Machine learning approach for predicting key design parameters in UAV conceptual design
The initial concept of an Unmanned Aerial Vehicle (UAV) design is complicated and unique due to performance parameters like payload capacity, engine power, endurance, service altitude, etc. required to perform a wide range of missions. Empirical correlations between key design parameters can approxi...
Saved in:
Published in | Ain Shams Engineering Journal Vol. 15; no. 9; p. 102932 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The initial concept of an Unmanned Aerial Vehicle (UAV) design is complicated and unique due to performance parameters like payload capacity, engine power, endurance, service altitude, etc. required to perform a wide range of missions. Empirical correlations between key design parameters can approximate initial characteristics but to explore the entire design space while considering sensitivities of interacting parameters, comprehensive, time consuming and computationally expensive trade-off studies are required to converge the early concept appraisal. The current paper explores the potential of Machine Learning (ML) techniques for rapid and accurate estimation of UAV design parameters in the conceptual phase by extracting knowledge from UAVs already in service. An ML framework based on five different regression models is formulated to estimate the parameters significant to mission profile using database of fixed-wing UAVs key design attributes. The predictive performance of the presented ML approach shows excellent agreement with the actual values during validation and comparatively, turns out to be more accurate than the existing methodology based on empirical correlations. Overall, ML techniques have a great potential for being applied as a surrogate model for evaluating novel UAV design concepts using less computational time and resources. |
---|---|
AbstractList | The initial concept of an Unmanned Aerial Vehicle (UAV) design is complicated and unique due to performance parameters like payload capacity, engine power, endurance, service altitude, etc. required to perform a wide range of missions. Empirical correlations between key design parameters can approximate initial characteristics but to explore the entire design space while considering sensitivities of interacting parameters, comprehensive, time consuming and computationally expensive trade-off studies are required to converge the early concept appraisal. The current paper explores the potential of Machine Learning (ML) techniques for rapid and accurate estimation of UAV design parameters in the conceptual phase by extracting knowledge from UAVs already in service. An ML framework based on five different regression models is formulated to estimate the parameters significant to mission profile using database of fixed-wing UAVs key design attributes. The predictive performance of the presented ML approach shows excellent agreement with the actual values during validation and comparatively, turns out to be more accurate than the existing methodology based on empirical correlations. Overall, ML techniques have a great potential for being applied as a surrogate model for evaluating novel UAV design concepts using less computational time and resources. |
ArticleNumber | 102932 |
Author | Baluch, Haroon Awais Saeed, Hasan Aftab Bajwa, Omer Iqbal |
Author_xml | – sequence: 1 givenname: Omer Iqbal surname: Bajwa fullname: Bajwa, Omer Iqbal email: oiqbal.me17ceme@student.nust.edu.pk – sequence: 2 givenname: Haroon Awais surname: Baluch fullname: Baluch, Haroon Awais email: hbaluch@gdyn.com.pk – sequence: 3 givenname: Hasan Aftab surname: Saeed fullname: Saeed, Hasan Aftab email: hasan.saeed@ceme.nust.edu.pk |
BookMark | eNp9kLtOAzEQRV2ARID8AJV_IMHrfdkSDUI8IoFoeJTW7OxscFjslW2Q-HscAg0F1VhHc6_G55DtOe-IsZNCLAtRNKebJUTaLKWQVQZSl3KPzaTQYlFVrT5g8xhtJ_JbqlrVM_Z8B_hiHfGRIDjr1hymKfgM-eADnwL1FtOWv9In7ynateMTBHijRCFy6_jj-RNH75Cm9A7jz84x2x9gjDT_mUfs8ery4eJmcXt_vbo4v11gVYi06EnpuqkLgQ21meheomyUqltolZZl3RdlR1IJGLoKpWxIaCpagXrIW1SWR2y16-09bMwU7BuET-PBmm_gw9pASBZHMvUwSNXptm6EqFoS0DZYYSVLiYSD7nKX2nVh8DEGGgzaBMl6lwLY0RTCbB2bjdk6NlvHZuc4R-Wf6O8p_4bOdiHKgj4sBRPRUhbZ20CY8g_sf_EvBKiY-w |
CitedBy_id | crossref_primary_10_3390_drones8100530 |
Cites_doi | 10.2514/2.4661 10.3390/aerospace5010005 10.3390/w10091158 10.2514/6.2018-1905 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V 10.1108/AEAT-01-2017-0031 10.1016/j.cja.2015.03.010 10.2514/1.C034199 10.3390/aerospace8070171 10.2514/6.2005-7079 10.1016/S0263-8223(02)00053-3 10.3390/make1020033 10.1016/B978-008044046-0/50580-7 10.3390/en13215807 10.1109/AERO.2014.6836448 10.1155/2019/9375437 10.1088/1757-899X/376/1/012056 10.1016/j.ast.2019.02.003 10.3390/aerospace10040382 10.1061/(ASCE)0733-9399(1991)117:1(132) 10.1023/B:STCO.0000035301.49549.88 10.1016/j.cja.2015.12.022 10.1016/j.ast.2015.12.033 10.1177/1475921716651809 |
ContentType | Journal Article |
Copyright | 2024 THE AUTHORS |
Copyright_xml | – notice: 2024 THE AUTHORS |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.asej.2024.102932 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | oai_doaj_org_article_5ff28b97560047e0a76c4c4232cecf9b 10_1016_j_asej_2024_102932 S2090447924003071 |
GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS M~E AAYXX CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c410t-de8956510c6e74109d2c268857a789235d13be280afb4c226e09e170c9f688e33 |
IEDL.DBID | DOA |
ISSN | 2090-4479 |
IngestDate | Wed Aug 27 01:24:10 EDT 2025 Tue Jul 01 02:27:08 EDT 2025 Thu Apr 24 23:09:41 EDT 2025 Sat Sep 21 16:01:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | UAV design parameters Regression techniques Fixed-wing UAV Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-de8956510c6e74109d2c268857a789235d13be280afb4c226e09e170c9f688e33 |
OpenAccessLink | https://doaj.org/article/5ff28b97560047e0a76c4c4232cecf9b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5ff28b97560047e0a76c4c4232cecf9b crossref_citationtrail_10_1016_j_asej_2024_102932 crossref_primary_10_1016_j_asej_2024_102932 elsevier_sciencedirect_doi_10_1016_j_asej_2024_102932 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Ain Shams Engineering Journal |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | E. Cross, P. Startor, K. Worden, P. Southern, Prediction of Landing Gear Loads Using Machine Learning Techniques, in: Proceedings of the 6th European Workshop on Structural Health Monitoring (EWSHM), Dresden, July 2012. R. Dupuis, J.C. Jouhaud, P. Sagaut, Aerodynamic Data Predictions for Transonic Flow via a Machine-Learning-based Surrogate Model, in: Proceedings of 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Florida, January 2018. Mosbah, Botez, Dao (b0140) 2016; 29 Streetly (b0250) 2015 Pedregosa, Varoquaux, Gramtort, Michel, Thirion, Grisel (b0240) 2011; 12 Géron (b0215) 2019 Variyar (b0195) 2014 Alulema, Valencia, Cando, Hidalgo, Rodriguez (b0075) 2021; 8 Raymer (b0015) 2018 N. Varsha, V. Somashekar, Conceptual Design of High Performance Unmanned Aerial Vehicle, in: Proceedings of the International Conference on Advances in Manufacturing, Materials and Energy Engineering (Icon MMEE 2018), Karnataka, India, March 2018. Panagiotou, Kaparos, Salpingidou, Yakinthos (b0045) 2016; 50 Austin (b0005) 2010 C. Ruijter, R. Spallino, L. Warnet, Optimization of composite panels using neural networks and genetic algorithms, in: Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, June 2003. Gulikers (b0175) 2018 . Allen, Dibley (b0110) 2003; 112 S. Aghabozorgi, Module 2: Simple Linear Regression, in Machine Learning with Python: A Practical Introduction, edX, Accessed on 29 July 2021. Andrés-Pérez (b0125) 2020; 13 Mitchell (b0085) 1997 A. Sóbester, A. J. Keane, J. Scanlan, N. W. Bressloff, Conceptual Design of UAV Airframes Using a Generic Geometry Service, in: Proceedings of the Infotech@Aerospace, Arlington, Virginia, USA, September 2005. Bisagni, Lanzi (b0180) 2002; 58 Streetly (b0060) 2014 Kotsiantis (b0100) 2007; 31 C. A. Wargo, G. C. Church, J. Glaneueski, M. Strout, Unmanned aircraft systems (UAS) research and future analysis, in: Proceedings of 2014 IEEE Aerospace Conference, Montana, March 2014, pp. 1-16. Ambur, Schwartz, Mavris (b0080) 2016 Verstraete, Palmer, Hornung (b0055) 2018; 55 Tsakiri, Marsellos, Kapetanakis (b0205) 2018; 10 S. Aghabozorgi, Module 2: Evaluation Metrics in Regression, in Machine Learning with Python: A Practical Introduction, edX, Accessed on 29 July 2021. Mitridis, Kapsalis, Terzis, Panagiotou (b0065) 2023; 10 Mueller, Guido (b0090) 2016 Yan, Zhu, Kuang, Wang (b0120) 2019; 86 Panagiotou, Giannakis, Savaidis, Yakinthos (b0050) 2018; 90 J. Santarcangelo, Module 3: Exploratory Data Anlysis, in Analysing Data with Python, edX, Accessed on 7 July 2021. Gundlach (b0030) 2012 Larose, Larose (b0235) 2014 Shalev-Shwartz, Ben-David (b0230) 2014 C. Paulete-Periáñez, E. Andrés-Pérez, C. Lozano, Surrogate modelling for aerodynamic coefficients prediction in aeronautical configurations, in: Proceedings f the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, July 2019. Qing, Weiqi, Kaifeng (b0130) 2015; 28 Holmes, Sartor, Reed, Southern, Worden, Cross (b0160) 2016; 15 Duan, Zheng, Liu (b0145) 2019; 2019 Gómez-Rodríguez, Sanchez-Carmona, García-Hernández, Cuerno-Rejado (b0070) 2018; 5 Y. Azabi, Al Savvaris, T. Kipouros, Artificial Intelligence to Enhance Aerodynamic Shape Optimization of the Aegis UAV, Machine Learning & Knowledge Extraction 1 (2) (2019) 552–574. Smola, Schӧlkopf (b0220) 2004; 14 Burges, Schölkopf, Smola (b0225) 1998 Bishop (b0095) 2006 Ghaboussi, Garrett, Wu (b0190) 1991; 117 Scott, Pado (b0150) 2000; 23 Ghaboussi, Pecknold, Zhang, Haj-Ali (b0170) 1998; 42 Javadi, Tan, Zhang (b0165) 2003; 10 Zia Ul-Saufie, Yahya, Ramli, Hamid (b0200) 2011; 1 Taylor (b0020) 1976 Altman (b0035) 1998 Tsakiri (10.1016/j.asej.2024.102932_b0205) 2018; 10 Verstraete (10.1016/j.asej.2024.102932_b0055) 2018; 55 10.1016/j.asej.2024.102932_b0155 10.1016/j.asej.2024.102932_b0115 Ambur (10.1016/j.asej.2024.102932_b0080) 2016 Javadi (10.1016/j.asej.2024.102932_b0165) 2003; 10 10.1016/j.asej.2024.102932_b0040 Panagiotou (10.1016/j.asej.2024.102932_b0050) 2018; 90 Pedregosa (10.1016/j.asej.2024.102932_b0240) 2011; 12 Gulikers (10.1016/j.asej.2024.102932_b0175) 2018 Ghaboussi (10.1016/j.asej.2024.102932_b0170) 1998; 42 Shalev-Shwartz (10.1016/j.asej.2024.102932_b0230) 2014 Kotsiantis (10.1016/j.asej.2024.102932_b0100) 2007; 31 10.1016/j.asej.2024.102932_b0245 Smola (10.1016/j.asej.2024.102932_b0220) 2004; 14 10.1016/j.asej.2024.102932_b0010 Panagiotou (10.1016/j.asej.2024.102932_b0045) 2016; 50 Altman (10.1016/j.asej.2024.102932_b0035) 1998 Yan (10.1016/j.asej.2024.102932_b0120) 2019; 86 Bisagni (10.1016/j.asej.2024.102932_b0180) 2002; 58 Holmes (10.1016/j.asej.2024.102932_b0160) 2016; 15 Austin (10.1016/j.asej.2024.102932_b0005) 2010 Streetly (10.1016/j.asej.2024.102932_b0250) 2015 Scott (10.1016/j.asej.2024.102932_b0150) 2000; 23 Allen (10.1016/j.asej.2024.102932_b0110) 2003; 112 Variyar (10.1016/j.asej.2024.102932_b0195) 2014 10.1016/j.asej.2024.102932_b0210 10.1016/j.asej.2024.102932_b0255 10.1016/j.asej.2024.102932_b0135 Ghaboussi (10.1016/j.asej.2024.102932_b0190) 1991; 117 Mueller (10.1016/j.asej.2024.102932_b0090) 2016 Streetly (10.1016/j.asej.2024.102932_b0060) 2014 Gundlach (10.1016/j.asej.2024.102932_b0030) 2012 Mitridis (10.1016/j.asej.2024.102932_b0065) 2023; 10 Duan (10.1016/j.asej.2024.102932_b0145) 2019; 2019 10.1016/j.asej.2024.102932_b0185 Alulema (10.1016/j.asej.2024.102932_b0075) 2021; 8 Bishop (10.1016/j.asej.2024.102932_b0095) 2006 Zia Ul-Saufie (10.1016/j.asej.2024.102932_b0200) 2011; 1 Gómez-Rodríguez (10.1016/j.asej.2024.102932_b0070) 2018; 5 Géron (10.1016/j.asej.2024.102932_b0215) 2019 Andrés-Pérez (10.1016/j.asej.2024.102932_b0125) 2020; 13 Burges (10.1016/j.asej.2024.102932_b0225) 1998 Taylor (10.1016/j.asej.2024.102932_b0020) 1976 10.1016/j.asej.2024.102932_b0025 Mitchell (10.1016/j.asej.2024.102932_b0085) 1997 10.1016/j.asej.2024.102932_b0105 Mosbah (10.1016/j.asej.2024.102932_b0140) 2016; 29 Qing (10.1016/j.asej.2024.102932_b0130) 2015; 28 Raymer (10.1016/j.asej.2024.102932_b0015) 2018 Larose (10.1016/j.asej.2024.102932_b0235) 2014 |
References_xml | – volume: 2019 start-page: 1 year: 2019 end-page: 8 ident: b0145 article-title: A Novel Classification Method for Flutter Signals Based on the CNN and STFT publication-title: International Journal of Aerospace Engineering – volume: 5 year: 2018 ident: b0070 article-title: Preliminary correlations for remotely piloted aircraft systems sizing publication-title: Aerospace – volume: 90 start-page: 1077 year: 2018 end-page: 1087 ident: b0050 article-title: Aerodynamic and structural design for the development of MALE UAV publication-title: Aircr Eng Aerosp Technol – volume: 112 start-page: 512 year: 2003 end-page: 520 ident: b0110 article-title: Modeling aircraft wing loads from flight data using neural networks publication-title: SAE Int J Aerosp – volume: 28 start-page: 659 year: 2015 end-page: 668 ident: b0130 article-title: Unsteady aerodynamic modeling at high angles of attack using support vector machines publication-title: Chin J Aeronaut – year: 2014 ident: b0230 article-title: Understanding Machine Learning From Theory to Algorithms – volume: 23 year: 2000 ident: b0150 article-title: Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks publication-title: J Guid Control Dynam – year: 2014 ident: b0060 article-title: IHS Jane's All the World's Aircraft: Unmanned 2014–2015 – volume: 86 start-page: 826 year: 2019 end-page: 835 ident: b0120 article-title: Aerodynamic shape optimization using a novel optimizer based on machine learning techniques publication-title: Aerosp Sci Technol – volume: 55 start-page: 715 year: 2018 end-page: 726 ident: b0055 article-title: Preliminary sizing correlations for fixed-wing unmanned aerial vehicle characteristics publication-title: J Aircr – volume: 15 start-page: 568 year: 2016 end-page: 582 ident: b0160 article-title: “Prediction of landing gear loads using machine learning techniques publication-title: Struct Health Monit – reference: E. Cross, P. Startor, K. Worden, P. Southern, Prediction of Landing Gear Loads Using Machine Learning Techniques, in: Proceedings of the 6th European Workshop on Structural Health Monitoring (EWSHM), Dresden, July 2012. – volume: 10 year: 2023 ident: b0065 article-title: An evaluation of fixed-wing unmanned aerial vehicle trends and correlations with respect to NATO classification, region, EIS date and operational specifications publication-title: Aerospace – volume: 13 start-page: 5807 year: 2020 ident: b0125 article-title: Data mining and machine learning techniques for aerodynamic databases: introduction, methodology and potential benefits publication-title: Energies – year: 1998 ident: b0035 article-title: Design Methodology for Low Speed High Altitude Long Endurance Unmanned Aerial Vehicles publication-title: In: Proceedings of the 21st ICAS Congress – year: 2014 ident: b0235 article-title: Discovering Knowledge in Data An Introduction to Data Mining – volume: 50 start-page: 27 year: 2016 end-page: 38 ident: b0045 article-title: Aerodynamic design of a MALE UAV publication-title: Aerosp Sci Technol – volume: 8 year: 2021 ident: b0075 article-title: Propulsion sizing correlations for electrical and fuel powered unmanned aerial vehicles publication-title: Aerospace – reference: R. Dupuis, J.C. Jouhaud, P. Sagaut, Aerodynamic Data Predictions for Transonic Flow via a Machine-Learning-based Surrogate Model, in: Proceedings of 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Florida, January 2018. – reference: S. Aghabozorgi, Module 2: Evaluation Metrics in Regression, in Machine Learning with Python: A Practical Introduction, edX, Accessed on 29 July 2021. – year: 1998 ident: b0225 article-title: Advances in Kernel Methods Support Vector Learning – reference: N. Varsha, V. Somashekar, Conceptual Design of High Performance Unmanned Aerial Vehicle, in: Proceedings of the International Conference on Advances in Manufacturing, Materials and Energy Engineering (Icon MMEE 2018), Karnataka, India, March 2018. – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: b0220 article-title: A tutorial on support vector regression publication-title: Stat Comput – year: 2016 ident: b0090 article-title: Introduction to Machine Learning with Python – reference: J. Santarcangelo, Module 3: Exploratory Data Anlysis, in Analysing Data with Python, edX, Accessed on 7 July 2021. – year: 2006 ident: b0095 article-title: Pattern Recognition and Machine Learning – reference: C. Ruijter, R. Spallino, L. Warnet, Optimization of composite panels using neural networks and genetic algorithms, in: Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, June 2003. – reference: C. Paulete-Periáñez, E. Andrés-Pérez, C. Lozano, Surrogate modelling for aerodynamic coefficients prediction in aeronautical configurations, in: Proceedings f the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, July 2019. – year: 2016 ident: b0080 article-title: Machine Learning Technologies and Their Applications for Science and Engineering Domains Workshop – year: 1997 ident: b0085 article-title: Machine Learning – volume: 10 start-page: 523 year: 2003 end-page: 530 ident: b0165 article-title: Neural network for constitutive modelling in Finite element analysis publication-title: Comput Assist Mech Eng Sci (CAMES) – year: 2015 ident: b0250 article-title: IHS Jane's All the World's Aircraft: Unmanned 2015–2016 – volume: 58 start-page: 237 year: 2002 end-page: 247 ident: b0180 article-title: “Post-buckling optimisation of composite stiffened panels using neural network publication-title: Compos Struct – reference: C. A. Wargo, G. C. Church, J. Glaneueski, M. Strout, Unmanned aircraft systems (UAS) research and future analysis, in: Proceedings of 2014 IEEE Aerospace Conference, Montana, March 2014, pp. 1-16. – year: 2019 ident: b0215 article-title: Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems – year: 2018 ident: b0175 article-title: An Integrated Machine Learning and Finite Element Analysis Framework, applied to Composite Substructures including Damage, Master of Science Thesis – year: 2012 ident: b0030 article-title: Unmanned Aircraft Systems: A Comprehensive Approach – reference: Y. Azabi, Al Savvaris, T. Kipouros, Artificial Intelligence to Enhance Aerodynamic Shape Optimization of the Aegis UAV, Machine Learning & Knowledge Extraction 1 (2) (2019) 552–574. – volume: 31 start-page: 249 year: 2007 end-page: 268 ident: b0100 article-title: Supervised Machine Learning: A Review of Classification Techniques publication-title: Informatica – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0240 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – year: 2018 ident: b0015 article-title: Arcraft Design: A Conceptual Approach – reference: . – year: 1976 ident: b0020 article-title: Jane's All the Worl's Aircraft – start-page: 1 year: 2010 end-page: 15 ident: b0005 article-title: Introduction to Unmanned Aircraft Systems (UAS) publication-title: Unmanned Aircraft Systems: UAVS Design, Development and Deployment – year: 2014 ident: b0195 article-title: Application of Machine Learning to Aircraft Conceptual Design – volume: 117 start-page: 132 year: 1991 end-page: 153 ident: b0190 article-title: Knowledge based modeling of material behavior with neural networks publication-title: J Eng Mech – reference: A. Sóbester, A. J. Keane, J. Scanlan, N. W. Bressloff, Conceptual Design of UAV Airframes Using a Generic Geometry Service, in: Proceedings of the Infotech@Aerospace, Arlington, Virginia, USA, September 2005. – volume: 10 start-page: 1158 year: 2018 ident: b0205 article-title: Artificial neural network and multiple linear regression for flood prediction in Mohawk River, New York publication-title: Water – reference: S. Aghabozorgi, Module 2: Simple Linear Regression, in Machine Learning with Python: A Practical Introduction, edX, Accessed on 29 July 2021. – volume: 42 start-page: 105 year: 1998 end-page: 126 ident: b0170 article-title: Autoprogressive training of neural network constitutive models publication-title: Int J Numer Meth Eng – volume: 1 year: 2011 ident: b0200 article-title: Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters publication-title: Int J Appl Sci Technol – volume: 29 start-page: 41 year: 2016 end-page: 52 ident: b0140 article-title: A hybrid original approach for prediction of the aerodynamic coefficients of an ATR-42 scaled wing model publication-title: Chin J Aeronaut – year: 2016 ident: 10.1016/j.asej.2024.102932_b0080 – volume: 23 issue: 6 year: 2000 ident: 10.1016/j.asej.2024.102932_b0150 article-title: Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks publication-title: J Guid Control Dynam doi: 10.2514/2.4661 – year: 2012 ident: 10.1016/j.asej.2024.102932_b0030 – volume: 5 issue: 1 year: 2018 ident: 10.1016/j.asej.2024.102932_b0070 article-title: Preliminary correlations for remotely piloted aircraft systems sizing publication-title: Aerospace doi: 10.3390/aerospace5010005 – year: 1997 ident: 10.1016/j.asej.2024.102932_b0085 – volume: 10 start-page: 1158 issue: 9 year: 2018 ident: 10.1016/j.asej.2024.102932_b0205 article-title: Artificial neural network and multiple linear regression for flood prediction in Mohawk River, New York publication-title: Water doi: 10.3390/w10091158 – year: 2006 ident: 10.1016/j.asej.2024.102932_b0095 – ident: 10.1016/j.asej.2024.102932_b0105 doi: 10.2514/6.2018-1905 – ident: 10.1016/j.asej.2024.102932_b0245 – ident: 10.1016/j.asej.2024.102932_b0155 – volume: 42 start-page: 105 issue: 1 year: 1998 ident: 10.1016/j.asej.2024.102932_b0170 article-title: Autoprogressive training of neural network constitutive models publication-title: Int J Numer Meth Eng doi: 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V – year: 2019 ident: 10.1016/j.asej.2024.102932_b0215 – year: 2014 ident: 10.1016/j.asej.2024.102932_b0230 – volume: 90 start-page: 1077 issue: 7 year: 2018 ident: 10.1016/j.asej.2024.102932_b0050 article-title: Aerodynamic and structural design for the development of MALE UAV publication-title: Aircr Eng Aerosp Technol doi: 10.1108/AEAT-01-2017-0031 – year: 2016 ident: 10.1016/j.asej.2024.102932_b0090 – volume: 28 start-page: 659 issue: 3 year: 2015 ident: 10.1016/j.asej.2024.102932_b0130 article-title: Unsteady aerodynamic modeling at high angles of attack using support vector machines publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2015.03.010 – volume: 55 start-page: 715 issue: 2 year: 2018 ident: 10.1016/j.asej.2024.102932_b0055 article-title: Preliminary sizing correlations for fixed-wing unmanned aerial vehicle characteristics publication-title: J Aircr doi: 10.2514/1.C034199 – ident: 10.1016/j.asej.2024.102932_b0255 – volume: 8 issue: 7 year: 2021 ident: 10.1016/j.asej.2024.102932_b0075 article-title: Propulsion sizing correlations for electrical and fuel powered unmanned aerial vehicles publication-title: Aerospace doi: 10.3390/aerospace8070171 – ident: 10.1016/j.asej.2024.102932_b0025 doi: 10.2514/6.2005-7079 – volume: 58 start-page: 237 issue: 2 year: 2002 ident: 10.1016/j.asej.2024.102932_b0180 article-title: “Post-buckling optimisation of composite stiffened panels using neural network publication-title: Compos Struct doi: 10.1016/S0263-8223(02)00053-3 – year: 2018 ident: 10.1016/j.asej.2024.102932_b0015 – ident: 10.1016/j.asej.2024.102932_b0115 doi: 10.3390/make1020033 – ident: 10.1016/j.asej.2024.102932_b0135 – ident: 10.1016/j.asej.2024.102932_b0185 doi: 10.1016/B978-008044046-0/50580-7 – volume: 1 issue: 4 year: 2011 ident: 10.1016/j.asej.2024.102932_b0200 article-title: Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters publication-title: Int J Appl Sci Technol – volume: 112 start-page: 512 year: 2003 ident: 10.1016/j.asej.2024.102932_b0110 article-title: Modeling aircraft wing loads from flight data using neural networks publication-title: SAE Int J Aerosp – volume: 13 start-page: 5807 issue: 21 year: 2020 ident: 10.1016/j.asej.2024.102932_b0125 article-title: Data mining and machine learning techniques for aerodynamic databases: introduction, methodology and potential benefits publication-title: Energies doi: 10.3390/en13215807 – ident: 10.1016/j.asej.2024.102932_b0010 doi: 10.1109/AERO.2014.6836448 – year: 2018 ident: 10.1016/j.asej.2024.102932_b0175 – year: 2015 ident: 10.1016/j.asej.2024.102932_b0250 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.asej.2024.102932_b0145 article-title: A Novel Classification Method for Flutter Signals Based on the CNN and STFT publication-title: International Journal of Aerospace Engineering doi: 10.1155/2019/9375437 – volume: 10 start-page: 523 issue: 4 year: 2003 ident: 10.1016/j.asej.2024.102932_b0165 article-title: Neural network for constitutive modelling in Finite element analysis publication-title: Comput Assist Mech Eng Sci (CAMES) – year: 1998 ident: 10.1016/j.asej.2024.102932_b0225 – ident: 10.1016/j.asej.2024.102932_b0210 – start-page: 1 year: 2010 ident: 10.1016/j.asej.2024.102932_b0005 article-title: Introduction to Unmanned Aircraft Systems (UAS) – year: 1998 ident: 10.1016/j.asej.2024.102932_b0035 article-title: Design Methodology for Low Speed High Altitude Long Endurance Unmanned Aerial Vehicles – ident: 10.1016/j.asej.2024.102932_b0040 doi: 10.1088/1757-899X/376/1/012056 – volume: 31 start-page: 249 issue: 3 year: 2007 ident: 10.1016/j.asej.2024.102932_b0100 article-title: Supervised Machine Learning: A Review of Classification Techniques publication-title: Informatica – volume: 86 start-page: 826 year: 2019 ident: 10.1016/j.asej.2024.102932_b0120 article-title: Aerodynamic shape optimization using a novel optimizer based on machine learning techniques publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2019.02.003 – volume: 10 issue: 4 year: 2023 ident: 10.1016/j.asej.2024.102932_b0065 article-title: An evaluation of fixed-wing unmanned aerial vehicle trends and correlations with respect to NATO classification, region, EIS date and operational specifications publication-title: Aerospace doi: 10.3390/aerospace10040382 – year: 2014 ident: 10.1016/j.asej.2024.102932_b0060 – year: 2014 ident: 10.1016/j.asej.2024.102932_b0195 – volume: 117 start-page: 132 issue: 1 year: 1991 ident: 10.1016/j.asej.2024.102932_b0190 article-title: Knowledge based modeling of material behavior with neural networks publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(1991)117:1(132) – year: 1976 ident: 10.1016/j.asej.2024.102932_b0020 – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 10.1016/j.asej.2024.102932_b0220 article-title: A tutorial on support vector regression publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 29 start-page: 41 issue: 1 year: 2016 ident: 10.1016/j.asej.2024.102932_b0140 article-title: A hybrid original approach for prediction of the aerodynamic coefficients of an ATR-42 scaled wing model publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2015.12.022 – volume: 50 start-page: 27 year: 2016 ident: 10.1016/j.asej.2024.102932_b0045 article-title: Aerodynamic design of a MALE UAV publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2015.12.033 – volume: 15 start-page: 568 issue: 5 year: 2016 ident: 10.1016/j.asej.2024.102932_b0160 article-title: “Prediction of landing gear loads using machine learning techniques publication-title: Struct Health Monit doi: 10.1177/1475921716651809 – volume: 12 start-page: 2825 issue: 85 year: 2011 ident: 10.1016/j.asej.2024.102932_b0240 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – year: 2014 ident: 10.1016/j.asej.2024.102932_b0235 |
SSID | ssib044728585 |
Score | 2.320815 |
Snippet | The initial concept of an Unmanned Aerial Vehicle (UAV) design is complicated and unique due to performance parameters like payload capacity, engine power,... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 102932 |
SubjectTerms | Fixed-wing UAV Machine learning Regression techniques UAV design parameters |
Title | Machine learning approach for predicting key design parameters in UAV conceptual design |
URI | https://dx.doi.org/10.1016/j.asej.2024.102932 https://doaj.org/article/5ff28b97560047e0a76c4c4232cecf9b |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvAmxTRNk-ao4iLCenLVW8lTXLSK7l797c407VIv68VLoWU6KdNJ5hvyZYaQU2-dLzU3mZSmyITzPrPRq4wbo6QzUlYGd3Qnd_JmKm6fyqdBqy_khKXywMlw52WMvLJaYWQWKjBUIRxuL7rgora4-kLMGyRT4ElCKI4bXthZjmmWwb3uTswkchdEiBkkh1xg6QJd8F9RqS3ePwhOg4Az3iKbHVKkF-kLt8laaHbI46QlPwbadXt4pn1RcArok3584r4LMpkpTE7qW3oGxfLeb0h7-aIvDZ1ePFCXDisuQH-S2SXT8fX91U3W9UbInMjZPPOhgswGJpSTAUAB0547LquqVEZVANpKnxc28IqZaIUDjBWYDrliTkeQCkWxR9ab9ybsEwoJT6UNTHVZWGFNhBVPhhAji0o4k_MRyXvb1K4rHI79K17rniE2q9GeNdqzTvYckbPlOx-pbMZK6Us0-VISS163D8AR6s4R6r8cYUTK_ofVHXpIqABUvawY_OA_Bj8kG6gykc-OyPr8cxGOAa3M7UnrmHCdfF__AMNE51k |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approach+for+predicting+key+design+parameters+in+UAV+conceptual+design&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Omer+Iqbal+Bajwa&rft.au=Haroon+Awais+Baluch&rft.au=Hasan+Aftab+Saeed&rft.date=2024-09-01&rft.pub=Elsevier&rft.issn=2090-4479&rft.volume=15&rft.issue=9&rft.spage=102932&rft_id=info:doi/10.1016%2Fj.asej.2024.102932&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5ff28b97560047e0a76c4c4232cecf9b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon |