Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy

Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its p...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 296; no. 2; pp. E65 - E71
Main Authors Li, Lin, Qin, Lixin, Xu, Zeguo, Yin, Youbing, Wang, Xin, Kong, Bin, Bai, Junjie, Lu, Yi, Fang, Zhenghan, Song, Qi, Cao, Kunlin, Liu, Daliang, Wang, Guisheng, Xu, Qizhong, Fang, Xisheng, Zhang, Shiqin, Xia, Juan, Xia, Jun
Format Journal Article
LanguageEnglish
Published United States 01.08.2020
Subjects
Online AccessGet full text
ISSN0033-8419
1527-1315
1527-1315
DOI10.1148/radiol.2020200905

Cover

Loading…
Abstract Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performance. Materials and Methods In this retrospective and multicenter study, a deep learning model, the COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT scans for the detection of COVID-19. CT scans of community-acquired pneumonia (CAP) and other non-pneumonia abnormalities were included to test the robustness of the model. The datasets were collected from six hospitals between August 2016 and February 2020. Diagnostic performance was assessed with the area under the receiver operating characteristic curve, sensitivity, and specificity. Results The collected dataset consisted of 4352 chest CT scans from 3322 patients. The average patient age (±standard deviation) was 49 years ± 15, and there were slightly more men than women (1838 vs 1484, respectively; = .29). The per-scan sensitivity and specificity for detecting COVID-19 in the independent test set was 90% (95% confidence interval [CI]: 83%, 94%; 114 of 127 scans) and 96% (95% CI: 93%, 98%; 294 of 307 scans), respectively, with an area under the receiver operating characteristic curve of 0.96 ( < .001). The per-scan sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175 scans) and 92% (239 of 259 scans), respectively, with an area under the receiver operating characteristic curve of 0.95 (95% CI: 0.93, 0.97). Conclusion A deep learning model can accurately detect coronavirus 2019 and differentiate it from community-acquired pneumonia and other lung conditions. © RSNA, 2020
AbstractList Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performance. Materials and Methods In this retrospective and multicenter study, a deep learning model, the COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT scans for the detection of COVID-19. CT scans of community-acquired pneumonia (CAP) and other non-pneumonia abnormalities were included to test the robustness of the model. The datasets were collected from six hospitals between August 2016 and February 2020. Diagnostic performance was assessed with the area under the receiver operating characteristic curve, sensitivity, and specificity. Results The collected dataset consisted of 4352 chest CT scans from 3322 patients. The average patient age (±standard deviation) was 49 years ± 15, and there were slightly more men than women (1838 vs 1484, respectively; P = .29). The per-scan sensitivity and specificity for detecting COVID-19 in the independent test set was 90% (95% confidence interval [CI]: 83%, 94%; 114 of 127 scans) and 96% (95% CI: 93%, 98%; 294 of 307 scans), respectively, with an area under the receiver operating characteristic curve of 0.96 (P < .001). The per-scan sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175 scans) and 92% (239 of 259 scans), respectively, with an area under the receiver operating characteristic curve of 0.95 (95% CI: 0.93, 0.97). Conclusion A deep learning model can accurately detect coronavirus 2019 and differentiate it from community-acquired pneumonia and other lung conditions. © RSNA, 2020 Online supplemental material is available for this article.Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performance. Materials and Methods In this retrospective and multicenter study, a deep learning model, the COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT scans for the detection of COVID-19. CT scans of community-acquired pneumonia (CAP) and other non-pneumonia abnormalities were included to test the robustness of the model. The datasets were collected from six hospitals between August 2016 and February 2020. Diagnostic performance was assessed with the area under the receiver operating characteristic curve, sensitivity, and specificity. Results The collected dataset consisted of 4352 chest CT scans from 3322 patients. The average patient age (±standard deviation) was 49 years ± 15, and there were slightly more men than women (1838 vs 1484, respectively; P = .29). The per-scan sensitivity and specificity for detecting COVID-19 in the independent test set was 90% (95% confidence interval [CI]: 83%, 94%; 114 of 127 scans) and 96% (95% CI: 93%, 98%; 294 of 307 scans), respectively, with an area under the receiver operating characteristic curve of 0.96 (P < .001). The per-scan sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175 scans) and 92% (239 of 259 scans), respectively, with an area under the receiver operating characteristic curve of 0.95 (95% CI: 0.93, 0.97). Conclusion A deep learning model can accurately detect coronavirus 2019 and differentiate it from community-acquired pneumonia and other lung conditions. © RSNA, 2020 Online supplemental material is available for this article.
Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performance. Materials and Methods In this retrospective and multicenter study, a deep learning model, the COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT scans for the detection of COVID-19. CT scans of community-acquired pneumonia (CAP) and other non-pneumonia abnormalities were included to test the robustness of the model. The datasets were collected from six hospitals between August 2016 and February 2020. Diagnostic performance was assessed with the area under the receiver operating characteristic curve, sensitivity, and specificity. Results The collected dataset consisted of 4352 chest CT scans from 3322 patients. The average patient age (±standard deviation) was 49 years ± 15, and there were slightly more men than women (1838 vs 1484, respectively; = .29). The per-scan sensitivity and specificity for detecting COVID-19 in the independent test set was 90% (95% confidence interval [CI]: 83%, 94%; 114 of 127 scans) and 96% (95% CI: 93%, 98%; 294 of 307 scans), respectively, with an area under the receiver operating characteristic curve of 0.96 ( < .001). The per-scan sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175 scans) and 92% (239 of 259 scans), respectively, with an area under the receiver operating characteristic curve of 0.95 (95% CI: 0.93, 0.97). Conclusion A deep learning model can accurately detect coronavirus 2019 and differentiate it from community-acquired pneumonia and other lung conditions. © RSNA, 2020
Author Bai, Junjie
Liu, Daliang
Zhang, Shiqin
Li, Lin
Fang, Xisheng
Xu, Zeguo
Xia, Juan
Wang, Xin
Cao, Kunlin
Xia, Jun
Qin, Lixin
Song, Qi
Kong, Bin
Wang, Guisheng
Xu, Qizhong
Yin, Youbing
Fang, Zhenghan
Lu, Yi
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0001-9903-8049
  surname: Li
  fullname: Li, Lin
– sequence: 2
  givenname: Lixin
  orcidid: 0000-0003-0966-3006
  surname: Qin
  fullname: Qin, Lixin
– sequence: 3
  givenname: Zeguo
  orcidid: 0000-0003-3610-0436
  surname: Xu
  fullname: Xu, Zeguo
– sequence: 4
  givenname: Youbing
  orcidid: 0000-0001-9913-134X
  surname: Yin
  fullname: Yin, Youbing
– sequence: 5
  givenname: Xin
  orcidid: 0000-0002-7528-2407
  surname: Wang
  fullname: Wang, Xin
– sequence: 6
  givenname: Bin
  orcidid: 0000-0003-2108-5341
  surname: Kong
  fullname: Kong, Bin
– sequence: 7
  givenname: Junjie
  orcidid: 0000-0002-9134-1024
  surname: Bai
  fullname: Bai, Junjie
– sequence: 8
  givenname: Yi
  orcidid: 0000-0002-6793-6212
  surname: Lu
  fullname: Lu, Yi
– sequence: 9
  givenname: Zhenghan
  orcidid: 0000-0002-2874-6619
  surname: Fang
  fullname: Fang, Zhenghan
– sequence: 10
  givenname: Qi
  orcidid: 0000-0001-9805-1946
  surname: Song
  fullname: Song, Qi
– sequence: 11
  givenname: Kunlin
  orcidid: 0000-0003-2361-151X
  surname: Cao
  fullname: Cao, Kunlin
– sequence: 12
  givenname: Daliang
  orcidid: 0000-0002-3496-2174
  surname: Liu
  fullname: Liu, Daliang
– sequence: 13
  givenname: Guisheng
  orcidid: 0000-0002-5342-3870
  surname: Wang
  fullname: Wang, Guisheng
– sequence: 14
  givenname: Qizhong
  orcidid: 0000-0001-7748-9586
  surname: Xu
  fullname: Xu, Qizhong
– sequence: 15
  givenname: Xisheng
  orcidid: 0000-0003-3174-4267
  surname: Fang
  fullname: Fang, Xisheng
– sequence: 16
  givenname: Shiqin
  orcidid: 0000-0001-6677-1519
  surname: Zhang
  fullname: Zhang, Shiqin
– sequence: 17
  givenname: Juan
  orcidid: 0000-0002-9663-6577
  surname: Xia
  fullname: Xia, Juan
– sequence: 18
  givenname: Jun
  orcidid: 0000-0002-5689-0343
  surname: Xia
  fullname: Xia, Jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32191588$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFH8AF-cglxR_xxuG2ZAusVKk9tFyjiTNZjBK79QfS_gl-My5bQOKA5jCamecdaeY9IyfOOyTkNWcXnNf6XYDR-vlCsMdgLVPPyIor0VRccnVCVoxJWemat6fkLMZvjPFa6eYFOZWCt1xpvSI_7qJ1e7oJyU7WWJjpziWcZ7tHZ5AmT7eY0CTaXX_ZbSveUnAj7fyyZGfToQLzkG3Akd44zIt3FugHiKX2jt7kuXQgHGh3-55efoc5Q7Jl4CeaviLdWtg7H5M1dGNMDmAOL8nzCeaIr57yObn7eHnbfa6urj_tus1VZWrOUjWiWMtRiUnLVsi6NoOqhRlHEEyXARtAN8rgumEIwNCoUYuJaY5mYgaHQZ6Tt8e998E_ZIypX2w05W5w6HPshdR8LXS7FgV984TmYcGxvw92KTf1v39YAH4ETPAxBpz-IJz1jz71R5_6vz4VTfOPxtj06zkpgJ3_o_wJyymaMQ
CitedBy_id crossref_primary_10_1148_ryai_2021210097
crossref_primary_10_1155_2022_3035426
crossref_primary_10_1186_s12879_023_08303_y
crossref_primary_10_1080_13669877_2022_2077411
crossref_primary_10_1007_s12530_023_09484_2
crossref_primary_10_1155_2020_9756518
crossref_primary_10_1016_j_ejro_2023_100497
crossref_primary_10_1016_j_jdent_2022_104107
crossref_primary_10_1177_2150132720963634
crossref_primary_10_1016_j_eswa_2023_122805
crossref_primary_10_1140_epjp_s13360_023_03745_4
crossref_primary_10_1016_j_compbiomed_2021_104575
crossref_primary_10_3390_jpm12091465
crossref_primary_10_3390_cancers13081960
crossref_primary_10_1007_s10489_020_02149_6
crossref_primary_10_1016_j_compbiomed_2021_104348
crossref_primary_10_5334_jbsr_2714
crossref_primary_10_7759_cureus_38373
crossref_primary_10_1142_S0219691322500588
crossref_primary_10_1007_s11042_023_15857_1
crossref_primary_10_1016_j_compbiomed_2021_104585
crossref_primary_10_2174_1573405618666220803123626
crossref_primary_10_3390_tomography8030134
crossref_primary_10_1128_CMR_00028_20
crossref_primary_10_2174_0115680266282179240124072121
crossref_primary_10_2196_23315
crossref_primary_10_1109_JBHI_2020_3030853
crossref_primary_10_1016_j_patcog_2021_108071
crossref_primary_10_3390_electronics11213511
crossref_primary_10_1007_s11071_021_06371_w
crossref_primary_10_3390_diagnostics13040584
crossref_primary_10_3390_ijerph18062842
crossref_primary_10_3390_s22031211
crossref_primary_10_1007_s11042_023_17884_4
crossref_primary_10_1007_s11547_020_01232_9
crossref_primary_10_1016_j_ejrad_2020_109041
crossref_primary_10_1016_j_neucom_2025_129731
crossref_primary_10_3390_pathogens12010017
crossref_primary_10_1109_TII_2020_3048391
crossref_primary_10_31590_ejosat_1009611
crossref_primary_10_1109_TAI_2022_3147440
crossref_primary_10_1515_med_2024_1110
crossref_primary_10_1016_j_cmpb_2021_106406
crossref_primary_10_31590_ejosat_898385
crossref_primary_10_1587_essfr_15_4_258
crossref_primary_10_1002_ima_22862
crossref_primary_10_1007_s00521_022_07709_0
crossref_primary_10_1183_16000617_0181_2020
crossref_primary_10_3390_jcdd9080268
crossref_primary_10_1002_ima_22627
crossref_primary_10_1109_JBHI_2020_3012383
crossref_primary_10_1007_s00500_021_06137_x
crossref_primary_10_1148_radiol_2020201178
crossref_primary_10_1002_oca_2806
crossref_primary_10_2196_21394
crossref_primary_10_1016_j_media_2022_102421
crossref_primary_10_1016_j_jiph_2021_04_005
crossref_primary_10_34256_ijcci2315
crossref_primary_10_3390_ijerph20032731
crossref_primary_10_1016_j_stlm_2021_100013
crossref_primary_10_1117_1_JMI_10_4_044504
crossref_primary_10_1016_j_imu_2022_100929
crossref_primary_10_1016_j_jacr_2020_09_044
crossref_primary_10_1177_15593258221082896
crossref_primary_10_1155_2021_4733167
crossref_primary_10_1109_TNNLS_2021_3126305
crossref_primary_10_3390_cancers12123822
crossref_primary_10_3389_fbioe_2020_00898
crossref_primary_10_1016_j_bspc_2023_105563
crossref_primary_10_1109_JBHI_2021_3103839
crossref_primary_10_23736_S2723_9284_23_00256_0
crossref_primary_10_3390_signals3020019
crossref_primary_10_1007_s00521_023_08997_w
crossref_primary_10_1109_ACCESS_2020_3016780
crossref_primary_10_1016_j_ibmed_2020_100009
crossref_primary_10_1148_radiol_231643
crossref_primary_10_3390_diagnostics13030551
crossref_primary_10_1186_s12880_020_00521_z
crossref_primary_10_1016_j_media_2022_102605
crossref_primary_10_1016_j_patcog_2021_108083
crossref_primary_10_31083_j_rcm_2020_03_120
crossref_primary_10_1038_s41598_021_96755_0
crossref_primary_10_1109_JBHI_2021_3132157
crossref_primary_10_1007_s12652_021_03686_9
crossref_primary_10_3390_app11157004
crossref_primary_10_1007_s10489_022_03431_5
crossref_primary_10_1016_j_compbiomed_2022_105976
crossref_primary_10_3390_sym14051003
crossref_primary_10_1007_s11042_022_11913_4
crossref_primary_10_1109_ACCESS_2020_3027685
crossref_primary_10_1109_TMI_2020_2995965
crossref_primary_10_1109_JBHI_2022_3197666
crossref_primary_10_1007_s00330_022_09303_3
crossref_primary_10_1080_10408363_2020_1783198
crossref_primary_10_1109_ACCESS_2021_3058537
crossref_primary_10_2196_25535
crossref_primary_10_31033_ijemr_9_2_22
crossref_primary_10_1016_j_displa_2022_102150
crossref_primary_10_1186_s40794_021_00131_9
crossref_primary_10_3389_fmed_2021_768467
crossref_primary_10_1186_s42492_024_00168_5
crossref_primary_10_35784_acs_2022_31
crossref_primary_10_1109_ACCESS_2023_3236812
crossref_primary_10_1109_TMI_2020_3000314
crossref_primary_10_1055_s_0042_1759889
crossref_primary_10_1016_j_arth_2020_10_024
crossref_primary_10_1016_j_cmpb_2021_105993
crossref_primary_10_1016_j_asoc_2020_106906
crossref_primary_10_32604_cmc_2022_018547
crossref_primary_10_3390_electronics11234008
crossref_primary_10_1093_bib_bbab460
crossref_primary_10_3390_electronics12183878
crossref_primary_10_3390_healthcare11131950
crossref_primary_10_1016_j_jormas_2021_04_001
crossref_primary_10_20473_mkp_V36I12023_58_71
crossref_primary_10_3390_healthcare10030541
crossref_primary_10_1016_j_diii_2021_05_006
crossref_primary_10_1002_sd_2706
crossref_primary_10_3389_fmed_2021_695185
crossref_primary_10_3390_app11031238
crossref_primary_10_3390_healthcare10091771
crossref_primary_10_1007_s00330_020_07087_y
crossref_primary_10_1007_s11042_024_19350_1
crossref_primary_10_1088_1361_6560_abf717
crossref_primary_10_2174_1573405619666221222161832
crossref_primary_10_3390_healthcare10102072
crossref_primary_10_1109_JSEN_2020_3004568
crossref_primary_10_17798_bitlisfen_1346730
crossref_primary_10_3934_math_2024998
crossref_primary_10_1002_ima_22812
crossref_primary_10_5334_jbsr_2330
crossref_primary_10_2174_1573405618666220928145344
crossref_primary_10_1007_s42979_022_01035_x
crossref_primary_10_3390_healthcare9091099
crossref_primary_10_1007_s11548_022_02769_y
crossref_primary_10_1016_j_jtice_2020_11_024
crossref_primary_10_1016_j_jksuci_2021_07_005
crossref_primary_10_1109_OJEMB_2024_3367236
crossref_primary_10_1155_2021_8869372
crossref_primary_10_1007_s11277_021_08523_y
crossref_primary_10_3390_ai1030027
crossref_primary_10_2139_ssrn_4123142
crossref_primary_10_3390_jcm13216415
crossref_primary_10_5114_pjr_2022_119027
crossref_primary_10_1016_j_acra_2021_03_001
crossref_primary_10_3389_fmed_2023_1192376
crossref_primary_10_1007_s11042_022_12450_w
crossref_primary_10_1024_1661_8157_a003512
crossref_primary_10_1155_2023_6070970
crossref_primary_10_1148_ryai_220170
crossref_primary_10_1016_j_clinimag_2021_09_007
crossref_primary_10_1016_j_immuno_2023_100021
crossref_primary_10_1155_2021_6799202
crossref_primary_10_1007_s11042_023_15029_1
crossref_primary_10_1016_j_biopha_2021_112353
crossref_primary_10_1111_exsy_13141
crossref_primary_10_3390_medicina58091288
crossref_primary_10_1109_TIP_2021_3058783
crossref_primary_10_1007_s11547_022_01518_0
crossref_primary_10_32604_csse_2022_021438
crossref_primary_10_1007_s11760_022_02302_3
crossref_primary_10_4018_IJSKD_324164
crossref_primary_10_15212_AMM_2022_0037
crossref_primary_10_3390_diagnostics13122129
crossref_primary_10_1007_s00354_021_00121_7
crossref_primary_10_1067_j_cpradiol_2020_06_009
crossref_primary_10_1007_s11042_024_18670_6
crossref_primary_10_2174_1573405617666210713113439
crossref_primary_10_1007_s42600_020_00110_7
crossref_primary_10_1080_08839514_2022_2055398
crossref_primary_10_1109_TNNLS_2022_3230821
crossref_primary_10_1002_med_21846
crossref_primary_10_1016_j_inffus_2020_10_004
crossref_primary_10_1109_OJEMB_2020_3026928
crossref_primary_10_1016_j_asoc_2022_109111
crossref_primary_10_1016_j_patcog_2021_107826
crossref_primary_10_1148_radiol_2020202439
crossref_primary_10_1038_s41746_021_00453_0
crossref_primary_10_1016_j_eswa_2021_115519
crossref_primary_10_1038_s41598_022_25539_x
crossref_primary_10_1177_2472630320983813
crossref_primary_10_1007_s11760_023_02561_8
crossref_primary_10_1093_bib_bbaa331
crossref_primary_10_1016_j_arbres_2021_08_006
crossref_primary_10_1016_j_crad_2022_11_006
crossref_primary_10_3390_app122010535
crossref_primary_10_4018_IJSSMET_323452
crossref_primary_10_1007_s12652_020_02883_2
crossref_primary_10_32604_cmc_2022_024589
crossref_primary_10_1148_radiol_2020203511
crossref_primary_10_1007_s10489_020_01770_9
crossref_primary_10_1038_s41598_020_74164_z
crossref_primary_10_1016_j_artmed_2021_102114
crossref_primary_10_2139_ssrn_3589222
crossref_primary_10_1007_s00330_022_08730_6
crossref_primary_10_1155_2021_6658058
crossref_primary_10_1016_j_mex_2023_102507
crossref_primary_10_1109_OJCS_2022_3206407
crossref_primary_10_1016_j_patrec_2020_09_010
crossref_primary_10_1055_a_1388_8147
crossref_primary_10_3389_frcmn_2021_645040
crossref_primary_10_3390_diagnostics13203195
crossref_primary_10_1016_j_artmed_2022_102427
crossref_primary_10_3390_diagnostics11112049
crossref_primary_10_1016_j_compbiomed_2022_105340
crossref_primary_10_1016_j_patcog_2021_107848
crossref_primary_10_5124_jkma_2021_64_10_664
crossref_primary_10_1080_23080477_2023_2246285
crossref_primary_10_1016_j_ejrad_2020_109233
crossref_primary_10_1186_s12879_023_08173_4
crossref_primary_10_3389_fmed_2021_729287
crossref_primary_10_3390_s21165482
crossref_primary_10_1016_j_bspc_2021_103126
crossref_primary_10_1109_TAI_2021_3115093
crossref_primary_10_1016_j_egyai_2020_100013
crossref_primary_10_4103_rid_RID_D_24_00008
crossref_primary_10_5812_amh_148614
crossref_primary_10_1016_j_inffus_2020_11_005
crossref_primary_10_1049_ipr2_13246
crossref_primary_10_32604_cmc_2022_019809
crossref_primary_10_70436_nuijb_v3i02_150
crossref_primary_10_1007_s13246_022_01102_w
crossref_primary_10_3390_bioengineering9040153
crossref_primary_10_1002_hbe2_242
crossref_primary_10_5812_iranjradiol_112562
crossref_primary_10_1177_09720634241229252
crossref_primary_10_5812_archcid_103232
crossref_primary_10_1016_j_ipha_2024_04_003
crossref_primary_10_1088_1757_899X_1022_1_012049
crossref_primary_10_1177_20552076241257045
crossref_primary_10_1007_s11547_022_01580_8
crossref_primary_10_1007_s00530_023_01083_0
crossref_primary_10_1007_s42979_021_00841_z
crossref_primary_10_1109_ACCESS_2020_2995597
crossref_primary_10_3390_jcm12216864
crossref_primary_10_1016_j_adro_2021_100683
crossref_primary_10_1007_s13246_021_01093_0
crossref_primary_10_3390_metabo12111058
crossref_primary_10_1016_j_imj_2024_100095
crossref_primary_10_16984_saufenbilder_903886
crossref_primary_10_1016_j_inffus_2021_07_016
crossref_primary_10_2196_64284
crossref_primary_10_3389_fmed_2021_699706
crossref_primary_10_3389_fmicb_2021_729455
crossref_primary_10_1002_mp_15549
crossref_primary_10_1038_s41598_020_76550_z
crossref_primary_10_1007_s11517_022_02758_y
crossref_primary_10_1038_s41598_021_90411_3
crossref_primary_10_32604_cmc_2021_016230
crossref_primary_10_1056_CAT_21_0239
crossref_primary_10_1148_radiol_2020209016
crossref_primary_10_1007_s11633_020_1266_8
crossref_primary_10_1109_JBHI_2021_3119325
crossref_primary_10_1080_17455030_2022_2091807
crossref_primary_10_1097_MD_0000000000026855
crossref_primary_10_1016_j_compbiomed_2022_105350
crossref_primary_10_1785_0120210033
crossref_primary_10_1186_s13054_022_04190_y
crossref_primary_10_3390_jimaging10020045
crossref_primary_10_1183_23120541_00579_2021
crossref_primary_10_3390_technologies9040098
crossref_primary_10_52711_0974_360X_2021_00836
crossref_primary_10_1097_RLI_0000000000000763
crossref_primary_10_18093_0869_0189_2024_34_1_90_104
crossref_primary_10_1111_exsy_13099
crossref_primary_10_1109_JIOT_2021_3067605
crossref_primary_10_3390_jimaging8090237
crossref_primary_10_1007_s10844_022_00707_7
crossref_primary_10_1155_2021_5550344
crossref_primary_10_1002_jmv_27777
crossref_primary_10_1016_j_jmir_2022_10_196
crossref_primary_10_1038_s41598_023_32462_2
crossref_primary_10_1007_s44196_023_00236_3
crossref_primary_10_4103_crst_crst_39_22
crossref_primary_10_1016_j_bbe_2021_09_002
crossref_primary_10_1155_2022_1306664
crossref_primary_10_1148_radiol_2021204522
crossref_primary_10_3389_fmed_2023_1113030
crossref_primary_10_5847_wjem_j_1920_8642_2022_026
crossref_primary_10_1109_TPAMI_2023_3240886
crossref_primary_10_1016_j_jval_2021_11_1369
crossref_primary_10_3389_fimmu_2021_724914
crossref_primary_10_1017_ice_2020_331
crossref_primary_10_1089_ped_2020_1166
crossref_primary_10_1055_s_0041_1726513
crossref_primary_10_30794_pausbed_745767
crossref_primary_10_1038_s41467_020_17971_2
crossref_primary_10_3390_life12111709
crossref_primary_10_1177_00207314211017469
crossref_primary_10_1007_s11082_024_06507_3
crossref_primary_10_1142_S0219467822500395
crossref_primary_10_1007_s10140_021_02008_y
crossref_primary_10_1155_cjid_3804576
crossref_primary_10_55195_jscai_1467768
crossref_primary_10_1007_s10278_023_00949_z
crossref_primary_10_15446_ing_investig_v42n1_88825
crossref_primary_10_3390_diagnostics15030248
crossref_primary_10_1148_ryai_2020200098
crossref_primary_10_1259_bjr_20200511
crossref_primary_10_3389_fnbot_2020_617327
crossref_primary_10_4329_wjr_v13_i4_75
crossref_primary_10_1016_j_radi_2020_09_010
crossref_primary_10_1007_s00330_020_07553_7
crossref_primary_10_1109_RBME_2020_2987975
crossref_primary_10_32604_iasc_2022_021211
crossref_primary_10_1016_j_bspc_2022_103770
crossref_primary_10_3390_jcm9051495
crossref_primary_10_32604_cmc_2021_014767
crossref_primary_10_46300_91016_2022_9_7
crossref_primary_10_1109_TCBB_2021_3066331
crossref_primary_10_3390_healthcare8040371
crossref_primary_10_1007_s12539_020_00408_1
crossref_primary_10_18006_2022_10_1__211_226
crossref_primary_10_1016_j_imu_2022_101059
crossref_primary_10_48084_etasr_4613
crossref_primary_10_3389_fonc_2020_01267
crossref_primary_10_1007_s11547_020_01195_x
crossref_primary_10_1007_s11760_022_02308_x
crossref_primary_10_3390_bioengineering10020203
crossref_primary_10_6087_kcse_338
crossref_primary_10_1016_j_patrec_2021_10_027
crossref_primary_10_1111_dth_13654
crossref_primary_10_1016_j_jcct_2020_08_013
crossref_primary_10_1007_s00134_021_06352_y
crossref_primary_10_2139_ssrn_4068372
crossref_primary_10_1177_14604582211033017
crossref_primary_10_1038_s41598_022_05069_2
crossref_primary_10_1136_bmjgh_2024_015755
crossref_primary_10_1016_j_bspc_2021_103415
crossref_primary_10_1259_bjr_20200574
crossref_primary_10_3390_diagnostics12030741
crossref_primary_10_1038_s41591_020_0931_3
crossref_primary_10_46829_hsijournal_2021_12_2_2_277_280
crossref_primary_10_1007_s12204_021_2392_3
crossref_primary_10_3389_fimmu_2021_732756
crossref_primary_10_1109_JBHI_2020_3018181
crossref_primary_10_3389_fgene_2021_637362
crossref_primary_10_3390_diagnostics14121313
crossref_primary_10_3390_cancers13040652
crossref_primary_10_3390_sym14071398
crossref_primary_10_1016_j_neucom_2022_02_018
crossref_primary_10_1145_3462635
crossref_primary_10_3390_app11083414
crossref_primary_10_1016_j_compbiomed_2023_106567
crossref_primary_10_21015_vtse_v10i3_1135
crossref_primary_10_1016_j_bspc_2022_103703
crossref_primary_10_3390_diagnostics11060991
crossref_primary_10_1016_j_csbj_2021_02_016
crossref_primary_10_3390_electronics12010080
crossref_primary_10_3390_ijerph18063056
crossref_primary_10_1016_j_imed_2021_06_004
crossref_primary_10_1513_AnnalsATS_202006_600FR
crossref_primary_10_1002_ima_23129
crossref_primary_10_1177_2472630320962002
crossref_primary_10_1038_s41598_021_81844_x
crossref_primary_10_3390_diagnostics12030765
crossref_primary_10_3934_mbe_2023368
crossref_primary_10_1016_j_bspc_2021_102588
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1016_j_patter_2021_100269
crossref_primary_10_1016_j_bspc_2022_103715
crossref_primary_10_3390_v15020304
crossref_primary_10_3389_fmed_2021_730441
crossref_primary_10_1007_s40747_021_00312_1
crossref_primary_10_1007_s40137_021_00297_3
crossref_primary_10_1109_RBME_2020_2990959
crossref_primary_10_5812_iranjradiol_109439
crossref_primary_10_1109_JTEHM_2021_3134096
crossref_primary_10_1007_s12553_021_00630_x
crossref_primary_10_1109_TCYB_2020_3042837
crossref_primary_10_1080_21681163_2022_2111722
crossref_primary_10_1080_03091902_2024_2321846
crossref_primary_10_32604_csse_2022_021980
crossref_primary_10_3390_diagnostics11010041
crossref_primary_10_1186_s41747_020_00203_z
crossref_primary_10_3389_frai_2021_598932
crossref_primary_10_3390_make5030037
crossref_primary_10_1109_ACCESS_2021_3067824
crossref_primary_10_1016_j_jmir_2020_04_002
crossref_primary_10_1186_s13049_020_00808_8
crossref_primary_10_1016_j_jestch_2020_12_026
crossref_primary_10_1016_j_compmedimag_2021_101933
crossref_primary_10_2196_22841
crossref_primary_10_1016_j_cmpb_2022_106731
crossref_primary_10_3389_fpubh_2021_726144
crossref_primary_10_1136_bmjresp_2021_001045
crossref_primary_10_7326_M20_1301
crossref_primary_10_1016_j_compbiomed_2021_104857
crossref_primary_10_1186_s43055_021_00592_0
crossref_primary_10_2147_IDR_S296346
crossref_primary_10_3390_s20113089
crossref_primary_10_3233_XST_240015
crossref_primary_10_1016_j_asej_2021_10_025
crossref_primary_10_1007_s10489_020_01997_6
crossref_primary_10_1007_s11042_024_19046_6
crossref_primary_10_1038_s41578_020_00247_y
crossref_primary_10_1016_j_eswa_2022_118650
crossref_primary_10_1109_ACCESS_2021_3061621
crossref_primary_10_1088_1742_6596_2010_1_012175
crossref_primary_10_12720_jait_15_5_622_629
crossref_primary_10_1007_s11042_023_14642_4
crossref_primary_10_1186_s43055_020_00355_3
crossref_primary_10_1007_s11547_020_01197_9
crossref_primary_10_1016_j_compbiomed_2023_107451
crossref_primary_10_1016_j_asoc_2021_107645
crossref_primary_10_1007_s10278_022_00734_4
crossref_primary_10_1055_a_1388_7950
crossref_primary_10_1016_j_compbiomed_2021_104834
crossref_primary_10_1016_j_drudis_2021_07_002
crossref_primary_10_1007_s11277_023_10367_7
crossref_primary_10_1016_j_compbiomed_2021_104837
crossref_primary_10_1016_j_jiph_2021_09_018
crossref_primary_10_3389_fpubh_2022_874455
crossref_primary_10_1016_j_imed_2021_05_005
crossref_primary_10_1016_j_mcpdig_2023_08_006
crossref_primary_10_1016_j_csbj_2021_05_010
crossref_primary_10_25046_aj0602111
crossref_primary_10_48175_IJARSCT_5831
crossref_primary_10_1007_s10916_021_01757_0
crossref_primary_10_3389_fmed_2022_924979
crossref_primary_10_1088_1757_899X_979_1_012016
crossref_primary_10_1109_TUFFC_2021_3068190
crossref_primary_10_1016_j_diii_2020_11_008
crossref_primary_10_1109_JBHI_2020_3030224
crossref_primary_10_1109_TEM_2021_3094544
crossref_primary_10_1038_s41598_022_05532_0
crossref_primary_10_1016_j_cmpb_2021_106004
crossref_primary_10_15302_J_QB_021_0274
crossref_primary_10_1016_j_compbiomed_2021_104605
crossref_primary_10_1016_j_bbe_2021_11_004
crossref_primary_10_3390_molecules27134035
crossref_primary_10_1016_j_jjimei_2022_100100
crossref_primary_10_1080_13682199_2023_2170768
crossref_primary_10_1155_2022_2564022
crossref_primary_10_3390_diagnostics12030738
crossref_primary_10_1515_cclm_2020_1294
crossref_primary_10_3390_su142416464
crossref_primary_10_1007_s00530_021_00800_x
crossref_primary_10_3390_s21020455
crossref_primary_10_1155_2021_9999368
crossref_primary_10_1002_ima_22695
crossref_primary_10_1016_j_patcog_2021_108499
crossref_primary_10_23736_S2723_9284_21_00152_4
crossref_primary_10_7759_cureus_22203
crossref_primary_10_1097_CM9_0000000000002058
crossref_primary_10_32604_cmc_2022_020455
crossref_primary_10_1007_s00500_023_08971_7
crossref_primary_10_1016_j_compbiomed_2021_104895
crossref_primary_10_3389_fmed_2021_706794
crossref_primary_10_1148_radiol_222536
crossref_primary_10_1128_CMR_00228_20
crossref_primary_10_1007_s10462_021_10106_z
crossref_primary_10_1007_s11063_022_11023_0
crossref_primary_10_3390_ijerph20075335
crossref_primary_10_1186_s13054_022_03915_3
crossref_primary_10_1016_j_neucom_2021_06_024
crossref_primary_10_1097_RCT_0000000000001224
crossref_primary_10_1109_TAI_2020_3020521
crossref_primary_10_1007_s12530_022_09466_w
crossref_primary_10_1097_MD_0000000000026161
crossref_primary_10_3390_tomography8040162
crossref_primary_10_1007_s42247_020_00143_9
crossref_primary_10_1038_s41551_020_00633_5
crossref_primary_10_1109_ACCESS_2021_3078080
crossref_primary_10_1186_s12911_020_01359_9
crossref_primary_10_3390_jcm12227039
crossref_primary_10_1259_bjr_20210759
crossref_primary_10_1007_s13205_020_02581_y
crossref_primary_10_1016_j_compbiomed_2021_104665
crossref_primary_10_1016_j_patcog_2021_108005
crossref_primary_10_1016_j_radcr_2020_04_031
crossref_primary_10_1155_2021_6633755
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_1016_j_patcog_2025_111371
crossref_primary_10_3389_fgene_2020_587829
crossref_primary_10_3390_diagnostics11101924
crossref_primary_10_32604_cmc_2021_014956
crossref_primary_10_3389_fphy_2023_1095277
crossref_primary_10_1016_j_chaos_2020_110245
crossref_primary_10_1038_s42256_020_0185_2
crossref_primary_10_3390_ijerph19105901
crossref_primary_10_3390_jimaging6120131
crossref_primary_10_1016_j_compbiomed_2022_105806
crossref_primary_10_1007_s13198_022_01788_x
crossref_primary_10_3390_jimaging8120320
crossref_primary_10_3390_technologies11050128
crossref_primary_10_1038_s41598_022_13039_x
crossref_primary_10_3390_diagnostics10060358
crossref_primary_10_1088_2632_2153_abf22c
crossref_primary_10_1177_21501319221113544
crossref_primary_10_2196_27468
crossref_primary_10_1186_s12938_020_00809_9
crossref_primary_10_1109_ACCESS_2020_3040821
crossref_primary_10_3389_fcvm_2020_00145
crossref_primary_10_1038_s41598_023_46461_w
crossref_primary_10_1016_j_acra_2021_08_008
crossref_primary_10_1016_j_bbe_2021_10_004
crossref_primary_10_1186_s12967_020_02692_3
crossref_primary_10_7759_cureus_44658
crossref_primary_10_1016_j_engappai_2024_108999
crossref_primary_10_1121_10_0006104
crossref_primary_10_3390_make2040027
crossref_primary_10_1038_s41390_020_0947_x
crossref_primary_10_1109_ACCESS_2022_3153056
crossref_primary_10_1007_s11547_020_01305_9
crossref_primary_10_1155_2021_6677314
crossref_primary_10_1016_j_asoc_2022_108610
crossref_primary_10_1016_j_isci_2022_104031
crossref_primary_10_1016_j_ymeth_2021_07_001
crossref_primary_10_1049_ipr2_12837
crossref_primary_10_1007_s00296_020_04691_5
crossref_primary_10_1016_j_eswa_2024_126323
crossref_primary_10_1371_journal_pone_0271787
crossref_primary_10_1016_j_engappai_2023_106126
crossref_primary_10_1007_s12559_020_09779_5
crossref_primary_10_1016_j_procs_2024_04_007
crossref_primary_10_1109_MSP_2021_3090674
crossref_primary_10_1371_journal_pone_0246582
crossref_primary_10_3346_jkms_2021_36_e46
crossref_primary_10_3390_jpm11050391
crossref_primary_10_1109_TMBMC_2022_3181514
crossref_primary_10_1186_s43055_020_00398_6
crossref_primary_10_1007_s10096_020_04138_6
crossref_primary_10_1016_j_matpr_2022_05_199
crossref_primary_10_1186_s12859_021_04083_x
crossref_primary_10_7717_peerj_cs_349
crossref_primary_10_3390_app12083895
crossref_primary_10_1016_j_compbiomed_2021_104210
crossref_primary_10_1007_s10489_021_02352_z
crossref_primary_10_1016_j_compbiomed_2021_104454
crossref_primary_10_3233_THC_213199
crossref_primary_10_1007_s00530_022_00948_0
crossref_primary_10_1016_S2589_7500_20_30162_X
crossref_primary_10_1016_j_asoc_2022_109851
crossref_primary_10_1002_wics_1647
crossref_primary_10_12998_wjcc_v11_i12_2716
crossref_primary_10_3390_biomedicines10112835
crossref_primary_10_1111_exsy_13427
crossref_primary_10_1134_S0361768822040041
crossref_primary_10_1016_j_patcog_2021_108168
crossref_primary_10_7717_peerj_12073
crossref_primary_10_24012_dumf_812810
crossref_primary_10_7717_peerj_cs_358
crossref_primary_10_1002_ima_22527
crossref_primary_10_1038_s41598_021_98617_1
crossref_primary_10_1109_ACCESS_2023_3260632
crossref_primary_10_1016_j_fhj_2024_100179
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_3390_jpm11100993
crossref_primary_10_1038_s41598_023_46147_3
crossref_primary_10_1016_j_pmedr_2022_101798
crossref_primary_10_1109_JIOT_2023_3262882
crossref_primary_10_3389_fradi_2024_1487895
crossref_primary_10_3389_fmed_2021_753055
crossref_primary_10_1109_ACCESS_2021_3058854
crossref_primary_10_1016_j_artmed_2022_102372
crossref_primary_10_3390_app11178039
crossref_primary_10_1016_j_asoc_2022_109625
crossref_primary_10_1016_j_bspc_2022_104297
crossref_primary_10_1155_2021_3281135
crossref_primary_10_1016_j_procs_2022_09_165
crossref_primary_10_4103_japt_japt_13_23
crossref_primary_10_1007_s00330_021_07797_x
crossref_primary_10_1007_s11547_021_01402_3
crossref_primary_10_1016_j_asoc_2022_108780
crossref_primary_10_1109_ACCESS_2022_3176883
crossref_primary_10_32604_cmc_2021_016141
crossref_primary_10_1016_j_imu_2021_100596
crossref_primary_10_1007_s11277_024_11309_7
crossref_primary_10_3390_diagnostics12061501
crossref_primary_10_1016_j_irbm_2021_01_004
crossref_primary_10_1016_j_imu_2021_100591
crossref_primary_10_3390_diagnostics12071527
crossref_primary_10_1145_3466690
crossref_primary_10_18287_2412_6179_CO_765
crossref_primary_10_1080_03014460_2020_1839132
crossref_primary_10_1186_s13023_024_03352_1
crossref_primary_10_1007_s10278_021_00434_5
crossref_primary_10_1109_TAI_2022_3225372
crossref_primary_10_37394_23208_2024_21_21
crossref_primary_10_3390_s21062215
crossref_primary_10_1002_hsr2_1244
crossref_primary_10_1016_j_acra_2021_09_002
crossref_primary_10_1117_1_JEI_31_4_043032
crossref_primary_10_2196_23693
crossref_primary_10_1016_j_actatropica_2024_107277
crossref_primary_10_1093_comjnl_bxab071
crossref_primary_10_2174_1574888X18666221221123505
crossref_primary_10_1016_j_bspc_2021_102814
crossref_primary_10_1111_ijcp_13760
crossref_primary_10_1007_s11517_022_02619_8
crossref_primary_10_1007_s11042_024_18153_8
crossref_primary_10_1155_2022_7675925
crossref_primary_10_1016_j_imu_2021_100526
crossref_primary_10_7717_peerj_cs_306
crossref_primary_10_3390_diagnostics11030530
crossref_primary_10_7717_peerj_cs_553
crossref_primary_10_7717_peerj_cs_313
crossref_primary_10_32604_iasc_2021_018265
crossref_primary_10_1186_s13027_020_00330_7
crossref_primary_10_2196_24572
crossref_primary_10_3390_healthcare9111545
crossref_primary_10_1007_s12539_021_00431_w
crossref_primary_10_3389_fdata_2024_1489020
crossref_primary_10_1016_j_media_2022_102722
crossref_primary_10_1155_2020_8856801
crossref_primary_10_3390_healthcare10020403
crossref_primary_10_1007_s00259_020_04929_1
crossref_primary_10_3390_ijerph17082906
crossref_primary_10_1259_bjro_20200043
crossref_primary_10_7717_peerj_cs_564
crossref_primary_10_1016_j_neucom_2022_05_009
crossref_primary_10_1016_j_asoc_2021_108291
crossref_primary_10_1186_s12938_020_00831_x
crossref_primary_10_1093_comjnl_bxab051
crossref_primary_10_32604_cmes_2021_016981
crossref_primary_10_1109_JBHI_2020_3034296
crossref_primary_10_1088_1361_6560_ac34b2
crossref_primary_10_7759_cureus_31897
crossref_primary_10_1038_s41598_021_88053_6
crossref_primary_10_31011_reaid_2023_v_97_n_4_art_1834
crossref_primary_10_1016_j_vacune_2020_12_002
crossref_primary_10_1007_s10489_020_01888_w
crossref_primary_10_1109_TAI_2022_3149971
crossref_primary_10_1007_s12539_021_00420_z
crossref_primary_10_1007_s00330_020_07042_x
crossref_primary_10_1007_s11265_021_01714_7
crossref_primary_10_1007_s00330_021_08409_4
crossref_primary_10_1007_s12553_023_00792_w
crossref_primary_10_1016_j_bspc_2022_104250
crossref_primary_10_1007_s10489_020_01862_6
crossref_primary_10_53759_7669_jmc202505044
crossref_primary_10_1155_2023_3563696
crossref_primary_10_1109_TAI_2022_3224097
crossref_primary_10_1016_j_bspc_2022_104499
crossref_primary_10_1136_bmjopen_2020_045120
crossref_primary_10_1186_s12879_024_10091_y
crossref_primary_10_1007_s11277_023_10432_1
crossref_primary_10_1007_s00521_021_06189_y
crossref_primary_10_1016_j_asoc_2021_108261
crossref_primary_10_3390_ijerph19095099
crossref_primary_10_1016_j_engappai_2022_105184
crossref_primary_10_1016_S2589_7500_20_30199_0
crossref_primary_10_1109_ACCESS_2022_3187564
crossref_primary_10_1186_s40249_022_00946_4
crossref_primary_10_1007_s11547_023_01691_w
crossref_primary_10_3389_fpubh_2021_768278
crossref_primary_10_3348_jksr_2020_0150
crossref_primary_10_1016_j_bspc_2022_104268
crossref_primary_10_1016_j_chaos_2020_110071
crossref_primary_10_3389_frai_2022_927203
crossref_primary_10_1016_j_radcr_2021_03_038
crossref_primary_10_1186_s12911_022_02022_1
crossref_primary_10_1109_ACCESS_2020_3025164
crossref_primary_10_3390_healthcare10030422
crossref_primary_10_3390_bioengineering9110698
crossref_primary_10_1016_j_eururo_2020_09_031
crossref_primary_10_3390_diagnostics11061029
crossref_primary_10_1007_s10439_022_02958_5
crossref_primary_10_1080_23311916_2021_1958666
crossref_primary_10_1016_j_image_2021_116359
crossref_primary_10_3390_diagnostics12112569
crossref_primary_10_3389_fmed_2020_608525
crossref_primary_10_1007_s11548_020_02299_5
crossref_primary_10_1148_radiol_2021203957
crossref_primary_10_1016_S2213_2600_22_00294_6
crossref_primary_10_1186_s40658_022_00510_x
crossref_primary_10_3389_fphys_2022_1066999
crossref_primary_10_1016_j_asoc_2021_108088
crossref_primary_10_1287_mnsc_2021_4029
crossref_primary_10_1007_s00330_022_09335_9
crossref_primary_10_1016_j_redii_2022_100018
crossref_primary_10_3390_jpm12020309
crossref_primary_10_3390_vaccines8020236
crossref_primary_10_1145_3451357
crossref_primary_10_32604_cmc_2021_014387
crossref_primary_10_32604_csse_2022_021563
crossref_primary_10_4329_wjr_v12_i8_142
crossref_primary_10_1007_s12652_021_03282_x
crossref_primary_10_1109_ACCESS_2023_3279402
crossref_primary_10_1117_1_JMI_9_5_054001
crossref_primary_10_1016_j_eswa_2021_115650
crossref_primary_10_3934_mbe_2021210
crossref_primary_10_1021_acssensors_4c02280
crossref_primary_10_1016_j_bspc_2023_104939
crossref_primary_10_1590_0100_3984_2022_0049
crossref_primary_10_3390_ai2030020
crossref_primary_10_1111_crj_13599
crossref_primary_10_1111_dth_13794
crossref_primary_10_1007_s00330_020_06976_6
crossref_primary_10_1109_TMI_2021_3079709
crossref_primary_10_1186_s12913_022_08146_4
crossref_primary_10_3390_s21248219
crossref_primary_10_3390_info12110471
crossref_primary_10_1177_1535370220938315
crossref_primary_10_1016_j_clinimag_2021_02_044
crossref_primary_10_1016_j_robot_2021_103902
crossref_primary_10_1109_TNNLS_2021_3119071
crossref_primary_10_3390_diagnostics14242786
crossref_primary_10_3233_XST_211047
crossref_primary_10_3390_bioengineering10050529
crossref_primary_10_3390_bdcc7010011
crossref_primary_10_3389_fmicb_2024_1485001
crossref_primary_10_3390_app12125768
crossref_primary_10_1007_s10278_021_00430_9
crossref_primary_10_1007_s00354_022_00176_0
crossref_primary_10_1016_j_clinimag_2021_01_019
crossref_primary_10_1016_j_talanta_2022_123409
crossref_primary_10_1007_s41870_024_01851_9
crossref_primary_10_3390_jimaging7050081
crossref_primary_10_1186_s12879_021_06614_6
crossref_primary_10_32604_cmc_2023_038915
crossref_primary_10_3390_metabo14040195
crossref_primary_10_3389_fonc_2021_781798
crossref_primary_10_1515_jisys_2021_0041
crossref_primary_10_3233_THC_220114
crossref_primary_10_37394_23208_2020_17_14
crossref_primary_10_1016_j_jrras_2022_02_002
crossref_primary_10_3389_fcvm_2021_638011
crossref_primary_10_2196_21439
crossref_primary_10_1016_j_rico_2023_100215
crossref_primary_10_1155_2022_7474304
crossref_primary_10_1007_s10479_021_04154_5
crossref_primary_10_1016_j_asoc_2020_106897
crossref_primary_10_2478_pneum_2024_0008
crossref_primary_10_1142_S0219877021400022
crossref_primary_10_3390_jcm11051437
crossref_primary_10_3390_diagnostics12051045
crossref_primary_10_4329_wjr_v12_i12_272
crossref_primary_10_1007_s13042_024_02411_0
crossref_primary_10_1016_j_chaos_2020_109947
crossref_primary_10_4103_RID_RID_23_22
crossref_primary_10_1016_j_compbiomed_2022_105464
crossref_primary_10_1016_j_compbiomed_2021_105182
crossref_primary_10_1016_j_ijmedinf_2023_105090
crossref_primary_10_1016_j_swevo_2023_101430
crossref_primary_10_1134_S1061830924602150
crossref_primary_10_1080_03772063_2022_2027287
crossref_primary_10_3233_JIFS_220017
crossref_primary_10_1016_j_asoc_2020_106885
crossref_primary_10_32604_cmes_2021_015807
crossref_primary_10_2147_RMHP_S326132
crossref_primary_10_1109_TII_2021_3056686
crossref_primary_10_1155_2021_6627207
crossref_primary_10_34172_doh_2021_09
crossref_primary_10_1016_j_ejmp_2021_04_022
crossref_primary_10_3390_s21206853
crossref_primary_10_1016_j_bspc_2022_103552
crossref_primary_10_1109_TAI_2021_3064913
crossref_primary_10_3389_fpubh_2022_892499
crossref_primary_10_1109_ACCESS_2024_3423689
crossref_primary_10_32604_cmc_2021_014199
crossref_primary_10_2214_AJR_21_26717
crossref_primary_10_7717_peerj_cs_719
crossref_primary_10_3233_JIFS_201985
crossref_primary_10_32604_cmc_2022_028847
crossref_primary_10_1049_ipr2_13106
crossref_primary_10_1109_TII_2021_3057524
crossref_primary_10_1007_s00330_020_06956_w
crossref_primary_10_15212_bioi_2020_0015
crossref_primary_10_3389_fphys_2022_981463
crossref_primary_10_3390_jcm10143100
crossref_primary_10_32604_cmc_2022_020919
crossref_primary_10_11622_smedj_2020045
crossref_primary_10_1109_ACCESS_2022_3159025
crossref_primary_10_3390_e23020204
crossref_primary_10_1016_j_bspc_2023_104724
crossref_primary_10_1007_s11042_022_12484_0
crossref_primary_10_1007_s11042_024_19549_2
crossref_primary_10_1016_j_compbiomed_2022_106338
crossref_primary_10_1007_s11571_021_09712_y
crossref_primary_10_1016_j_compbiomed_2022_106331
crossref_primary_10_1016_j_rmr_2023_12_001
crossref_primary_10_37737_ace_22014
crossref_primary_10_2196_20156
crossref_primary_10_2139_ssrn_3909786
crossref_primary_10_3389_frai_2021_652669
crossref_primary_10_1016_j_health_2023_100176
crossref_primary_10_2196_22320
crossref_primary_10_1016_j_eswa_2023_122317
crossref_primary_10_1016_j_heliyon_2023_e16807
crossref_primary_10_1007_s00259_021_05232_3
crossref_primary_10_3389_fpubh_2021_596938
crossref_primary_10_1007_s10489_020_01829_7
crossref_primary_10_2196_21476
crossref_primary_10_1007_s42979_022_01067_3
crossref_primary_10_1016_j_opresp_2020_100078
crossref_primary_10_1038_s41598_022_24936_6
crossref_primary_10_1007_s11042_023_16017_1
crossref_primary_10_32604_cmc_2022_020140
crossref_primary_10_1007_s11042_023_14941_w
crossref_primary_10_1007_s40747_021_00424_8
crossref_primary_10_17343_sdutfd_902875
crossref_primary_10_1016_j_bspc_2022_103860
crossref_primary_10_1109_JBHI_2020_3009314
crossref_primary_10_20340_vmi_rvz_2020_6_1
crossref_primary_10_1007_s00259_020_05075_4
crossref_primary_10_1136_bmj_m1328
crossref_primary_10_21802_e_GMJ2023_A06
crossref_primary_10_48084_etasr_4503
crossref_primary_10_1007_s11042_020_10010_8
crossref_primary_10_4018_JDM_305731
crossref_primary_10_3389_fpubh_2022_1004117
crossref_primary_10_3390_axioms12100997
crossref_primary_10_3390_pathogens9070519
crossref_primary_10_29328_journal_jprr_1001044
crossref_primary_10_1007_s00354_022_00195_x
crossref_primary_10_1038_s41467_020_18685_1
crossref_primary_10_1007_s13369_020_05212_z
crossref_primary_10_1016_j_jvcir_2023_103775
crossref_primary_10_2196_25181
crossref_primary_10_1007_s00259_020_04953_1
crossref_primary_10_31590_ejosat_1021030
crossref_primary_10_1007_s00521_021_06171_8
crossref_primary_10_1109_TMBMC_2021_3099367
crossref_primary_10_1016_j_chaos_2020_110337
crossref_primary_10_3390_ijerph18168578
crossref_primary_10_1021_acs_jcim_0c01409
crossref_primary_10_1016_j_aej_2022_10_053
crossref_primary_10_1109_TUFFC_2020_3026536
crossref_primary_10_3390_app11094233
crossref_primary_10_1155_2022_4680905
crossref_primary_10_4103_crst_crst_28_21
crossref_primary_10_3389_fams_2023_1303714
crossref_primary_10_1080_0952813X_2021_1908431
crossref_primary_10_1002_app_53949
crossref_primary_10_3390_jpm12040535
crossref_primary_10_1016_j_compbiomed_2022_106136
crossref_primary_10_2196_20756
crossref_primary_10_1007_s11042_021_11257_5
crossref_primary_10_1109_JBHI_2020_3036722
crossref_primary_10_3390_ijerph192013099
crossref_primary_10_1038_s41746_020_00369_1
crossref_primary_10_4329_wjr_v13_i6_192
crossref_primary_10_1109_TNNLS_2021_3054746
crossref_primary_10_4329_wjr_v13_i6_193
crossref_primary_10_2174_1573398X1903230831160911
crossref_primary_10_1007_s11517_022_02611_2
crossref_primary_10_1148_radiol_222462
crossref_primary_10_1007_s10796_021_10131_x
crossref_primary_10_2174_1573405616666200604163954
crossref_primary_10_1097_CM9_0000000000003436
crossref_primary_10_3390_jimaging8100267
crossref_primary_10_1259_bjr_20220058
crossref_primary_10_25259_JCCC_67_2023
crossref_primary_10_3390_ijerph18031117
crossref_primary_10_1109_TCBB_2021_3102584
crossref_primary_10_3390_s21248362
crossref_primary_10_3389_fpubh_2021_648360
crossref_primary_10_1016_j_compbiomed_2022_106156
crossref_primary_10_1038_s41598_021_91305_0
crossref_primary_10_1002_int_22504
crossref_primary_10_1038_s41598_023_27697_y
crossref_primary_10_4103_ijn_IJN_191_20
crossref_primary_10_4329_wjr_v13_i6_171
crossref_primary_10_4329_wjr_v13_i6_172
crossref_primary_10_1186_s12885_021_08773_w
crossref_primary_10_1109_TVCG_2021_3114851
crossref_primary_10_1016_j_jacr_2022_03_013
crossref_primary_10_1186_s12880_021_00723_z
crossref_primary_10_32902_2663_0338_2022_1_23_31
crossref_primary_10_1002_mp_15803
crossref_primary_10_1038_s41598_022_13298_8
crossref_primary_10_1016_j_compbiomed_2022_105298
crossref_primary_10_3389_fbioe_2022_903426
crossref_primary_10_1016_j_compbiomed_2020_103795
crossref_primary_10_1016_j_acra_2020_09_004
crossref_primary_10_3390_v13020202
crossref_primary_10_3390_diagnostics11081317
crossref_primary_10_1007_s00354_025_00291_8
crossref_primary_10_1016_j_redii_2022_100004
crossref_primary_10_1148_ryct_2021200596
crossref_primary_10_1016_j_redii_2022_100003
crossref_primary_10_1016_j_inffus_2021_05_015
crossref_primary_10_1109_ACCESS_2023_3330238
crossref_primary_10_1183_13993003_00775_2020
crossref_primary_10_1007_s12559_022_10076_6
crossref_primary_10_1080_1744666X_2021_1847640
crossref_primary_10_1007_s00521_023_08344_z
crossref_primary_10_1016_j_ejrad_2020_109402
crossref_primary_10_1177_02841851231162085
crossref_primary_10_2196_19569
crossref_primary_10_1016_j_techsoc_2023_102204
crossref_primary_10_1007_s00354_023_00213_6
crossref_primary_10_1038_s41746_021_00399_3
crossref_primary_10_1371_journal_pone_0296352
crossref_primary_10_2147_RMHP_S317735
crossref_primary_10_1016_j_media_2020_101860
crossref_primary_10_1007_s00296_024_05681_7
crossref_primary_10_1016_j_jcmg_2021_11_010
crossref_primary_10_4329_wjr_v13_i6_157
crossref_primary_10_1038_s41598_021_97428_8
crossref_primary_10_1007_s10489_020_02002_w
crossref_primary_10_1016_j_sciaf_2023_e01961
crossref_primary_10_1016_j_hlpt_2020_07_001
crossref_primary_10_1007_s42058_024_00143_2
crossref_primary_10_17816_DD46826
crossref_primary_10_1016_j_future_2021_04_007
crossref_primary_10_48175_IJARSCT_3746
crossref_primary_10_32604_cmc_2021_015541
crossref_primary_10_1109_JSEN_2021_3076767
crossref_primary_10_35711_aimi_v3_i1_1
crossref_primary_10_2196_23811
crossref_primary_10_1016_j_matpr_2021_07_367
crossref_primary_10_1016_j_imu_2021_100842
crossref_primary_10_1016_j_cmpb_2021_106336
crossref_primary_10_1088_1361_6560_ac4316
crossref_primary_10_3390_tomography8020071
crossref_primary_10_1109_JBHI_2021_3103646
crossref_primary_10_25259_JCIS_172_2021
crossref_primary_10_1108_EJIM_05_2024_0520
crossref_primary_10_1080_0952813X_2023_2165724
crossref_primary_10_1007_s00521_024_09484_6
crossref_primary_10_48175_IJARSCT_1571
crossref_primary_10_3390_s21217268
crossref_primary_10_1186_s12880_022_00753_1
crossref_primary_10_3390_jimaging10100250
crossref_primary_10_1080_0952813X_2022_2093980
crossref_primary_10_1016_j_cag_2022_03_003
crossref_primary_10_1016_j_media_2020_101836
crossref_primary_10_48175_IJARSCT_4607
crossref_primary_10_1016_j_bspc_2024_106866
crossref_primary_10_1016_j_ejro_2020_100239
crossref_primary_10_1016_j_chaos_2020_110170
crossref_primary_10_1016_j_imu_2021_100835
crossref_primary_10_5114_pjr_2021_104049
crossref_primary_10_33889_IJMEMS_2020_5_5_062
crossref_primary_10_1002_jemt_23713
crossref_primary_10_1007_s11831_023_09882_4
crossref_primary_10_1038_s41598_022_15268_6
crossref_primary_10_32604_csse_2023_037889
crossref_primary_10_1016_j_rx_2024_05_010
crossref_primary_10_1016_S2589_7500_20_30142_4
crossref_primary_10_32604_csse_2023_037408
crossref_primary_10_1080_07391102_2023_2227726
crossref_primary_10_1007_s00521_024_10862_3
crossref_primary_10_1007_s11042_022_13499_3
crossref_primary_10_3389_fmed_2021_646506
crossref_primary_10_1016_j_aej_2021_03_052
crossref_primary_10_1109_ACCESS_2020_3005510
crossref_primary_10_1007_s00500_023_07813_w
crossref_primary_10_1007_s00354_024_00254_5
crossref_primary_10_1145_3457124
crossref_primary_10_1038_s41598_023_30640_w
crossref_primary_10_1007_s11042_021_11299_9
crossref_primary_10_32604_cmc_2022_019331
crossref_primary_10_1016_j_aej_2022_12_015
crossref_primary_10_1016_j_ejro_2020_100272
crossref_primary_10_1109_ACCESS_2020_3007939
crossref_primary_10_1016_j_ejro_2020_100271
crossref_primary_10_1109_ACCESS_2022_3148401
crossref_primary_10_3390_diagnostics12122943
crossref_primary_10_1007_s12038_020_00114_6
crossref_primary_10_1016_j_chaos_2020_110153
crossref_primary_10_3390_healthcare11172388
crossref_primary_10_1038_s42256_021_00421_z
crossref_primary_10_1155_2023_6341259
crossref_primary_10_1002_ima_22583
crossref_primary_10_1016_j_imu_2022_100916
crossref_primary_10_1016_S2589_7500_20_30079_0
crossref_primary_10_1109_TBME_2021_3085576
crossref_primary_10_70436_nuijb_v2i03_71
crossref_primary_10_1007_s00354_024_00278_x
crossref_primary_10_1016_j_imu_2021_100621
crossref_primary_10_1007_s13755_021_00154_8
crossref_primary_10_1109_RBME_2022_3185953
crossref_primary_10_1038_s41598_021_83424_5
crossref_primary_10_1038_s41598_023_50742_9
crossref_primary_10_1109_TCE_2021_3130228
crossref_primary_10_1016_j_patrec_2021_08_035
crossref_primary_10_1016_j_heliyon_2023_e21965
crossref_primary_10_1016_j_chaos_2020_110140
crossref_primary_10_1007_s13204_021_01935_z
crossref_primary_10_1080_09720502_2020_1838061
crossref_primary_10_1007_s00330_023_10578_3
crossref_primary_10_1016_j_compeleceng_2020_106960
crossref_primary_10_7705_biomedica_5927
crossref_primary_10_3389_fmed_2021_704256
crossref_primary_10_1016_j_patcog_2021_108135
crossref_primary_10_1007_s10096_020_03901_z
crossref_primary_10_1007_s00354_021_00128_0
crossref_primary_10_70030_sjmakeu_1460760
crossref_primary_10_1016_j_cmpb_2022_106651
crossref_primary_10_3389_fpsyg_2021_559842
crossref_primary_10_1007_s11604_022_01268_z
crossref_primary_10_1109_TBME_2023_3239372
crossref_primary_10_32604_csse_2023_029822
crossref_primary_10_18786_2072_0505_2021_49_028
crossref_primary_10_3145_epi_2020_jul_29
crossref_primary_10_32604_cmc_2022_017178
crossref_primary_10_1007_s42979_022_01642_8
crossref_primary_10_3389_frsip_2024_1384744
crossref_primary_10_3390_jcm12103446
crossref_primary_10_1016_j_ejrad_2022_110188
crossref_primary_10_1109_TMI_2020_2994908
crossref_primary_10_1155_2022_1473977
crossref_primary_10_3389_fpubh_2021_813717
crossref_primary_10_7717_peerj_13124
crossref_primary_10_3390_covid4120140
crossref_primary_10_3390_tomography7040058
crossref_primary_10_3390_s24134291
crossref_primary_10_52880_sagakaderg_1070774
crossref_primary_10_32604_cmc_2020_013232
crossref_primary_10_1002_ima_22564
crossref_primary_10_2174_1573405617666210806123720
crossref_primary_10_1097_RCT_0000000000001585
crossref_primary_10_1155_2022_5329014
crossref_primary_10_1002_ima_22566
crossref_primary_10_1016_j_diii_2020_06_001
crossref_primary_10_1016_j_ijmedinf_2023_105308
crossref_primary_10_1016_j_cmpbup_2022_100090
crossref_primary_10_1148_radiol_2020204226
crossref_primary_10_1002_jemt_23913
crossref_primary_10_1080_07391102_2020_1788642
crossref_primary_10_5694_mja2_50821
crossref_primary_10_3390_jpm12101707
crossref_primary_10_32604_cmes_2022_018948
crossref_primary_10_1007_s11063_022_10785_x
crossref_primary_10_1109_ACCESS_2020_3034032
crossref_primary_10_7717_peerj_10086
crossref_primary_10_1108_WJE_12_2020_0655
crossref_primary_10_1002_spe_3011
crossref_primary_10_1016_j_ibmed_2021_100030
crossref_primary_10_3389_fcimb_2022_882661
crossref_primary_10_3389_fpubh_2022_1023098
crossref_primary_10_4015_S1016237222500065
crossref_primary_10_1109_JBHI_2020_3042523
crossref_primary_10_1152_physiolgenomics_00084_2020
crossref_primary_10_3390_e22050517
crossref_primary_10_1016_j_vacun_2020_12_004
crossref_primary_10_1186_s12879_021_06556_z
crossref_primary_10_3390_covid4080088
crossref_primary_10_1016_j_asoc_2021_107330
crossref_primary_10_2196_21801
crossref_primary_10_3390_s20195665
crossref_primary_10_1016_j_ejrad_2022_110164
crossref_primary_10_1016_j_jormas_2024_101914
crossref_primary_10_1155_2022_6972998
crossref_primary_10_1016_j_ipemt_2022_100008
crossref_primary_10_1109_TETCI_2022_3174868
crossref_primary_10_1186_s12911_021_01588_6
crossref_primary_10_1007_s41870_020_00571_0
crossref_primary_10_1155_2021_6213450
crossref_primary_10_1002_cdt3_27
crossref_primary_10_1097_CM9_00000000000020S8
crossref_primary_10_1002_widm_1462
crossref_primary_10_1109_TAI_2022_3208217
crossref_primary_10_1007_s10489_020_01965_0
crossref_primary_10_1109_TETCI_2022_3224937
crossref_primary_10_1117_1_JMI_8_6_064501
Cites_doi 10.1001/jama.2020.1585
10.1056/NEJMoa2001316
10.1148/radiol.2020200432
10.1007/978-3-030-32245-8_64
10.1056/NEJMoa2001191
10.1007/s00330-019-06163-2
10.1016/S0140-6736(20)30211-7
10.3390/app8101715
10.2307/2531595
10.1016/j.cell.2018.02.010
10.1007/978-3-319-24574-4_28
10.1148/radiol.2020200230
10.1016/S0140-6736(20)30183-5
10.1097/RLI.0000000000000127
10.1016/j.compmedimag.2019.101688
10.1148/radiol.2020200642
10.1109/TMI.2016.2535865
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1148/radiol.2020200905
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage E71
ExternalDocumentID 32191588
10_1148_radiol_2020200905
Genre Multicenter Study
Evaluation Study
Journal Article
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
ACRZS
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
ZKG
7X8
ID FETCH-LOGICAL-c410t-de263d52f8392344cb542cdda20863d0ba875ce670eaa0ec5d82f081ecf0cebb3
ISSN 0033-8419
1527-1315
IngestDate Fri Jul 11 06:27:32 EDT 2025
Wed Feb 19 02:29:07 EST 2025
Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 00:43:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-de263d52f8392344cb542cdda20863d0ba875ce670eaa0ec5d82f081ecf0cebb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-7528-2407
0000-0002-2874-6619
0000-0002-5342-3870
0000-0002-9134-1024
0000-0002-5689-0343
0000-0001-9903-8049
0000-0003-0966-3006
0000-0001-6677-1519
0000-0001-9805-1946
0000-0003-2361-151X
0000-0003-3610-0436
0000-0002-6793-6212
0000-0001-9913-134X
0000-0002-9663-6577
0000-0003-2108-5341
0000-0002-3496-2174
0000-0001-7748-9586
0000-0003-3174-4267
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7233473
PMID 32191588
PQID 2381628962
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2381628962
pubmed_primary_32191588
crossref_primary_10_1148_radiol_2020200905
crossref_citationtrail_10_1148_radiol_2020200905
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2020
References r2
r3
r4
r5
r6
r7
r8
He K (r16) 2016
r9
r10
r12
r11
r14
r13
r15
r18
r17
Selvaraju RR (r19) 2017
r1
32243239 - Radiology. 2020 Sep;296(3):E192
References_xml – ident: r2
  doi: 10.1001/jama.2020.1585
– ident: r3
  doi: 10.1056/NEJMoa2001316
– ident: r6
  doi: 10.1148/radiol.2020200432
– year: 2016
  ident: r16
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: r9
  doi: 10.1007/978-3-030-32245-8_64
– ident: r4
  doi: 10.1056/NEJMoa2001191
– ident: r11
  doi: 10.1007/s00330-019-06163-2
– ident: r1
  doi: 10.1016/S0140-6736(20)30211-7
– ident: r13
  doi: 10.3390/app8101715
– ident: r18
  doi: 10.2307/2531595
– ident: r12
  doi: 10.1016/j.cell.2018.02.010
– ident: r17
  doi: 10.1007/978-3-319-24574-4_28
– year: 2017
  ident: r19
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– ident: r7
  doi: 10.1148/radiol.2020200230
– ident: r8
  doi: 10.1016/S0140-6736(20)30183-5
– ident: r14
  doi: 10.1097/RLI.0000000000000127
– ident: r10
  doi: 10.1016/j.compmedimag.2019.101688
– ident: r5
  doi: 10.1148/radiol.2020200642
– ident: r15
  doi: 10.1109/TMI.2016.2535865
– reference: 32243239 - Radiology. 2020 Sep;296(3):E192
SSID ssj0014587
Score 2.7296422
Snippet Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage E65
SubjectTerms Adult
Aged
Artificial Intelligence
Betacoronavirus
Clinical Laboratory Techniques - methods
Community-Acquired Infections - diagnostic imaging
Coronavirus Infections - diagnosis
Coronavirus Infections - diagnostic imaging
COVID-19
COVID-19 Testing
Deep Learning
Diagnosis, Differential
Female
Humans
Imaging, Three-Dimensional - methods
Male
Middle Aged
Pandemics
Pneumonia, Viral - diagnostic imaging
Radiographic Image Interpretation, Computer-Assisted - methods
Retrospective Studies
ROC Curve
SARS-CoV-2
Sensitivity and Specificity
Tomography, X-Ray Computed - methods
Title Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy
URI https://www.ncbi.nlm.nih.gov/pubmed/32191588
https://www.proquest.com/docview/2381628962
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviPvGTUbiiSklcewk5a20nTboLkIp6ltkOw6qNCVTSSTgR_CbOY4dp1UHGrxYlZXETs-X488-N4TeMMVGtKCRF_s88WgOn6LgEYdmFAZScVZwHTt8ehYdL-jHJVsOBlcbXktNLYby57VxJf8jVegDueoo2X-QrHsodMBvkC-0IGFobyRjY-8fr1t_H5M1YyPBJrDKqdI2gsPJ-ZeTqReMWkuBDQmpf3hcajdgYJwXpWpg0it--AEWtVwbEC6aS-jRLnWTVJ8azFxW8M6rYGqc9HTC17GUzZrLLQvxZ56vto7s5yt7BuDOWk36gvnqe9-3bFprifraVE4fmctALYlumbWnFKT3kXOKlcReEJrQzaG6ps9qY2IK3FrYkQ3dOjNFJXZ1PtVxDOv2rYZ6bG3w8Vm_wHVG_bPz7Ggxn2fpbJneQrcJbCx0zYvpySdnd6KsLanoZmbt4DDEu50BtpnMH7YnLU1J76N7dn-BxwYsD9BAlQ_RnVPrQfEI_Woxg3vM4E3M4LrCBjO4wwwGzOBdzGCHGdxiBlcldpjBk_Q97hGDqwIDYnCPGNwh5jFaHM3SybFna3J4kgZ-7eWKRGHOSKGJdUipFIwSmeecwN44zH3BYQMsVRT7inNfSZYnpADaqWThSyVE-ATtlVWp9hGmMU9GhMey4EClFEmAjXIh_ECEmiaTA-R3_28mbcJ6XTflMjPB9ElmRJL1IjlAb90tVyZby98uft0JLQOdqg1lvFRV8y3TNDYiySiCOTw10nSPC2GJD1iSPLvB3c_R3f5beIH26nWjXgKHrcWrFna_ASZunjM
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Artificial+Intelligence+to+Detect+COVID-19+and+Community-acquired+Pneumonia+Based+on+Pulmonary+CT%3A+Evaluation+of+the+Diagnostic+Accuracy&rft.jtitle=Radiology&rft.au=Li%2C+Lin&rft.au=Qin%2C+Lixin&rft.au=Xu%2C+Zeguo&rft.au=Yin%2C+Youbing&rft.date=2020-08-01&rft.issn=1527-1315&rft.eissn=1527-1315&rft.volume=296&rft.issue=2&rft.spage=E65&rft_id=info:doi/10.1148%2Fradiol.2020200905&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon