Machine learning approach for predicting key design parameters in UAV conceptual design

The initial concept of an Unmanned Aerial Vehicle (UAV) design is complicated and unique due to performance parameters like payload capacity, engine power, endurance, service altitude, etc. required to perform a wide range of missions. Empirical correlations between key design parameters can approxi...

Full description

Saved in:
Bibliographic Details
Published inAin Shams Engineering Journal Vol. 15; no. 9; p. 102932
Main Authors Bajwa, Omer Iqbal, Baluch, Haroon Awais, Saeed, Hasan Aftab
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The initial concept of an Unmanned Aerial Vehicle (UAV) design is complicated and unique due to performance parameters like payload capacity, engine power, endurance, service altitude, etc. required to perform a wide range of missions. Empirical correlations between key design parameters can approximate initial characteristics but to explore the entire design space while considering sensitivities of interacting parameters, comprehensive, time consuming and computationally expensive trade-off studies are required to converge the early concept appraisal. The current paper explores the potential of Machine Learning (ML) techniques for rapid and accurate estimation of UAV design parameters in the conceptual phase by extracting knowledge from UAVs already in service. An ML framework based on five different regression models is formulated to estimate the parameters significant to mission profile using database of fixed-wing UAVs key design attributes. The predictive performance of the presented ML approach shows excellent agreement with the actual values during validation and comparatively, turns out to be more accurate than the existing methodology based on empirical correlations. Overall, ML techniques have a great potential for being applied as a surrogate model for evaluating novel UAV design concepts using less computational time and resources.
AbstractList The initial concept of an Unmanned Aerial Vehicle (UAV) design is complicated and unique due to performance parameters like payload capacity, engine power, endurance, service altitude, etc. required to perform a wide range of missions. Empirical correlations between key design parameters can approximate initial characteristics but to explore the entire design space while considering sensitivities of interacting parameters, comprehensive, time consuming and computationally expensive trade-off studies are required to converge the early concept appraisal. The current paper explores the potential of Machine Learning (ML) techniques for rapid and accurate estimation of UAV design parameters in the conceptual phase by extracting knowledge from UAVs already in service. An ML framework based on five different regression models is formulated to estimate the parameters significant to mission profile using database of fixed-wing UAVs key design attributes. The predictive performance of the presented ML approach shows excellent agreement with the actual values during validation and comparatively, turns out to be more accurate than the existing methodology based on empirical correlations. Overall, ML techniques have a great potential for being applied as a surrogate model for evaluating novel UAV design concepts using less computational time and resources.
ArticleNumber 102932
Author Baluch, Haroon Awais
Saeed, Hasan Aftab
Bajwa, Omer Iqbal
Author_xml – sequence: 1
  givenname: Omer Iqbal
  surname: Bajwa
  fullname: Bajwa, Omer Iqbal
  email: oiqbal.me17ceme@student.nust.edu.pk
– sequence: 2
  givenname: Haroon Awais
  surname: Baluch
  fullname: Baluch, Haroon Awais
  email: hbaluch@gdyn.com.pk
– sequence: 3
  givenname: Hasan Aftab
  surname: Saeed
  fullname: Saeed, Hasan Aftab
  email: hasan.saeed@ceme.nust.edu.pk
BookMark eNp9kLtOAzEQRV2ARID8AJV_IMHrfdkSDUI8IoFoeJTW7OxscFjslW2Q-HscAg0F1VhHc6_G55DtOe-IsZNCLAtRNKebJUTaLKWQVQZSl3KPzaTQYlFVrT5g8xhtJ_JbqlrVM_Z8B_hiHfGRIDjr1hymKfgM-eADnwL1FtOWv9In7ynateMTBHijRCFy6_jj-RNH75Cm9A7jz84x2x9gjDT_mUfs8ery4eJmcXt_vbo4v11gVYi06EnpuqkLgQ21meheomyUqltolZZl3RdlR1IJGLoKpWxIaCpagXrIW1SWR2y16-09bMwU7BuET-PBmm_gw9pASBZHMvUwSNXptm6EqFoS0DZYYSVLiYSD7nKX2nVh8DEGGgzaBMl6lwLY0RTCbB2bjdk6NlvHZuc4R-Wf6O8p_4bOdiHKgj4sBRPRUhbZ20CY8g_sf_EvBKiY-w
CitedBy_id crossref_primary_10_3390_drones8100530
Cites_doi 10.2514/2.4661
10.3390/aerospace5010005
10.3390/w10091158
10.2514/6.2018-1905
10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
10.1108/AEAT-01-2017-0031
10.1016/j.cja.2015.03.010
10.2514/1.C034199
10.3390/aerospace8070171
10.2514/6.2005-7079
10.1016/S0263-8223(02)00053-3
10.3390/make1020033
10.1016/B978-008044046-0/50580-7
10.3390/en13215807
10.1109/AERO.2014.6836448
10.1155/2019/9375437
10.1088/1757-899X/376/1/012056
10.1016/j.ast.2019.02.003
10.3390/aerospace10040382
10.1061/(ASCE)0733-9399(1991)117:1(132)
10.1023/B:STCO.0000035301.49549.88
10.1016/j.cja.2015.12.022
10.1016/j.ast.2015.12.033
10.1177/1475921716651809
ContentType Journal Article
Copyright 2024 THE AUTHORS
Copyright_xml – notice: 2024 THE AUTHORS
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.asej.2024.102932
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID oai_doaj_org_article_5ff28b97560047e0a76c4c4232cecf9b
10_1016_j_asej_2024_102932
S2090447924003071
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
M~E
AAYXX
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c410t-de8956510c6e74109d2c268857a789235d13be280afb4c226e09e170c9f688e33
IEDL.DBID DOA
ISSN 2090-4479
IngestDate Wed Aug 27 01:24:10 EDT 2025
Tue Jul 01 02:27:08 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
Sat Sep 21 16:01:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords UAV design parameters
Regression techniques
Fixed-wing UAV
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-de8956510c6e74109d2c268857a789235d13be280afb4c226e09e170c9f688e33
OpenAccessLink https://doaj.org/article/5ff28b97560047e0a76c4c4232cecf9b
ParticipantIDs doaj_primary_oai_doaj_org_article_5ff28b97560047e0a76c4c4232cecf9b
crossref_citationtrail_10_1016_j_asej_2024_102932
crossref_primary_10_1016_j_asej_2024_102932
elsevier_sciencedirect_doi_10_1016_j_asej_2024_102932
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Ain Shams Engineering Journal
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References E. Cross, P. Startor, K. Worden, P. Southern, Prediction of Landing Gear Loads Using Machine Learning Techniques, in: Proceedings of the 6th European Workshop on Structural Health Monitoring (EWSHM), Dresden, July 2012.
R. Dupuis, J.C. Jouhaud, P. Sagaut, Aerodynamic Data Predictions for Transonic Flow via a Machine-Learning-based Surrogate Model, in: Proceedings of 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Florida, January 2018.
Mosbah, Botez, Dao (b0140) 2016; 29
Streetly (b0250) 2015
Pedregosa, Varoquaux, Gramtort, Michel, Thirion, Grisel (b0240) 2011; 12
Géron (b0215) 2019
Variyar (b0195) 2014
Alulema, Valencia, Cando, Hidalgo, Rodriguez (b0075) 2021; 8
Raymer (b0015) 2018
N. Varsha, V. Somashekar, Conceptual Design of High Performance Unmanned Aerial Vehicle, in: Proceedings of the International Conference on Advances in Manufacturing, Materials and Energy Engineering (Icon MMEE 2018), Karnataka, India, March 2018.
Panagiotou, Kaparos, Salpingidou, Yakinthos (b0045) 2016; 50
Austin (b0005) 2010
C. Ruijter, R. Spallino, L. Warnet, Optimization of composite panels using neural networks and genetic algorithms, in: Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, June 2003.
Gulikers (b0175) 2018
.
Allen, Dibley (b0110) 2003; 112
S. Aghabozorgi, Module 2: Simple Linear Regression, in Machine Learning with Python: A Practical Introduction, edX, Accessed on 29 July 2021.
Andrés-Pérez (b0125) 2020; 13
Mitchell (b0085) 1997
A. Sóbester, A. J. Keane, J. Scanlan, N. W. Bressloff, Conceptual Design of UAV Airframes Using a Generic Geometry Service, in: Proceedings of the Infotech@Aerospace, Arlington, Virginia, USA, September 2005.
Bisagni, Lanzi (b0180) 2002; 58
Streetly (b0060) 2014
Kotsiantis (b0100) 2007; 31
C. A. Wargo, G. C. Church, J. Glaneueski, M. Strout, Unmanned aircraft systems (UAS) research and future analysis, in: Proceedings of 2014 IEEE Aerospace Conference, Montana, March 2014, pp. 1-16.
Ambur, Schwartz, Mavris (b0080) 2016
Verstraete, Palmer, Hornung (b0055) 2018; 55
Tsakiri, Marsellos, Kapetanakis (b0205) 2018; 10
S. Aghabozorgi, Module 2: Evaluation Metrics in Regression, in Machine Learning with Python: A Practical Introduction, edX, Accessed on 29 July 2021.
Mitridis, Kapsalis, Terzis, Panagiotou (b0065) 2023; 10
Mueller, Guido (b0090) 2016
Yan, Zhu, Kuang, Wang (b0120) 2019; 86
Panagiotou, Giannakis, Savaidis, Yakinthos (b0050) 2018; 90
J. Santarcangelo, Module 3: Exploratory Data Anlysis, in Analysing Data with Python, edX, Accessed on 7 July 2021.
Gundlach (b0030) 2012
Larose, Larose (b0235) 2014
Shalev-Shwartz, Ben-David (b0230) 2014
C. Paulete-Periáñez, E. Andrés-Pérez, C. Lozano, Surrogate modelling for aerodynamic coefficients prediction in aeronautical configurations, in: Proceedings f the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, July 2019.
Qing, Weiqi, Kaifeng (b0130) 2015; 28
Holmes, Sartor, Reed, Southern, Worden, Cross (b0160) 2016; 15
Duan, Zheng, Liu (b0145) 2019; 2019
Gómez-Rodríguez, Sanchez-Carmona, García-Hernández, Cuerno-Rejado (b0070) 2018; 5
Y. Azabi, Al Savvaris, T. Kipouros, Artificial Intelligence to Enhance Aerodynamic Shape Optimization of the Aegis UAV, Machine Learning & Knowledge Extraction 1 (2) (2019) 552–574.
Smola, Schӧlkopf (b0220) 2004; 14
Burges, Schölkopf, Smola (b0225) 1998
Bishop (b0095) 2006
Ghaboussi, Garrett, Wu (b0190) 1991; 117
Scott, Pado (b0150) 2000; 23
Ghaboussi, Pecknold, Zhang, Haj-Ali (b0170) 1998; 42
Javadi, Tan, Zhang (b0165) 2003; 10
Zia Ul-Saufie, Yahya, Ramli, Hamid (b0200) 2011; 1
Taylor (b0020) 1976
Altman (b0035) 1998
Tsakiri (10.1016/j.asej.2024.102932_b0205) 2018; 10
Verstraete (10.1016/j.asej.2024.102932_b0055) 2018; 55
10.1016/j.asej.2024.102932_b0155
10.1016/j.asej.2024.102932_b0115
Ambur (10.1016/j.asej.2024.102932_b0080) 2016
Javadi (10.1016/j.asej.2024.102932_b0165) 2003; 10
10.1016/j.asej.2024.102932_b0040
Panagiotou (10.1016/j.asej.2024.102932_b0050) 2018; 90
Pedregosa (10.1016/j.asej.2024.102932_b0240) 2011; 12
Gulikers (10.1016/j.asej.2024.102932_b0175) 2018
Ghaboussi (10.1016/j.asej.2024.102932_b0170) 1998; 42
Shalev-Shwartz (10.1016/j.asej.2024.102932_b0230) 2014
Kotsiantis (10.1016/j.asej.2024.102932_b0100) 2007; 31
10.1016/j.asej.2024.102932_b0245
Smola (10.1016/j.asej.2024.102932_b0220) 2004; 14
10.1016/j.asej.2024.102932_b0010
Panagiotou (10.1016/j.asej.2024.102932_b0045) 2016; 50
Altman (10.1016/j.asej.2024.102932_b0035) 1998
Yan (10.1016/j.asej.2024.102932_b0120) 2019; 86
Bisagni (10.1016/j.asej.2024.102932_b0180) 2002; 58
Holmes (10.1016/j.asej.2024.102932_b0160) 2016; 15
Austin (10.1016/j.asej.2024.102932_b0005) 2010
Streetly (10.1016/j.asej.2024.102932_b0250) 2015
Scott (10.1016/j.asej.2024.102932_b0150) 2000; 23
Allen (10.1016/j.asej.2024.102932_b0110) 2003; 112
Variyar (10.1016/j.asej.2024.102932_b0195) 2014
10.1016/j.asej.2024.102932_b0210
10.1016/j.asej.2024.102932_b0255
10.1016/j.asej.2024.102932_b0135
Ghaboussi (10.1016/j.asej.2024.102932_b0190) 1991; 117
Mueller (10.1016/j.asej.2024.102932_b0090) 2016
Streetly (10.1016/j.asej.2024.102932_b0060) 2014
Gundlach (10.1016/j.asej.2024.102932_b0030) 2012
Mitridis (10.1016/j.asej.2024.102932_b0065) 2023; 10
Duan (10.1016/j.asej.2024.102932_b0145) 2019; 2019
10.1016/j.asej.2024.102932_b0185
Alulema (10.1016/j.asej.2024.102932_b0075) 2021; 8
Bishop (10.1016/j.asej.2024.102932_b0095) 2006
Zia Ul-Saufie (10.1016/j.asej.2024.102932_b0200) 2011; 1
Gómez-Rodríguez (10.1016/j.asej.2024.102932_b0070) 2018; 5
Géron (10.1016/j.asej.2024.102932_b0215) 2019
Andrés-Pérez (10.1016/j.asej.2024.102932_b0125) 2020; 13
Burges (10.1016/j.asej.2024.102932_b0225) 1998
Taylor (10.1016/j.asej.2024.102932_b0020) 1976
10.1016/j.asej.2024.102932_b0025
Mitchell (10.1016/j.asej.2024.102932_b0085) 1997
10.1016/j.asej.2024.102932_b0105
Mosbah (10.1016/j.asej.2024.102932_b0140) 2016; 29
Qing (10.1016/j.asej.2024.102932_b0130) 2015; 28
Raymer (10.1016/j.asej.2024.102932_b0015) 2018
Larose (10.1016/j.asej.2024.102932_b0235) 2014
References_xml – volume: 2019
  start-page: 1
  year: 2019
  end-page: 8
  ident: b0145
  article-title: A Novel Classification Method for Flutter Signals Based on the CNN and STFT
  publication-title: International Journal of Aerospace Engineering
– volume: 5
  year: 2018
  ident: b0070
  article-title: Preliminary correlations for remotely piloted aircraft systems sizing
  publication-title: Aerospace
– volume: 90
  start-page: 1077
  year: 2018
  end-page: 1087
  ident: b0050
  article-title: Aerodynamic and structural design for the development of MALE UAV
  publication-title: Aircr Eng Aerosp Technol
– volume: 112
  start-page: 512
  year: 2003
  end-page: 520
  ident: b0110
  article-title: Modeling aircraft wing loads from flight data using neural networks
  publication-title: SAE Int J Aerosp
– volume: 28
  start-page: 659
  year: 2015
  end-page: 668
  ident: b0130
  article-title: Unsteady aerodynamic modeling at high angles of attack using support vector machines
  publication-title: Chin J Aeronaut
– year: 2014
  ident: b0230
  article-title: Understanding Machine Learning From Theory to Algorithms
– volume: 23
  year: 2000
  ident: b0150
  article-title: Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks
  publication-title: J Guid Control Dynam
– year: 2014
  ident: b0060
  article-title: IHS Jane's All the World's Aircraft: Unmanned 2014–2015
– volume: 86
  start-page: 826
  year: 2019
  end-page: 835
  ident: b0120
  article-title: Aerodynamic shape optimization using a novel optimizer based on machine learning techniques
  publication-title: Aerosp Sci Technol
– volume: 55
  start-page: 715
  year: 2018
  end-page: 726
  ident: b0055
  article-title: Preliminary sizing correlations for fixed-wing unmanned aerial vehicle characteristics
  publication-title: J Aircr
– volume: 15
  start-page: 568
  year: 2016
  end-page: 582
  ident: b0160
  article-title: “Prediction of landing gear loads using machine learning techniques
  publication-title: Struct Health Monit
– reference: E. Cross, P. Startor, K. Worden, P. Southern, Prediction of Landing Gear Loads Using Machine Learning Techniques, in: Proceedings of the 6th European Workshop on Structural Health Monitoring (EWSHM), Dresden, July 2012.
– volume: 10
  year: 2023
  ident: b0065
  article-title: An evaluation of fixed-wing unmanned aerial vehicle trends and correlations with respect to NATO classification, region, EIS date and operational specifications
  publication-title: Aerospace
– volume: 13
  start-page: 5807
  year: 2020
  ident: b0125
  article-title: Data mining and machine learning techniques for aerodynamic databases: introduction, methodology and potential benefits
  publication-title: Energies
– year: 1998
  ident: b0035
  article-title: Design Methodology for Low Speed High Altitude Long Endurance Unmanned Aerial Vehicles
  publication-title: In: Proceedings of the 21st ICAS Congress
– year: 2014
  ident: b0235
  article-title: Discovering Knowledge in Data An Introduction to Data Mining
– volume: 50
  start-page: 27
  year: 2016
  end-page: 38
  ident: b0045
  article-title: Aerodynamic design of a MALE UAV
  publication-title: Aerosp Sci Technol
– volume: 8
  year: 2021
  ident: b0075
  article-title: Propulsion sizing correlations for electrical and fuel powered unmanned aerial vehicles
  publication-title: Aerospace
– reference: R. Dupuis, J.C. Jouhaud, P. Sagaut, Aerodynamic Data Predictions for Transonic Flow via a Machine-Learning-based Surrogate Model, in: Proceedings of 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Florida, January 2018.
– reference: S. Aghabozorgi, Module 2: Evaluation Metrics in Regression, in Machine Learning with Python: A Practical Introduction, edX, Accessed on 29 July 2021.
– year: 1998
  ident: b0225
  article-title: Advances in Kernel Methods Support Vector Learning
– reference: N. Varsha, V. Somashekar, Conceptual Design of High Performance Unmanned Aerial Vehicle, in: Proceedings of the International Conference on Advances in Manufacturing, Materials and Energy Engineering (Icon MMEE 2018), Karnataka, India, March 2018.
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b0220
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
– year: 2016
  ident: b0090
  article-title: Introduction to Machine Learning with Python
– reference: J. Santarcangelo, Module 3: Exploratory Data Anlysis, in Analysing Data with Python, edX, Accessed on 7 July 2021.
– year: 2006
  ident: b0095
  article-title: Pattern Recognition and Machine Learning
– reference: C. Ruijter, R. Spallino, L. Warnet, Optimization of composite panels using neural networks and genetic algorithms, in: Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, June 2003.
– reference: C. Paulete-Periáñez, E. Andrés-Pérez, C. Lozano, Surrogate modelling for aerodynamic coefficients prediction in aeronautical configurations, in: Proceedings f the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, July 2019.
– year: 2016
  ident: b0080
  article-title: Machine Learning Technologies and Their Applications for Science and Engineering Domains Workshop
– year: 1997
  ident: b0085
  article-title: Machine Learning
– volume: 10
  start-page: 523
  year: 2003
  end-page: 530
  ident: b0165
  article-title: Neural network for constitutive modelling in Finite element analysis
  publication-title: Comput Assist Mech Eng Sci (CAMES)
– year: 2015
  ident: b0250
  article-title: IHS Jane's All the World's Aircraft: Unmanned 2015–2016
– volume: 58
  start-page: 237
  year: 2002
  end-page: 247
  ident: b0180
  article-title: “Post-buckling optimisation of composite stiffened panels using neural network
  publication-title: Compos Struct
– reference: C. A. Wargo, G. C. Church, J. Glaneueski, M. Strout, Unmanned aircraft systems (UAS) research and future analysis, in: Proceedings of 2014 IEEE Aerospace Conference, Montana, March 2014, pp. 1-16.
– year: 2019
  ident: b0215
  article-title: Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems
– year: 2018
  ident: b0175
  article-title: An Integrated Machine Learning and Finite Element Analysis Framework, applied to Composite Substructures including Damage, Master of Science Thesis
– year: 2012
  ident: b0030
  article-title: Unmanned Aircraft Systems: A Comprehensive Approach
– reference: Y. Azabi, Al Savvaris, T. Kipouros, Artificial Intelligence to Enhance Aerodynamic Shape Optimization of the Aegis UAV, Machine Learning & Knowledge Extraction 1 (2) (2019) 552–574.
– volume: 31
  start-page: 249
  year: 2007
  end-page: 268
  ident: b0100
  article-title: Supervised Machine Learning: A Review of Classification Techniques
  publication-title: Informatica
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0240
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– year: 2018
  ident: b0015
  article-title: Arcraft Design: A Conceptual Approach
– reference: .
– year: 1976
  ident: b0020
  article-title: Jane's All the Worl's Aircraft
– start-page: 1
  year: 2010
  end-page: 15
  ident: b0005
  article-title: Introduction to Unmanned Aircraft Systems (UAS)
  publication-title: Unmanned Aircraft Systems: UAVS Design, Development and Deployment
– year: 2014
  ident: b0195
  article-title: Application of Machine Learning to Aircraft Conceptual Design
– volume: 117
  start-page: 132
  year: 1991
  end-page: 153
  ident: b0190
  article-title: Knowledge based modeling of material behavior with neural networks
  publication-title: J Eng Mech
– reference: A. Sóbester, A. J. Keane, J. Scanlan, N. W. Bressloff, Conceptual Design of UAV Airframes Using a Generic Geometry Service, in: Proceedings of the Infotech@Aerospace, Arlington, Virginia, USA, September 2005.
– volume: 10
  start-page: 1158
  year: 2018
  ident: b0205
  article-title: Artificial neural network and multiple linear regression for flood prediction in Mohawk River, New York
  publication-title: Water
– reference: S. Aghabozorgi, Module 2: Simple Linear Regression, in Machine Learning with Python: A Practical Introduction, edX, Accessed on 29 July 2021.
– volume: 42
  start-page: 105
  year: 1998
  end-page: 126
  ident: b0170
  article-title: Autoprogressive training of neural network constitutive models
  publication-title: Int J Numer Meth Eng
– volume: 1
  year: 2011
  ident: b0200
  article-title: Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters
  publication-title: Int J Appl Sci Technol
– volume: 29
  start-page: 41
  year: 2016
  end-page: 52
  ident: b0140
  article-title: A hybrid original approach for prediction of the aerodynamic coefficients of an ATR-42 scaled wing model
  publication-title: Chin J Aeronaut
– year: 2016
  ident: 10.1016/j.asej.2024.102932_b0080
– volume: 23
  issue: 6
  year: 2000
  ident: 10.1016/j.asej.2024.102932_b0150
  article-title: Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks
  publication-title: J Guid Control Dynam
  doi: 10.2514/2.4661
– year: 2012
  ident: 10.1016/j.asej.2024.102932_b0030
– volume: 5
  issue: 1
  year: 2018
  ident: 10.1016/j.asej.2024.102932_b0070
  article-title: Preliminary correlations for remotely piloted aircraft systems sizing
  publication-title: Aerospace
  doi: 10.3390/aerospace5010005
– year: 1997
  ident: 10.1016/j.asej.2024.102932_b0085
– volume: 10
  start-page: 1158
  issue: 9
  year: 2018
  ident: 10.1016/j.asej.2024.102932_b0205
  article-title: Artificial neural network and multiple linear regression for flood prediction in Mohawk River, New York
  publication-title: Water
  doi: 10.3390/w10091158
– year: 2006
  ident: 10.1016/j.asej.2024.102932_b0095
– ident: 10.1016/j.asej.2024.102932_b0105
  doi: 10.2514/6.2018-1905
– ident: 10.1016/j.asej.2024.102932_b0245
– ident: 10.1016/j.asej.2024.102932_b0155
– volume: 42
  start-page: 105
  issue: 1
  year: 1998
  ident: 10.1016/j.asej.2024.102932_b0170
  article-title: Autoprogressive training of neural network constitutive models
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
– year: 2019
  ident: 10.1016/j.asej.2024.102932_b0215
– year: 2014
  ident: 10.1016/j.asej.2024.102932_b0230
– volume: 90
  start-page: 1077
  issue: 7
  year: 2018
  ident: 10.1016/j.asej.2024.102932_b0050
  article-title: Aerodynamic and structural design for the development of MALE UAV
  publication-title: Aircr Eng Aerosp Technol
  doi: 10.1108/AEAT-01-2017-0031
– year: 2016
  ident: 10.1016/j.asej.2024.102932_b0090
– volume: 28
  start-page: 659
  issue: 3
  year: 2015
  ident: 10.1016/j.asej.2024.102932_b0130
  article-title: Unsteady aerodynamic modeling at high angles of attack using support vector machines
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2015.03.010
– volume: 55
  start-page: 715
  issue: 2
  year: 2018
  ident: 10.1016/j.asej.2024.102932_b0055
  article-title: Preliminary sizing correlations for fixed-wing unmanned aerial vehicle characteristics
  publication-title: J Aircr
  doi: 10.2514/1.C034199
– ident: 10.1016/j.asej.2024.102932_b0255
– volume: 8
  issue: 7
  year: 2021
  ident: 10.1016/j.asej.2024.102932_b0075
  article-title: Propulsion sizing correlations for electrical and fuel powered unmanned aerial vehicles
  publication-title: Aerospace
  doi: 10.3390/aerospace8070171
– ident: 10.1016/j.asej.2024.102932_b0025
  doi: 10.2514/6.2005-7079
– volume: 58
  start-page: 237
  issue: 2
  year: 2002
  ident: 10.1016/j.asej.2024.102932_b0180
  article-title: “Post-buckling optimisation of composite stiffened panels using neural network
  publication-title: Compos Struct
  doi: 10.1016/S0263-8223(02)00053-3
– year: 2018
  ident: 10.1016/j.asej.2024.102932_b0015
– ident: 10.1016/j.asej.2024.102932_b0115
  doi: 10.3390/make1020033
– ident: 10.1016/j.asej.2024.102932_b0135
– ident: 10.1016/j.asej.2024.102932_b0185
  doi: 10.1016/B978-008044046-0/50580-7
– volume: 1
  issue: 4
  year: 2011
  ident: 10.1016/j.asej.2024.102932_b0200
  article-title: Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters
  publication-title: Int J Appl Sci Technol
– volume: 112
  start-page: 512
  year: 2003
  ident: 10.1016/j.asej.2024.102932_b0110
  article-title: Modeling aircraft wing loads from flight data using neural networks
  publication-title: SAE Int J Aerosp
– volume: 13
  start-page: 5807
  issue: 21
  year: 2020
  ident: 10.1016/j.asej.2024.102932_b0125
  article-title: Data mining and machine learning techniques for aerodynamic databases: introduction, methodology and potential benefits
  publication-title: Energies
  doi: 10.3390/en13215807
– ident: 10.1016/j.asej.2024.102932_b0010
  doi: 10.1109/AERO.2014.6836448
– year: 2018
  ident: 10.1016/j.asej.2024.102932_b0175
– year: 2015
  ident: 10.1016/j.asej.2024.102932_b0250
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.asej.2024.102932_b0145
  article-title: A Novel Classification Method for Flutter Signals Based on the CNN and STFT
  publication-title: International Journal of Aerospace Engineering
  doi: 10.1155/2019/9375437
– volume: 10
  start-page: 523
  issue: 4
  year: 2003
  ident: 10.1016/j.asej.2024.102932_b0165
  article-title: Neural network for constitutive modelling in Finite element analysis
  publication-title: Comput Assist Mech Eng Sci (CAMES)
– year: 1998
  ident: 10.1016/j.asej.2024.102932_b0225
– ident: 10.1016/j.asej.2024.102932_b0210
– start-page: 1
  year: 2010
  ident: 10.1016/j.asej.2024.102932_b0005
  article-title: Introduction to Unmanned Aircraft Systems (UAS)
– year: 1998
  ident: 10.1016/j.asej.2024.102932_b0035
  article-title: Design Methodology for Low Speed High Altitude Long Endurance Unmanned Aerial Vehicles
– ident: 10.1016/j.asej.2024.102932_b0040
  doi: 10.1088/1757-899X/376/1/012056
– volume: 31
  start-page: 249
  issue: 3
  year: 2007
  ident: 10.1016/j.asej.2024.102932_b0100
  article-title: Supervised Machine Learning: A Review of Classification Techniques
  publication-title: Informatica
– volume: 86
  start-page: 826
  year: 2019
  ident: 10.1016/j.asej.2024.102932_b0120
  article-title: Aerodynamic shape optimization using a novel optimizer based on machine learning techniques
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.02.003
– volume: 10
  issue: 4
  year: 2023
  ident: 10.1016/j.asej.2024.102932_b0065
  article-title: An evaluation of fixed-wing unmanned aerial vehicle trends and correlations with respect to NATO classification, region, EIS date and operational specifications
  publication-title: Aerospace
  doi: 10.3390/aerospace10040382
– year: 2014
  ident: 10.1016/j.asej.2024.102932_b0060
– year: 2014
  ident: 10.1016/j.asej.2024.102932_b0195
– volume: 117
  start-page: 132
  issue: 1
  year: 1991
  ident: 10.1016/j.asej.2024.102932_b0190
  article-title: Knowledge based modeling of material behavior with neural networks
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1991)117:1(132)
– year: 1976
  ident: 10.1016/j.asej.2024.102932_b0020
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 10.1016/j.asej.2024.102932_b0220
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 29
  start-page: 41
  issue: 1
  year: 2016
  ident: 10.1016/j.asej.2024.102932_b0140
  article-title: A hybrid original approach for prediction of the aerodynamic coefficients of an ATR-42 scaled wing model
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2015.12.022
– volume: 50
  start-page: 27
  year: 2016
  ident: 10.1016/j.asej.2024.102932_b0045
  article-title: Aerodynamic design of a MALE UAV
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2015.12.033
– volume: 15
  start-page: 568
  issue: 5
  year: 2016
  ident: 10.1016/j.asej.2024.102932_b0160
  article-title: “Prediction of landing gear loads using machine learning techniques
  publication-title: Struct Health Monit
  doi: 10.1177/1475921716651809
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: 10.1016/j.asej.2024.102932_b0240
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– year: 2014
  ident: 10.1016/j.asej.2024.102932_b0235
SSID ssib044728585
Score 2.320815
Snippet The initial concept of an Unmanned Aerial Vehicle (UAV) design is complicated and unique due to performance parameters like payload capacity, engine power,...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102932
SubjectTerms Fixed-wing UAV
Machine learning
Regression techniques
UAV design parameters
Title Machine learning approach for predicting key design parameters in UAV conceptual design
URI https://dx.doi.org/10.1016/j.asej.2024.102932
https://doaj.org/article/5ff28b97560047e0a76c4c4232cecf9b
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvAmxTRNk-ao4iLCenLVW8lTXLSK7l797c407VIv68VLoWU6KdNJ5hvyZYaQU2-dLzU3mZSmyITzPrPRq4wbo6QzUlYGd3Qnd_JmKm6fyqdBqy_khKXywMlw52WMvLJaYWQWKjBUIRxuL7rgora4-kLMGyRT4ElCKI4bXthZjmmWwb3uTswkchdEiBkkh1xg6QJd8F9RqS3ePwhOg4Az3iKbHVKkF-kLt8laaHbI46QlPwbadXt4pn1RcArok3584r4LMpkpTE7qW3oGxfLeb0h7-aIvDZ1ePFCXDisuQH-S2SXT8fX91U3W9UbInMjZPPOhgswGJpSTAUAB0547LquqVEZVANpKnxc28IqZaIUDjBWYDrliTkeQCkWxR9ab9ybsEwoJT6UNTHVZWGFNhBVPhhAji0o4k_MRyXvb1K4rHI79K17rniE2q9GeNdqzTvYckbPlOx-pbMZK6Us0-VISS163D8AR6s4R6r8cYUTK_ofVHXpIqABUvawY_OA_Bj8kG6gykc-OyPr8cxGOAa3M7UnrmHCdfF__AMNE51k
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approach+for+predicting+key+design+parameters+in+UAV+conceptual+design&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Omer+Iqbal+Bajwa&rft.au=Haroon+Awais+Baluch&rft.au=Hasan+Aftab+Saeed&rft.date=2024-09-01&rft.pub=Elsevier&rft.issn=2090-4479&rft.volume=15&rft.issue=9&rft.spage=102932&rft_id=info:doi/10.1016%2Fj.asej.2024.102932&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5ff28b97560047e0a76c4c4232cecf9b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon