Highly efficient luminescence from space-confined charge-transfer emitters
Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (...
Saved in:
Published in | Nature materials Vol. 19; no. 12; pp. 1332 - 1338 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m
−2
with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m
−2
. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.
The use of rigid linkers to control the relative position and interaction of donor and acceptor units in exciplex emitters leads to the realization of organic light-emitting devices with enhanced external quantum efficiency. |
---|---|
AbstractList | Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m−2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m−2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties. Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m . As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties. Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m −2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m −2 . As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties. The use of rigid linkers to control the relative position and interaction of donor and acceptor units in exciplex emitters leads to the realization of organic light-emitting devices with enhanced external quantum efficiency. Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m−2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m−2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.The use of rigid linkers to control the relative position and interaction of donor and acceptor units in exciplex emitters leads to the realization of organic light-emitting devices with enhanced external quantum efficiency. Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m-2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m-2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m-2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m-2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties. |
Author | Liao, Liang-Sheng Qu, Yang-Kun Auras, Florian Jiang, Zuo-Quan Tang, Xun Friend, Richard H. Cui, Lin-Song Zhong, Cheng Li, Hong-Cheng Gillett, Alexander J. Jones, Saul T. E. |
Author_xml | – sequence: 1 givenname: Xun surname: Tang fullname: Tang, Xun organization: Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University – sequence: 2 givenname: Lin-Song orcidid: 0000-0001-6577-3432 surname: Cui fullname: Cui, Lin-Song email: lc724@cam.ac.uk organization: Cavendish Laboratory, University of Cambridge – sequence: 3 givenname: Hong-Cheng surname: Li fullname: Li, Hong-Cheng organization: Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University – sequence: 4 givenname: Alexander J. orcidid: 0000-0001-7572-7333 surname: Gillett fullname: Gillett, Alexander J. organization: Cavendish Laboratory, University of Cambridge – sequence: 5 givenname: Florian orcidid: 0000-0003-1709-4384 surname: Auras fullname: Auras, Florian organization: Cavendish Laboratory, University of Cambridge – sequence: 6 givenname: Yang-Kun orcidid: 0000-0003-0241-308X surname: Qu fullname: Qu, Yang-Kun organization: Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University – sequence: 7 givenname: Cheng surname: Zhong fullname: Zhong, Cheng organization: Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University – sequence: 8 givenname: Saul T. E. orcidid: 0000-0001-6007-2530 surname: Jones fullname: Jones, Saul T. E. organization: Cavendish Laboratory, University of Cambridge – sequence: 9 givenname: Zuo-Quan orcidid: 0000-0003-4447-2408 surname: Jiang fullname: Jiang, Zuo-Quan email: zqjiang@suda.edu.cn organization: Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University – sequence: 10 givenname: Richard H. orcidid: 0000-0001-6565-6308 surname: Friend fullname: Friend, Richard H. email: rhf10@cam.ac.uk organization: Cavendish Laboratory, University of Cambridge – sequence: 11 givenname: Liang-Sheng orcidid: 0000-0002-2352-9666 surname: Liao fullname: Liao, Liang-Sheng email: lsliao@suda.edu.cn organization: Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32541938$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-210911$$DView record from Swedish Publication Index |
BookMark | eNp9kU9v1DAQxS1URNuFD8AFReLCJeDx3-RYFWiLKnEBrpbjjLeuEnuxE6H20-NqtyBVgtNYmt8bz7x3So5iikjIa6DvgfLuQxEgFW8poy3VQNv7Z-QEhFatUIoeHd4AjB2T01JuKWUgpXpBjjmTAnrenZAvl2F7M9016H1wAePSTOscIhaH0WHjc5qbsrMOW5eir42xcTc2b7Fdso3FY25wDsuCubwkz72dCr461A35_vnTt_PL9vrrxdX52XXrBNClHT0d5aAYY1p2nEoFTDOvBaV2QD9o8D231upRObBSKTn0nA1Cai7GTjnFN6Tdzy2_cLcOZpfDbPOdSTaYj-HHmUl5a6awGga0B6j8uz2_y-nnimUxc6jnTZONmNZimID6ueyqIRvy9gl6m9Yc6zWV0qLvOspppd4cqHWYcfyzwKOrFdB7wOVUSkZvXFjsElKspoXJADUP-Zl9fqbmZx7yM_dVCU-Uj8P_p2EHPyobt5j_Lv1v0W-l76vd |
CitedBy_id | crossref_primary_10_1002_ange_202415680 crossref_primary_10_1002_adfm_202104980 crossref_primary_10_1016_j_jwpe_2022_103181 crossref_primary_10_1021_acsami_2c22266 crossref_primary_10_1002_adfm_202309770 crossref_primary_10_1002_ange_202209425 crossref_primary_10_1002_ange_202015411 crossref_primary_10_1039_D4TA06978A crossref_primary_10_1002_adma_202102812 crossref_primary_10_1016_j_molstruc_2024_138197 crossref_primary_10_1002_anie_202013051 crossref_primary_10_1002_adom_202300432 crossref_primary_10_1002_anie_202408712 crossref_primary_10_1039_D1NR08523A crossref_primary_10_1039_D2TC00460G crossref_primary_10_1007_s11426_020_9841_5 crossref_primary_10_1021_acs_joc_3c01351 crossref_primary_10_1002_ange_202304931 crossref_primary_10_1021_acs_chemmater_4c00129 crossref_primary_10_1038_s41467_022_32967_w crossref_primary_10_1002_adom_202402464 crossref_primary_10_1021_acsami_2c16702 crossref_primary_10_1002_anie_202201886 crossref_primary_10_3390_mi13122150 crossref_primary_10_1016_j_cclet_2021_08_064 crossref_primary_10_1016_j_cej_2024_151314 crossref_primary_10_1126_sciadv_adf4060 crossref_primary_10_1039_D2QO01261H crossref_primary_10_1002_adma_202201337 crossref_primary_10_1021_jacs_4c07730 crossref_primary_10_1039_D4MH00400K crossref_primary_10_1039_D2QM00175F crossref_primary_10_1016_j_dyepig_2022_110329 crossref_primary_10_1039_D4EE04519J crossref_primary_10_1002_anie_202300256 crossref_primary_10_1021_acsami_3c18880 crossref_primary_10_1002_anie_202418422 crossref_primary_10_1016_j_cej_2022_141074 crossref_primary_10_1016_j_xcrp_2021_100630 crossref_primary_10_1021_acs_jpcb_3c05879 crossref_primary_10_1002_adpr_202200203 crossref_primary_10_1002_chem_202302371 crossref_primary_10_1002_adfm_202104529 crossref_primary_10_1039_D3MH01337E crossref_primary_10_1002_anie_202217080 crossref_primary_10_1016_j_saa_2022_122131 crossref_primary_10_1002_adma_202403061 crossref_primary_10_1002_adom_202002204 crossref_primary_10_1002_adom_202301784 crossref_primary_10_1038_s41467_024_45717_x crossref_primary_10_1002_ange_202104145 crossref_primary_10_1016_j_dyepig_2022_110463 crossref_primary_10_1002_adma_202305310 crossref_primary_10_1002_advs_202301112 crossref_primary_10_1016_j_mtchem_2024_102129 crossref_primary_10_1002_adom_202401237 crossref_primary_10_1002_adom_202401479 crossref_primary_10_1016_j_cej_2025_160880 crossref_primary_10_1039_D2SC05804A crossref_primary_10_1016_j_mtchem_2024_102249 crossref_primary_10_1038_s41467_022_29076_z crossref_primary_10_1016_j_jlumin_2023_120413 crossref_primary_10_1002_smo_20240055 crossref_primary_10_1021_acs_jpclett_1c03541 crossref_primary_10_1016_j_cej_2022_135898 crossref_primary_10_1002_advs_202309068 crossref_primary_10_1021_acsami_2c12017 crossref_primary_10_1002_adem_202301584 crossref_primary_10_1002_adom_202102275 crossref_primary_10_1002_ange_202210864 crossref_primary_10_1002_adma_202407882 crossref_primary_10_1002_anie_202414488 crossref_primary_10_1002_asia_202401488 crossref_primary_10_1002_qua_27354 crossref_primary_10_1002_anie_202312297 crossref_primary_10_1016_j_dyepig_2022_110876 crossref_primary_10_1021_acs_joc_0c01200 crossref_primary_10_1002_adom_202100180 crossref_primary_10_1007_s40843_023_2561_8 crossref_primary_10_1016_j_dyepig_2021_109495 crossref_primary_10_1039_D1TC01713F crossref_primary_10_1039_D4TC04002C crossref_primary_10_1016_j_optmat_2022_113106 crossref_primary_10_1021_acsenergylett_0c01560 crossref_primary_10_1016_j_dyepig_2022_110407 crossref_primary_10_1038_s41467_024_44981_1 crossref_primary_10_1002_anie_202015411 crossref_primary_10_1002_ange_202011384 crossref_primary_10_1002_adfm_202010547 crossref_primary_10_1002_ange_202408712 crossref_primary_10_1002_ange_202103187 crossref_primary_10_1002_asia_202300899 crossref_primary_10_1002_adfm_202209708 crossref_primary_10_1002_cptc_202400235 crossref_primary_10_1016_j_scib_2020_07_004 crossref_primary_10_1002_cptc_202200287 crossref_primary_10_1002_anie_202104145 crossref_primary_10_1039_D0TC03965A crossref_primary_10_1002_anie_202304931 crossref_primary_10_1002_anie_202413295 crossref_primary_10_1016_j_molstruc_2022_134213 crossref_primary_10_2139_ssrn_3995900 crossref_primary_10_1002_chem_202500644 crossref_primary_10_1039_D1TC00428J crossref_primary_10_1002_adom_202102339 crossref_primary_10_1021_acs_chemrev_1c00980 crossref_primary_10_1016_j_seppur_2023_123918 crossref_primary_10_1039_D5CC00059A crossref_primary_10_1021_acsaom_3c00370 crossref_primary_10_1002_ange_202013332 crossref_primary_10_1016_j_dyepig_2021_110018 crossref_primary_10_1002_adom_202302789 crossref_primary_10_1002_adom_202302677 crossref_primary_10_1002_adfm_202409244 crossref_primary_10_1002_advs_202200525 crossref_primary_10_1002_chem_202404238 crossref_primary_10_1002_anie_202103187 crossref_primary_10_1002_anie_202415680 crossref_primary_10_1002_ange_202414488 crossref_primary_10_1002_anie_202301896 crossref_primary_10_1039_D2TC00212D crossref_primary_10_1002_ange_202413295 crossref_primary_10_1039_D1JA00319D crossref_primary_10_1016_j_cej_2024_148567 crossref_primary_10_1039_D2TC02329F crossref_primary_10_1002_agt2_726 crossref_primary_10_1039_D2BM01838A crossref_primary_10_1016_j_optmat_2023_113541 crossref_primary_10_1007_s11426_023_1669_9 crossref_primary_10_1002_anie_202013332 crossref_primary_10_1002_adfm_202102315 crossref_primary_10_1002_adts_202200400 crossref_primary_10_1016_j_cej_2022_135571 crossref_primary_10_1039_D2TC01435A crossref_primary_10_1002_ange_202301896 crossref_primary_10_1038_s41557_023_01357_0 crossref_primary_10_34133_2021_9525802 crossref_primary_10_1016_j_matt_2023_10_034 crossref_primary_10_1002_adom_202400210 crossref_primary_10_1021_acs_jpca_1c10386 crossref_primary_10_1039_D3PY00325F crossref_primary_10_1016_j_cplett_2023_140937 crossref_primary_10_1039_D2QM01363K crossref_primary_10_1002_pol_20210870 crossref_primary_10_1016_j_saa_2023_123684 crossref_primary_10_1080_00268976_2024_2443533 crossref_primary_10_1088_1674_4926_42_5_050201 crossref_primary_10_1039_D4ME00131A crossref_primary_10_1016_j_cej_2022_139387 crossref_primary_10_1016_j_cej_2022_138174 crossref_primary_10_1016_j_dyepig_2023_111528 crossref_primary_10_1021_acs_jpcc_4c01167 crossref_primary_10_1021_acs_chemmater_0c03783 crossref_primary_10_1002_anie_202109229 crossref_primary_10_1002_advs_202200825 crossref_primary_10_1002_adfm_202412267 crossref_primary_10_1002_adom_202301242 crossref_primary_10_1002_ange_202304773 crossref_primary_10_1038_s41467_024_53740_1 crossref_primary_10_1002_ange_202111172 crossref_primary_10_1039_D2TC00238H crossref_primary_10_1002_cctc_202301732 crossref_primary_10_1002_ange_202418422 crossref_primary_10_1039_D1CE00656H crossref_primary_10_1002_adfm_202402578 crossref_primary_10_1039_D2TB00422D crossref_primary_10_1002_adfm_202008790 crossref_primary_10_1016_j_ccr_2024_216066 crossref_primary_10_1039_D1CP02565A crossref_primary_10_1021_acs_jpclett_1c00772 crossref_primary_10_1021_acsmaterialslett_3c00310 crossref_primary_10_1002_anie_202401120 crossref_primary_10_1002_adom_202300017 crossref_primary_10_1002_adom_202400794 crossref_primary_10_1002_anie_202100423 crossref_primary_10_1016_j_orgel_2021_106184 crossref_primary_10_1039_D1TC01537K crossref_primary_10_1016_j_cej_2020_127979 crossref_primary_10_1039_D4TC05428H crossref_primary_10_1002_ange_202201886 crossref_primary_10_1021_acs_jpclett_2c01917 crossref_primary_10_1002_adfm_202313726 crossref_primary_10_1021_acs_jpcc_4c04336 crossref_primary_10_1002_adom_202302354 crossref_primary_10_1002_chem_202400998 crossref_primary_10_1016_j_cej_2021_134314 crossref_primary_10_1002_chem_202103285 crossref_primary_10_1007_s11426_023_1894_1 crossref_primary_10_1002_adom_202401754 crossref_primary_10_1002_anie_202310943 crossref_primary_10_1016_j_orgel_2021_106199 crossref_primary_10_1021_acsami_4c01219 crossref_primary_10_3389_fchem_2020_00716 crossref_primary_10_1016_j_apcatb_2024_123918 crossref_primary_10_1002_ange_202312297 crossref_primary_10_1021_acs_jpcc_4c04350 crossref_primary_10_1039_D3QM00131H crossref_primary_10_1002_adma_202301929 crossref_primary_10_1021_acsmaterialslett_4c02232 crossref_primary_10_1002_adom_202302218 crossref_primary_10_1016_j_dyepig_2023_111856 crossref_primary_10_1002_adma_202306492 crossref_primary_10_1002_asia_202100091 crossref_primary_10_1002_adom_202302343 crossref_primary_10_1002_ajoc_202400284 crossref_primary_10_1039_D3CS00871A crossref_primary_10_1039_D4TC00591K crossref_primary_10_1038_s41467_021_23067_2 crossref_primary_10_1021_acs_chemmater_4c01379 crossref_primary_10_1016_j_cej_2023_145867 crossref_primary_10_1038_s41467_021_25013_8 crossref_primary_10_1039_D4CC02880E crossref_primary_10_1016_j_molliq_2023_121497 crossref_primary_10_1002_anie_202402774 crossref_primary_10_1002_anie_202218947 crossref_primary_10_1039_D5QM00029G crossref_primary_10_1002_chem_202102136 crossref_primary_10_1016_j_cej_2022_134731 crossref_primary_10_1039_D2TC03716E crossref_primary_10_1002_adfm_202202364 crossref_primary_10_1016_j_dyepig_2023_111572 crossref_primary_10_1002_adom_202402820 crossref_primary_10_1039_D3CC05109A crossref_primary_10_1039_D4CC04537H crossref_primary_10_1002_adma_202310417 crossref_primary_10_1002_adom_202402822 crossref_primary_10_1002_chem_202004719 crossref_primary_10_1360_TB_2024_0349 crossref_primary_10_1002_ange_202300256 crossref_primary_10_1016_j_cplett_2021_138750 crossref_primary_10_1002_ange_202217080 crossref_primary_10_1002_ange_202501895 crossref_primary_10_1021_acs_chemrev_3c00755 crossref_primary_10_1126_sciadv_abj2504 crossref_primary_10_1002_advs_202404698 crossref_primary_10_1016_j_cej_2023_143557 crossref_primary_10_1021_acs_jpclett_4c00608 crossref_primary_10_1016_j_ccr_2022_214768 crossref_primary_10_1039_D3CP05495K crossref_primary_10_1002_advs_202206687 crossref_primary_10_1021_jacsau_1c00290 crossref_primary_10_1016_j_cclet_2022_03_102 crossref_primary_10_1016_j_cej_2021_131186 crossref_primary_10_1038_s41467_023_39795_6 crossref_primary_10_1002_anie_202424694 crossref_primary_10_1016_j_cej_2024_149150 crossref_primary_10_1039_D0TC05099G crossref_primary_10_1002_adfm_202105092 crossref_primary_10_1016_j_dyepig_2022_110377 crossref_primary_10_1002_anie_202202381 crossref_primary_10_1016_j_jinorgbio_2022_112030 crossref_primary_10_1021_jacs_4c10890 crossref_primary_10_1021_acsami_1c05646 crossref_primary_10_1016_j_seppur_2022_121947 crossref_primary_10_1039_D1SC04188F crossref_primary_10_1002_adpr_202000155 crossref_primary_10_1016_j_apcatb_2023_122751 crossref_primary_10_1002_ange_202416154 crossref_primary_10_1002_adom_202400976 crossref_primary_10_1021_acs_chemrev_3c00761 crossref_primary_10_1002_agt2_14 crossref_primary_10_1002_ange_202217195 crossref_primary_10_1016_j_cej_2020_127418 crossref_primary_10_1016_j_cej_2023_144759 crossref_primary_10_1016_j_dyepig_2022_110389 crossref_primary_10_1002_anie_202404978 crossref_primary_10_1002_ange_202108943 crossref_primary_10_1016_j_cej_2024_153511 crossref_primary_10_1039_D2CP01698B crossref_primary_10_1016_j_isci_2021_102123 crossref_primary_10_1002_adom_202400860 crossref_primary_10_1002_ange_202213823 crossref_primary_10_1039_D1TC04171A crossref_primary_10_3390_ijms241512362 crossref_primary_10_1007_s11426_024_2355_0 crossref_primary_10_1039_D4TC03149K crossref_primary_10_1002_adfm_202110207 crossref_primary_10_1002_adom_202401832 crossref_primary_10_1039_D4CP02801E crossref_primary_10_1002_advs_202103428 crossref_primary_10_1002_anie_202412691 crossref_primary_10_1039_D2PY01306A crossref_primary_10_1002_adom_202202610 crossref_primary_10_1039_D4SC05516K crossref_primary_10_1039_D3RA05518C crossref_primary_10_1002_anie_202204652 crossref_primary_10_1002_anie_202200059 crossref_primary_10_1016_j_saa_2021_119830 crossref_primary_10_1002_adts_202200494 crossref_primary_10_1016_j_dyepig_2022_110397 crossref_primary_10_1039_D3RA07937F crossref_primary_10_1016_j_cclet_2024_110066 crossref_primary_10_1016_j_jhazmat_2021_127292 crossref_primary_10_1007_s11426_024_2015_9 crossref_primary_10_1002_anie_202207619 crossref_primary_10_1002_smll_202203961 crossref_primary_10_1002_ange_202204652 crossref_primary_10_1021_acs_macromol_4c01761 crossref_primary_10_1039_D0TC05624C crossref_primary_10_1002_ange_202310943 crossref_primary_10_1002_ange_202401833 crossref_primary_10_1039_D2CP05848K crossref_primary_10_1039_D1TC02778F crossref_primary_10_1002_ange_202424950 crossref_primary_10_1002_ange_202200059 crossref_primary_10_1002_smll_202201548 crossref_primary_10_1002_ange_202414905 crossref_primary_10_1002_anie_202318245 crossref_primary_10_1021_acs_macromol_0c02494 crossref_primary_10_1002_adma_202313602 crossref_primary_10_1016_j_dyepig_2023_111371 crossref_primary_10_1039_D2CC05789A crossref_primary_10_1016_j_cej_2023_147562 crossref_primary_10_1016_j_orgel_2021_106366 crossref_primary_10_1021_acsami_1c17707 crossref_primary_10_7498_aps_71_20211171 crossref_primary_10_1002_anie_202411588 crossref_primary_10_1021_acs_jpclett_4c02702 crossref_primary_10_1002_adfm_202211696 crossref_primary_10_1002_lpor_202200908 crossref_primary_10_1002_anie_202400661 crossref_primary_10_1002_adfm_202422927 crossref_primary_10_1038_s41467_024_53297_z crossref_primary_10_1021_accountsmr_1c00208 crossref_primary_10_1016_j_orgel_2024_107045 crossref_primary_10_1021_acsami_1c23494 crossref_primary_10_1039_D3CC02347H crossref_primary_10_1002_anie_202110180 crossref_primary_10_1002_anie_202111172 crossref_primary_10_1039_D3QM00051F crossref_primary_10_1002_anie_202500022 crossref_primary_10_1039_D2CP05054D crossref_primary_10_1002_anie_202206861 crossref_primary_10_1021_acs_inorgchem_3c03764 crossref_primary_10_1002_ange_202109041 crossref_primary_10_1002_adma_202204253 crossref_primary_10_1002_anie_202213157 crossref_primary_10_1039_D2CS00993E crossref_primary_10_1016_j_cej_2024_158969 crossref_primary_10_1021_acs_chemmater_2c01938 crossref_primary_10_1002_adom_202302192 crossref_primary_10_1016_j_cclet_2022_06_057 crossref_primary_10_1038_s41467_023_39697_7 crossref_primary_10_1039_D1TC03998A crossref_primary_10_1016_j_pmatsci_2021_100914 crossref_primary_10_1002_agt2_244 crossref_primary_10_1002_ange_202500022 crossref_primary_10_1002_ange_202418008 crossref_primary_10_1016_j_mtener_2021_100818 crossref_primary_10_1016_j_cej_2021_130470 crossref_primary_10_1039_D1QM01588E crossref_primary_10_1039_D2CP01574A crossref_primary_10_1016_j_cej_2024_158958 crossref_primary_10_2139_ssrn_4003996 crossref_primary_10_1002_adfm_202304604 crossref_primary_10_1016_j_cej_2021_129366 crossref_primary_10_1002_adma_202008032 crossref_primary_10_1039_D2TC02914F crossref_primary_10_1016_j_orgel_2023_106963 crossref_primary_10_1002_cjoc_202200359 crossref_primary_10_1021_acsmaterialslett_3c00626 crossref_primary_10_1002_anie_202420489 crossref_primary_10_1002_ange_202400661 crossref_primary_10_34133_2022_9892802 crossref_primary_10_1039_D4SC00650J crossref_primary_10_1021_acs_analchem_1c03907 crossref_primary_10_1016_j_cej_2024_153493 crossref_primary_10_1039_D3OB01130E crossref_primary_10_6023_A22070335 crossref_primary_10_3389_fchem_2022_952116 crossref_primary_10_1016_j_cclet_2024_109809 crossref_primary_10_1002_prep_202300069 crossref_primary_10_1002_adma_202401789 crossref_primary_10_1021_acsnano_4c14887 crossref_primary_10_1039_D4SC08094G crossref_primary_10_1126_sciadv_abn8106 crossref_primary_10_1016_j_snb_2024_136726 crossref_primary_10_1002_adma_202415951 crossref_primary_10_1002_adom_202202477 crossref_primary_10_1039_D3NJ00423F crossref_primary_10_1039_D3TC03676F crossref_primary_10_1002_adma_202205166 crossref_primary_10_1021_acs_jpclett_1c03044 crossref_primary_10_1002_anie_202109041 crossref_primary_10_1016_j_physb_2024_415984 crossref_primary_10_1016_j_cej_2024_155549 crossref_primary_10_1002_anie_202401833 crossref_primary_10_1021_acsmaterialslett_4c01758 crossref_primary_10_1039_D1TC03898B crossref_primary_10_1016_j_orgel_2022_106462 crossref_primary_10_1002_ange_202402704 crossref_primary_10_1002_anie_202304494 crossref_primary_10_1002_anie_202216473 crossref_primary_10_1039_D3CP05670H crossref_primary_10_1002_anie_202414905 crossref_primary_10_1016_j_cej_2022_139120 crossref_primary_10_1021_acsenergylett_3c02050 crossref_primary_10_1016_j_dyepig_2021_109711 crossref_primary_10_1021_acs_accounts_3c00175 crossref_primary_10_1039_D1TC05159H crossref_primary_10_1002_agt2_164 crossref_primary_10_1039_D4TC00038B crossref_primary_10_1016_j_orgel_2024_107114 crossref_primary_10_1002_ange_202110180 crossref_primary_10_1002_ange_202420489 crossref_primary_10_1002_ange_202304494 crossref_primary_10_1002_adfm_202208082 crossref_primary_10_1016_j_cej_2021_131487 crossref_primary_10_1016_j_cclet_2021_05_054 crossref_primary_10_1039_D1MH01651B crossref_primary_10_1016_j_saa_2024_124560 crossref_primary_10_1088_1361_6633_ace06a crossref_primary_10_1002_anie_202424950 crossref_primary_10_1039_D3QO01735D crossref_primary_10_1002_agt2_171 crossref_primary_10_1002_anie_202402704 crossref_primary_10_1039_D1TC04156H crossref_primary_10_1039_D2TC00702A crossref_primary_10_1039_D1TC05027C crossref_primary_10_1016_j_saa_2025_125827 crossref_primary_10_1039_D4TC05181E crossref_primary_10_1002_anie_202418008 crossref_primary_10_1021_acs_chemmater_4c00641 crossref_primary_10_1002_anie_202501895 crossref_primary_10_1016_j_isci_2025_111982 crossref_primary_10_1016_j_cplett_2024_141835 crossref_primary_10_1039_D4SC02178A crossref_primary_10_1002_slct_202302652 crossref_primary_10_1016_j_jlumin_2021_118088 crossref_primary_10_1002_anie_202011384 crossref_primary_10_1002_adom_202201071 crossref_primary_10_3390_molecules26134079 crossref_primary_10_1016_j_saa_2022_121899 crossref_primary_10_1002_ange_202216473 crossref_primary_10_1039_D1TC04484B crossref_primary_10_1002_cptc_202400264 crossref_primary_10_1021_acs_jpca_2c02701 crossref_primary_10_1016_j_cclet_2024_110555 crossref_primary_10_1002_anie_202210864 crossref_primary_10_1007_s40843_023_2563_2 crossref_primary_10_1002_cptc_202400141 crossref_primary_10_1021_acs_jpcb_2c00144 crossref_primary_10_1016_j_cej_2021_129628 crossref_primary_10_1039_D4TB00535J crossref_primary_10_1002_chem_202304263 crossref_primary_10_1039_D4SC03111C crossref_primary_10_1021_acs_chemmater_2c01301 crossref_primary_10_1021_jacs_0c08980 crossref_primary_10_1002_ange_202402774 crossref_primary_10_1002_adma_202406083 crossref_primary_10_1039_D3SC03812B crossref_primary_10_1002_anie_202108943 crossref_primary_10_1016_j_cej_2022_135234 crossref_primary_10_1016_j_orgel_2021_106417 crossref_primary_10_1016_j_dyepig_2021_109208 crossref_primary_10_1002_adom_202101122 crossref_primary_10_1002_cptc_202400156 crossref_primary_10_1002_ange_202412691 crossref_primary_10_1002_cptc_202400273 crossref_primary_10_1002_smll_202305589 crossref_primary_10_1016_j_apcatb_2024_124312 crossref_primary_10_1021_acsmaterialslett_4c00749 crossref_primary_10_1021_acs_orglett_4c01493 crossref_primary_10_34133_research_0009 crossref_primary_10_1016_j_jhazmat_2021_126338 crossref_primary_10_1021_jacs_3c08909 crossref_primary_10_1039_D3TC03752E crossref_primary_10_1002_adfm_202306880 crossref_primary_10_1039_D3SC04264B crossref_primary_10_1016_j_dyepig_2021_109474 crossref_primary_10_1016_j_cej_2022_136219 crossref_primary_10_1021_acs_inorgchem_0c03331 crossref_primary_10_1021_acs_chemmater_3c02714 crossref_primary_10_1002_adom_202403139 crossref_primary_10_1016_j_mtchem_2022_100785 crossref_primary_10_1002_smll_202304367 crossref_primary_10_1039_D3TC04713J crossref_primary_10_1002_slct_202402291 crossref_primary_10_1021_acsmaterialslett_4c00614 crossref_primary_10_1002_adma_202401724 crossref_primary_10_1039_D3MH01538F crossref_primary_10_1002_ange_202207619 crossref_primary_10_1021_jacs_3c01267 crossref_primary_10_1039_D3SC00588G crossref_primary_10_1016_j_chempr_2024_10_020 crossref_primary_10_1016_j_molliq_2022_120477 crossref_primary_10_1021_acs_inorgchem_3c00420 crossref_primary_10_1063_5_0206023 crossref_primary_10_1002_ange_202411588 crossref_primary_10_1039_D2QM01379G crossref_primary_10_1002_chem_202404542 crossref_primary_10_1039_D1TC04330G crossref_primary_10_1016_j_dyepig_2023_111185 crossref_primary_10_1016_j_comptc_2024_114832 crossref_primary_10_1021_acsami_2c12778 crossref_primary_10_1038_s41563_022_01321_2 crossref_primary_10_1002_agt2_411 crossref_primary_10_1021_acs_jpclett_3c01277 crossref_primary_10_1021_acs_jpclett_3c02245 crossref_primary_10_2139_ssrn_4176049 crossref_primary_10_1002_asia_202400679 crossref_primary_10_1039_D1TC03564A crossref_primary_10_1016_j_jlumin_2024_120921 crossref_primary_10_1039_D2TC03421B crossref_primary_10_1002_adom_202300504 crossref_primary_10_1016_j_chempr_2024_05_005 crossref_primary_10_1016_j_cjsc_2024_100270 crossref_primary_10_1021_acs_jpcb_4c01744 crossref_primary_10_1038_s41528_022_00212_5 crossref_primary_10_1021_acs_orglett_3c02168 crossref_primary_10_1039_D2QI01779B crossref_primary_10_1039_D0MH01252A crossref_primary_10_1002_adom_202101794 crossref_primary_10_1021_acs_langmuir_3c03376 crossref_primary_10_1021_acsmaterialslett_4c00955 crossref_primary_10_1021_acsami_1c12958 crossref_primary_10_1002_anie_202416154 crossref_primary_10_1021_acsestengg_4c00265 crossref_primary_10_1002_anie_202217195 crossref_primary_10_1016_j_jece_2021_105728 crossref_primary_10_1016_j_cej_2021_128457 crossref_primary_10_1002_ange_202206861 crossref_primary_10_1016_j_dyepig_2025_112770 crossref_primary_10_1016_j_jlumin_2024_120812 crossref_primary_10_1002_ange_202401120 crossref_primary_10_1002_adom_202300981 crossref_primary_10_1002_ange_202213157 crossref_primary_10_1021_acs_jpca_4c06357 crossref_primary_10_1002_adom_202402490 crossref_primary_10_1021_acs_jpclett_1c02104 crossref_primary_10_1016_j_cclet_2024_110520 crossref_primary_10_1007_s41061_023_00436_7 crossref_primary_10_1039_D1CC02311J crossref_primary_10_1002_anie_202213823 crossref_primary_10_1002_anie_202304773 crossref_primary_10_2139_ssrn_4112736 crossref_primary_10_1016_j_chempr_2022_02_017 crossref_primary_10_1016_j_cej_2023_148314 crossref_primary_10_1021_acsami_1c12627 crossref_primary_10_1016_j_cej_2021_131510 crossref_primary_10_1002_ange_202013051 crossref_primary_10_1002_ange_202318245 crossref_primary_10_1002_chem_202301921 crossref_primary_10_1007_s10895_024_03661_5 crossref_primary_10_1039_D3QM00653K crossref_primary_10_1002_ange_202424694 crossref_primary_10_1007_s11426_022_1382_5 crossref_primary_10_1002_adom_202203030 crossref_primary_10_1002_adom_202401270 crossref_primary_10_1039_D3RA00600J crossref_primary_10_1002_adfm_202009488 crossref_primary_10_1016_j_orgel_2021_106309 crossref_primary_10_1016_j_chemosphere_2022_133700 crossref_primary_10_1016_j_orgel_2024_107072 crossref_primary_10_1002_ange_202202381 crossref_primary_10_1002_adom_202101410 crossref_primary_10_1002_ange_202100423 crossref_primary_10_1016_j_orgel_2020_106023 crossref_primary_10_1002_adfm_202411957 crossref_primary_10_1021_acsami_0c20128 crossref_primary_10_1002_adma_202306617 crossref_primary_10_1002_advs_202106018 crossref_primary_10_1007_s12274_023_5674_2 crossref_primary_10_1016_j_dyepig_2024_112496 crossref_primary_10_1002_ejoc_202100134 crossref_primary_10_2139_ssrn_4055904 crossref_primary_10_1002_advs_202203870 crossref_primary_10_1038_s41467_024_55564_5 crossref_primary_10_1002_agt2_2 crossref_primary_10_1002_anie_202209425 crossref_primary_10_1039_D4QM00720D crossref_primary_10_1002_ange_202109229 crossref_primary_10_1039_D1CS00993A crossref_primary_10_1002_adma_202104125 crossref_primary_10_1002_ange_202404978 crossref_primary_10_1007_s11426_023_1869_4 crossref_primary_10_1002_ange_202218947 crossref_primary_10_1016_j_orgel_2021_106312 crossref_primary_10_1021_acs_jpclett_2c01025 crossref_primary_10_1016_j_cej_2023_146484 |
Cites_doi | 10.1038/nphoton.2014.12 10.1016/S0009-2614(97)01466-8 10.1038/nmat4154 10.1038/nphoton.2016.230 10.1038/ncomms9476 10.1063/1.1675677 10.1002/9783527691722 10.1002/anie.201804483 10.1038/natrevmats.2018.20 10.1021/cr00032a005 10.1021/acs.jpclett.7b00688 10.1002/anie.201708876 10.1021/acs.jctc.5b00431 10.1039/C8CC04594A 10.1002/adma.201601675 10.1038/s41566-019-0476-5 10.1016/j.solmat.2012.12.007 10.1039/c2cc31468a 10.1002/anie.201813604 10.1002/jcc.21759 10.1002/adma.201605444 10.1021/jacs.5b07932 10.1021/jacs.7b00873 10.1021/jacs.7b10257 10.1038/nature11687 10.1063/1.1712006 10.1038/nphoton.2012.31 10.1016/j.cplett.2015.11.042 10.1002/bbpc.19630670810 10.1021/ja00314a028 10.1021/jp076480z 10.1039/C3CC44179B 10.1021/acs.jpcc.7b02369 10.1002/anie.201206289 10.1002/anie.201609459 10.1126/sciadv.1501470 10.1038/nmat4717 10.1021/ja00794a040 10.1002/jcc.22885 10.1038/s41566-019-0415-5 10.1002/anie.201601136 10.1039/C9TC01449G 10.1021/ct4009975 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 ADTPV AOWAS DG8 |
DOI | 10.1038/s41563-020-0710-z |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic SwePub SwePub Articles SWEPUB Linköpings universitet |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 1338 |
ExternalDocumentID | oai_DiVA_org_liu_210911 32541938 10_1038_s41563_020_0710_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China (No. 2016YFB0400700); – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation) grantid: BK20181442; BK20181442 funderid: https://doi.org/10.13039/501100004608 – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/M01083X/1, EP/M005143/1; EP/M01083X/1, EP/M005143/1; EP/M01083X/1, EP/M005143/1 funderid: https://doi.org/10.13039/501100000266 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 670405 funderid: https://doi.org/10.13039/100010663 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 51773141, 61961160731, and 51873139; 51773141, 61961160731, and 51873139; 51773141, 61961160731, and 51873139; 51773141, 61961160731, and 51873139; 51773141, 61961160731, and 51873139 funderid: https://doi.org/10.13039/501100001809 – fundername: National Key R&D Program of China (No. 2016YFB0400700);Collaborative Innovation Center of Suzhou Nano Science & Technology;Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD);“111” Project. – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 670405 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 51773141, 61961160731, and 51873139 – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/M01083X/1, EP/M005143/1 – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation) grantid: BK20181442 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 ADTPV AOWAS DG8 NFIDA |
ID | FETCH-LOGICAL-c410t-df0d5b622275830561272f7400abefb71f93aaa7d6c1a5665b932b45734d86c63 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Thu Aug 21 07:29:52 EDT 2025 Fri Jul 11 02:01:26 EDT 2025 Sat Aug 23 14:36:11 EDT 2025 Wed Feb 19 02:30:09 EST 2025 Thu Apr 24 23:07:18 EDT 2025 Tue Jul 01 02:14:01 EDT 2025 Fri Feb 21 02:40:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-df0d5b622275830561272f7400abefb71f93aaa7d6c1a5665b932b45734d86c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4447-2408 0000-0001-6007-2530 0000-0003-0241-308X 0000-0001-6565-6308 0000-0001-7572-7333 0000-0002-2352-9666 0000-0001-6577-3432 0000-0003-1709-4384 |
PMID | 32541938 |
PQID | 2474988030 |
PQPubID | 27576 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_210911 proquest_miscellaneous_2414005819 proquest_journals_2474988030 pubmed_primary_32541938 crossref_citationtrail_10_1038_s41563_020_0710_z crossref_primary_10_1038_s41563_020_0710_z springer_journals_10_1038_s41563_020_0710_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Nasu (CR41) 2013; 49 Bertho (CR39) 2013; 110 Sun, Autschbach (CR45) 2014; 10 Leonhardt, Weller (CR1) 1963; 67 Ahn (CR12) 2019; 13 Hirata (CR6) 2015; 14 Kaji (CR15) 2015; 6 Tsujimoto (CR24) 2017; 139 CR36 Cui (CR7) 2017; 56 Beens, Knibbe, Weller, H., A. (CR2) 1967; 47 Lin (CR5) 2018; 9 Sicard (CR31) 2019; 58 Kawasumi (CR23) 2015; 137 Reichardt (CR34) 1994; 94 Lin (CR9) 2016; 28 Cui (CR10) 2017; 8 Nakanotani, Furukawa, Morimoto, Adachi (CR29) 2016; 2 Grimme, Ehrlich, Goerigk (CR44) 2011; 32 Spuling, Sharma, Samuel, Zysman-Colman, Bräse (CR27) 2018; 54 Méhes, Nomura, Zhang, Nakagawa, Adachi (CR42) 2012; 51 Wong, Zysman-Colman (CR19) 2017; 29 Kulkarni, Jenekhe (CR33) 2008; 112 Nakagawa, Ku, Wong, Adachi (CR8) 2012; 48 Kim, Park, Suh (CR40) 2017; 121 Liu, Li, Ren, Yan, Bryce (CR11) 2018; 3 Itoh, Mimura, Usui, Okamoto (CR21) 1973; 95 CR28 Uoyama, Goushi, Shizu, Nomura, Adachi (CR16) 2012; 492 Cui, Kim, Nomura, Nakanotani, Adachi (CR17) 2016; 55 Shao (CR26) 2017; 139 Inoue (CR30) 2016; 644 Geng (CR22) 2017; 56 Kondo (CR13) 2019; 13 Ly (CR18) 2017; 11 Shi (CR25) 2018; 57 Gómez-Bombarelli (CR43) 2016; 15 Cox, Turro, Yang, Chen (CR20) 1984; 106 Lu, Chen (CR46) 2012; 33 Goushi, Yoshida, Sato, Adachi (CR4) 2012; 6 Zhang (CR14) 2014; 8 Sun (CR38) 2017; 8 Hussain, Yuan, Li, Zhang (CR35) 2019; 7 Sun, Zhong, Brédas (CR37) 2015; 11 Benedict (CR32) 1998; 286 Potashnik, Goldschmidt, Ottolenghi, Weller (CR3) 1971; 55 TC Lin (710_CR5) 2018; 9 LS Cui (710_CR17) 2016; 55 H Uoyama (710_CR16) 2012; 492 H Sun (710_CR37) 2015; 11 Y Liu (710_CR11) 2018; 3 T Lu (710_CR46) 2012; 33 LS Cui (710_CR7) 2017; 56 AP Kulkarni (710_CR33) 2008; 112 710_CR28 GS Cox (710_CR20) 1984; 106 M Itoh (710_CR21) 1973; 95 H Tsujimoto (710_CR24) 2017; 139 R Gómez-Bombarelli (710_CR43) 2016; 15 KT Ly (710_CR18) 2017; 11 LJ Sicard (710_CR31) 2019; 58 DH Ahn (710_CR12) 2019; 13 Y Geng (710_CR22) 2017; 56 YZ Shi (710_CR25) 2018; 57 S Shao (710_CR26) 2017; 139 R Potashnik (710_CR3) 1971; 55 Y Kondo (710_CR13) 2019; 13 H Beens (710_CR2) 1967; 47 K Goushi (710_CR4) 2012; 6 A Hussain (710_CR35) 2019; 7 H Sun (710_CR45) 2014; 10 S Hirata (710_CR6) 2015; 14 H Sun (710_CR38) 2017; 8 TA Lin (710_CR9) 2016; 28 Q Zhang (710_CR14) 2014; 8 K Nasu (710_CR41) 2013; 49 T Nakagawa (710_CR8) 2012; 48 E Spuling (710_CR27) 2018; 54 S Grimme (710_CR44) 2011; 32 C Reichardt (710_CR34) 1994; 94 HS Kim (710_CR40) 2017; 121 710_CR36 S Bertho (710_CR39) 2013; 110 H Leonhardt (710_CR1) 1963; 67 MY Wong (710_CR19) 2017; 29 H Nakanotani (710_CR29) 2016; 2 G Méhes (710_CR42) 2012; 51 LS Cui (710_CR10) 2017; 8 M Inoue (710_CR30) 2016; 644 K Kawasumi (710_CR23) 2015; 137 LX Benedict (710_CR32) 1998; 286 H Kaji (710_CR15) 2015; 6 |
References_xml | – volume: 48 start-page: 9580 year: 2012 end-page: 9582 ident: CR8 article-title: Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure publication-title: Chem. Commun. – volume: 49 start-page: 10385 year: 2013 end-page: 10387 ident: CR41 article-title: A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence publication-title: Chem. Commun. – volume: 13 start-page: 540 year: 2019 end-page: 546 ident: CR12 article-title: Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors publication-title: Nat. Photon. – volume: 14 start-page: 330 year: 2015 end-page: 336 ident: CR6 article-title: Highly efficient blue electroluminescence based on thermally activated delayed fluorescence publication-title: Nat. Mater. – volume: 644 start-page: 62 year: 2016 end-page: 67 ident: CR30 article-title: Effect of reverse intersystem crossing rate to suppress efficiency roll-off in organic light-emitting diodes with thermally activated delayed fluorescence emitters publication-title: Chem. Phys. Lett. – volume: 47 start-page: 1183 year: 1967 end-page: 1184 ident: CR2 article-title: Dipolar nature of molecular complexes formed in the excited state publication-title: J. Chem. Phys. – volume: 9 year: 2018 ident: CR5 article-title: Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes publication-title: Nat. Commun. – volume: 32 start-page: 1456 year: 2011 end-page: 1465 ident: CR44 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. – volume: 56 start-page: 16536 year: 2017 end-page: 16540 ident: CR22 article-title: Donor–σ–acceptor motifs: thermally activated delayed fluorescence emitters with dual upconversion publication-title: Angew. Chem. Int. Ed. Engl. – volume: 29 start-page: 1605444 year: 2017 ident: CR19 article-title: Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes publication-title: Adv. Mater. – volume: 11 start-page: 3851 year: 2015 end-page: 3858 ident: CR37 article-title: Reliable prediction with tuned range-separated functionals of the singlet–triplet gap in organic emitters for thermally activated delayed fluorescence publication-title: J. Chem. Theory Comput. – volume: 28 start-page: 6976 year: 2016 end-page: 6983 ident: CR9 article-title: Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid publication-title: Adv. Mater. – volume: 10 start-page: 1035 year: 2014 end-page: 1047 ident: CR45 article-title: Electronic energy gaps for π-conjugated oligomers and polymers calculated with density functional theory publication-title: J. Chem. Theory Comput. – volume: 95 start-page: 4388 year: 1973 end-page: 4392 ident: CR21 article-title: Intramolecular exciplex and charge transfer complex formations in (9,10-dicyanoanthracene)-(trimethylene)-(naphthalene) systems publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 1571 year: 2017 end-page: 1575 ident: CR7 article-title: Controlling singlet–triplet energy splitting for deep-blue thermally activated delayed fluorescence emitters publication-title: Angew. Chem. Int. Ed. Engl. – volume: 55 start-page: 6864 year: 2016 end-page: 6868 ident: CR17 article-title: Benzimidazobenzothiazole-based bipolar hosts to harvest nearly all of the excitons from blue delayed fluorescence and phosphorescent organic light-emitting diodes publication-title: Angew. Chem. Int. Ed. Engl. – volume: 11 start-page: 63 year: 2017 end-page: 68 ident: CR18 article-title: Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance publication-title: Nat. Photon. – volume: 139 start-page: 4894 year: 2017 end-page: 4900 ident: CR24 article-title: Thermally activated delayed fluorescence and aggregation induced emission with through-space charge transfer publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 580 year: 2012 end-page: 592 ident: CR46 article-title: Multiwfn: a multifunctional wavefunction analyzer publication-title: J. Comput. Chem. – volume: 67 start-page: 791 year: 1963 end-page: 795 ident: CR1 article-title: Elektronenübertragungsreaktionen des angeregten Perylens publication-title: Ber. Bunsenges. Phys. Chem. – volume: 55 start-page: 5344 year: 1971 end-page: 5348 ident: CR3 article-title: Absorption spectra of exciplexes publication-title: J. Chem. Phys. – volume: 8 start-page: 326 year: 2014 end-page: 332 ident: CR14 article-title: Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence publication-title: Nat. Photon. – volume: 112 start-page: 5174 year: 2008 end-page: 5184 ident: CR33 article-title: Blue-green, orange, and white organic light-emitting diodes based on exciplex electroluminescence of an oligoquinoline acceptor and different hole-transport materials publication-title: J. Phys. Chem. C. – volume: 492 start-page: 234 year: 2012 end-page: 238 ident: CR16 article-title: Highly efficient organic light-emitting diodes from delayed fluorescence publication-title: Nature – volume: 51 start-page: 11311 year: 2012 end-page: 11315 ident: CR42 article-title: Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence publication-title: Angew. Chem. Int. Ed. Engl. – volume: 8 start-page: 2393 year: 2017 end-page: 2398 ident: CR38 article-title: Impact of dielectric constant on the singlet–triplet gap in thermally activated delayed fluorescence materials publication-title: J. Phys. Chem. Lett. – volume: 94 start-page: 2319 year: 1994 end-page: 2358 ident: CR34 article-title: Solvatochromic dyes as solvent polarity indicators publication-title: Chem. Rev. – volume: 8 year: 2017 ident: CR10 article-title: Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts publication-title: Nat. Commun. – volume: 54 start-page: 9278 year: 2018 end-page: 9281 ident: CR27 article-title: (Deep) blue through-space conjugated TADF emitters based on [2.2]paracyclophanes publication-title: Chem. Commun. – volume: 110 start-page: 69 year: 2013 end-page: 76 ident: CR39 article-title: Improved thermal stability of bulk heterojunctions based on side-chain functionalized poly(3-alkylthiophene) copolymers and PCBM publication-title: Sol. Energy Mater. Sol. Cells – volume: 121 start-page: 13986 year: 2017 end-page: 13997 ident: CR40 article-title: Concentration quenching behavior of thermally activated delayed fluorescence in a solid film publication-title: J. Phys. Chem. C. – volume: 137 start-page: 11908 year: 2015 end-page: 11911 ident: CR23 article-title: Thermally activated delayed fluorescence materials based on homoconjugation effect of donor–acceptor triptycenes publication-title: J. Am. Chem. Soc. – ident: CR36 – volume: 13 start-page: 678 year: 2019 end-page: 682 ident: CR13 article-title: Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter publication-title: Nat. Photon. – volume: 6 year: 2015 ident: CR15 article-title: Purely organic electroluminescent material realizing 100% conversion from electricity to light publication-title: Nat. Commun. – volume: 286 start-page: 490 year: 1998 end-page: 496 ident: CR32 article-title: Microscopic determination of the interlayer binding energy in graphite publication-title: Chem. Phys. Lett. – volume: 2 start-page: e1501470 year: 2016 ident: CR29 article-title: Long-range coupling of electron–hole pairs in spatially separated organic donor-acceptor layers publication-title: Sci. Adv. – volume: 15 start-page: 1120 year: 2016 end-page: 1127 ident: CR43 article-title: Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach publication-title: Nat. Mater. – ident: CR28 – volume: 3 start-page: 18020 year: 2018 ident: CR11 article-title: All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes publication-title: Nat. Rev. Mater. – volume: 6 start-page: 253 year: 2012 end-page: 258 ident: CR4 article-title: Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion publication-title: Nat. Photon. – volume: 106 start-page: 422 year: 1984 end-page: 424 ident: CR20 article-title: Intramolecular exciplex emission from aqueous β-cyclodextrin solutions publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 9480 year: 2018 end-page: 9484 ident: CR25 article-title: Intermolecular charge-transfer transition emitter showing thermally activated delayed fluorescence for efficient non-doped OLEDs publication-title: Angew. Chem. Int. Ed. Engl. – volume: 139 start-page: 17739 year: 2017 end-page: 17742 ident: CR26 article-title: Blue thermally activated delayed fluorescence polymers with nonconjugated backbone and through-space charge transfer effect publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 6685 year: 2019 end-page: 6691 ident: CR35 article-title: Theoretical investigations of the realization of sky-blue to blue TADF materials via CH/N and H/CN substitution at the diphenylsulphone acceptor publication-title: J. Mater. Chem. C. – volume: 58 start-page: 3848 year: 2019 end-page: 3853 ident: CR31 article-title: C1-linked spirobifluorene dimers: pure hydrocarbon hosts for high-performance blue phosphorescent oleds publication-title: Angew. Chem. Int. Ed. Engl. – volume: 8 start-page: 326 year: 2014 ident: 710_CR14 publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.12 – volume: 286 start-page: 490 year: 1998 ident: 710_CR32 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(97)01466-8 – ident: 710_CR28 – volume: 14 start-page: 330 year: 2015 ident: 710_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat4154 – volume: 11 start-page: 63 year: 2017 ident: 710_CR18 publication-title: Nat. Photon. doi: 10.1038/nphoton.2016.230 – volume: 6 year: 2015 ident: 710_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms9476 – volume: 55 start-page: 5344 year: 1971 ident: 710_CR3 publication-title: J. Chem. Phys. doi: 10.1063/1.1675677 – ident: 710_CR36 doi: 10.1002/9783527691722 – volume: 57 start-page: 9480 year: 2018 ident: 710_CR25 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201804483 – volume: 3 start-page: 18020 year: 2018 ident: 710_CR11 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.20 – volume: 94 start-page: 2319 year: 1994 ident: 710_CR34 publication-title: Chem. Rev. doi: 10.1021/cr00032a005 – volume: 8 start-page: 2393 year: 2017 ident: 710_CR38 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00688 – volume: 56 start-page: 16536 year: 2017 ident: 710_CR22 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201708876 – volume: 11 start-page: 3851 year: 2015 ident: 710_CR37 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00431 – volume: 54 start-page: 9278 year: 2018 ident: 710_CR27 publication-title: Chem. Commun. doi: 10.1039/C8CC04594A – volume: 28 start-page: 6976 year: 2016 ident: 710_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201601675 – volume: 13 start-page: 678 year: 2019 ident: 710_CR13 publication-title: Nat. Photon. doi: 10.1038/s41566-019-0476-5 – volume: 110 start-page: 69 year: 2013 ident: 710_CR39 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2012.12.007 – volume: 48 start-page: 9580 year: 2012 ident: 710_CR8 publication-title: Chem. Commun. doi: 10.1039/c2cc31468a – volume: 58 start-page: 3848 year: 2019 ident: 710_CR31 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201813604 – volume: 32 start-page: 1456 year: 2011 ident: 710_CR44 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 29 start-page: 1605444 year: 2017 ident: 710_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201605444 – volume: 137 start-page: 11908 year: 2015 ident: 710_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07932 – volume: 139 start-page: 4894 year: 2017 ident: 710_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00873 – volume: 139 start-page: 17739 year: 2017 ident: 710_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10257 – volume: 492 start-page: 234 year: 2012 ident: 710_CR16 publication-title: Nature doi: 10.1038/nature11687 – volume: 47 start-page: 1183 year: 1967 ident: 710_CR2 publication-title: J. Chem. Phys. doi: 10.1063/1.1712006 – volume: 6 start-page: 253 year: 2012 ident: 710_CR4 publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.31 – volume: 8 year: 2017 ident: 710_CR10 publication-title: Nat. Commun. – volume: 644 start-page: 62 year: 2016 ident: 710_CR30 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2015.11.042 – volume: 67 start-page: 791 year: 1963 ident: 710_CR1 publication-title: Ber. Bunsenges. Phys. Chem. doi: 10.1002/bbpc.19630670810 – volume: 106 start-page: 422 year: 1984 ident: 710_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00314a028 – volume: 112 start-page: 5174 year: 2008 ident: 710_CR33 publication-title: J. Phys. Chem. C. doi: 10.1021/jp076480z – volume: 49 start-page: 10385 year: 2013 ident: 710_CR41 publication-title: Chem. Commun. doi: 10.1039/C3CC44179B – volume: 9 year: 2018 ident: 710_CR5 publication-title: Nat. Commun. – volume: 121 start-page: 13986 year: 2017 ident: 710_CR40 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b02369 – volume: 51 start-page: 11311 year: 2012 ident: 710_CR42 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201206289 – volume: 56 start-page: 1571 year: 2017 ident: 710_CR7 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201609459 – volume: 2 start-page: e1501470 year: 2016 ident: 710_CR29 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501470 – volume: 15 start-page: 1120 year: 2016 ident: 710_CR43 publication-title: Nat. Mater. doi: 10.1038/nmat4717 – volume: 95 start-page: 4388 year: 1973 ident: 710_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00794a040 – volume: 33 start-page: 580 year: 2012 ident: 710_CR46 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 13 start-page: 540 year: 2019 ident: 710_CR12 publication-title: Nat. Photon. doi: 10.1038/s41566-019-0415-5 – volume: 55 start-page: 6864 year: 2016 ident: 710_CR17 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201601136 – volume: 7 start-page: 6685 year: 2019 ident: 710_CR35 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC01449G – volume: 10 start-page: 1035 year: 2014 ident: 710_CR45 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct4009975 |
SSID | ssj0021556 |
Score | 2.7171028 |
Snippet | Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT... |
SourceID | swepub proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1332 |
SubjectTerms | 639/624/1020/1091 639/638/298/917 Biomaterials Charge transfer Chemistry and Materials Science Condensed Matter Physics Devices Efficiency Electron transfer Emitters Emitters (electron) Excitons Light emission Luminous intensity Materials Science Nanotechnology Optical and Electronic Materials Optoelectronics Organic light emitting diodes Organic semiconductors Photoluminescence Quantum efficiency Radiative recombination |
Title | Highly efficient luminescence from space-confined charge-transfer emitters |
URI | https://link.springer.com/article/10.1038/s41563-020-0710-z https://www.ncbi.nlm.nih.gov/pubmed/32541938 https://www.proquest.com/docview/2474988030 https://www.proquest.com/docview/2414005819 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-210911 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4ED4k1KqYKEOICsJrZjJye0C12qSqwQomhvluPYaKVlt93Hgf56Zpxkt4C0l-Rgx7FmxvY3HvsbgDdaFXUVqooh1nZMSsGZLVXNNGLbXFqlm5jO58tYnV_Ki0kx6TbcVt2xyn5OjBN1s3C0R37KpZYVGpvIPlxdM8oaRdHVLoXGXTgk6jKyaj3ZOVy4Vra3i7TCvnDeRzVFeboix4UimBld4cnYzd_r0n9g81ag9B9S0bgQjR7Cgw5BpoNW5Y_gjp8_hvu3eAWfwAWd3pj9Tn3kh8BlJcUpiM63OxrHKV0pSXEmcZ6hNxywoEkjY5Jn64hj_TL1v6aRePMpXI7Ovn88Z13SBOZknq1ZE7KmqBVdcS3K6B9wzYPGoWprH2qdh0pYa3WjXG4Ry6GqBK9loYVsSuWUeAYH88Xcv4C0UrkPPCuCUFaW0leiEBYBgRMIeupQJZD1IjOuYxSnxBYzEyPbojStlA1K2ZCUzU0C77afXLV0GvsqH_d6MN3IWpmdHSTweluMY4ICHXbuFxuqg25jViDYSeB5q7_t3wR6xAhaywTe9wrdNb6nK29bnW_bIVruT9MfA7NY_jSz6cZwoljNj_b3-SXc42Rz8TzMMRyslxv_ClHNuj6JpovPcvT5BA4Ho-FwjO_h2fjrtz8tIPRY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLwDLQQJOICsJrZjJ4eqqijL9nlqUW-uk9hopWW37EOo_VH8RmacTVpA2lvPyXqTmfHMNxnPNwDvtMrKwhcFQ6xdMSkFZzZXJdOIbVNpla7DOJ-jY9U_lftn2dkK_G57YehYZesTg6OuxxV9I9_kUssCjU0k2xc_GU2NoupqO0KjMYsDd_kLU7bp1t4u6vc9570vJ5_7bDFVgFUyTWas9kmdlYp6QLM8AGiuuddoy7Z0vtSpL4S1VteqSi2CHXwXwUuZaSHrXFVK4Lp34K4UGMmpM733tUvwMDY33Uxa4btz3lZRRb45pUSJKqYJtQwl7OrvOPgfuL1RmP2HxDQEvt4aPFwg1ninMbFHsOJGj-HBDR7DJ7BPp0WGl7ELfBQYxmJ0eXSeviK_EVMLS4yeq3IMs2-PF-o4MDQ5Ngu42U1i92MQiD6fwumtiPMZrI7GI_cC4kKlzvMk80JZmUtXiExYBCCVQJBV-iKCpBWZqRYM5jRIY2hCJV3kppGyQSkbkrK5iuBj95OLhr5j2c3rrR7MYidPzbXdRfC2u4x7kAorduTGc7oH09QkQ3AVwfNGf92_CczAESTnEXxqFXq9-JJH-dDovFuHaMB3B992zHjy3QwHc8OJ0jV9ufyZ38C9_snRoTncOz54Bfc52V84i7MOq7PJ3G0gopqVr4MZx3B-2_vmD_AvK9U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKBAk4ACyNrEdOzkgVNiu-oBVhSjqzXUSG6207JZ9CLU_jV_HTF4tIO2t5yTeZGY8_mZn5huAl1oleeazjCHWLpiUgjObqpxpxLaxtEqX1TifzyO1eyT3j5PjDfjd9sJQWWXrEytHXc4K-o-8z6WWGRqbiPq-KYs4HAzfn_5kNEGKMq3tOI3aRA7c2S8M3xbv9gao61ecD3e-ftxlzYQBVsg4WrLSR2WSK-oHTdIKTHPNvUa7trnzuY59Jqy1ulRFbBH44HcJnstEC1mmqlAC170Gm5qioh5sftgZHX7pwj08qeveJq1QEpy3OVWR9hcUNlH-NKIGooid_30q_gd1L6Vp_6E0rY7B4W241eDXcLs2uDuw4aZ34eYlVsN7sE-1I5Oz0FXsFHiohegAqbq-IC8SUkNLiH6scAxjcY8XyrDia3JsWaFoNw_dj3FF-3kfjq5EoA-gN51N3SMIMxU7z6PEC2VlKl0mEmERjhQCIVfuswCiVmSmaPjMaazGxFR5dZGaWsoGpWxIyuY8gDfdI6c1mce6m7daPZhmXy_MhRUG8KK7jDuS0ix26mYrugeD1ihBqBXAw1p_3a8JjMcRMqcBvG0VerH4mld5Xeu8W4dIwQfjb9tmNv9uJuOV4UTwGj9e_87P4TruGfNpb3TwBG5wMr-qMGcLesv5yj1FeLXMnzV2HMLJVW-dPzfzMWc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+luminescence+from+space-confined+charge-transfer+emitters&rft.jtitle=Nature+materials&rft.au=Tang%2C+Xun&rft.au=Cui%2C+Lin-Song&rft.au=Li%2C+Hong-Cheng&rft.au=Gillett%2C+Alexander+J&rft.date=2020-12-01&rft.issn=1476-1122&rft.volume=19&rft.issue=12&rft.spage=1332&rft_id=info:doi/10.1038%2Fs41563-020-0710-z&rft_id=info%3Apmid%2F32541938&rft.externalDocID=32541938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |