Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy
Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its p...
Saved in:
Published in | Radiology Vol. 296; no. 2; pp. E65 - E71 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0033-8419 1527-1315 1527-1315 |
DOI | 10.1148/radiol.2020200905 |
Cover
Loading…
Abstract | Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performance. Materials and Methods In this retrospective and multicenter study, a deep learning model, the COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT scans for the detection of COVID-19. CT scans of community-acquired pneumonia (CAP) and other non-pneumonia abnormalities were included to test the robustness of the model. The datasets were collected from six hospitals between August 2016 and February 2020. Diagnostic performance was assessed with the area under the receiver operating characteristic curve, sensitivity, and specificity. Results The collected dataset consisted of 4352 chest CT scans from 3322 patients. The average patient age (±standard deviation) was 49 years ± 15, and there were slightly more men than women (1838 vs 1484, respectively;
= .29). The per-scan sensitivity and specificity for detecting COVID-19 in the independent test set was 90% (95% confidence interval [CI]: 83%, 94%; 114 of 127 scans) and 96% (95% CI: 93%, 98%; 294 of 307 scans), respectively, with an area under the receiver operating characteristic curve of 0.96 (
< .001). The per-scan sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175 scans) and 92% (239 of 259 scans), respectively, with an area under the receiver operating characteristic curve of 0.95 (95% CI: 0.93, 0.97). Conclusion A deep learning model can accurately detect coronavirus 2019 and differentiate it from community-acquired pneumonia and other lung conditions. © RSNA, 2020 |
---|---|
AbstractList | Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performance. Materials and Methods In this retrospective and multicenter study, a deep learning model, the COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT scans for the detection of COVID-19. CT scans of community-acquired pneumonia (CAP) and other non-pneumonia abnormalities were included to test the robustness of the model. The datasets were collected from six hospitals between August 2016 and February 2020. Diagnostic performance was assessed with the area under the receiver operating characteristic curve, sensitivity, and specificity. Results The collected dataset consisted of 4352 chest CT scans from 3322 patients. The average patient age (±standard deviation) was 49 years ± 15, and there were slightly more men than women (1838 vs 1484, respectively; P = .29). The per-scan sensitivity and specificity for detecting COVID-19 in the independent test set was 90% (95% confidence interval [CI]: 83%, 94%; 114 of 127 scans) and 96% (95% CI: 93%, 98%; 294 of 307 scans), respectively, with an area under the receiver operating characteristic curve of 0.96 (P < .001). The per-scan sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175 scans) and 92% (239 of 259 scans), respectively, with an area under the receiver operating characteristic curve of 0.95 (95% CI: 0.93, 0.97). Conclusion A deep learning model can accurately detect coronavirus 2019 and differentiate it from community-acquired pneumonia and other lung conditions. © RSNA, 2020 Online supplemental material is available for this article.Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performance. Materials and Methods In this retrospective and multicenter study, a deep learning model, the COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT scans for the detection of COVID-19. CT scans of community-acquired pneumonia (CAP) and other non-pneumonia abnormalities were included to test the robustness of the model. The datasets were collected from six hospitals between August 2016 and February 2020. Diagnostic performance was assessed with the area under the receiver operating characteristic curve, sensitivity, and specificity. Results The collected dataset consisted of 4352 chest CT scans from 3322 patients. The average patient age (±standard deviation) was 49 years ± 15, and there were slightly more men than women (1838 vs 1484, respectively; P = .29). The per-scan sensitivity and specificity for detecting COVID-19 in the independent test set was 90% (95% confidence interval [CI]: 83%, 94%; 114 of 127 scans) and 96% (95% CI: 93%, 98%; 294 of 307 scans), respectively, with an area under the receiver operating characteristic curve of 0.96 (P < .001). The per-scan sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175 scans) and 92% (239 of 259 scans), respectively, with an area under the receiver operating characteristic curve of 0.95 (95% CI: 0.93, 0.97). Conclusion A deep learning model can accurately detect coronavirus 2019 and differentiate it from community-acquired pneumonia and other lung conditions. © RSNA, 2020 Online supplemental material is available for this article. Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performance. Materials and Methods In this retrospective and multicenter study, a deep learning model, the COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT scans for the detection of COVID-19. CT scans of community-acquired pneumonia (CAP) and other non-pneumonia abnormalities were included to test the robustness of the model. The datasets were collected from six hospitals between August 2016 and February 2020. Diagnostic performance was assessed with the area under the receiver operating characteristic curve, sensitivity, and specificity. Results The collected dataset consisted of 4352 chest CT scans from 3322 patients. The average patient age (±standard deviation) was 49 years ± 15, and there were slightly more men than women (1838 vs 1484, respectively; = .29). The per-scan sensitivity and specificity for detecting COVID-19 in the independent test set was 90% (95% confidence interval [CI]: 83%, 94%; 114 of 127 scans) and 96% (95% CI: 93%, 98%; 294 of 307 scans), respectively, with an area under the receiver operating characteristic curve of 0.96 ( < .001). The per-scan sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175 scans) and 92% (239 of 259 scans), respectively, with an area under the receiver operating characteristic curve of 0.95 (95% CI: 0.93, 0.97). Conclusion A deep learning model can accurately detect coronavirus 2019 and differentiate it from community-acquired pneumonia and other lung conditions. © RSNA, 2020 |
Author | Bai, Junjie Liu, Daliang Zhang, Shiqin Li, Lin Fang, Xisheng Xu, Zeguo Xia, Juan Wang, Xin Cao, Kunlin Xia, Jun Qin, Lixin Song, Qi Kong, Bin Wang, Guisheng Xu, Qizhong Yin, Youbing Fang, Zhenghan Lu, Yi |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0001-9903-8049 surname: Li fullname: Li, Lin – sequence: 2 givenname: Lixin orcidid: 0000-0003-0966-3006 surname: Qin fullname: Qin, Lixin – sequence: 3 givenname: Zeguo orcidid: 0000-0003-3610-0436 surname: Xu fullname: Xu, Zeguo – sequence: 4 givenname: Youbing orcidid: 0000-0001-9913-134X surname: Yin fullname: Yin, Youbing – sequence: 5 givenname: Xin orcidid: 0000-0002-7528-2407 surname: Wang fullname: Wang, Xin – sequence: 6 givenname: Bin orcidid: 0000-0003-2108-5341 surname: Kong fullname: Kong, Bin – sequence: 7 givenname: Junjie orcidid: 0000-0002-9134-1024 surname: Bai fullname: Bai, Junjie – sequence: 8 givenname: Yi orcidid: 0000-0002-6793-6212 surname: Lu fullname: Lu, Yi – sequence: 9 givenname: Zhenghan orcidid: 0000-0002-2874-6619 surname: Fang fullname: Fang, Zhenghan – sequence: 10 givenname: Qi orcidid: 0000-0001-9805-1946 surname: Song fullname: Song, Qi – sequence: 11 givenname: Kunlin orcidid: 0000-0003-2361-151X surname: Cao fullname: Cao, Kunlin – sequence: 12 givenname: Daliang orcidid: 0000-0002-3496-2174 surname: Liu fullname: Liu, Daliang – sequence: 13 givenname: Guisheng orcidid: 0000-0002-5342-3870 surname: Wang fullname: Wang, Guisheng – sequence: 14 givenname: Qizhong orcidid: 0000-0001-7748-9586 surname: Xu fullname: Xu, Qizhong – sequence: 15 givenname: Xisheng orcidid: 0000-0003-3174-4267 surname: Fang fullname: Fang, Xisheng – sequence: 16 givenname: Shiqin orcidid: 0000-0001-6677-1519 surname: Zhang fullname: Zhang, Shiqin – sequence: 17 givenname: Juan orcidid: 0000-0002-9663-6577 surname: Xia fullname: Xia, Juan – sequence: 18 givenname: Jun orcidid: 0000-0002-5689-0343 surname: Xia fullname: Xia, Jun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32191588$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URLeFH8AF-cglxR_xxuG2ZAusVKk9tFyjiTNZjBK79QfS_gl-My5bQOKA5jCamecdaeY9IyfOOyTkNWcXnNf6XYDR-vlCsMdgLVPPyIor0VRccnVCVoxJWemat6fkLMZvjPFa6eYFOZWCt1xpvSI_7qJ1e7oJyU7WWJjpziWcZ7tHZ5AmT7eY0CTaXX_ZbSveUnAj7fyyZGfToQLzkG3Akd44zIt3FugHiKX2jt7kuXQgHGh3-55efoc5Q7Jl4CeaviLdWtg7H5M1dGNMDmAOL8nzCeaIr57yObn7eHnbfa6urj_tus1VZWrOUjWiWMtRiUnLVsi6NoOqhRlHEEyXARtAN8rgumEIwNCoUYuJaY5mYgaHQZ6Tt8e998E_ZIypX2w05W5w6HPshdR8LXS7FgV984TmYcGxvw92KTf1v39YAH4ETPAxBpz-IJz1jz71R5_6vz4VTfOPxtj06zkpgJ3_o_wJyymaMQ |
CitedBy_id | crossref_primary_10_1148_ryai_2021210097 crossref_primary_10_1155_2022_3035426 crossref_primary_10_1186_s12879_023_08303_y crossref_primary_10_1080_13669877_2022_2077411 crossref_primary_10_1007_s12530_023_09484_2 crossref_primary_10_1155_2020_9756518 crossref_primary_10_1016_j_ejro_2023_100497 crossref_primary_10_1016_j_jdent_2022_104107 crossref_primary_10_1177_2150132720963634 crossref_primary_10_1016_j_eswa_2023_122805 crossref_primary_10_1140_epjp_s13360_023_03745_4 crossref_primary_10_1016_j_compbiomed_2021_104575 crossref_primary_10_3390_jpm12091465 crossref_primary_10_3390_cancers13081960 crossref_primary_10_1007_s10489_020_02149_6 crossref_primary_10_1016_j_compbiomed_2021_104348 crossref_primary_10_5334_jbsr_2714 crossref_primary_10_7759_cureus_38373 crossref_primary_10_1142_S0219691322500588 crossref_primary_10_1007_s11042_023_15857_1 crossref_primary_10_1016_j_compbiomed_2021_104585 crossref_primary_10_2174_1573405618666220803123626 crossref_primary_10_3390_tomography8030134 crossref_primary_10_1128_CMR_00028_20 crossref_primary_10_2174_0115680266282179240124072121 crossref_primary_10_2196_23315 crossref_primary_10_1109_JBHI_2020_3030853 crossref_primary_10_1016_j_patcog_2021_108071 crossref_primary_10_3390_electronics11213511 crossref_primary_10_1007_s11071_021_06371_w crossref_primary_10_3390_diagnostics13040584 crossref_primary_10_3390_ijerph18062842 crossref_primary_10_3390_s22031211 crossref_primary_10_1007_s11042_023_17884_4 crossref_primary_10_1007_s11547_020_01232_9 crossref_primary_10_1016_j_ejrad_2020_109041 crossref_primary_10_1016_j_neucom_2025_129731 crossref_primary_10_3390_pathogens12010017 crossref_primary_10_1109_TII_2020_3048391 crossref_primary_10_31590_ejosat_1009611 crossref_primary_10_1109_TAI_2022_3147440 crossref_primary_10_1515_med_2024_1110 crossref_primary_10_1016_j_cmpb_2021_106406 crossref_primary_10_31590_ejosat_898385 crossref_primary_10_1587_essfr_15_4_258 crossref_primary_10_1002_ima_22862 crossref_primary_10_1007_s00521_022_07709_0 crossref_primary_10_1183_16000617_0181_2020 crossref_primary_10_3390_jcdd9080268 crossref_primary_10_1002_ima_22627 crossref_primary_10_1109_JBHI_2020_3012383 crossref_primary_10_1007_s00500_021_06137_x crossref_primary_10_1148_radiol_2020201178 crossref_primary_10_1002_oca_2806 crossref_primary_10_2196_21394 crossref_primary_10_1016_j_media_2022_102421 crossref_primary_10_1016_j_jiph_2021_04_005 crossref_primary_10_34256_ijcci2315 crossref_primary_10_3390_ijerph20032731 crossref_primary_10_1016_j_stlm_2021_100013 crossref_primary_10_1117_1_JMI_10_4_044504 crossref_primary_10_1016_j_imu_2022_100929 crossref_primary_10_1016_j_jacr_2020_09_044 crossref_primary_10_1177_15593258221082896 crossref_primary_10_1155_2021_4733167 crossref_primary_10_1109_TNNLS_2021_3126305 crossref_primary_10_3390_cancers12123822 crossref_primary_10_3389_fbioe_2020_00898 crossref_primary_10_1016_j_bspc_2023_105563 crossref_primary_10_1109_JBHI_2021_3103839 crossref_primary_10_23736_S2723_9284_23_00256_0 crossref_primary_10_3390_signals3020019 crossref_primary_10_1007_s00521_023_08997_w crossref_primary_10_1109_ACCESS_2020_3016780 crossref_primary_10_1016_j_ibmed_2020_100009 crossref_primary_10_1148_radiol_231643 crossref_primary_10_3390_diagnostics13030551 crossref_primary_10_1186_s12880_020_00521_z crossref_primary_10_1016_j_media_2022_102605 crossref_primary_10_1016_j_patcog_2021_108083 crossref_primary_10_31083_j_rcm_2020_03_120 crossref_primary_10_1038_s41598_021_96755_0 crossref_primary_10_1109_JBHI_2021_3132157 crossref_primary_10_1007_s12652_021_03686_9 crossref_primary_10_3390_app11157004 crossref_primary_10_1007_s10489_022_03431_5 crossref_primary_10_1016_j_compbiomed_2022_105976 crossref_primary_10_3390_sym14051003 crossref_primary_10_1007_s11042_022_11913_4 crossref_primary_10_1109_ACCESS_2020_3027685 crossref_primary_10_1109_TMI_2020_2995965 crossref_primary_10_1109_JBHI_2022_3197666 crossref_primary_10_1007_s00330_022_09303_3 crossref_primary_10_1080_10408363_2020_1783198 crossref_primary_10_1109_ACCESS_2021_3058537 crossref_primary_10_2196_25535 crossref_primary_10_31033_ijemr_9_2_22 crossref_primary_10_1016_j_displa_2022_102150 crossref_primary_10_1186_s40794_021_00131_9 crossref_primary_10_3389_fmed_2021_768467 crossref_primary_10_1186_s42492_024_00168_5 crossref_primary_10_35784_acs_2022_31 crossref_primary_10_1109_ACCESS_2023_3236812 crossref_primary_10_1109_TMI_2020_3000314 crossref_primary_10_1055_s_0042_1759889 crossref_primary_10_1016_j_arth_2020_10_024 crossref_primary_10_1016_j_cmpb_2021_105993 crossref_primary_10_1016_j_asoc_2020_106906 crossref_primary_10_32604_cmc_2022_018547 crossref_primary_10_3390_electronics11234008 crossref_primary_10_1093_bib_bbab460 crossref_primary_10_3390_electronics12183878 crossref_primary_10_3390_healthcare11131950 crossref_primary_10_1016_j_jormas_2021_04_001 crossref_primary_10_20473_mkp_V36I12023_58_71 crossref_primary_10_3390_healthcare10030541 crossref_primary_10_1016_j_diii_2021_05_006 crossref_primary_10_1002_sd_2706 crossref_primary_10_3389_fmed_2021_695185 crossref_primary_10_3390_app11031238 crossref_primary_10_3390_healthcare10091771 crossref_primary_10_1007_s00330_020_07087_y crossref_primary_10_1007_s11042_024_19350_1 crossref_primary_10_1088_1361_6560_abf717 crossref_primary_10_2174_1573405619666221222161832 crossref_primary_10_3390_healthcare10102072 crossref_primary_10_1109_JSEN_2020_3004568 crossref_primary_10_17798_bitlisfen_1346730 crossref_primary_10_3934_math_2024998 crossref_primary_10_1002_ima_22812 crossref_primary_10_5334_jbsr_2330 crossref_primary_10_2174_1573405618666220928145344 crossref_primary_10_1007_s42979_022_01035_x crossref_primary_10_3390_healthcare9091099 crossref_primary_10_1007_s11548_022_02769_y crossref_primary_10_1016_j_jtice_2020_11_024 crossref_primary_10_1016_j_jksuci_2021_07_005 crossref_primary_10_1109_OJEMB_2024_3367236 crossref_primary_10_1155_2021_8869372 crossref_primary_10_1007_s11277_021_08523_y crossref_primary_10_3390_ai1030027 crossref_primary_10_2139_ssrn_4123142 crossref_primary_10_3390_jcm13216415 crossref_primary_10_5114_pjr_2022_119027 crossref_primary_10_1016_j_acra_2021_03_001 crossref_primary_10_3389_fmed_2023_1192376 crossref_primary_10_1007_s11042_022_12450_w crossref_primary_10_1024_1661_8157_a003512 crossref_primary_10_1155_2023_6070970 crossref_primary_10_1148_ryai_220170 crossref_primary_10_1016_j_clinimag_2021_09_007 crossref_primary_10_1016_j_immuno_2023_100021 crossref_primary_10_1155_2021_6799202 crossref_primary_10_1007_s11042_023_15029_1 crossref_primary_10_1016_j_biopha_2021_112353 crossref_primary_10_1111_exsy_13141 crossref_primary_10_3390_medicina58091288 crossref_primary_10_1109_TIP_2021_3058783 crossref_primary_10_1007_s11547_022_01518_0 crossref_primary_10_32604_csse_2022_021438 crossref_primary_10_1007_s11760_022_02302_3 crossref_primary_10_4018_IJSKD_324164 crossref_primary_10_15212_AMM_2022_0037 crossref_primary_10_3390_diagnostics13122129 crossref_primary_10_1007_s00354_021_00121_7 crossref_primary_10_1067_j_cpradiol_2020_06_009 crossref_primary_10_1007_s11042_024_18670_6 crossref_primary_10_2174_1573405617666210713113439 crossref_primary_10_1007_s42600_020_00110_7 crossref_primary_10_1080_08839514_2022_2055398 crossref_primary_10_1109_TNNLS_2022_3230821 crossref_primary_10_1002_med_21846 crossref_primary_10_1016_j_inffus_2020_10_004 crossref_primary_10_1109_OJEMB_2020_3026928 crossref_primary_10_1016_j_asoc_2022_109111 crossref_primary_10_1016_j_patcog_2021_107826 crossref_primary_10_1148_radiol_2020202439 crossref_primary_10_1038_s41746_021_00453_0 crossref_primary_10_1016_j_eswa_2021_115519 crossref_primary_10_1038_s41598_022_25539_x crossref_primary_10_1177_2472630320983813 crossref_primary_10_1007_s11760_023_02561_8 crossref_primary_10_1093_bib_bbaa331 crossref_primary_10_1016_j_arbres_2021_08_006 crossref_primary_10_1016_j_crad_2022_11_006 crossref_primary_10_3390_app122010535 crossref_primary_10_4018_IJSSMET_323452 crossref_primary_10_1007_s12652_020_02883_2 crossref_primary_10_32604_cmc_2022_024589 crossref_primary_10_1148_radiol_2020203511 crossref_primary_10_1007_s10489_020_01770_9 crossref_primary_10_1038_s41598_020_74164_z crossref_primary_10_1016_j_artmed_2021_102114 crossref_primary_10_2139_ssrn_3589222 crossref_primary_10_1007_s00330_022_08730_6 crossref_primary_10_1155_2021_6658058 crossref_primary_10_1016_j_mex_2023_102507 crossref_primary_10_1109_OJCS_2022_3206407 crossref_primary_10_1016_j_patrec_2020_09_010 crossref_primary_10_1055_a_1388_8147 crossref_primary_10_3389_frcmn_2021_645040 crossref_primary_10_3390_diagnostics13203195 crossref_primary_10_1016_j_artmed_2022_102427 crossref_primary_10_3390_diagnostics11112049 crossref_primary_10_1016_j_compbiomed_2022_105340 crossref_primary_10_1016_j_patcog_2021_107848 crossref_primary_10_5124_jkma_2021_64_10_664 crossref_primary_10_1080_23080477_2023_2246285 crossref_primary_10_1016_j_ejrad_2020_109233 crossref_primary_10_1186_s12879_023_08173_4 crossref_primary_10_3389_fmed_2021_729287 crossref_primary_10_3390_s21165482 crossref_primary_10_1016_j_bspc_2021_103126 crossref_primary_10_1109_TAI_2021_3115093 crossref_primary_10_1016_j_egyai_2020_100013 crossref_primary_10_4103_rid_RID_D_24_00008 crossref_primary_10_5812_amh_148614 crossref_primary_10_1016_j_inffus_2020_11_005 crossref_primary_10_1049_ipr2_13246 crossref_primary_10_32604_cmc_2022_019809 crossref_primary_10_70436_nuijb_v3i02_150 crossref_primary_10_1007_s13246_022_01102_w crossref_primary_10_3390_bioengineering9040153 crossref_primary_10_1002_hbe2_242 crossref_primary_10_5812_iranjradiol_112562 crossref_primary_10_1177_09720634241229252 crossref_primary_10_5812_archcid_103232 crossref_primary_10_1016_j_ipha_2024_04_003 crossref_primary_10_1088_1757_899X_1022_1_012049 crossref_primary_10_1177_20552076241257045 crossref_primary_10_1007_s11547_022_01580_8 crossref_primary_10_1007_s00530_023_01083_0 crossref_primary_10_1007_s42979_021_00841_z crossref_primary_10_1109_ACCESS_2020_2995597 crossref_primary_10_3390_jcm12216864 crossref_primary_10_1016_j_adro_2021_100683 crossref_primary_10_1007_s13246_021_01093_0 crossref_primary_10_3390_metabo12111058 crossref_primary_10_1016_j_imj_2024_100095 crossref_primary_10_16984_saufenbilder_903886 crossref_primary_10_1016_j_inffus_2021_07_016 crossref_primary_10_2196_64284 crossref_primary_10_3389_fmed_2021_699706 crossref_primary_10_3389_fmicb_2021_729455 crossref_primary_10_1002_mp_15549 crossref_primary_10_1038_s41598_020_76550_z crossref_primary_10_1007_s11517_022_02758_y crossref_primary_10_1038_s41598_021_90411_3 crossref_primary_10_32604_cmc_2021_016230 crossref_primary_10_1056_CAT_21_0239 crossref_primary_10_1148_radiol_2020209016 crossref_primary_10_1007_s11633_020_1266_8 crossref_primary_10_1109_JBHI_2021_3119325 crossref_primary_10_1080_17455030_2022_2091807 crossref_primary_10_1097_MD_0000000000026855 crossref_primary_10_1016_j_compbiomed_2022_105350 crossref_primary_10_1785_0120210033 crossref_primary_10_1186_s13054_022_04190_y crossref_primary_10_3390_jimaging10020045 crossref_primary_10_1183_23120541_00579_2021 crossref_primary_10_3390_technologies9040098 crossref_primary_10_52711_0974_360X_2021_00836 crossref_primary_10_1097_RLI_0000000000000763 crossref_primary_10_18093_0869_0189_2024_34_1_90_104 crossref_primary_10_1111_exsy_13099 crossref_primary_10_1109_JIOT_2021_3067605 crossref_primary_10_3390_jimaging8090237 crossref_primary_10_1007_s10844_022_00707_7 crossref_primary_10_1155_2021_5550344 crossref_primary_10_1002_jmv_27777 crossref_primary_10_1016_j_jmir_2022_10_196 crossref_primary_10_1038_s41598_023_32462_2 crossref_primary_10_1007_s44196_023_00236_3 crossref_primary_10_4103_crst_crst_39_22 crossref_primary_10_1016_j_bbe_2021_09_002 crossref_primary_10_1155_2022_1306664 crossref_primary_10_1148_radiol_2021204522 crossref_primary_10_3389_fmed_2023_1113030 crossref_primary_10_5847_wjem_j_1920_8642_2022_026 crossref_primary_10_1109_TPAMI_2023_3240886 crossref_primary_10_1016_j_jval_2021_11_1369 crossref_primary_10_3389_fimmu_2021_724914 crossref_primary_10_1017_ice_2020_331 crossref_primary_10_1089_ped_2020_1166 crossref_primary_10_1055_s_0041_1726513 crossref_primary_10_30794_pausbed_745767 crossref_primary_10_1038_s41467_020_17971_2 crossref_primary_10_3390_life12111709 crossref_primary_10_1177_00207314211017469 crossref_primary_10_1007_s11082_024_06507_3 crossref_primary_10_1142_S0219467822500395 crossref_primary_10_1007_s10140_021_02008_y crossref_primary_10_1155_cjid_3804576 crossref_primary_10_55195_jscai_1467768 crossref_primary_10_1007_s10278_023_00949_z crossref_primary_10_15446_ing_investig_v42n1_88825 crossref_primary_10_3390_diagnostics15030248 crossref_primary_10_1148_ryai_2020200098 crossref_primary_10_1259_bjr_20200511 crossref_primary_10_3389_fnbot_2020_617327 crossref_primary_10_4329_wjr_v13_i4_75 crossref_primary_10_1016_j_radi_2020_09_010 crossref_primary_10_1007_s00330_020_07553_7 crossref_primary_10_1109_RBME_2020_2987975 crossref_primary_10_32604_iasc_2022_021211 crossref_primary_10_1016_j_bspc_2022_103770 crossref_primary_10_3390_jcm9051495 crossref_primary_10_32604_cmc_2021_014767 crossref_primary_10_46300_91016_2022_9_7 crossref_primary_10_1109_TCBB_2021_3066331 crossref_primary_10_3390_healthcare8040371 crossref_primary_10_1007_s12539_020_00408_1 crossref_primary_10_18006_2022_10_1__211_226 crossref_primary_10_1016_j_imu_2022_101059 crossref_primary_10_48084_etasr_4613 crossref_primary_10_3389_fonc_2020_01267 crossref_primary_10_1007_s11547_020_01195_x crossref_primary_10_1007_s11760_022_02308_x crossref_primary_10_3390_bioengineering10020203 crossref_primary_10_6087_kcse_338 crossref_primary_10_1016_j_patrec_2021_10_027 crossref_primary_10_1111_dth_13654 crossref_primary_10_1016_j_jcct_2020_08_013 crossref_primary_10_1007_s00134_021_06352_y crossref_primary_10_2139_ssrn_4068372 crossref_primary_10_1177_14604582211033017 crossref_primary_10_1038_s41598_022_05069_2 crossref_primary_10_1136_bmjgh_2024_015755 crossref_primary_10_1016_j_bspc_2021_103415 crossref_primary_10_1259_bjr_20200574 crossref_primary_10_3390_diagnostics12030741 crossref_primary_10_1038_s41591_020_0931_3 crossref_primary_10_46829_hsijournal_2021_12_2_2_277_280 crossref_primary_10_1007_s12204_021_2392_3 crossref_primary_10_3389_fimmu_2021_732756 crossref_primary_10_1109_JBHI_2020_3018181 crossref_primary_10_3389_fgene_2021_637362 crossref_primary_10_3390_diagnostics14121313 crossref_primary_10_3390_cancers13040652 crossref_primary_10_3390_sym14071398 crossref_primary_10_1016_j_neucom_2022_02_018 crossref_primary_10_1145_3462635 crossref_primary_10_3390_app11083414 crossref_primary_10_1016_j_compbiomed_2023_106567 crossref_primary_10_21015_vtse_v10i3_1135 crossref_primary_10_1016_j_bspc_2022_103703 crossref_primary_10_3390_diagnostics11060991 crossref_primary_10_1016_j_csbj_2021_02_016 crossref_primary_10_3390_electronics12010080 crossref_primary_10_3390_ijerph18063056 crossref_primary_10_1016_j_imed_2021_06_004 crossref_primary_10_1513_AnnalsATS_202006_600FR crossref_primary_10_1002_ima_23129 crossref_primary_10_1177_2472630320962002 crossref_primary_10_1038_s41598_021_81844_x crossref_primary_10_3390_diagnostics12030765 crossref_primary_10_3934_mbe_2023368 crossref_primary_10_1016_j_bspc_2021_102588 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1016_j_patter_2021_100269 crossref_primary_10_1016_j_bspc_2022_103715 crossref_primary_10_3390_v15020304 crossref_primary_10_3389_fmed_2021_730441 crossref_primary_10_1007_s40747_021_00312_1 crossref_primary_10_1007_s40137_021_00297_3 crossref_primary_10_1109_RBME_2020_2990959 crossref_primary_10_5812_iranjradiol_109439 crossref_primary_10_1109_JTEHM_2021_3134096 crossref_primary_10_1007_s12553_021_00630_x crossref_primary_10_1109_TCYB_2020_3042837 crossref_primary_10_1080_21681163_2022_2111722 crossref_primary_10_1080_03091902_2024_2321846 crossref_primary_10_32604_csse_2022_021980 crossref_primary_10_3390_diagnostics11010041 crossref_primary_10_1186_s41747_020_00203_z crossref_primary_10_3389_frai_2021_598932 crossref_primary_10_3390_make5030037 crossref_primary_10_1109_ACCESS_2021_3067824 crossref_primary_10_1016_j_jmir_2020_04_002 crossref_primary_10_1186_s13049_020_00808_8 crossref_primary_10_1016_j_jestch_2020_12_026 crossref_primary_10_1016_j_compmedimag_2021_101933 crossref_primary_10_2196_22841 crossref_primary_10_1016_j_cmpb_2022_106731 crossref_primary_10_3389_fpubh_2021_726144 crossref_primary_10_1136_bmjresp_2021_001045 crossref_primary_10_7326_M20_1301 crossref_primary_10_1016_j_compbiomed_2021_104857 crossref_primary_10_1186_s43055_021_00592_0 crossref_primary_10_2147_IDR_S296346 crossref_primary_10_3390_s20113089 crossref_primary_10_3233_XST_240015 crossref_primary_10_1016_j_asej_2021_10_025 crossref_primary_10_1007_s10489_020_01997_6 crossref_primary_10_1007_s11042_024_19046_6 crossref_primary_10_1038_s41578_020_00247_y crossref_primary_10_1016_j_eswa_2022_118650 crossref_primary_10_1109_ACCESS_2021_3061621 crossref_primary_10_1088_1742_6596_2010_1_012175 crossref_primary_10_12720_jait_15_5_622_629 crossref_primary_10_1007_s11042_023_14642_4 crossref_primary_10_1186_s43055_020_00355_3 crossref_primary_10_1007_s11547_020_01197_9 crossref_primary_10_1016_j_compbiomed_2023_107451 crossref_primary_10_1016_j_asoc_2021_107645 crossref_primary_10_1007_s10278_022_00734_4 crossref_primary_10_1055_a_1388_7950 crossref_primary_10_1016_j_compbiomed_2021_104834 crossref_primary_10_1016_j_drudis_2021_07_002 crossref_primary_10_1007_s11277_023_10367_7 crossref_primary_10_1016_j_compbiomed_2021_104837 crossref_primary_10_1016_j_jiph_2021_09_018 crossref_primary_10_3389_fpubh_2022_874455 crossref_primary_10_1016_j_imed_2021_05_005 crossref_primary_10_1016_j_mcpdig_2023_08_006 crossref_primary_10_1016_j_csbj_2021_05_010 crossref_primary_10_25046_aj0602111 crossref_primary_10_48175_IJARSCT_5831 crossref_primary_10_1007_s10916_021_01757_0 crossref_primary_10_3389_fmed_2022_924979 crossref_primary_10_1088_1757_899X_979_1_012016 crossref_primary_10_1109_TUFFC_2021_3068190 crossref_primary_10_1016_j_diii_2020_11_008 crossref_primary_10_1109_JBHI_2020_3030224 crossref_primary_10_1109_TEM_2021_3094544 crossref_primary_10_1038_s41598_022_05532_0 crossref_primary_10_1016_j_cmpb_2021_106004 crossref_primary_10_15302_J_QB_021_0274 crossref_primary_10_1016_j_compbiomed_2021_104605 crossref_primary_10_1016_j_bbe_2021_11_004 crossref_primary_10_3390_molecules27134035 crossref_primary_10_1016_j_jjimei_2022_100100 crossref_primary_10_1080_13682199_2023_2170768 crossref_primary_10_1155_2022_2564022 crossref_primary_10_3390_diagnostics12030738 crossref_primary_10_1515_cclm_2020_1294 crossref_primary_10_3390_su142416464 crossref_primary_10_1007_s00530_021_00800_x crossref_primary_10_3390_s21020455 crossref_primary_10_1155_2021_9999368 crossref_primary_10_1002_ima_22695 crossref_primary_10_1016_j_patcog_2021_108499 crossref_primary_10_23736_S2723_9284_21_00152_4 crossref_primary_10_7759_cureus_22203 crossref_primary_10_1097_CM9_0000000000002058 crossref_primary_10_32604_cmc_2022_020455 crossref_primary_10_1007_s00500_023_08971_7 crossref_primary_10_1016_j_compbiomed_2021_104895 crossref_primary_10_3389_fmed_2021_706794 crossref_primary_10_1148_radiol_222536 crossref_primary_10_1128_CMR_00228_20 crossref_primary_10_1007_s10462_021_10106_z crossref_primary_10_1007_s11063_022_11023_0 crossref_primary_10_3390_ijerph20075335 crossref_primary_10_1186_s13054_022_03915_3 crossref_primary_10_1016_j_neucom_2021_06_024 crossref_primary_10_1097_RCT_0000000000001224 crossref_primary_10_1109_TAI_2020_3020521 crossref_primary_10_1007_s12530_022_09466_w crossref_primary_10_1097_MD_0000000000026161 crossref_primary_10_3390_tomography8040162 crossref_primary_10_1007_s42247_020_00143_9 crossref_primary_10_1038_s41551_020_00633_5 crossref_primary_10_1109_ACCESS_2021_3078080 crossref_primary_10_1186_s12911_020_01359_9 crossref_primary_10_3390_jcm12227039 crossref_primary_10_1259_bjr_20210759 crossref_primary_10_1007_s13205_020_02581_y crossref_primary_10_1016_j_compbiomed_2021_104665 crossref_primary_10_1016_j_patcog_2021_108005 crossref_primary_10_1016_j_radcr_2020_04_031 crossref_primary_10_1155_2021_6633755 crossref_primary_10_3390_pharmaceutics16020260 crossref_primary_10_1016_j_patcog_2025_111371 crossref_primary_10_3389_fgene_2020_587829 crossref_primary_10_3390_diagnostics11101924 crossref_primary_10_32604_cmc_2021_014956 crossref_primary_10_3389_fphy_2023_1095277 crossref_primary_10_1016_j_chaos_2020_110245 crossref_primary_10_1038_s42256_020_0185_2 crossref_primary_10_3390_ijerph19105901 crossref_primary_10_3390_jimaging6120131 crossref_primary_10_1016_j_compbiomed_2022_105806 crossref_primary_10_1007_s13198_022_01788_x crossref_primary_10_3390_jimaging8120320 crossref_primary_10_3390_technologies11050128 crossref_primary_10_1038_s41598_022_13039_x crossref_primary_10_3390_diagnostics10060358 crossref_primary_10_1088_2632_2153_abf22c crossref_primary_10_1177_21501319221113544 crossref_primary_10_2196_27468 crossref_primary_10_1186_s12938_020_00809_9 crossref_primary_10_1109_ACCESS_2020_3040821 crossref_primary_10_3389_fcvm_2020_00145 crossref_primary_10_1038_s41598_023_46461_w crossref_primary_10_1016_j_acra_2021_08_008 crossref_primary_10_1016_j_bbe_2021_10_004 crossref_primary_10_1186_s12967_020_02692_3 crossref_primary_10_7759_cureus_44658 crossref_primary_10_1016_j_engappai_2024_108999 crossref_primary_10_1121_10_0006104 crossref_primary_10_3390_make2040027 crossref_primary_10_1038_s41390_020_0947_x crossref_primary_10_1109_ACCESS_2022_3153056 crossref_primary_10_1007_s11547_020_01305_9 crossref_primary_10_1155_2021_6677314 crossref_primary_10_1016_j_asoc_2022_108610 crossref_primary_10_1016_j_isci_2022_104031 crossref_primary_10_1016_j_ymeth_2021_07_001 crossref_primary_10_1049_ipr2_12837 crossref_primary_10_1007_s00296_020_04691_5 crossref_primary_10_1016_j_eswa_2024_126323 crossref_primary_10_1371_journal_pone_0271787 crossref_primary_10_1016_j_engappai_2023_106126 crossref_primary_10_1007_s12559_020_09779_5 crossref_primary_10_1016_j_procs_2024_04_007 crossref_primary_10_1109_MSP_2021_3090674 crossref_primary_10_1371_journal_pone_0246582 crossref_primary_10_3346_jkms_2021_36_e46 crossref_primary_10_3390_jpm11050391 crossref_primary_10_1109_TMBMC_2022_3181514 crossref_primary_10_1186_s43055_020_00398_6 crossref_primary_10_1007_s10096_020_04138_6 crossref_primary_10_1016_j_matpr_2022_05_199 crossref_primary_10_1186_s12859_021_04083_x crossref_primary_10_7717_peerj_cs_349 crossref_primary_10_3390_app12083895 crossref_primary_10_1016_j_compbiomed_2021_104210 crossref_primary_10_1007_s10489_021_02352_z crossref_primary_10_1016_j_compbiomed_2021_104454 crossref_primary_10_3233_THC_213199 crossref_primary_10_1007_s00530_022_00948_0 crossref_primary_10_1016_S2589_7500_20_30162_X crossref_primary_10_1016_j_asoc_2022_109851 crossref_primary_10_1002_wics_1647 crossref_primary_10_12998_wjcc_v11_i12_2716 crossref_primary_10_3390_biomedicines10112835 crossref_primary_10_1111_exsy_13427 crossref_primary_10_1134_S0361768822040041 crossref_primary_10_1016_j_patcog_2021_108168 crossref_primary_10_7717_peerj_12073 crossref_primary_10_24012_dumf_812810 crossref_primary_10_7717_peerj_cs_358 crossref_primary_10_1002_ima_22527 crossref_primary_10_1038_s41598_021_98617_1 crossref_primary_10_1109_ACCESS_2023_3260632 crossref_primary_10_1016_j_fhj_2024_100179 crossref_primary_10_1007_s00530_021_00884_5 crossref_primary_10_3390_jpm11100993 crossref_primary_10_1038_s41598_023_46147_3 crossref_primary_10_1016_j_pmedr_2022_101798 crossref_primary_10_1109_JIOT_2023_3262882 crossref_primary_10_3389_fradi_2024_1487895 crossref_primary_10_3389_fmed_2021_753055 crossref_primary_10_1109_ACCESS_2021_3058854 crossref_primary_10_1016_j_artmed_2022_102372 crossref_primary_10_3390_app11178039 crossref_primary_10_1016_j_asoc_2022_109625 crossref_primary_10_1016_j_bspc_2022_104297 crossref_primary_10_1155_2021_3281135 crossref_primary_10_1016_j_procs_2022_09_165 crossref_primary_10_4103_japt_japt_13_23 crossref_primary_10_1007_s00330_021_07797_x crossref_primary_10_1007_s11547_021_01402_3 crossref_primary_10_1016_j_asoc_2022_108780 crossref_primary_10_1109_ACCESS_2022_3176883 crossref_primary_10_32604_cmc_2021_016141 crossref_primary_10_1016_j_imu_2021_100596 crossref_primary_10_1007_s11277_024_11309_7 crossref_primary_10_3390_diagnostics12061501 crossref_primary_10_1016_j_irbm_2021_01_004 crossref_primary_10_1016_j_imu_2021_100591 crossref_primary_10_3390_diagnostics12071527 crossref_primary_10_1145_3466690 crossref_primary_10_18287_2412_6179_CO_765 crossref_primary_10_1080_03014460_2020_1839132 crossref_primary_10_1186_s13023_024_03352_1 crossref_primary_10_1007_s10278_021_00434_5 crossref_primary_10_1109_TAI_2022_3225372 crossref_primary_10_37394_23208_2024_21_21 crossref_primary_10_3390_s21062215 crossref_primary_10_1002_hsr2_1244 crossref_primary_10_1016_j_acra_2021_09_002 crossref_primary_10_1117_1_JEI_31_4_043032 crossref_primary_10_2196_23693 crossref_primary_10_1016_j_actatropica_2024_107277 crossref_primary_10_1093_comjnl_bxab071 crossref_primary_10_2174_1574888X18666221221123505 crossref_primary_10_1016_j_bspc_2021_102814 crossref_primary_10_1111_ijcp_13760 crossref_primary_10_1007_s11517_022_02619_8 crossref_primary_10_1007_s11042_024_18153_8 crossref_primary_10_1155_2022_7675925 crossref_primary_10_1016_j_imu_2021_100526 crossref_primary_10_7717_peerj_cs_306 crossref_primary_10_3390_diagnostics11030530 crossref_primary_10_7717_peerj_cs_553 crossref_primary_10_7717_peerj_cs_313 crossref_primary_10_32604_iasc_2021_018265 crossref_primary_10_1186_s13027_020_00330_7 crossref_primary_10_2196_24572 crossref_primary_10_3390_healthcare9111545 crossref_primary_10_1007_s12539_021_00431_w crossref_primary_10_3389_fdata_2024_1489020 crossref_primary_10_1016_j_media_2022_102722 crossref_primary_10_1155_2020_8856801 crossref_primary_10_3390_healthcare10020403 crossref_primary_10_1007_s00259_020_04929_1 crossref_primary_10_3390_ijerph17082906 crossref_primary_10_1259_bjro_20200043 crossref_primary_10_7717_peerj_cs_564 crossref_primary_10_1016_j_neucom_2022_05_009 crossref_primary_10_1016_j_asoc_2021_108291 crossref_primary_10_1186_s12938_020_00831_x crossref_primary_10_1093_comjnl_bxab051 crossref_primary_10_32604_cmes_2021_016981 crossref_primary_10_1109_JBHI_2020_3034296 crossref_primary_10_1088_1361_6560_ac34b2 crossref_primary_10_7759_cureus_31897 crossref_primary_10_1038_s41598_021_88053_6 crossref_primary_10_31011_reaid_2023_v_97_n_4_art_1834 crossref_primary_10_1016_j_vacune_2020_12_002 crossref_primary_10_1007_s10489_020_01888_w crossref_primary_10_1109_TAI_2022_3149971 crossref_primary_10_1007_s12539_021_00420_z crossref_primary_10_1007_s00330_020_07042_x crossref_primary_10_1007_s11265_021_01714_7 crossref_primary_10_1007_s00330_021_08409_4 crossref_primary_10_1007_s12553_023_00792_w crossref_primary_10_1016_j_bspc_2022_104250 crossref_primary_10_1007_s10489_020_01862_6 crossref_primary_10_53759_7669_jmc202505044 crossref_primary_10_1155_2023_3563696 crossref_primary_10_1109_TAI_2022_3224097 crossref_primary_10_1016_j_bspc_2022_104499 crossref_primary_10_1136_bmjopen_2020_045120 crossref_primary_10_1186_s12879_024_10091_y crossref_primary_10_1007_s11277_023_10432_1 crossref_primary_10_1007_s00521_021_06189_y crossref_primary_10_1016_j_asoc_2021_108261 crossref_primary_10_3390_ijerph19095099 crossref_primary_10_1016_j_engappai_2022_105184 crossref_primary_10_1016_S2589_7500_20_30199_0 crossref_primary_10_1109_ACCESS_2022_3187564 crossref_primary_10_1186_s40249_022_00946_4 crossref_primary_10_1007_s11547_023_01691_w crossref_primary_10_3389_fpubh_2021_768278 crossref_primary_10_3348_jksr_2020_0150 crossref_primary_10_1016_j_bspc_2022_104268 crossref_primary_10_1016_j_chaos_2020_110071 crossref_primary_10_3389_frai_2022_927203 crossref_primary_10_1016_j_radcr_2021_03_038 crossref_primary_10_1186_s12911_022_02022_1 crossref_primary_10_1109_ACCESS_2020_3025164 crossref_primary_10_3390_healthcare10030422 crossref_primary_10_3390_bioengineering9110698 crossref_primary_10_1016_j_eururo_2020_09_031 crossref_primary_10_3390_diagnostics11061029 crossref_primary_10_1007_s10439_022_02958_5 crossref_primary_10_1080_23311916_2021_1958666 crossref_primary_10_1016_j_image_2021_116359 crossref_primary_10_3390_diagnostics12112569 crossref_primary_10_3389_fmed_2020_608525 crossref_primary_10_1007_s11548_020_02299_5 crossref_primary_10_1148_radiol_2021203957 crossref_primary_10_1016_S2213_2600_22_00294_6 crossref_primary_10_1186_s40658_022_00510_x crossref_primary_10_3389_fphys_2022_1066999 crossref_primary_10_1016_j_asoc_2021_108088 crossref_primary_10_1287_mnsc_2021_4029 crossref_primary_10_1007_s00330_022_09335_9 crossref_primary_10_1016_j_redii_2022_100018 crossref_primary_10_3390_jpm12020309 crossref_primary_10_3390_vaccines8020236 crossref_primary_10_1145_3451357 crossref_primary_10_32604_cmc_2021_014387 crossref_primary_10_32604_csse_2022_021563 crossref_primary_10_4329_wjr_v12_i8_142 crossref_primary_10_1007_s12652_021_03282_x crossref_primary_10_1109_ACCESS_2023_3279402 crossref_primary_10_1117_1_JMI_9_5_054001 crossref_primary_10_1016_j_eswa_2021_115650 crossref_primary_10_3934_mbe_2021210 crossref_primary_10_1021_acssensors_4c02280 crossref_primary_10_1016_j_bspc_2023_104939 crossref_primary_10_1590_0100_3984_2022_0049 crossref_primary_10_3390_ai2030020 crossref_primary_10_1111_crj_13599 crossref_primary_10_1111_dth_13794 crossref_primary_10_1007_s00330_020_06976_6 crossref_primary_10_1109_TMI_2021_3079709 crossref_primary_10_1186_s12913_022_08146_4 crossref_primary_10_3390_s21248219 crossref_primary_10_3390_info12110471 crossref_primary_10_1177_1535370220938315 crossref_primary_10_1016_j_clinimag_2021_02_044 crossref_primary_10_1016_j_robot_2021_103902 crossref_primary_10_1109_TNNLS_2021_3119071 crossref_primary_10_3390_diagnostics14242786 crossref_primary_10_3233_XST_211047 crossref_primary_10_3390_bioengineering10050529 crossref_primary_10_3390_bdcc7010011 crossref_primary_10_3389_fmicb_2024_1485001 crossref_primary_10_3390_app12125768 crossref_primary_10_1007_s10278_021_00430_9 crossref_primary_10_1007_s00354_022_00176_0 crossref_primary_10_1016_j_clinimag_2021_01_019 crossref_primary_10_1016_j_talanta_2022_123409 crossref_primary_10_1007_s41870_024_01851_9 crossref_primary_10_3390_jimaging7050081 crossref_primary_10_1186_s12879_021_06614_6 crossref_primary_10_32604_cmc_2023_038915 crossref_primary_10_3390_metabo14040195 crossref_primary_10_3389_fonc_2021_781798 crossref_primary_10_1515_jisys_2021_0041 crossref_primary_10_3233_THC_220114 crossref_primary_10_37394_23208_2020_17_14 crossref_primary_10_1016_j_jrras_2022_02_002 crossref_primary_10_3389_fcvm_2021_638011 crossref_primary_10_2196_21439 crossref_primary_10_1016_j_rico_2023_100215 crossref_primary_10_1155_2022_7474304 crossref_primary_10_1007_s10479_021_04154_5 crossref_primary_10_1016_j_asoc_2020_106897 crossref_primary_10_2478_pneum_2024_0008 crossref_primary_10_1142_S0219877021400022 crossref_primary_10_3390_jcm11051437 crossref_primary_10_3390_diagnostics12051045 crossref_primary_10_4329_wjr_v12_i12_272 crossref_primary_10_1007_s13042_024_02411_0 crossref_primary_10_1016_j_chaos_2020_109947 crossref_primary_10_4103_RID_RID_23_22 crossref_primary_10_1016_j_compbiomed_2022_105464 crossref_primary_10_1016_j_compbiomed_2021_105182 crossref_primary_10_1016_j_ijmedinf_2023_105090 crossref_primary_10_1016_j_swevo_2023_101430 crossref_primary_10_1134_S1061830924602150 crossref_primary_10_1080_03772063_2022_2027287 crossref_primary_10_3233_JIFS_220017 crossref_primary_10_1016_j_asoc_2020_106885 crossref_primary_10_32604_cmes_2021_015807 crossref_primary_10_2147_RMHP_S326132 crossref_primary_10_1109_TII_2021_3056686 crossref_primary_10_1155_2021_6627207 crossref_primary_10_34172_doh_2021_09 crossref_primary_10_1016_j_ejmp_2021_04_022 crossref_primary_10_3390_s21206853 crossref_primary_10_1016_j_bspc_2022_103552 crossref_primary_10_1109_TAI_2021_3064913 crossref_primary_10_3389_fpubh_2022_892499 crossref_primary_10_1109_ACCESS_2024_3423689 crossref_primary_10_32604_cmc_2021_014199 crossref_primary_10_2214_AJR_21_26717 crossref_primary_10_7717_peerj_cs_719 crossref_primary_10_3233_JIFS_201985 crossref_primary_10_32604_cmc_2022_028847 crossref_primary_10_1049_ipr2_13106 crossref_primary_10_1109_TII_2021_3057524 crossref_primary_10_1007_s00330_020_06956_w crossref_primary_10_15212_bioi_2020_0015 crossref_primary_10_3389_fphys_2022_981463 crossref_primary_10_3390_jcm10143100 crossref_primary_10_32604_cmc_2022_020919 crossref_primary_10_11622_smedj_2020045 crossref_primary_10_1109_ACCESS_2022_3159025 crossref_primary_10_3390_e23020204 crossref_primary_10_1016_j_bspc_2023_104724 crossref_primary_10_1007_s11042_022_12484_0 crossref_primary_10_1007_s11042_024_19549_2 crossref_primary_10_1016_j_compbiomed_2022_106338 crossref_primary_10_1007_s11571_021_09712_y crossref_primary_10_1016_j_compbiomed_2022_106331 crossref_primary_10_1016_j_rmr_2023_12_001 crossref_primary_10_37737_ace_22014 crossref_primary_10_2196_20156 crossref_primary_10_2139_ssrn_3909786 crossref_primary_10_3389_frai_2021_652669 crossref_primary_10_1016_j_health_2023_100176 crossref_primary_10_2196_22320 crossref_primary_10_1016_j_eswa_2023_122317 crossref_primary_10_1016_j_heliyon_2023_e16807 crossref_primary_10_1007_s00259_021_05232_3 crossref_primary_10_3389_fpubh_2021_596938 crossref_primary_10_1007_s10489_020_01829_7 crossref_primary_10_2196_21476 crossref_primary_10_1007_s42979_022_01067_3 crossref_primary_10_1016_j_opresp_2020_100078 crossref_primary_10_1038_s41598_022_24936_6 crossref_primary_10_1007_s11042_023_16017_1 crossref_primary_10_32604_cmc_2022_020140 crossref_primary_10_1007_s11042_023_14941_w crossref_primary_10_1007_s40747_021_00424_8 crossref_primary_10_17343_sdutfd_902875 crossref_primary_10_1016_j_bspc_2022_103860 crossref_primary_10_1109_JBHI_2020_3009314 crossref_primary_10_20340_vmi_rvz_2020_6_1 crossref_primary_10_1007_s00259_020_05075_4 crossref_primary_10_1136_bmj_m1328 crossref_primary_10_21802_e_GMJ2023_A06 crossref_primary_10_48084_etasr_4503 crossref_primary_10_1007_s11042_020_10010_8 crossref_primary_10_4018_JDM_305731 crossref_primary_10_3389_fpubh_2022_1004117 crossref_primary_10_3390_axioms12100997 crossref_primary_10_3390_pathogens9070519 crossref_primary_10_29328_journal_jprr_1001044 crossref_primary_10_1007_s00354_022_00195_x crossref_primary_10_1038_s41467_020_18685_1 crossref_primary_10_1007_s13369_020_05212_z crossref_primary_10_1016_j_jvcir_2023_103775 crossref_primary_10_2196_25181 crossref_primary_10_1007_s00259_020_04953_1 crossref_primary_10_31590_ejosat_1021030 crossref_primary_10_1007_s00521_021_06171_8 crossref_primary_10_1109_TMBMC_2021_3099367 crossref_primary_10_1016_j_chaos_2020_110337 crossref_primary_10_3390_ijerph18168578 crossref_primary_10_1021_acs_jcim_0c01409 crossref_primary_10_1016_j_aej_2022_10_053 crossref_primary_10_1109_TUFFC_2020_3026536 crossref_primary_10_3390_app11094233 crossref_primary_10_1155_2022_4680905 crossref_primary_10_4103_crst_crst_28_21 crossref_primary_10_3389_fams_2023_1303714 crossref_primary_10_1080_0952813X_2021_1908431 crossref_primary_10_1002_app_53949 crossref_primary_10_3390_jpm12040535 crossref_primary_10_1016_j_compbiomed_2022_106136 crossref_primary_10_2196_20756 crossref_primary_10_1007_s11042_021_11257_5 crossref_primary_10_1109_JBHI_2020_3036722 crossref_primary_10_3390_ijerph192013099 crossref_primary_10_1038_s41746_020_00369_1 crossref_primary_10_4329_wjr_v13_i6_192 crossref_primary_10_1109_TNNLS_2021_3054746 crossref_primary_10_4329_wjr_v13_i6_193 crossref_primary_10_2174_1573398X1903230831160911 crossref_primary_10_1007_s11517_022_02611_2 crossref_primary_10_1148_radiol_222462 crossref_primary_10_1007_s10796_021_10131_x crossref_primary_10_2174_1573405616666200604163954 crossref_primary_10_1097_CM9_0000000000003436 crossref_primary_10_3390_jimaging8100267 crossref_primary_10_1259_bjr_20220058 crossref_primary_10_25259_JCCC_67_2023 crossref_primary_10_3390_ijerph18031117 crossref_primary_10_1109_TCBB_2021_3102584 crossref_primary_10_3390_s21248362 crossref_primary_10_3389_fpubh_2021_648360 crossref_primary_10_1016_j_compbiomed_2022_106156 crossref_primary_10_1038_s41598_021_91305_0 crossref_primary_10_1002_int_22504 crossref_primary_10_1038_s41598_023_27697_y crossref_primary_10_4103_ijn_IJN_191_20 crossref_primary_10_4329_wjr_v13_i6_171 crossref_primary_10_4329_wjr_v13_i6_172 crossref_primary_10_1186_s12885_021_08773_w crossref_primary_10_1109_TVCG_2021_3114851 crossref_primary_10_1016_j_jacr_2022_03_013 crossref_primary_10_1186_s12880_021_00723_z crossref_primary_10_32902_2663_0338_2022_1_23_31 crossref_primary_10_1002_mp_15803 crossref_primary_10_1038_s41598_022_13298_8 crossref_primary_10_1016_j_compbiomed_2022_105298 crossref_primary_10_3389_fbioe_2022_903426 crossref_primary_10_1016_j_compbiomed_2020_103795 crossref_primary_10_1016_j_acra_2020_09_004 crossref_primary_10_3390_v13020202 crossref_primary_10_3390_diagnostics11081317 crossref_primary_10_1007_s00354_025_00291_8 crossref_primary_10_1016_j_redii_2022_100004 crossref_primary_10_1148_ryct_2021200596 crossref_primary_10_1016_j_redii_2022_100003 crossref_primary_10_1016_j_inffus_2021_05_015 crossref_primary_10_1109_ACCESS_2023_3330238 crossref_primary_10_1183_13993003_00775_2020 crossref_primary_10_1007_s12559_022_10076_6 crossref_primary_10_1080_1744666X_2021_1847640 crossref_primary_10_1007_s00521_023_08344_z crossref_primary_10_1016_j_ejrad_2020_109402 crossref_primary_10_1177_02841851231162085 crossref_primary_10_2196_19569 crossref_primary_10_1016_j_techsoc_2023_102204 crossref_primary_10_1007_s00354_023_00213_6 crossref_primary_10_1038_s41746_021_00399_3 crossref_primary_10_1371_journal_pone_0296352 crossref_primary_10_2147_RMHP_S317735 crossref_primary_10_1016_j_media_2020_101860 crossref_primary_10_1007_s00296_024_05681_7 crossref_primary_10_1016_j_jcmg_2021_11_010 crossref_primary_10_4329_wjr_v13_i6_157 crossref_primary_10_1038_s41598_021_97428_8 crossref_primary_10_1007_s10489_020_02002_w crossref_primary_10_1016_j_sciaf_2023_e01961 crossref_primary_10_1016_j_hlpt_2020_07_001 crossref_primary_10_1007_s42058_024_00143_2 crossref_primary_10_17816_DD46826 crossref_primary_10_1016_j_future_2021_04_007 crossref_primary_10_48175_IJARSCT_3746 crossref_primary_10_32604_cmc_2021_015541 crossref_primary_10_1109_JSEN_2021_3076767 crossref_primary_10_35711_aimi_v3_i1_1 crossref_primary_10_2196_23811 crossref_primary_10_1016_j_matpr_2021_07_367 crossref_primary_10_1016_j_imu_2021_100842 crossref_primary_10_1016_j_cmpb_2021_106336 crossref_primary_10_1088_1361_6560_ac4316 crossref_primary_10_3390_tomography8020071 crossref_primary_10_1109_JBHI_2021_3103646 crossref_primary_10_25259_JCIS_172_2021 crossref_primary_10_1108_EJIM_05_2024_0520 crossref_primary_10_1080_0952813X_2023_2165724 crossref_primary_10_1007_s00521_024_09484_6 crossref_primary_10_48175_IJARSCT_1571 crossref_primary_10_3390_s21217268 crossref_primary_10_1186_s12880_022_00753_1 crossref_primary_10_3390_jimaging10100250 crossref_primary_10_1080_0952813X_2022_2093980 crossref_primary_10_1016_j_cag_2022_03_003 crossref_primary_10_1016_j_media_2020_101836 crossref_primary_10_48175_IJARSCT_4607 crossref_primary_10_1016_j_bspc_2024_106866 crossref_primary_10_1016_j_ejro_2020_100239 crossref_primary_10_1016_j_chaos_2020_110170 crossref_primary_10_1016_j_imu_2021_100835 crossref_primary_10_5114_pjr_2021_104049 crossref_primary_10_33889_IJMEMS_2020_5_5_062 crossref_primary_10_1002_jemt_23713 crossref_primary_10_1007_s11831_023_09882_4 crossref_primary_10_1038_s41598_022_15268_6 crossref_primary_10_32604_csse_2023_037889 crossref_primary_10_1016_j_rx_2024_05_010 crossref_primary_10_1016_S2589_7500_20_30142_4 crossref_primary_10_32604_csse_2023_037408 crossref_primary_10_1080_07391102_2023_2227726 crossref_primary_10_1007_s00521_024_10862_3 crossref_primary_10_1007_s11042_022_13499_3 crossref_primary_10_3389_fmed_2021_646506 crossref_primary_10_1016_j_aej_2021_03_052 crossref_primary_10_1109_ACCESS_2020_3005510 crossref_primary_10_1007_s00500_023_07813_w crossref_primary_10_1007_s00354_024_00254_5 crossref_primary_10_1145_3457124 crossref_primary_10_1038_s41598_023_30640_w crossref_primary_10_1007_s11042_021_11299_9 crossref_primary_10_32604_cmc_2022_019331 crossref_primary_10_1016_j_aej_2022_12_015 crossref_primary_10_1016_j_ejro_2020_100272 crossref_primary_10_1109_ACCESS_2020_3007939 crossref_primary_10_1016_j_ejro_2020_100271 crossref_primary_10_1109_ACCESS_2022_3148401 crossref_primary_10_3390_diagnostics12122943 crossref_primary_10_1007_s12038_020_00114_6 crossref_primary_10_1016_j_chaos_2020_110153 crossref_primary_10_3390_healthcare11172388 crossref_primary_10_1038_s42256_021_00421_z crossref_primary_10_1155_2023_6341259 crossref_primary_10_1002_ima_22583 crossref_primary_10_1016_j_imu_2022_100916 crossref_primary_10_1016_S2589_7500_20_30079_0 crossref_primary_10_1109_TBME_2021_3085576 crossref_primary_10_70436_nuijb_v2i03_71 crossref_primary_10_1007_s00354_024_00278_x crossref_primary_10_1016_j_imu_2021_100621 crossref_primary_10_1007_s13755_021_00154_8 crossref_primary_10_1109_RBME_2022_3185953 crossref_primary_10_1038_s41598_021_83424_5 crossref_primary_10_1038_s41598_023_50742_9 crossref_primary_10_1109_TCE_2021_3130228 crossref_primary_10_1016_j_patrec_2021_08_035 crossref_primary_10_1016_j_heliyon_2023_e21965 crossref_primary_10_1016_j_chaos_2020_110140 crossref_primary_10_1007_s13204_021_01935_z crossref_primary_10_1080_09720502_2020_1838061 crossref_primary_10_1007_s00330_023_10578_3 crossref_primary_10_1016_j_compeleceng_2020_106960 crossref_primary_10_7705_biomedica_5927 crossref_primary_10_3389_fmed_2021_704256 crossref_primary_10_1016_j_patcog_2021_108135 crossref_primary_10_1007_s10096_020_03901_z crossref_primary_10_1007_s00354_021_00128_0 crossref_primary_10_70030_sjmakeu_1460760 crossref_primary_10_1016_j_cmpb_2022_106651 crossref_primary_10_3389_fpsyg_2021_559842 crossref_primary_10_1007_s11604_022_01268_z crossref_primary_10_1109_TBME_2023_3239372 crossref_primary_10_32604_csse_2023_029822 crossref_primary_10_18786_2072_0505_2021_49_028 crossref_primary_10_3145_epi_2020_jul_29 crossref_primary_10_32604_cmc_2022_017178 crossref_primary_10_1007_s42979_022_01642_8 crossref_primary_10_3389_frsip_2024_1384744 crossref_primary_10_3390_jcm12103446 crossref_primary_10_1016_j_ejrad_2022_110188 crossref_primary_10_1109_TMI_2020_2994908 crossref_primary_10_1155_2022_1473977 crossref_primary_10_3389_fpubh_2021_813717 crossref_primary_10_7717_peerj_13124 crossref_primary_10_3390_covid4120140 crossref_primary_10_3390_tomography7040058 crossref_primary_10_3390_s24134291 crossref_primary_10_52880_sagakaderg_1070774 crossref_primary_10_32604_cmc_2020_013232 crossref_primary_10_1002_ima_22564 crossref_primary_10_2174_1573405617666210806123720 crossref_primary_10_1097_RCT_0000000000001585 crossref_primary_10_1155_2022_5329014 crossref_primary_10_1002_ima_22566 crossref_primary_10_1016_j_diii_2020_06_001 crossref_primary_10_1016_j_ijmedinf_2023_105308 crossref_primary_10_1016_j_cmpbup_2022_100090 crossref_primary_10_1148_radiol_2020204226 crossref_primary_10_1002_jemt_23913 crossref_primary_10_1080_07391102_2020_1788642 crossref_primary_10_5694_mja2_50821 crossref_primary_10_3390_jpm12101707 crossref_primary_10_32604_cmes_2022_018948 crossref_primary_10_1007_s11063_022_10785_x crossref_primary_10_1109_ACCESS_2020_3034032 crossref_primary_10_7717_peerj_10086 crossref_primary_10_1108_WJE_12_2020_0655 crossref_primary_10_1002_spe_3011 crossref_primary_10_1016_j_ibmed_2021_100030 crossref_primary_10_3389_fcimb_2022_882661 crossref_primary_10_3389_fpubh_2022_1023098 crossref_primary_10_4015_S1016237222500065 crossref_primary_10_1109_JBHI_2020_3042523 crossref_primary_10_1152_physiolgenomics_00084_2020 crossref_primary_10_3390_e22050517 crossref_primary_10_1016_j_vacun_2020_12_004 crossref_primary_10_1186_s12879_021_06556_z crossref_primary_10_3390_covid4080088 crossref_primary_10_1016_j_asoc_2021_107330 crossref_primary_10_2196_21801 crossref_primary_10_3390_s20195665 crossref_primary_10_1016_j_ejrad_2022_110164 crossref_primary_10_1016_j_jormas_2024_101914 crossref_primary_10_1155_2022_6972998 crossref_primary_10_1016_j_ipemt_2022_100008 crossref_primary_10_1109_TETCI_2022_3174868 crossref_primary_10_1186_s12911_021_01588_6 crossref_primary_10_1007_s41870_020_00571_0 crossref_primary_10_1155_2021_6213450 crossref_primary_10_1002_cdt3_27 crossref_primary_10_1097_CM9_00000000000020S8 crossref_primary_10_1002_widm_1462 crossref_primary_10_1109_TAI_2022_3208217 crossref_primary_10_1007_s10489_020_01965_0 crossref_primary_10_1109_TETCI_2022_3224937 crossref_primary_10_1117_1_JMI_8_6_064501 |
Cites_doi | 10.1001/jama.2020.1585 10.1056/NEJMoa2001316 10.1148/radiol.2020200432 10.1007/978-3-030-32245-8_64 10.1056/NEJMoa2001191 10.1007/s00330-019-06163-2 10.1016/S0140-6736(20)30211-7 10.3390/app8101715 10.2307/2531595 10.1016/j.cell.2018.02.010 10.1007/978-3-319-24574-4_28 10.1148/radiol.2020200230 10.1016/S0140-6736(20)30183-5 10.1097/RLI.0000000000000127 10.1016/j.compmedimag.2019.101688 10.1148/radiol.2020200642 10.1109/TMI.2016.2535865 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1148/radiol.2020200905 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-1315 |
EndPage | E71 |
ExternalDocumentID | 32191588 10_1148_radiol_2020200905 |
Genre | Multicenter Study Evaluation Study Journal Article |
GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL AAYXX ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ADBBV AENEX AENYM AFFNX AFOSN AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ W8F WH7 WOQ X7M YQI YQJ ZGI ZVN ZXP ACRZS CGR CUY CVF ECM EIF NPM VXZ ZKG 7X8 |
ID | FETCH-LOGICAL-c410t-de263d52f8392344cb542cdda20863d0ba875ce670eaa0ec5d82f081ecf0cebb3 |
ISSN | 0033-8419 1527-1315 |
IngestDate | Fri Jul 11 06:27:32 EDT 2025 Wed Feb 19 02:29:07 EST 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 00:43:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c410t-de263d52f8392344cb542cdda20863d0ba875ce670eaa0ec5d82f081ecf0cebb3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0002-7528-2407 0000-0002-2874-6619 0000-0002-5342-3870 0000-0002-9134-1024 0000-0002-5689-0343 0000-0001-9903-8049 0000-0003-0966-3006 0000-0001-6677-1519 0000-0001-9805-1946 0000-0003-2361-151X 0000-0003-3610-0436 0000-0002-6793-6212 0000-0001-9913-134X 0000-0002-9663-6577 0000-0003-2108-5341 0000-0002-3496-2174 0000-0001-7748-9586 0000-0003-3174-4267 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7233473 |
PMID | 32191588 |
PQID | 2381628962 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2381628962 pubmed_primary_32191588 crossref_primary_10_1148_radiol_2020200905 crossref_citationtrail_10_1148_radiol_2020200905 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Radiology |
PublicationTitleAlternate | Radiology |
PublicationYear | 2020 |
References | r2 r3 r4 r5 r6 r7 r8 He K (r16) 2016 r9 r10 r12 r11 r14 r13 r15 r18 r17 Selvaraju RR (r19) 2017 r1 32243239 - Radiology. 2020 Sep;296(3):E192 |
References_xml | – ident: r2 doi: 10.1001/jama.2020.1585 – ident: r3 doi: 10.1056/NEJMoa2001316 – ident: r6 doi: 10.1148/radiol.2020200432 – year: 2016 ident: r16 publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: r9 doi: 10.1007/978-3-030-32245-8_64 – ident: r4 doi: 10.1056/NEJMoa2001191 – ident: r11 doi: 10.1007/s00330-019-06163-2 – ident: r1 doi: 10.1016/S0140-6736(20)30211-7 – ident: r13 doi: 10.3390/app8101715 – ident: r18 doi: 10.2307/2531595 – ident: r12 doi: 10.1016/j.cell.2018.02.010 – ident: r17 doi: 10.1007/978-3-319-24574-4_28 – year: 2017 ident: r19 publication-title: Proceedings of the IEEE International Conference on Computer Vision – ident: r7 doi: 10.1148/radiol.2020200230 – ident: r8 doi: 10.1016/S0140-6736(20)30183-5 – ident: r14 doi: 10.1097/RLI.0000000000000127 – ident: r10 doi: 10.1016/j.compmedimag.2019.101688 – ident: r5 doi: 10.1148/radiol.2020200642 – ident: r15 doi: 10.1109/TMI.2016.2535865 – reference: 32243239 - Radiology. 2020 Sep;296(3):E192 |
SSID | ssj0014587 |
Score | 2.7296422 |
Snippet | Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | E65 |
SubjectTerms | Adult Aged Artificial Intelligence Betacoronavirus Clinical Laboratory Techniques - methods Community-Acquired Infections - diagnostic imaging Coronavirus Infections - diagnosis Coronavirus Infections - diagnostic imaging COVID-19 COVID-19 Testing Deep Learning Diagnosis, Differential Female Humans Imaging, Three-Dimensional - methods Male Middle Aged Pandemics Pneumonia, Viral - diagnostic imaging Radiographic Image Interpretation, Computer-Assisted - methods Retrospective Studies ROC Curve SARS-CoV-2 Sensitivity and Specificity Tomography, X-Ray Computed - methods |
Title | Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32191588 https://www.proquest.com/docview/2381628962 |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviPvGTUbiiSklcewk5a20nTboLkIp6ltkOw6qNCVTSSTgR_CbOY4dp1UHGrxYlZXETs-X488-N4TeMMVGtKCRF_s88WgOn6LgEYdmFAZScVZwHTt8ehYdL-jHJVsOBlcbXktNLYby57VxJf8jVegDueoo2X-QrHsodMBvkC-0IGFobyRjY-8fr1t_H5M1YyPBJrDKqdI2gsPJ-ZeTqReMWkuBDQmpf3hcajdgYJwXpWpg0it--AEWtVwbEC6aS-jRLnWTVJ8azFxW8M6rYGqc9HTC17GUzZrLLQvxZ56vto7s5yt7BuDOWk36gvnqe9-3bFprifraVE4fmctALYlumbWnFKT3kXOKlcReEJrQzaG6ps9qY2IK3FrYkQ3dOjNFJXZ1PtVxDOv2rYZ6bG3w8Vm_wHVG_bPz7Ggxn2fpbJneQrcJbCx0zYvpySdnd6KsLanoZmbt4DDEu50BtpnMH7YnLU1J76N7dn-BxwYsD9BAlQ_RnVPrQfEI_Woxg3vM4E3M4LrCBjO4wwwGzOBdzGCHGdxiBlcldpjBk_Q97hGDqwIDYnCPGNwh5jFaHM3SybFna3J4kgZ-7eWKRGHOSKGJdUipFIwSmeecwN44zH3BYQMsVRT7inNfSZYnpADaqWThSyVE-ATtlVWp9hGmMU9GhMey4EClFEmAjXIh_ECEmiaTA-R3_28mbcJ6XTflMjPB9ElmRJL1IjlAb90tVyZby98uft0JLQOdqg1lvFRV8y3TNDYiySiCOTw10nSPC2GJD1iSPLvB3c_R3f5beIH26nWjXgKHrcWrFna_ASZunjM |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Artificial+Intelligence+to+Detect+COVID-19+and+Community-acquired+Pneumonia+Based+on+Pulmonary+CT%3A+Evaluation+of+the+Diagnostic+Accuracy&rft.jtitle=Radiology&rft.au=Li%2C+Lin&rft.au=Qin%2C+Lixin&rft.au=Xu%2C+Zeguo&rft.au=Yin%2C+Youbing&rft.date=2020-08-01&rft.issn=1527-1315&rft.eissn=1527-1315&rft.volume=296&rft.issue=2&rft.spage=E65&rft_id=info:doi/10.1148%2Fradiol.2020200905&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon |