR23) 2015; 137
LX Benedict (710_CR32) 1998; 286
H Kaji (710_CR15) 2015; 6
References_xml – volume: 48
  start-page: 9580
  year: 2012
  end-page: 9582
  ident: CR8
  article-title: Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure
  publication-title: Chem. Commun.
– volume: 49
  start-page: 10385
  year: 2013
  end-page: 10387
  ident: CR41
  article-title: A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence
  publication-title: Chem. Commun.
– volume: 13
  start-page: 540
  year: 2019
  end-page: 546
  ident: CR12
  article-title: Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors
  publication-title: Nat. Photon.
– volume: 14
  start-page: 330
  year: 2015
  end-page: 336
  ident: CR6
  article-title: Highly efficient blue electroluminescence based on thermally activated delayed fluorescence
  publication-title: Nat. Mater.
– volume: 644
  start-page: 62
  year: 2016
  end-page: 67
  ident: CR30
  article-title: Effect of reverse intersystem crossing rate to suppress efficiency roll-off in organic light-emitting diodes with thermally activated delayed fluorescence emitters
  publication-title: Chem. Phys. Lett.
– volume: 47
  start-page: 1183
  year: 1967
  end-page: 1184
  ident: CR2
  article-title: Dipolar nature of molecular complexes formed in the excited state
  publication-title: J. Chem. Phys.
– volume: 9
  year: 2018
  ident: CR5
  article-title: Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes
  publication-title: Nat. Commun.
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  ident: CR44
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
– volume: 56
  start-page: 16536
  year: 2017
  end-page: 16540
  ident: CR22
  article-title: Donor–σ–acceptor motifs: thermally activated delayed fluorescence emitters with dual upconversion
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 29
  start-page: 1605444
  year: 2017
  ident: CR19
  article-title: Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3851
  year: 2015
  end-page: 3858
  ident: CR37
  article-title: Reliable prediction with tuned range-separated functionals of the singlet–triplet gap in organic emitters for thermally activated delayed fluorescence
  publication-title: J. Chem. Theory Comput.
– volume: 28
  start-page: 6976
  year: 2016
  end-page: 6983
  ident: CR9
  article-title: Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1035
  year: 2014
  end-page: 1047
  ident: CR45
  article-title: Electronic energy gaps for π-conjugated oligomers and polymers calculated with density functional theory
  publication-title: J. Chem. Theory Comput.
– volume: 95
  start-page: 4388
  year: 1973
  end-page: 4392
  ident: CR21
  article-title: Intramolecular exciplex and charge transfer complex formations in (9,10-dicyanoanthracene)-(trimethylene)-(naphthalene) systems
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 1571
  year: 2017
  end-page: 1575
  ident: CR7
  article-title: Controlling singlet–triplet energy splitting for deep-blue thermally activated delayed fluorescence emitters
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 55
  start-page: 6864
  year: 2016
  end-page: 6868
  ident: CR17
  article-title: Benzimidazobenzothiazole-based bipolar hosts to harvest nearly all of the excitons from blue delayed fluorescence and phosphorescent organic light-emitting diodes
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 11
  start-page: 63
  year: 2017
  end-page: 68
  ident: CR18
  article-title: Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance
  publication-title: Nat. Photon.
– volume: 139
  start-page: 4894
  year: 2017
  end-page: 4900
  ident: CR24
  article-title: Thermally activated delayed fluorescence and aggregation induced emission with through-space charge transfer
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  ident: CR46
  article-title: Multiwfn: a multifunctional wavefunction analyzer
  publication-title: J. Comput. Chem.
– volume: 67
  start-page: 791
  year: 1963
  end-page: 795
  ident: CR1
  article-title: Elektronenübertragungsreaktionen des angeregten Perylens
  publication-title: Ber. Bunsenges. Phys. Chem.
– volume: 55
  start-page: 5344
  year: 1971
  end-page: 5348
  ident: CR3
  article-title: Absorption spectra of exciplexes
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 326
  year: 2014
  end-page: 332
  ident: CR14
  article-title: Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence
  publication-title: Nat. Photon.
– volume: 112
  start-page: 5174
  year: 2008
  end-page: 5184
  ident: CR33
  article-title: Blue-green, orange, and white organic light-emitting diodes based on exciplex electroluminescence of an oligoquinoline acceptor and different hole-transport materials
  publication-title: J. Phys. Chem. C.
– volume: 492
  start-page: 234
  year: 2012
  end-page: 238
  ident: CR16
  article-title: Highly efficient organic light-emitting diodes from delayed fluorescence
  publication-title: Nature
– volume: 51
  start-page: 11311
  year: 2012
  end-page: 11315
  ident: CR42
  article-title: Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 8
  start-page: 2393
  year: 2017
  end-page: 2398
  ident: CR38
  article-title: Impact of dielectric constant on the singlet–triplet gap in thermally activated delayed fluorescence materials
  publication-title: J. Phys. Chem. Lett.
– volume: 94
  start-page: 2319
  year: 1994
  end-page: 2358
  ident: CR34
  article-title: Solvatochromic dyes as solvent polarity indicators
  publication-title: Chem. Rev.
– volume: 8
  year: 2017
  ident: CR10
  article-title: Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts
  publication-title: Nat. Commun.
– volume: 54
  start-page: 9278
  year: 2018
  end-page: 9281
  ident: CR27
  article-title: (Deep) blue through-space conjugated TADF emitters based on [2.2]paracyclophanes
  publication-title: Chem. Commun.
– volume: 110
  start-page: 69
  year: 2013
  end-page: 76
  ident: CR39
  article-title: Improved thermal stability of bulk heterojunctions based on side-chain functionalized poly(3-alkylthiophene) copolymers and PCBM
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 121
  start-page: 13986
  year: 2017
  end-page: 13997
  ident: CR40
  article-title: Concentration quenching behavior of thermally activated delayed fluorescence in a solid film
  publication-title: J. Phys. Chem. C.
– volume: 137
  start-page: 11908
  year: 2015
  end-page: 11911
  ident: CR23
  article-title: Thermally activated delayed fluorescence materials based on homoconjugation effect of donor–acceptor triptycenes
  publication-title: J. Am. Chem. Soc.
– ident: CR36
– volume: 13
  start-page: 678
  year: 2019
  end-page: 682
  ident: CR13
  article-title: Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter
  publication-title: Nat. Photon.
– volume: 6
  year: 2015
  ident: CR15
  article-title: Purely organic electroluminescent material realizing 100% conversion from electricity to light
  publication-title: Nat. Commun.
– volume: 286
  start-page: 490
  year: 1998
  end-page: 496
  ident: CR32
  article-title: Microscopic determination of the interlayer binding energy in graphite
  publication-title: Chem. Phys. Lett.
– volume: 2
  start-page: e1501470
  year: 2016
  ident: CR29
  article-title: Long-range coupling of electron–hole pairs in spatially separated organic donor-acceptor layers
  publication-title: Sci. Adv.
– volume: 15
  start-page: 1120
  year: 2016
  end-page: 1127
  ident: CR43
  article-title: Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach
  publication-title: Nat. Mater.
– ident: CR28
– volume: 3
  start-page: 18020
  year: 2018
  ident: CR11
  article-title: All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes
  publication-title: Nat. Rev. Mater.
– volume: 6
  start-page: 253
  year: 2012
  end-page: 258
  ident: CR4
  article-title: Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion
  publication-title: Nat. Photon.
– volume: 106
  start-page: 422
  year: 1984
  end-page: 424
  ident: CR20
  article-title: Intramolecular exciplex emission from aqueous β-cyclodextrin solutions
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 9480
  year: 2018
  end-page: 9484
  ident: CR25
  article-title: Intermolecular charge-transfer transition emitter showing thermally activated delayed fluorescence for efficient non-doped OLEDs
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 139
  start-page: 17739
  year: 2017
  end-page: 17742
  ident: CR26
  article-title: Blue thermally activated delayed fluorescence polymers with nonconjugated backbone and through-space charge transfer effect
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 6685
  year: 2019
  end-page: 6691
  ident: CR35
  article-title: Theoretical investigations of the realization of sky-blue to blue TADF materials via CH/N and H/CN substitution at the diphenylsulphone acceptor
  publication-title: J. Mater. Chem. C.
– volume: 58
  start-page: 3848
  year: 2019
  end-page: 3853
  ident: CR31
  article-title: C1-linked spirobifluorene dimers: pure hydrocarbon hosts for high-performance blue phosphorescent oleds
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 8
  start-page: 326
  year: 2014
  ident: 710_CR14
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.12
– volume: 286
  start-page: 490
  year: 1998
  ident: 710_CR32
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(97)01466-8
– ident: 710_CR28
– volume: 14
  start-page: 330
  year: 2015
  ident: 710_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4154
– volume: 11
  start-page: 63
  year: 2017
  ident: 710_CR18
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2016.230
– volume: 6
  year: 2015
  ident: 710_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9476
– volume: 55
  start-page: 5344
  year: 1971
  ident: 710_CR3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1675677
– ident: 710_CR36
  doi: 10.1002/9783527691722
– volume: 57
  start-page: 9480
  year: 2018
  ident: 710_CR25
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201804483
– volume: 3
  start-page: 18020
  year: 2018
  ident: 710_CR11
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.20
– volume: 94
  start-page: 2319
  year: 1994
  ident: 710_CR34
  publication-title: Chem. Rev.
  doi: 10.1021/cr00032a005
– volume: 8
  start-page: 2393
  year: 2017
  ident: 710_CR38
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00688
– volume: 56
  start-page: 16536
  year: 2017
  ident: 710_CR22
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201708876
– volume: 11
  start-page: 3851
  year: 2015
  ident: 710_CR37
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00431
– volume: 54
  start-page: 9278
  year: 2018
  ident: 710_CR27
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC04594A
– volume: 28
  start-page: 6976
  year: 2016
  ident: 710_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601675
– volume: 13
  start-page: 678
  year: 2019
  ident: 710_CR13
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0476-5
– volume: 110
  start-page: 69
  year: 2013
  ident: 710_CR39
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2012.12.007
– volume: 48
  start-page: 9580
  year: 2012
  ident: 710_CR8
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31468a
– volume: 58
  start-page: 3848
  year: 2019
  ident: 710_CR31
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201813604
– volume: 32
  start-page: 1456
  year: 2011
  ident: 710_CR44
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 29
  start-page: 1605444
  year: 2017
  ident: 710_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605444
– volume: 137
  start-page: 11908
  year: 2015
  ident: 710_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07932
– volume: 139
  start-page: 4894
  year: 2017
  ident: 710_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00873
– volume: 139
  start-page: 17739
  year: 2017
  ident: 710_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10257
– volume: 492
  start-page: 234
  year: 2012
  ident: 710_CR16
  publication-title: Nature
  doi: 10.1038/nature11687
– volume: 47
  start-page: 1183
  year: 1967
  ident: 710_CR2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1712006
– volume: 6
  start-page: 253
  year: 2012
  ident: 710_CR4
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.31
– volume: 8
  year: 2017
  ident: 710_CR10
  publication-title: Nat. Commun.
– volume: 644
  start-page: 62
  year: 2016
  ident: 710_CR30
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2015.11.042
– volume: 67
  start-page: 791
  year: 1963
  ident: 710_CR1
  publication-title: Ber. Bunsenges. Phys. Chem.
  doi: 10.1002/bbpc.19630670810
– volume: 106
  start-page: 422
  year: 1984
  ident: 710_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00314a028
– volume: 112
  start-page: 5174
  year: 2008
  ident: 710_CR33
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp076480z
– volume: 49
  start-page: 10385
  year: 2013
  ident: 710_CR41
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC44179B
– volume: 9
  year: 2018
  ident: 710_CR5
  publication-title: Nat. Commun.
– volume: 121
  start-page: 13986
  year: 2017
  ident: 710_CR40
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.7b02369
– volume: 51
  start-page: 11311
  year: 2012
  ident: 710_CR42
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201206289
– volume: 56
  start-page: 1571
  year: 2017
  ident: 710_CR7
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201609459
– volume: 2
  start-page: e1501470
  year: 2016
  ident: 710_CR29
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501470
– volume: 15
  start-page: 1120
  year: 2016
  ident: 710_CR43
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4717
– volume: 95
  start-page: 4388
  year: 1973
  ident: 710_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00794a040
– volume: 33
  start-page: 580
  year: 2012
  ident: 710_CR46
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 13
  start-page: 540
  year: 2019
  ident: 710_CR12
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0415-5
– volume: 55
  start-page: 6864
  year: 2016
  ident: 710_CR17
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201601136
– volume: 7
  start-page: 6685
  year: 2019
  ident: 710_CR35
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC01449G
– volume: 10
  start-page: 1035
  year: 2014
  ident: 710_CR45
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct4009975
SSID ssj0021556
Score 2.7171028
Snippet Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT...
SourceID swepub
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1332
SubjectTerms 639/624/1020/1091
639/638/298/917
Biomaterials
Charge transfer
Chemistry and Materials Science
Condensed Matter Physics
Devices
Efficiency
Electron transfer
Emitters
Emitters (electron)
Excitons
Light emission
Luminous intensity
Materials Science
Nanotechnology
Optical and Electronic Materials
Optoelectronics
Organic light emitting diodes
Organic semiconductors
Photoluminescence
Quantum efficiency
Radiative recombination
Title Highly efficient luminescence from space-confined charge-transfer emitters
URI https://link.springer.com/article/10.1038/s41563-020-0710-z
https://www.ncbi.nlm.nih.gov/pubmed/32541938
https://www.proquest.com/docview/2474988030
https://www.proquest.com/docview/2414005819
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-210911
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4ED4k1KqYKEOICsJrZjJye0C12qSqwQomhvluPYaKVlt93Hgf56Zpxkt4C0l-Rgx7FmxvY3HvsbgDdaFXUVqooh1nZMSsGZLVXNNGLbXFqlm5jO58tYnV_Ki0kx6TbcVt2xyn5OjBN1s3C0R37KpZYVGpvIPlxdM8oaRdHVLoXGXTgk6jKyaj3ZOVy4Vra3i7TCvnDeRzVFeboix4UimBld4cnYzd_r0n9g81ag9B9S0bgQjR7Cgw5BpoNW5Y_gjp8_hvu3eAWfwAWd3pj9Tn3kh8BlJcUpiM63OxrHKV0pSXEmcZ6hNxywoEkjY5Jn64hj_TL1v6aRePMpXI7Ovn88Z13SBOZknq1ZE7KmqBVdcS3K6B9wzYPGoWprH2qdh0pYa3WjXG4Ry6GqBK9loYVsSuWUeAYH88Xcv4C0UrkPPCuCUFaW0leiEBYBgRMIeupQJZD1IjOuYxSnxBYzEyPbojStlA1K2ZCUzU0C77afXLV0GvsqH_d6MN3IWpmdHSTweluMY4ICHXbuFxuqg25jViDYSeB5q7_t3wR6xAhaywTe9wrdNb6nK29bnW_bIVruT9MfA7NY_jSz6cZwoljNj_b3-SXc42Rz8TzMMRyslxv_ClHNuj6JpovPcvT5BA4Ho-FwjO_h2fjrtz8tIPRY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLwDLQQJOICsJrZjJ4eqqijL9nlqUW-uk9hopWW37EOo_VH8RmacTVpA2lvPyXqTmfHMNxnPNwDvtMrKwhcFQ6xdMSkFZzZXJdOIbVNpla7DOJ-jY9U_lftn2dkK_G57YehYZesTg6OuxxV9I9_kUssCjU0k2xc_GU2NoupqO0KjMYsDd_kLU7bp1t4u6vc9570vJ5_7bDFVgFUyTWas9kmdlYp6QLM8AGiuuddoy7Z0vtSpL4S1VteqSi2CHXwXwUuZaSHrXFVK4Lp34K4UGMmpM733tUvwMDY33Uxa4btz3lZRRb45pUSJKqYJtQwl7OrvOPgfuL1RmP2HxDQEvt4aPFwg1ninMbFHsOJGj-HBDR7DJ7BPp0WGl7ELfBQYxmJ0eXSeviK_EVMLS4yeq3IMs2-PF-o4MDQ5Ngu42U1i92MQiD6fwumtiPMZrI7GI_cC4kKlzvMk80JZmUtXiExYBCCVQJBV-iKCpBWZqRYM5jRIY2hCJV3kppGyQSkbkrK5iuBj95OLhr5j2c3rrR7MYidPzbXdRfC2u4x7kAorduTGc7oH09QkQ3AVwfNGf92_CczAESTnEXxqFXq9-JJH-dDovFuHaMB3B992zHjy3QwHc8OJ0jV9ufyZ38C9_snRoTncOz54Bfc52V84i7MOq7PJ3G0gopqVr4MZx3B-2_vmD_AvK9U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKBAk4ACyNrEdOzkgVNiu-oBVhSjqzXUSG6207JZ9CLU_jV_HTF4tIO2t5yTeZGY8_mZn5huAl1oleeazjCHWLpiUgjObqpxpxLaxtEqX1TifzyO1eyT3j5PjDfjd9sJQWWXrEytHXc4K-o-8z6WWGRqbiPq-KYs4HAzfn_5kNEGKMq3tOI3aRA7c2S8M3xbv9gao61ecD3e-ftxlzYQBVsg4WrLSR2WSK-oHTdIKTHPNvUa7trnzuY59Jqy1ulRFbBH44HcJnstEC1mmqlAC170Gm5qioh5sftgZHX7pwj08qeveJq1QEpy3OVWR9hcUNlH-NKIGooid_30q_gd1L6Vp_6E0rY7B4W241eDXcLs2uDuw4aZ34eYlVsN7sE-1I5Oz0FXsFHiohegAqbq-IC8SUkNLiH6scAxjcY8XyrDia3JsWaFoNw_dj3FF-3kfjq5EoA-gN51N3SMIMxU7z6PEC2VlKl0mEmERjhQCIVfuswCiVmSmaPjMaazGxFR5dZGaWsoGpWxIyuY8gDfdI6c1mce6m7daPZhmXy_MhRUG8KK7jDuS0ix26mYrugeD1ihBqBXAw1p_3a8JjMcRMqcBvG0VerH4mld5Xeu8W4dIwQfjb9tmNv9uJuOV4UTwGj9e_87P4TruGfNpb3TwBG5wMr-qMGcLesv5yj1FeLXMnzV2HMLJVW-dPzfzMWc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+luminescence+from+space-confined+charge-transfer+emitters&rft.jtitle=Nature+materials&rft.au=Tang%2C+Xun&rft.au=Cui%2C+Lin-Song&rft.au=Li%2C+Hong-Cheng&rft.au=Gillett%2C+Alexander+J&rft.date=2020-12-01&rft.issn=1476-1122&rft.volume=19&rft.issue=12&rft.spage=1332&rft_id=info:doi/10.1038%2Fs41563-020-0710-z&rft_id=info%3Apmid%2F32541938&rft.externalDocID=32541938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon