Introducing block-Toeplitz covariance matrices to remaster linear discriminant analysis for event-related potential brain–computer interfaces
Objective. Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain–computer...
Saved in:
Published in | Journal of neural engineering Vol. 19; no. 6; pp. 66001 - 66011 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective.
Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain–computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates.
Approach.
We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel.
Main results.
An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this ‘ToeplitzLDA’ compared to shrinkage regularized LDA (up to 6 AUC points,
p
< 0.001) and Riemannian classification approaches (up to 2 AUC points,
p
< 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features.
Significance.
The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs. |
---|---|
AbstractList | Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain-computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates.
We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel.
An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this 'ToeplitzLDA' compared to shrinkage regularized LDA (up to 6 AUC points,
< 0.001) and Riemannian classification approaches (up to 2 AUC points,
< 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features.
The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs. Objective.Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain-computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates.Approach.We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel.Main results.An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this 'ToeplitzLDA' compared to shrinkage regularized LDA (up to 6 AUC points,p < 0.001) and Riemannian classification approaches (up to 2 AUC points,p < 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features.Significance.The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs.Objective.Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain-computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates.Approach.We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel.Main results.An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this 'ToeplitzLDA' compared to shrinkage regularized LDA (up to 6 AUC points,p < 0.001) and Riemannian classification approaches (up to 2 AUC points,p < 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features.Significance.The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs. Objective. Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain–computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates. Approach. We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel. Main results. An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this ‘ToeplitzLDA’ compared to shrinkage regularized LDA (up to 6 AUC points, p < 0.001) and Riemannian classification approaches (up to 2 AUC points, p < 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features. Significance. The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs. |
Author | Sosulski, Jan Tangermann, Michael |
Author_xml | – sequence: 1 givenname: Jan orcidid: 0000-0002-8105-3395 surname: Sosulski fullname: Sosulski, Jan organization: University of Freiburg Department of Computer Science, Freiburg, Germany – sequence: 2 givenname: Michael orcidid: 0000-0001-6729-0290 surname: Tangermann fullname: Tangermann, Michael organization: Radboud University Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36270502$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1P3TAYha2Kqny0OxPyRoem2M6Nk4wItQUJqQudrTfOa-Rbxw62gwQT_4Ch_7C_pL66wIDaLv7Sc471nrNPdnzwSMghZ58567oT3q54JZpGnIDudd-9IXsvTzsvZ8l2yX5Ka8Zq3vbsHdmtpWhZw8QeebzwOYZx0dZf08EF_bO6Cjg7m--pDrcQLXiNdIIcrcZEc6ARJ0gZI3XWI0Q62qSjnawHnyl4cHfJJmpCpHiLPlcRHWQc6RxyuVpwdIhg_e-HXzpM87Jxsr6sBsoH78lbAy7hh6f9gPz4-uXq7Ly6_P7t4uz0stIrznI1opCDEK0UHCSXzJjaNG1bi76MZbq-5l0vG2OGrjbaDEM9MtPoVqIRICTD-oB83PrOMdwsmLKayhjoHHgMS1KiLeYr3nW8oEdP6DJMOKq5DAvxTj2HWAC5BXQMKUU0StsM2YYSLVinOFObttSmDrWpRm3bKkL2Svjs_R_J8VZiw6zWYYkl76TWHhXvlVRMSsa4mkdTyE9_If9p_AdKrbbj |
CODEN | JNEOBH |
CitedBy_id | crossref_primary_10_3389_fnhum_2024_1461960 crossref_primary_10_1088_1741_2552_ad5ec0 crossref_primary_10_1109_TBME_2024_3386219 crossref_primary_10_1088_1741_2552_ad8962 crossref_primary_10_3390_brainsci14020160 |
Cites_doi | 10.1038/s41598-018-21717-y 10.1198/sbr.2009.0074 10.1016/j.neucli.2016.07.002 10.1109/TNSRE.2016.2606416 10.1016/j.clinph.2010.01.034 10.3389/fnins.2019.00901 10.1109/MCI.2018.2807039 10.5626/JCSE.2013.7.2.139 10.1016/j.neuroimage.2010.06.048 10.1109/MCI.2015.2501545 10.1137/0609005 10.1371/journal.pone.0046692 10.1109/TNSRE.2014.2346621 10.1109/TBME.2019.2958641 10.1007/s12021-020-09501-8 10.1016/0013-4694(88)90149-6 10.1016/j.jmva.2006.08.003 10.1088/1741-2560/4/2/R01 10.1007/BF02442278 10.1088/1741-2560/11/3/035013 10.1016/S0047-259X(03)00096-4 10.1088/1741-2552/aab2f2 10.1088/1741-2552/aace8c 10.1088/1741-2560/9/4/045003 10.1016/j.sigpro.2016.08.001 10.1371/journal.pone.0175856 10.1109/TBME.2002.1001967 10.1371/journal.pone.0033758 10.1214/13-AOS1182 10.1016/j.clinph.2006.09.003 10.1088/1741-2560/13/6/061001 10.1214/11-AOS967 10.1038/s41586-020-2649-2 10.1088/1741-2552/aadea0 10.1371/journal.pone.0009813 10.1109/TSP.2013.2238532 10.1016/j.cmpb.2022.106623 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by IOP Publishing Ltd Creative Commons Attribution license. |
Copyright_xml | – notice: 2022 The Author(s). Published by IOP Publishing Ltd – notice: Creative Commons Attribution license. |
DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1741-2552/ac9c98 |
DatabaseName | Institute of Physics Open Access IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
ExternalDocumentID | 36270502 10_1088_1741_2552_ac9c98 jneac9c98 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: 387670982 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg grantid: INST 39/963-1 FUGG funderid: http://dx.doi.org/10.13039/501100003542 – fundername: Bundesministerium für Bildung und Forschung grantid: 16SV8012 funderid: http://dx.doi.org/10.13039/501100002347 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A O3W P2P PJBAE RIN RO9 ROL RPA SY9 TSCCA W28 XPP AAYXX ADEQX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c410t-de26b227621a6160ff3f577329050f89318965ffb83fcfbb3d0f5c76ef2a260e3 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Fri Jul 11 02:37:12 EDT 2025 Thu Jan 02 22:53:07 EST 2025 Tue Jul 01 01:48:09 EDT 2025 Thu Apr 24 23:20:36 EDT 2025 Tue Jun 13 23:30:42 EDT 2023 Wed Aug 21 03:34:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | high dimensional covariance estimation linear discriminant analysis spatiotemporal data brain signal classification block-Toeplitz matrix |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-de26b227621a6160ff3f577329050f89318965ffb83fcfbb3d0f5c76ef2a260e3 |
Notes | JNE-105533.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8105-3395 0000-0001-6729-0290 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/ac9c98 |
PMID | 36270502 |
PQID | 2727641881 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_36270502 crossref_citationtrail_10_1088_1741_2552_ac9c98 proquest_miscellaneous_2727641881 crossref_primary_10_1088_1741_2552_ac9c98 iop_journals_10_1088_1741_2552_ac9c98 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Höhne (jneac9c98bib21) 2012; 9 Huizenga (jneac9c98bib26) 2002; 49 Quadrianto (jneac9c98bib41) 2009; 10 Xiao (jneac9c98bib49) 2012; 40 Hübner (jneac9c98bib25) 2017; 12 Hübner (jneac9c98bib23) 2020 Hashemi (jneac9c98bib20) 2021; vol 34 Kindermans (jneac9c98bib30) 2012; 7 Kleih (jneac9c98bib31) 2010; 121 Daly (jneac9c98bib10) 2014; 23 Farwell (jneac9c98bib11) 1988; 70 Islam (jneac9c98bib27) 2016; 46 Hübner (jneac9c98bib24) 2018; 13 Jayaram (jneac9c98bib28) 2016; 11 Winkler (jneac9c98bib48) 2014; 11 Ammar (jneac9c98bib1) 1988; 9 Pourahmadi (jneac9c98bib40) 2013; vol 882 Furrer (jneac9c98bib15) 2007; 98 Cohen (jneac9c98bib9) 1977; 15 Fernández-Rodríguez (jneac9c98bib12) 2016; 13 Barachant (jneac9c98bib4) 2014 Beltrachini (jneac9c98bib5) 2013; 61 Lotte (jneac9c98bib38) 2007; 4 Gruenwald (jneac9c98bib18) 2019; 13 Fuhrmann (jneac9c98bib14) 1990; vol 2 Gonzalez-Navarro (jneac9c98bib17) 2017; 131 Zhang (jneac9c98bib51) 2010; 2 Harris (jneac9c98bib19) 2020; 585 Jayaram (jneac9c98bib29) 2018; 15 Lim (jneac9c98bib35) 2012; 7 Santamaría-Vázquez (jneac9c98bib43) 2022; 215 Golub (jneac9c98bib16) 2013 Bishop (jneac9c98bib6) 2006 Lawhern (jneac9c98bib33) 2018; 15 Reilly (jneac9c98bib42) 2014 Chen (jneac9c98bib8) 2013; 41 Xiao (jneac9c98bib50) 2019; 67 Ang (jneac9c98bib2) 2013; 7 Lotte (jneac9c98bib37) 2018; 15 Sellers (jneac9c98bib46) 2012 Foodeh (jneac9c98bib13) 2016; 25 Zhao (jneac9c98bib52) 2017 Sosulski (jneac9c98bib47) 2021; 19 Lin (jneac9c98bib36) 2018; 8 Nunez (jneac9c98bib39) 2012 Schreuder (jneac9c98bib45) 2010; 5 Blankertz (jneac9c98bib7) 2011; 56 Kolkhorst (jneac9c98bib32) 2018 Hougaard (jneac9c98bib22) 2021 Ledoit (jneac9c98bib34) 2004; 88 Schlögl (jneac9c98bib44) 2007; 118 Arushanian (jneac9c98bib3) 1983 |
References_xml | – volume: 8 start-page: 3350 year: 2018 ident: jneac9c98bib36 article-title: A novel P300 BCI speller based on the triple RSVP paradigm publication-title: Sci. Rep. doi: 10.1038/s41598-018-21717-y – volume: vol 882 start-page: pp 141 year: 2013 ident: jneac9c98bib40 – volume: 2 start-page: 292 year: 2010 ident: jneac9c98bib51 article-title: Strictly standardized mean difference, standardized mean difference and classical t-test for the comparison of two groups publication-title: Stat. Biopharm. doi: 10.1198/sbr.2009.0074 – volume: 46 start-page: 287 year: 2016 ident: jneac9c98bib27 article-title: Methods for artifact detection and removal from scalp EEG: a review publication-title: Neurophysiol. Clin. doi: 10.1016/j.neucli.2016.07.002 – start-page: pp 179 year: 2006 ident: jneac9c98bib6 article-title: Linear models for classification – volume: 25 start-page: 1143 year: 2016 ident: jneac9c98bib13 article-title: Minimum noise estimate filter: a novel automated artifacts removal method for field potentials publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2606416 – year: 2020 ident: jneac9c98bib23 article-title: From supervised to unsupervised machine learning methods for brain-computer interfaces and their application in language rehabilitation – volume: vol 34 year: 2021 ident: jneac9c98bib20 article-title: Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging – volume: 10 start-page: 2349 year: 2009 ident: jneac9c98bib41 article-title: Estimating labels from label proportions publication-title: J. Mach. Learn. Res. – year: 2014 ident: jneac9c98bib4 article-title: A plug and play P300 BCI using information geometry – volume: 121 start-page: 1023 year: 2010 ident: jneac9c98bib31 article-title: Motivation modulates the P300 amplitude during brain–computer interface use publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.01.034 – volume: 13 start-page: 901 year: 2019 ident: jneac9c98bib18 article-title: Time-variant linear discriminant analysis improves hand gesture and finger movement decoding for invasive brain-computer interfaces publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00901 – start-page: pp 7111 year: 2018 ident: jneac9c98bib32 article-title: Guess what I attend: interface-free object selection using brain signals – volume: 13 start-page: 66 year: 2018 ident: jneac9c98bib24 article-title: Unsupervised learning for brain–computer interfaces based on event-related potentials: review and online comparison publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2018.2807039 – year: 2021 ident: jneac9c98bib22 article-title: Who willed it? Decreasing frustration by manipulating perceived control through fabricated input for stroke rehabilitation BCI games – volume: 7 start-page: 139 year: 2013 ident: jneac9c98bib2 article-title: Brain-computer interface in stroke rehabilitation publication-title: J. Comput. Sci. Eng. doi: 10.5626/JCSE.2013.7.2.139 – volume: 56 start-page: 814 year: 2011 ident: jneac9c98bib7 article-title: Single-trial analysis and classification of ERP components—a tutorial publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.048 – volume: 11 start-page: 20 year: 2016 ident: jneac9c98bib28 article-title: Transfer learning in brain-computer interfaces publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2015.2501545 – volume: 9 start-page: 61 year: 1988 ident: jneac9c98bib1 article-title: Superfast solution of real positive definite Toeplitz systems publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/0609005 – volume: 7 year: 2012 ident: jneac9c98bib35 article-title: A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder publication-title: PLoS One doi: 10.1371/journal.pone.0046692 – start-page: pp 171 year: 2012 ident: jneac9c98bib39 article-title: Electric and magnetic fields produced by the brain – volume: 23 start-page: 725 year: 2014 ident: jneac9c98bib10 article-title: FORCe: fully online and automated artifact removal for brain-computer interfacing publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2346621 – volume: 67 start-page: 2266 year: 2019 ident: jneac9c98bib50 article-title: Discriminative canonical pattern matching for single-trial classification of ERP components publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2958641 – volume: 19 start-page: 461 year: 2021 ident: jneac9c98bib47 article-title: Improving covariance matrices derived from tiny training datasets for the classification of event-related potentials with linear discriminant analysis publication-title: Neuroinformatics doi: 10.1007/s12021-020-09501-8 – volume: 70 start-page: 510 year: 1988 ident: jneac9c98bib11 article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(88)90149-6 – volume: 98 start-page: 227 year: 2007 ident: jneac9c98bib15 article-title: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2006.08.003 – volume: 4 start-page: R1 year: 2007 ident: jneac9c98bib38 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – start-page: p 215 year: 2012 ident: jneac9c98bib46 article-title: BCIs that use P300 event-related potentials – volume: 15 start-page: 513 year: 1977 ident: jneac9c98bib9 article-title: Stationarity of the human electroencephalogram publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02442278 – volume: 11 year: 2014 ident: jneac9c98bib48 article-title: Robust artifactual independent component classification for BCI practitioners publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035013 – volume: 88 start-page: 365 year: 2004 ident: jneac9c98bib34 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: J. Multivariate Anal. doi: 10.1016/S0047-259X(03)00096-4 – volume: vol 2 start-page: pp 779 year: 1990 ident: jneac9c98bib14 article-title: Estimation of block-Toeplitz covariance matrices – start-page: pp 1 year: 2017 ident: jneac9c98bib52 article-title: Oracle approximating shrinkage estimator based cooperative spectrum sensing for dense cognitive small cell network – volume: 15 year: 2018 ident: jneac9c98bib37 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – start-page: pp 188 year: 2014 ident: jneac9c98bib42 article-title: Neurology: central nervous system – year: 1983 ident: jneac9c98bib3 – volume: 15 year: 2018 ident: jneac9c98bib33 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 9 year: 2012 ident: jneac9c98bib21 article-title: Natural stimuli improve auditory BCIs with respect to ergonomics and performance publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/4/045003 – volume: 131 start-page: 333 year: 2017 ident: jneac9c98bib17 article-title: Spatio-temporal EEG models for brain interfaces publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.08.001 – volume: 12 year: 2017 ident: jneac9c98bib25 article-title: Learning from label proportions in brain-computer interfaces: online unsupervised learning with guarantees publication-title: PLoS One doi: 10.1371/journal.pone.0175856 – volume: 49 start-page: 533 year: 2002 ident: jneac9c98bib26 article-title: Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2002.1001967 – volume: 7 year: 2012 ident: jneac9c98bib30 article-title: A Bayesian model for exploiting application constraints to enable unsupervised training of a P300-based BCI publication-title: PLoS One doi: 10.1371/journal.pone.0033758 – volume: 41 start-page: 2994 year: 2013 ident: jneac9c98bib8 article-title: Covariance and precision matrix estimation for high-dimensional time series publication-title: Ann. Stat. doi: 10.1214/13-AOS1182 – volume: 118 start-page: 98 year: 2007 ident: jneac9c98bib44 article-title: A fully automated correction method of EOG artifacts in EEG recordings publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.09.003 – volume: 13 year: 2016 ident: jneac9c98bib12 article-title: Review of real brain-controlled wheelchairs publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/6/061001 – volume: 40 start-page: 466 year: 2012 ident: jneac9c98bib49 article-title: Covariance matrix estimation for stationary time series publication-title: Ann. Stat. doi: 10.1214/11-AOS967 – volume: 585 start-page: 357 year: 2020 ident: jneac9c98bib19 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 15 year: 2018 ident: jneac9c98bib29 article-title: MOABB: trustworthy algorithm benchmarking for BCIs publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aadea0 – year: 2013 ident: jneac9c98bib16 – volume: 5 start-page: 1 year: 2010 ident: jneac9c98bib45 article-title: A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue publication-title: PLoS One doi: 10.1371/journal.pone.0009813 – volume: 61 start-page: 1797 year: 2013 ident: jneac9c98bib5 article-title: Shrinkage approach for spatiotemporal EEG covariance matrix estimation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2238532 – volume: 215 year: 2022 ident: jneac9c98bib43 article-title: Robust asynchronous control of ERP-based brain–computer interfaces using deep learning publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2022.106623 |
SSID | ssj0031790 |
Score | 2.4079404 |
Snippet | Objective.
Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain... Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using... Objective.Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 66001 |
SubjectTerms | Algorithms block-Toeplitz matrix brain signal classification Brain-Computer Interfaces Discriminant Analysis Electroencephalography - methods Evoked Potentials high dimensional covariance estimation Humans linear discriminant analysis spatiotemporal data |
Title | Introducing block-Toeplitz covariance matrices to remaster linear discriminant analysis for event-related potential brain–computer interfaces |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/ac9c98 https://www.ncbi.nlm.nih.gov/pubmed/36270502 https://www.proquest.com/docview/2727641881 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacuHCqzyWl4wESBy8m9gbxxGnClEVDpRDK3pAsmzHPlA2We1mkdpT_wEH_iG_hBnbu1IRVIhLlMMkcSZjzzfxzDeEPJc-gFdWlhlhJAQoZsqM4Z5JdIeqaTEmw2yLD_LgePr-pDrZIq83tTD9PC_9YzhNRMFJhTkhTk0AQ5cMkDCfGNe4Rm2Ta0KB48TqvcOP62VYIPVUqoZEaVnkPco_3eGST9qG5_4dbka3s3-TfF4POGWbnI5Xgx2789-4HP_zjW6RGxmO0r0kepts-e4O2d3rIBSfndGXNCaIxj_vu-T7O8xqb1cOvB214ARP2VHvAcQO59T13yDoRguis0j675d06OnCzwwyMVAEs2ZBsQY49RHrBmoyHwoF3EwjkRSLlTW-pfN-wCwmGJnFFhY_L3643H2CIr_FImAi2V1yvP_26M0By_0cmJuWxcBaz6XlHJbf0shSFiGIUNW14E1RFQGAU6kaWYVglQguWCvaIlSuBnPiBsIuL-6Rna7v_ANCq1oE2RrpwKIAArWNFyEEuJX1tq7rYkQm6y-qXSY7x54bX3XcdFdKo8416lwnnY_Iq80V80T0cYXsC_iUOs_25RVy9JLcl87rstFSA84DeKDnbRiRZ2tL0zCxcbfGdL5fLTUHZCmnpVLliNxPJrgZGKCOGnTGH_7jQB6R6xzLNmIazmOyMyxW_gmAqcE-jZMGjofi0y8Z3RsM |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZokRCXqlAe2_IwEkXiYDaxN45zrIBVH6j00IreLNuxD6WbrHazldpT_0EP_EN-CTOOt1IlqLjl4Dgjz9jzTTzzDSHvpQ_glZVlRhgJAYoZMWO4ZxLdoapqjMkw2-JQ7p6M9k-L09TnNNbCtNN09H-Cx54ouF_ClBCnhoChcwZImA-Nq1ylhtM6rJCHhQBXAwb9XfxYHsUC6af6ikh8Q2bpnvJvs9zxSyvw7X9Dzuh6xutkLWFGutNL-IQ88M1TsrHTQLw8uaQfaMzijL_HN8jNHqae1wsHLola8FQ_2XHrAWl2V9S1FxAZo5rpJDLz-zntWjrzE4N0CRQRp5lRLNTtm301HTWJtIQCuKWR7YnF8hdf02nbYaoRSGaxz8Tv618utYigSEIxC5jt9YycjL8ef95lqekCc6M861jtubScwxmZG5nLLAQRirIUvMqKLAC6yVUlixCsEsEFa0WdhcKVoHNuIDby4jlZbdrGvyS0KEWQtZEO1A44pa68CCHAVNbbsiyzARkul1y7xEiOjTHOdbwZV0qjkjQqSfdKGpCPt29MezaOe8ZugxZ12pLze8bRO-POGq_zSksNYAx8uAbrGpB3S1PQsPvwSsU0vl3MNQf4J0e5UvmAvOht5FYwgAYlrBnf_E9B3pJHR1_G-tve4cEWecyxzCKmzbwiq91s4V8D-Onsm2jgfwBblP68 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introducing+block-Toeplitz+covariance+matrices+to+remaster+linear+discriminant+analysis+for+event-related+potential+brain-computer+interfaces&rft.jtitle=Journal+of+neural+engineering&rft.au=Sosulski%2C+Jan&rft.au=Tangermann%2C+Michael&rft.date=2022-12-01&rft.eissn=1741-2552&rft.volume=19&rft.issue=6&rft_id=info:doi/10.1088%2F1741-2552%2Fac9c98&rft_id=info%3Apmid%2F36270502&rft.externalDocID=36270502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |