Introducing block-Toeplitz covariance matrices to remaster linear discriminant analysis for event-related potential brain–computer interfaces

Objective. Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain–computer...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 19; no. 6; pp. 66001 - 66011
Main Authors Sosulski, Jan, Tangermann, Michael
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective. Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain–computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates. Approach. We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel. Main results. An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this ‘ToeplitzLDA’ compared to shrinkage regularized LDA (up to 6 AUC points, p  < 0.001) and Riemannian classification approaches (up to 2 AUC points, p  < 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features. Significance. The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs.
AbstractList Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain-computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates. We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel. An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this 'ToeplitzLDA' compared to shrinkage regularized LDA (up to 6 AUC points,  < 0.001) and Riemannian classification approaches (up to 2 AUC points,  < 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features. The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs.
Objective.Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain-computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates.Approach.We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel.Main results.An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this 'ToeplitzLDA' compared to shrinkage regularized LDA (up to 6 AUC points,p < 0.001) and Riemannian classification approaches (up to 2 AUC points,p < 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features.Significance.The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs.Objective.Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain-computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates.Approach.We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel.Main results.An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this 'ToeplitzLDA' compared to shrinkage regularized LDA (up to 6 AUC points,p < 0.001) and Riemannian classification approaches (up to 2 AUC points,p < 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features.Significance.The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs.
Objective. Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain–computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates. Approach. We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel. Main results. An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this ‘ToeplitzLDA’ compared to shrinkage regularized LDA (up to 6 AUC points, p  < 0.001) and Riemannian classification approaches (up to 2 AUC points, p  < 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features. Significance. The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs.
Author Sosulski, Jan
Tangermann, Michael
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0002-8105-3395
  surname: Sosulski
  fullname: Sosulski, Jan
  organization: University of Freiburg Department of Computer Science, Freiburg, Germany
– sequence: 2
  givenname: Michael
  orcidid: 0000-0001-6729-0290
  surname: Tangermann
  fullname: Tangermann, Michael
  organization: Radboud University Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36270502$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1P3TAYha2Kqny0OxPyRoem2M6Nk4wItQUJqQudrTfOa-Rbxw62gwQT_4Ch_7C_pL66wIDaLv7Sc471nrNPdnzwSMghZ58567oT3q54JZpGnIDudd-9IXsvTzsvZ8l2yX5Ka8Zq3vbsHdmtpWhZw8QeebzwOYZx0dZf08EF_bO6Cjg7m--pDrcQLXiNdIIcrcZEc6ARJ0gZI3XWI0Q62qSjnawHnyl4cHfJJmpCpHiLPlcRHWQc6RxyuVpwdIhg_e-HXzpM87Jxsr6sBsoH78lbAy7hh6f9gPz4-uXq7Ly6_P7t4uz0stIrznI1opCDEK0UHCSXzJjaNG1bi76MZbq-5l0vG2OGrjbaDEM9MtPoVqIRICTD-oB83PrOMdwsmLKayhjoHHgMS1KiLeYr3nW8oEdP6DJMOKq5DAvxTj2HWAC5BXQMKUU0StsM2YYSLVinOFObttSmDrWpRm3bKkL2Svjs_R_J8VZiw6zWYYkl76TWHhXvlVRMSsa4mkdTyE9_If9p_AdKrbbj
CODEN JNEOBH
CitedBy_id crossref_primary_10_3389_fnhum_2024_1461960
crossref_primary_10_1088_1741_2552_ad5ec0
crossref_primary_10_1109_TBME_2024_3386219
crossref_primary_10_1088_1741_2552_ad8962
crossref_primary_10_3390_brainsci14020160
Cites_doi 10.1038/s41598-018-21717-y
10.1198/sbr.2009.0074
10.1016/j.neucli.2016.07.002
10.1109/TNSRE.2016.2606416
10.1016/j.clinph.2010.01.034
10.3389/fnins.2019.00901
10.1109/MCI.2018.2807039
10.5626/JCSE.2013.7.2.139
10.1016/j.neuroimage.2010.06.048
10.1109/MCI.2015.2501545
10.1137/0609005
10.1371/journal.pone.0046692
10.1109/TNSRE.2014.2346621
10.1109/TBME.2019.2958641
10.1007/s12021-020-09501-8
10.1016/0013-4694(88)90149-6
10.1016/j.jmva.2006.08.003
10.1088/1741-2560/4/2/R01
10.1007/BF02442278
10.1088/1741-2560/11/3/035013
10.1016/S0047-259X(03)00096-4
10.1088/1741-2552/aab2f2
10.1088/1741-2552/aace8c
10.1088/1741-2560/9/4/045003
10.1016/j.sigpro.2016.08.001
10.1371/journal.pone.0175856
10.1109/TBME.2002.1001967
10.1371/journal.pone.0033758
10.1214/13-AOS1182
10.1016/j.clinph.2006.09.003
10.1088/1741-2560/13/6/061001
10.1214/11-AOS967
10.1038/s41586-020-2649-2
10.1088/1741-2552/aadea0
10.1371/journal.pone.0009813
10.1109/TSP.2013.2238532
10.1016/j.cmpb.2022.106623
ContentType Journal Article
Copyright 2022 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2022 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/ac9c98
DatabaseName Institute of Physics Open Access
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 36270502
10_1088_1741_2552_ac9c98
jneac9c98
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: 387670982
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
  grantid: INST 39/963-1 FUGG
  funderid: http://dx.doi.org/10.13039/501100003542
– fundername: Bundesministerium für Bildung und Forschung
  grantid: 16SV8012
  funderid: http://dx.doi.org/10.13039/501100002347
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c410t-de26b227621a6160ff3f577329050f89318965ffb83fcfbb3d0f5c76ef2a260e3
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Fri Jul 11 02:37:12 EDT 2025
Thu Jan 02 22:53:07 EST 2025
Tue Jul 01 01:48:09 EDT 2025
Thu Apr 24 23:20:36 EDT 2025
Tue Jun 13 23:30:42 EDT 2023
Wed Aug 21 03:34:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords high dimensional covariance estimation
linear discriminant analysis
spatiotemporal data
brain signal classification
block-Toeplitz matrix
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-de26b227621a6160ff3f577329050f89318965ffb83fcfbb3d0f5c76ef2a260e3
Notes JNE-105533.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8105-3395
0000-0001-6729-0290
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/ac9c98
PMID 36270502
PQID 2727641881
PQPubID 23479
PageCount 11
ParticipantIDs pubmed_primary_36270502
crossref_citationtrail_10_1088_1741_2552_ac9c98
proquest_miscellaneous_2727641881
crossref_primary_10_1088_1741_2552_ac9c98
iop_journals_10_1088_1741_2552_ac9c98
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Höhne (jneac9c98bib21) 2012; 9
Huizenga (jneac9c98bib26) 2002; 49
Quadrianto (jneac9c98bib41) 2009; 10
Xiao (jneac9c98bib49) 2012; 40
Hübner (jneac9c98bib25) 2017; 12
Hübner (jneac9c98bib23) 2020
Hashemi (jneac9c98bib20) 2021; vol 34
Kindermans (jneac9c98bib30) 2012; 7
Kleih (jneac9c98bib31) 2010; 121
Daly (jneac9c98bib10) 2014; 23
Farwell (jneac9c98bib11) 1988; 70
Islam (jneac9c98bib27) 2016; 46
Hübner (jneac9c98bib24) 2018; 13
Jayaram (jneac9c98bib28) 2016; 11
Winkler (jneac9c98bib48) 2014; 11
Ammar (jneac9c98bib1) 1988; 9
Pourahmadi (jneac9c98bib40) 2013; vol 882
Furrer (jneac9c98bib15) 2007; 98
Cohen (jneac9c98bib9) 1977; 15
Fernández-Rodríguez (jneac9c98bib12) 2016; 13
Barachant (jneac9c98bib4) 2014
Beltrachini (jneac9c98bib5) 2013; 61
Lotte (jneac9c98bib38) 2007; 4
Gruenwald (jneac9c98bib18) 2019; 13
Fuhrmann (jneac9c98bib14) 1990; vol 2
Gonzalez-Navarro (jneac9c98bib17) 2017; 131
Zhang (jneac9c98bib51) 2010; 2
Harris (jneac9c98bib19) 2020; 585
Jayaram (jneac9c98bib29) 2018; 15
Lim (jneac9c98bib35) 2012; 7
Santamaría-Vázquez (jneac9c98bib43) 2022; 215
Golub (jneac9c98bib16) 2013
Bishop (jneac9c98bib6) 2006
Lawhern (jneac9c98bib33) 2018; 15
Reilly (jneac9c98bib42) 2014
Chen (jneac9c98bib8) 2013; 41
Xiao (jneac9c98bib50) 2019; 67
Ang (jneac9c98bib2) 2013; 7
Lotte (jneac9c98bib37) 2018; 15
Sellers (jneac9c98bib46) 2012
Foodeh (jneac9c98bib13) 2016; 25
Zhao (jneac9c98bib52) 2017
Sosulski (jneac9c98bib47) 2021; 19
Lin (jneac9c98bib36) 2018; 8
Nunez (jneac9c98bib39) 2012
Schreuder (jneac9c98bib45) 2010; 5
Blankertz (jneac9c98bib7) 2011; 56
Kolkhorst (jneac9c98bib32) 2018
Hougaard (jneac9c98bib22) 2021
Ledoit (jneac9c98bib34) 2004; 88
Schlögl (jneac9c98bib44) 2007; 118
Arushanian (jneac9c98bib3) 1983
References_xml – volume: 8
  start-page: 3350
  year: 2018
  ident: jneac9c98bib36
  article-title: A novel P300 BCI speller based on the triple RSVP paradigm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21717-y
– volume: vol 882
  start-page: pp 141
  year: 2013
  ident: jneac9c98bib40
– volume: 2
  start-page: 292
  year: 2010
  ident: jneac9c98bib51
  article-title: Strictly standardized mean difference, standardized mean difference and classical t-test for the comparison of two groups
  publication-title: Stat. Biopharm.
  doi: 10.1198/sbr.2009.0074
– volume: 46
  start-page: 287
  year: 2016
  ident: jneac9c98bib27
  article-title: Methods for artifact detection and removal from scalp EEG: a review
  publication-title: Neurophysiol. Clin.
  doi: 10.1016/j.neucli.2016.07.002
– start-page: pp 179
  year: 2006
  ident: jneac9c98bib6
  article-title: Linear models for classification
– volume: 25
  start-page: 1143
  year: 2016
  ident: jneac9c98bib13
  article-title: Minimum noise estimate filter: a novel automated artifacts removal method for field potentials
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2606416
– year: 2020
  ident: jneac9c98bib23
  article-title: From supervised to unsupervised machine learning methods for brain-computer interfaces and their application in language rehabilitation
– volume: vol 34
  year: 2021
  ident: jneac9c98bib20
  article-title: Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging
– volume: 10
  start-page: 2349
  year: 2009
  ident: jneac9c98bib41
  article-title: Estimating labels from label proportions
  publication-title: J. Mach. Learn. Res.
– year: 2014
  ident: jneac9c98bib4
  article-title: A plug and play P300 BCI using information geometry
– volume: 121
  start-page: 1023
  year: 2010
  ident: jneac9c98bib31
  article-title: Motivation modulates the P300 amplitude during brain–computer interface use
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.01.034
– volume: 13
  start-page: 901
  year: 2019
  ident: jneac9c98bib18
  article-title: Time-variant linear discriminant analysis improves hand gesture and finger movement decoding for invasive brain-computer interfaces
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00901
– start-page: pp 7111
  year: 2018
  ident: jneac9c98bib32
  article-title: Guess what I attend: interface-free object selection using brain signals
– volume: 13
  start-page: 66
  year: 2018
  ident: jneac9c98bib24
  article-title: Unsupervised learning for brain–computer interfaces based on event-related potentials: review and online comparison
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2018.2807039
– year: 2021
  ident: jneac9c98bib22
  article-title: Who willed it? Decreasing frustration by manipulating perceived control through fabricated input for stroke rehabilitation BCI games
– volume: 7
  start-page: 139
  year: 2013
  ident: jneac9c98bib2
  article-title: Brain-computer interface in stroke rehabilitation
  publication-title: J. Comput. Sci. Eng.
  doi: 10.5626/JCSE.2013.7.2.139
– volume: 56
  start-page: 814
  year: 2011
  ident: jneac9c98bib7
  article-title: Single-trial analysis and classification of ERP components—a tutorial
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.048
– volume: 11
  start-page: 20
  year: 2016
  ident: jneac9c98bib28
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2015.2501545
– volume: 9
  start-page: 61
  year: 1988
  ident: jneac9c98bib1
  article-title: Superfast solution of real positive definite Toeplitz systems
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0609005
– volume: 7
  year: 2012
  ident: jneac9c98bib35
  article-title: A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046692
– start-page: pp 171
  year: 2012
  ident: jneac9c98bib39
  article-title: Electric and magnetic fields produced by the brain
– volume: 23
  start-page: 725
  year: 2014
  ident: jneac9c98bib10
  article-title: FORCe: fully online and automated artifact removal for brain-computer interfacing
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2346621
– volume: 67
  start-page: 2266
  year: 2019
  ident: jneac9c98bib50
  article-title: Discriminative canonical pattern matching for single-trial classification of ERP components
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2958641
– volume: 19
  start-page: 461
  year: 2021
  ident: jneac9c98bib47
  article-title: Improving covariance matrices derived from tiny training datasets for the classification of event-related potentials with linear discriminant analysis
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-020-09501-8
– volume: 70
  start-page: 510
  year: 1988
  ident: jneac9c98bib11
  article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(88)90149-6
– volume: 98
  start-page: 227
  year: 2007
  ident: jneac9c98bib15
  article-title: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2006.08.003
– volume: 4
  start-page: R1
  year: 2007
  ident: jneac9c98bib38
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– start-page: p 215
  year: 2012
  ident: jneac9c98bib46
  article-title: BCIs that use P300 event-related potentials
– volume: 15
  start-page: 513
  year: 1977
  ident: jneac9c98bib9
  article-title: Stationarity of the human electroencephalogram
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02442278
– volume: 11
  year: 2014
  ident: jneac9c98bib48
  article-title: Robust artifactual independent component classification for BCI practitioners
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/035013
– volume: 88
  start-page: 365
  year: 2004
  ident: jneac9c98bib34
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: J. Multivariate Anal.
  doi: 10.1016/S0047-259X(03)00096-4
– volume: vol 2
  start-page: pp 779
  year: 1990
  ident: jneac9c98bib14
  article-title: Estimation of block-Toeplitz covariance matrices
– start-page: pp 1
  year: 2017
  ident: jneac9c98bib52
  article-title: Oracle approximating shrinkage estimator based cooperative spectrum sensing for dense cognitive small cell network
– volume: 15
  year: 2018
  ident: jneac9c98bib37
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– start-page: pp 188
  year: 2014
  ident: jneac9c98bib42
  article-title: Neurology: central nervous system
– year: 1983
  ident: jneac9c98bib3
– volume: 15
  year: 2018
  ident: jneac9c98bib33
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 9
  year: 2012
  ident: jneac9c98bib21
  article-title: Natural stimuli improve auditory BCIs with respect to ergonomics and performance
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/4/045003
– volume: 131
  start-page: 333
  year: 2017
  ident: jneac9c98bib17
  article-title: Spatio-temporal EEG models for brain interfaces
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.08.001
– volume: 12
  year: 2017
  ident: jneac9c98bib25
  article-title: Learning from label proportions in brain-computer interfaces: online unsupervised learning with guarantees
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0175856
– volume: 49
  start-page: 533
  year: 2002
  ident: jneac9c98bib26
  article-title: Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.1001967
– volume: 7
  year: 2012
  ident: jneac9c98bib30
  article-title: A Bayesian model for exploiting application constraints to enable unsupervised training of a P300-based BCI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033758
– volume: 41
  start-page: 2994
  year: 2013
  ident: jneac9c98bib8
  article-title: Covariance and precision matrix estimation for high-dimensional time series
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1182
– volume: 118
  start-page: 98
  year: 2007
  ident: jneac9c98bib44
  article-title: A fully automated correction method of EOG artifacts in EEG recordings
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.09.003
– volume: 13
  year: 2016
  ident: jneac9c98bib12
  article-title: Review of real brain-controlled wheelchairs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/6/061001
– volume: 40
  start-page: 466
  year: 2012
  ident: jneac9c98bib49
  article-title: Covariance matrix estimation for stationary time series
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS967
– volume: 585
  start-page: 357
  year: 2020
  ident: jneac9c98bib19
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 15
  year: 2018
  ident: jneac9c98bib29
  article-title: MOABB: trustworthy algorithm benchmarking for BCIs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aadea0
– year: 2013
  ident: jneac9c98bib16
– volume: 5
  start-page: 1
  year: 2010
  ident: jneac9c98bib45
  article-title: A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009813
– volume: 61
  start-page: 1797
  year: 2013
  ident: jneac9c98bib5
  article-title: Shrinkage approach for spatiotemporal EEG covariance matrix estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2238532
– volume: 215
  year: 2022
  ident: jneac9c98bib43
  article-title: Robust asynchronous control of ERP-based brain–computer interfaces using deep learning
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.106623
SSID ssj0031790
Score 2.4079404
Snippet Objective. Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain...
Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using...
Objective.Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 66001
SubjectTerms Algorithms
block-Toeplitz matrix
brain signal classification
Brain-Computer Interfaces
Discriminant Analysis
Electroencephalography - methods
Evoked Potentials
high dimensional covariance estimation
Humans
linear discriminant analysis
spatiotemporal data
Title Introducing block-Toeplitz covariance matrices to remaster linear discriminant analysis for event-related potential brain–computer interfaces
URI https://iopscience.iop.org/article/10.1088/1741-2552/ac9c98
https://www.ncbi.nlm.nih.gov/pubmed/36270502
https://www.proquest.com/docview/2727641881
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacuHCqzyWl4wESBy8m9gbxxGnClEVDpRDK3pAsmzHPlA2We1mkdpT_wEH_iG_hBnbu1IRVIhLlMMkcSZjzzfxzDeEPJc-gFdWlhlhJAQoZsqM4Z5JdIeqaTEmw2yLD_LgePr-pDrZIq83tTD9PC_9YzhNRMFJhTkhTk0AQ5cMkDCfGNe4Rm2Ta0KB48TqvcOP62VYIPVUqoZEaVnkPco_3eGST9qG5_4dbka3s3-TfF4POGWbnI5Xgx2789-4HP_zjW6RGxmO0r0kepts-e4O2d3rIBSfndGXNCaIxj_vu-T7O8xqb1cOvB214ARP2VHvAcQO59T13yDoRguis0j675d06OnCzwwyMVAEs2ZBsQY49RHrBmoyHwoF3EwjkRSLlTW-pfN-wCwmGJnFFhY_L3643H2CIr_FImAi2V1yvP_26M0By_0cmJuWxcBaz6XlHJbf0shSFiGIUNW14E1RFQGAU6kaWYVglQguWCvaIlSuBnPiBsIuL-6Rna7v_ANCq1oE2RrpwKIAArWNFyEEuJX1tq7rYkQm6y-qXSY7x54bX3XcdFdKo8416lwnnY_Iq80V80T0cYXsC_iUOs_25RVy9JLcl87rstFSA84DeKDnbRiRZ2tL0zCxcbfGdL5fLTUHZCmnpVLliNxPJrgZGKCOGnTGH_7jQB6R6xzLNmIazmOyMyxW_gmAqcE-jZMGjofi0y8Z3RsM
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZokRCXqlAe2_IwEkXiYDaxN45zrIBVH6j00IreLNuxD6WbrHazldpT_0EP_EN-CTOOt1IlqLjl4Dgjz9jzTTzzDSHvpQ_glZVlRhgJAYoZMWO4ZxLdoapqjMkw2-JQ7p6M9k-L09TnNNbCtNN09H-Cx54ouF_ClBCnhoChcwZImA-Nq1ylhtM6rJCHhQBXAwb9XfxYHsUC6af6ikh8Q2bpnvJvs9zxSyvw7X9Dzuh6xutkLWFGutNL-IQ88M1TsrHTQLw8uaQfaMzijL_HN8jNHqae1wsHLola8FQ_2XHrAWl2V9S1FxAZo5rpJDLz-zntWjrzE4N0CRQRp5lRLNTtm301HTWJtIQCuKWR7YnF8hdf02nbYaoRSGaxz8Tv618utYigSEIxC5jt9YycjL8ef95lqekCc6M861jtubScwxmZG5nLLAQRirIUvMqKLAC6yVUlixCsEsEFa0WdhcKVoHNuIDby4jlZbdrGvyS0KEWQtZEO1A44pa68CCHAVNbbsiyzARkul1y7xEiOjTHOdbwZV0qjkjQqSfdKGpCPt29MezaOe8ZugxZ12pLze8bRO-POGq_zSksNYAx8uAbrGpB3S1PQsPvwSsU0vl3MNQf4J0e5UvmAvOht5FYwgAYlrBnf_E9B3pJHR1_G-tve4cEWecyxzCKmzbwiq91s4V8D-Onsm2jgfwBblP68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introducing+block-Toeplitz+covariance+matrices+to+remaster+linear+discriminant+analysis+for+event-related+potential+brain-computer+interfaces&rft.jtitle=Journal+of+neural+engineering&rft.au=Sosulski%2C+Jan&rft.au=Tangermann%2C+Michael&rft.date=2022-12-01&rft.eissn=1741-2552&rft.volume=19&rft.issue=6&rft_id=info:doi/10.1088%2F1741-2552%2Fac9c98&rft_id=info%3Apmid%2F36270502&rft.externalDocID=36270502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon