Thermodynamics and logarithmic corrections of symmergent black holes

In this paper, we study quantum gravity effect on the symmergent black hole which is derived from quadratic-curvature gravity. To do so, we use the Klein–Gordon equation which is modified by generalized uncertainty principle (GUP). After solving the field equations, we examine the symmergent black h...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 46; p. 106300
Main Authors Ali, Riasat, Babar, Rimsha, Akhtar, Zunaira, Övgün, Ali
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study quantum gravity effect on the symmergent black hole which is derived from quadratic-curvature gravity. To do so, we use the Klein–Gordon equation which is modified by generalized uncertainty principle (GUP). After solving the field equations, we examine the symmergent black hole’s tunneling and Hawking temperature. We explore the graphs of the temperature through the outer horizon to check the GUP influenced conditions of symmergent black hole stability. We also explain how symmergent black holes behave physically when influenced by quantum gravity. The impacts of thermal fluctuations on the thermodynamics of a symmergent black holes spacetime are examined. We first evaluate the model under consideration’s thermodynamic properties, such as its Hawking temperature, angular velocity, entropy, and electric potential. We evaluate the logarithmic correction terms for entropy around the equilibrium state in order to examine the impacts of thermal fluctuations. In the presence of these correction terms, we also examine the viability of the first law of thermodynamics. Finally, we evaluate the system’s stability using the Hessian matrix and heat capacity. It is determined that a stable model is generated by logarithmic corrections arising from thermal fluctuations. •We study quantum gravity effect on the symmergent black hole.•We use the GUP modified Klein–Gordon equation.•We show how symmergent black holes behave when influenced by quantum gravity.•We study thermodynamics and logarithmic corrections of symmergent black holes.•Hence, stability is generated by logarithmic corrections from thermal fluctuations.
AbstractList In this paper, we study quantum gravity effect on the symmergent black hole which is derived from quadratic-curvature gravity. To do so, we use the Klein–Gordon equation which is modified by generalized uncertainty principle (GUP). After solving the field equations, we examine the symmergent black hole’s tunneling and Hawking temperature. We explore the graphs of the temperature through the outer horizon to check the GUP influenced conditions of symmergent black hole stability. We also explain how symmergent black holes behave physically when influenced by quantum gravity. The impacts of thermal fluctuations on the thermodynamics of a symmergent black holes spacetime are examined. We first evaluate the model under consideration’s thermodynamic properties, such as its Hawking temperature, angular velocity, entropy, and electric potential. We evaluate the logarithmic correction terms for entropy around the equilibrium state in order to examine the impacts of thermal fluctuations. In the presence of these correction terms, we also examine the viability of the first law of thermodynamics. Finally, we evaluate the system’s stability using the Hessian matrix and heat capacity. It is determined that a stable model is generated by logarithmic corrections arising from thermal fluctuations.
In this paper, we study quantum gravity effect on the symmergent black hole which is derived from quadratic-curvature gravity. To do so, we use the Klein–Gordon equation which is modified by generalized uncertainty principle (GUP). After solving the field equations, we examine the symmergent black hole’s tunneling and Hawking temperature. We explore the graphs of the temperature through the outer horizon to check the GUP influenced conditions of symmergent black hole stability. We also explain how symmergent black holes behave physically when influenced by quantum gravity. The impacts of thermal fluctuations on the thermodynamics of a symmergent black holes spacetime are examined. We first evaluate the model under consideration’s thermodynamic properties, such as its Hawking temperature, angular velocity, entropy, and electric potential. We evaluate the logarithmic correction terms for entropy around the equilibrium state in order to examine the impacts of thermal fluctuations. In the presence of these correction terms, we also examine the viability of the first law of thermodynamics. Finally, we evaluate the system’s stability using the Hessian matrix and heat capacity. It is determined that a stable model is generated by logarithmic corrections arising from thermal fluctuations. •We study quantum gravity effect on the symmergent black hole.•We use the GUP modified Klein–Gordon equation.•We show how symmergent black holes behave when influenced by quantum gravity.•We study thermodynamics and logarithmic corrections of symmergent black holes.•Hence, stability is generated by logarithmic corrections from thermal fluctuations.
ArticleNumber 106300
Author Ali, Riasat
Babar, Rimsha
Övgün, Ali
Akhtar, Zunaira
Author_xml – sequence: 1
  givenname: Riasat
  surname: Ali
  fullname: Ali, Riasat
  email: riasatyasin@gmail.com
  organization: Department of Mathematics, GC University Faisalabad Layyah Campus, Layyah 31200, Pakistan
– sequence: 2
  givenname: Rimsha
  surname: Babar
  fullname: Babar, Rimsha
  email: rimsha.babar10@gmail.com
  organization: Division of Science and Technology, University of Education, Township, Lahore 54590, Pakistan
– sequence: 3
  givenname: Zunaira
  surname: Akhtar
  fullname: Akhtar, Zunaira
  email: zakhtarmathematics@gmail.com
  organization: Division of Science and Technology, University of Education, Township, Lahore 54590, Pakistan
– sequence: 4
  givenname: Ali
  orcidid: 0000-0002-9889-342X
  surname: Övgün
  fullname: Övgün, Ali
  email: ali.ovgun@emu.edu.tr
  organization: Physics Department, Eastern Mediterranean University, Famagusta, 99628 North Cyprus, via Mersin 10, Turkey
BookMark eNp9kMtqwzAQRUVJoWmaH-jKP5BUL0sxdFPSVyDQTboWY2mcKLWtIJlC_r5200LpIisNF84dzbkmoza0SMgto3NGmbrbz6NvD3NOuegDJSi9IGPOGZsJXejRn_mKTFPaU9pTMs8ZG5PHzQ5jE9yxhcbblEHrsjpsIfpu1weZDTGi7XxoUxaqLB2bBuMW2y4ra7Af2S7UmG7IZQV1wunPOyHvz0-b5ets_fayWj6sZ1Yy2s0clBq0VNJqcIorisCroiiQWbnQwnKnAWjBUACirRhIh0ooLXLNirIUYkJWp14XYG8O0TcQjyaAN99BiFsDsfO2RpOD4iXn_RbJJDgotBZVDswxlxdK8r5rceqyMaQUsTLWdzAc2kXwtWHUDHLN3gxyzSDXnOT2KP-H_n7lLHR_grAX9OkxmmQ9thadHwT3F_hz-BfH95VJ
CitedBy_id crossref_primary_10_1016_j_hedp_2025_101189
crossref_primary_10_1088_1361_6382_acf08c
crossref_primary_10_1142_S0219887823502055
crossref_primary_10_1002_prop_202300138
crossref_primary_10_1016_j_dark_2023_101314
crossref_primary_10_1088_1572_9494_ad5718
crossref_primary_10_1002_andp_202300236
crossref_primary_10_1007_s12648_024_03122_6
crossref_primary_10_1016_j_mtcomm_2023_107758
crossref_primary_10_1140_epjc_s10052_023_11400_6
crossref_primary_10_1103_PhysRevD_107_105014
crossref_primary_10_1016_j_cjph_2024_01_019
crossref_primary_10_1142_S0217751X23500938
crossref_primary_10_1016_j_nuclphysb_2023_116316
crossref_primary_10_1016_j_nuclphysb_2024_116725
crossref_primary_10_3390_e26100868
crossref_primary_10_1142_S0219887824501494
Cites_doi 10.1063/1.531814
10.1103/PhysRevLett.84.5255
10.1103/PhysRevD.7.2333
10.1088/0264-9381/19/9/302
10.1007/BF01645742
10.1016/j.dark.2021.100900
10.1016/j.nuclphysb.2018.08.010
10.1016/j.nuclphysb.2018.01.018
10.1103/PhysRevD.15.2752
10.1088/1674-1137/44/1/015104
10.1088/0264-9381/25/9/095014
10.1140/epjp/i2017-11574-9
10.1016/j.physletb.2008.06.012
10.1142/S021773231850164X
10.1007/s10714-021-02797-0
10.1140/epjc/s10052-017-5191-0
10.1142/S0217732320501047
10.1142/S0217751X07036130
10.1140/epjc/s10052-016-3998-8
10.1140/epjc/s10052-021-09274-7
10.1007/JHEP07(2015)052
10.1140/epjp/i2016-16177-4
10.1155/2016/6727805
10.1016/j.aop.2021.168572
10.1140/epjc/s10052-017-4859-9
10.1139/cjp-2018-0270
10.1007/s10509-016-2691-6
10.1103/PhysRevD.75.084022
10.1140/epjc/s10052-018-6320-0
10.1155/2019/2759641
10.1088/0264-9381/24/23/008
10.1140/epjp/i2019-12877-5
10.1088/0264-9381/18/15/303
10.1007/JHEP08(2010)089
10.1016/j.physletb.2006.09.028
10.1007/BF01208266
10.1016/j.dark.2022.100948
10.1088/0264-9381/21/6/007
10.1016/j.physletb.2008.07.017
10.1103/PhysRevD.52.4430
10.1103/PhysRevD.52.1108
10.1142/S0217732319500573
10.1139/cjp-2014-0229
10.1016/0550-3213(94)00588-6
10.1103/PhysRevD.73.104010
10.1140/epjc/s10052-019-7178-5
10.1142/S0218271822500699
10.1142/S0217732314502034
10.1016/j.aop.2022.169190
10.1103/PhysRevLett.116.231301
10.1088/0264-9381/17/20/302
10.3906/fiz-2003-1
10.1007/s10773-017-3420-9
10.1016/j.nuclphysb.2016.10.013
10.1209/0295-5075/111/40006
10.1016/j.physletb.2017.08.053
10.1016/j.newast.2021.101759
10.1007/s10773-017-3317-7
10.1155/2019/4652048
10.1088/1126-6708/2005/05/014
10.1007/s10773-008-9652-y
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2023.106300
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_5a62b22626414ada9773f5a1d1d59642
10_1016_j_rinp_2023_106300
S2211379723000931
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-dab7a7464c7ad6260ea2f999e1c4873c2d7aa091e3aeecf1a4de636735719bb33
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:22:22 EDT 2025
Tue Jul 01 02:27:47 EDT 2025
Thu Apr 24 23:09:48 EDT 2025
Tue Jul 25 20:59:18 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hawking radiation
WKB method. first order correction of thermodynamics
Black hole
Quantum tunneling
Symmergent gravity
Modified lagrangian equation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-dab7a7464c7ad6260ea2f999e1c4873c2d7aa091e3aeecf1a4de636735719bb33
ORCID 0000-0002-9889-342X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379723000931
ParticipantIDs doaj_primary_oai_doaj_org_article_5a62b22626414ada9773f5a1d1d59642
crossref_citationtrail_10_1016_j_rinp_2023_106300
crossref_primary_10_1016_j_rinp_2023_106300
elsevier_sciencedirect_doi_10_1016_j_rinp_2023_106300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Övgün, Jusufi (b37) 2016; 131
Zhang (b49) 2018; 935
Bekenstein (b42) 1973; 7
Kaul, Majumdar (b47) 2000; 84
Demir (b52) 2021; 53
Kerner, Mann (b13) 2006; 73
Upadhyay, islam, Ganai (b68) 2022; 2
Kerner, Mann (b12) 2008; 25
Akhmedov, Akhmedova, Singleton (b18) 2006; 642
Ibungochouba Singh, Ablu Meitei, Yugindro Singh (b27) 2016; 25
Javed, Babar (b9) 2019; 2019
Bargueño, Contreras, Rincón (b51) 2021; 81
Faizal, Khalil (b46) 2015; 30
Javed, Ali, Babar, Övgün (b8) 2020; 44
Bardeen, Carter, Hawking (b40) 1973; 31
Akhmedov, Akhmedova, Pilling, Singleton (b20) 2007; 22
Pantig, Övgün, Demir (b57) 2022
Ali, Bamba, Asgher, Shah (b64) 2021; 30
Javed, Ali, Babar, Övgün (b4) 2019; 134
Bekenstein (b58) 1973; 7
Ali, Babar, Sahoo (b66) 2022; 35
Kruglov (b22) 2014; 29
Brevik, Nojiri, Odintsov, Vanzo (b59) 2004; 70
Carlip (b48) 2000; 17
Övgün, Javed, Ali (b5) 2018; 2018
Singleton, Vagenas, Zhu, Ren (b21) 2010; 08
Shahraeini, Nozari, Saghaf (b30) 2022; 2
Kempf, Mangano, Mann (b33) 1995; 52
Ali, Bamba, Shah, Saleem (b63) 2022; 31
Sadeghi, Pourhassan, Rahimi (b76) 2014; 92
Pourhassan, Upadhyay, Saadat, Farahani (b44) 2018; 928
Demir (b53) 2019; 2019
Ibungochouba Singh, Ablu Meitei, Yugindro Singh (b26) 2016; 361
Gecim, Sucu (b36) 2018; 2018
Ali, Babar, Asgher (b67) 2022; 534
Sadeghi, Pourhassan, Rahimi (b70) 2014; 92
Demir (b54) 2016; 2016
Ali, Babar, Asgher, Cheng (b65) 2022; 37
Singh, Meitei, Singh (b28) 2017; 56
Ali (b24) 2008; 47
Övgün, Jusufi (b38) 2017; 132
Kerner, Mann (b14) 2008; 665
Ali, Babar, Asgher, Shah (b61) 2022; 19
Angheben, Nadalini, Vanzo, Zerbini (b2) 2005; 05
Akhmedova, Pilling, de Gill, Singleton (b19) 2008; 666
Akhtar, Babar, Ali (b72) 2023; 448
Ali (b23) 2007; 24
Kerner, Mann (b15) 2007; 75
Iyer, Wald (b74) 1995; 52
Gecim, Sucu (b34) 2018; 33
Kuang, Liu, Övgün (b16) 2018; 78
Hawking, Perry, Strominger (b1) 2016; 116
Çimdiker, Demir, Övgün (b55) 2021; 34
Ali, Babar, Asgher, Shah (b62) 2021; 432
Das, Majumdar, Bhaduri (b75) 2002; 19
Javed, Babar, Övgün (b10) 2019; 34
Babar, Javed, Övgün (b11) 2020; 35
Kempf (b31) 1997; 38
Gecim, Sucu (b35) 2017; 773
Carr, Mureika, Nicolini (b32) 2015; 2015
Jusufi, Övgün (b39) 2017; 56
Govindarajan, Kaul, Suneeta (b69) 2001; 18
Javed, Abbas, Ali (b6) 2017; 77
Kraus, Wilczek (b3) 1995; 437
Meitei, Singh, Meitei (b29) 2020; 44
Pourhassan, Faizal (b45) 2016; 913
Akbar, Das (b71) 2004; 21
Pourhassan, Faizal (b43) 2015; 111
Javed, Ali, Abbas (b7) 2019; 97
Pourhassan, Faizal, Debnath (b50) 2016; 76
Singh, Meitei, Singh, Singh (b25) 2019; 79
Hawking, Page (b41) 1983; 87
Ali, Asgher (b60) 2022; 93
Gibbons, Hawking (b73) 1977; 15
Kuang, Saavedra, Övgün (b17) 2017; 77
Rayimbaev, Pantig, Övgün, Abdujabbarov, Demir (b56) 2022
Ali (10.1016/j.rinp.2023.106300_b64) 2021; 30
Zhang (10.1016/j.rinp.2023.106300_b49) 2018; 935
Akhtar (10.1016/j.rinp.2023.106300_b72) 2023; 448
Iyer (10.1016/j.rinp.2023.106300_b74) 1995; 52
Akhmedov (10.1016/j.rinp.2023.106300_b18) 2006; 642
Upadhyay (10.1016/j.rinp.2023.106300_b68) 2022; 2
Govindarajan (10.1016/j.rinp.2023.106300_b69) 2001; 18
Kerner (10.1016/j.rinp.2023.106300_b14) 2008; 665
Övgün (10.1016/j.rinp.2023.106300_b37) 2016; 131
Javed (10.1016/j.rinp.2023.106300_b8) 2020; 44
Hawking (10.1016/j.rinp.2023.106300_b41) 1983; 87
Akbar (10.1016/j.rinp.2023.106300_b71) 2004; 21
Carr (10.1016/j.rinp.2023.106300_b32) 2015; 2015
Brevik (10.1016/j.rinp.2023.106300_b59) 2004; 70
Kerner (10.1016/j.rinp.2023.106300_b13) 2006; 73
Demir (10.1016/j.rinp.2023.106300_b52) 2021; 53
Övgün (10.1016/j.rinp.2023.106300_b38) 2017; 132
Kempf (10.1016/j.rinp.2023.106300_b33) 1995; 52
Bargueño (10.1016/j.rinp.2023.106300_b51) 2021; 81
Pourhassan (10.1016/j.rinp.2023.106300_b50) 2016; 76
Kempf (10.1016/j.rinp.2023.106300_b31) 1997; 38
Pantig (10.1016/j.rinp.2023.106300_b57) 2022
Gecim (10.1016/j.rinp.2023.106300_b34) 2018; 33
Javed (10.1016/j.rinp.2023.106300_b10) 2019; 34
Ali (10.1016/j.rinp.2023.106300_b62) 2021; 432
Ali (10.1016/j.rinp.2023.106300_b61) 2022; 19
Gecim (10.1016/j.rinp.2023.106300_b35) 2017; 773
Faizal (10.1016/j.rinp.2023.106300_b46) 2015; 30
Ali (10.1016/j.rinp.2023.106300_b63) 2022; 31
Ali (10.1016/j.rinp.2023.106300_b66) 2022; 35
Meitei (10.1016/j.rinp.2023.106300_b29) 2020; 44
Singleton (10.1016/j.rinp.2023.106300_b21) 2010; 08
Hawking (10.1016/j.rinp.2023.106300_b1) 2016; 116
Rayimbaev (10.1016/j.rinp.2023.106300_b56) 2022
Ali (10.1016/j.rinp.2023.106300_b67) 2022; 534
Gibbons (10.1016/j.rinp.2023.106300_b73) 1977; 15
Pourhassan (10.1016/j.rinp.2023.106300_b44) 2018; 928
Ali (10.1016/j.rinp.2023.106300_b60) 2022; 93
Bardeen (10.1016/j.rinp.2023.106300_b40) 1973; 31
Ali (10.1016/j.rinp.2023.106300_b24) 2008; 47
Demir (10.1016/j.rinp.2023.106300_b54) 2016; 2016
Ibungochouba Singh (10.1016/j.rinp.2023.106300_b26) 2016; 361
Gecim (10.1016/j.rinp.2023.106300_b36) 2018; 2018
Angheben (10.1016/j.rinp.2023.106300_b2) 2005; 05
Javed (10.1016/j.rinp.2023.106300_b4) 2019; 134
Babar (10.1016/j.rinp.2023.106300_b11) 2020; 35
Shahraeini (10.1016/j.rinp.2023.106300_b30) 2022; 2
Singh (10.1016/j.rinp.2023.106300_b25) 2019; 79
Kaul (10.1016/j.rinp.2023.106300_b47) 2000; 84
Kuang (10.1016/j.rinp.2023.106300_b16) 2018; 78
Ali (10.1016/j.rinp.2023.106300_b23) 2007; 24
Javed (10.1016/j.rinp.2023.106300_b6) 2017; 77
Carlip (10.1016/j.rinp.2023.106300_b48) 2000; 17
Ali (10.1016/j.rinp.2023.106300_b65) 2022; 37
Javed (10.1016/j.rinp.2023.106300_b7) 2019; 97
Demir (10.1016/j.rinp.2023.106300_b53) 2019; 2019
Sadeghi (10.1016/j.rinp.2023.106300_b76) 2014; 92
Akhmedov (10.1016/j.rinp.2023.106300_b20) 2007; 22
Singh (10.1016/j.rinp.2023.106300_b28) 2017; 56
Bekenstein (10.1016/j.rinp.2023.106300_b42) 1973; 7
Kraus (10.1016/j.rinp.2023.106300_b3) 1995; 437
Kerner (10.1016/j.rinp.2023.106300_b12) 2008; 25
Övgün (10.1016/j.rinp.2023.106300_b5) 2018; 2018
Kerner (10.1016/j.rinp.2023.106300_b15) 2007; 75
Akhmedova (10.1016/j.rinp.2023.106300_b19) 2008; 666
Das (10.1016/j.rinp.2023.106300_b75) 2002; 19
Ibungochouba Singh (10.1016/j.rinp.2023.106300_b27) 2016; 25
Çimdiker (10.1016/j.rinp.2023.106300_b55) 2021; 34
Jusufi (10.1016/j.rinp.2023.106300_b39) 2017; 56
Kuang (10.1016/j.rinp.2023.106300_b17) 2017; 77
Javed (10.1016/j.rinp.2023.106300_b9) 2019; 2019
Kruglov (10.1016/j.rinp.2023.106300_b22) 2014; 29
Pourhassan (10.1016/j.rinp.2023.106300_b43) 2015; 111
Bekenstein (10.1016/j.rinp.2023.106300_b58) 1973; 7
Pourhassan (10.1016/j.rinp.2023.106300_b45) 2016; 913
Sadeghi (10.1016/j.rinp.2023.106300_b70) 2014; 92
References_xml – volume: 131
  start-page: 177
  year: 2016
  ident: b37
  publication-title: Eur Phys J Plus
– volume: 56
  start-page: 1725
  year: 2017
  ident: b39
  publication-title: Internat J Theoret Phys
– volume: 665
  start-page: 277
  year: 2008
  end-page: 283
  ident: b14
  publication-title: Phys Lett B
– volume: 24
  start-page: 5849
  year: 2007
  end-page: 5860
  ident: b23
  publication-title: Classical Quantum Gravity
– volume: 2015
  start-page: 52
  year: 2015
  ident: b32
  publication-title: J High Energy Phys
– volume: 92
  start-page: 1638
  year: 2014
  ident: b70
  publication-title: Can J Phys
– volume: 93
  year: 2022
  ident: b60
  publication-title: New Astron
– volume: 437
  start-page: 231
  year: 1995
  ident: b3
  publication-title: Nuclear Phys B
– volume: 53
  start-page: 22
  year: 2021
  ident: b52
  publication-title: Gen Relativity Gravitation
– volume: 132
  start-page: 298
  year: 2017
  ident: b38
  publication-title: Eur Phys J Plus
– volume: 21
  start-page: 1383
  year: 2004
  ident: b71
  publication-title: Classical Quantum Gravity
– volume: 52
  start-page: 1108
  year: 1995
  ident: b33
  publication-title: Phys Rev D
– volume: 913
  start-page: 834
  year: 2016
  ident: b45
  publication-title: Nuclear Phys B
– volume: 642
  start-page: 124
  year: 2006
  end-page: 128
  ident: b18
  publication-title: Phys Lett B
– volume: 31
  start-page: 161
  year: 1973
  ident: b40
  publication-title: Comm Math Phys
– volume: 78
  start-page: 840
  year: 2018
  ident: b16
  publication-title: Eur Phys J C
– volume: 73
  year: 2006
  ident: b13
  publication-title: Phys Rev D
– volume: 361
  start-page: 103
  year: 2016
  ident: b26
  publication-title: Astrophys Space Sci
– volume: 2016
  year: 2016
  ident: b54
  publication-title: Adv High Energy Phys
– volume: 81
  start-page: 477
  year: 2021
  ident: b51
  publication-title: Eur Phys J C
– volume: 38
  start-page: 1347
  year: 1997
  ident: b31
  publication-title: J Math Phys
– volume: 84
  start-page: 5255
  year: 2000
  ident: b47
  publication-title: Phys Rev Lett
– volume: 76
  start-page: 145
  year: 2016
  ident: b50
  publication-title: Eur Phys J C
– volume: 928
  start-page: 415
  year: 2018
  ident: b44
  publication-title: Nuclear Phys B
– volume: 70
  year: 2004
  ident: b59
  publication-title: Phys Rev D
– volume: 432
  year: 2021
  ident: b62
  publication-title: Ann Physics
– volume: 18
  start-page: 2877
  year: 2001
  ident: b69
  publication-title: Classical Quantum Gravity
– volume: 2019
  year: 2019
  ident: b53
  publication-title: Adv High Energy Phys
– volume: 56
  start-page: 2640
  year: 2017
  end-page: 2650
  ident: b28
  publication-title: Internat J Theoret Phys
– volume: 2
  start-page: 55
  year: 2022
  ident: b30
  publication-title: J Holography Appl Phys
– volume: 87
  start-page: 577
  year: 1983
  ident: b41
  publication-title: Comm Math Phys
– volume: 2
  start-page: 25
  year: 2022
  ident: b68
  publication-title: J Holography Appl Phys
– volume: 97
  start-page: 176
  year: 2019
  ident: b7
  publication-title: Can J Phys
– volume: 2019
  year: 2019
  ident: b9
  publication-title: Adv High Energy Phys
– volume: 448
  year: 2023
  ident: b72
  publication-title: Ann Physics
– volume: 116
  year: 2016
  ident: b1
  publication-title: Phys Rev Lett
– volume: 25
  year: 2008
  ident: b12
  publication-title: Classical Quantum Gravity
– volume: 773
  start-page: 391
  year: 2017
  ident: b35
  publication-title: Phys Lett B
– year: 2022
  ident: b57
– volume: 37
  year: 2022
  ident: b65
  publication-title: Internat J Modern Phys A
– volume: 52
  start-page: 4430
  year: 1995
  end-page: 4439
  ident: b74
  publication-title: Phys Rev D
– volume: 77
  start-page: 296
  year: 2017
  ident: b6
  publication-title: Eur Phys J C
– year: 2022
  ident: b56
– volume: 7
  start-page: 2333
  year: 1973
  end-page: 2346
  ident: b58
  publication-title: Phys Rev D
– volume: 92
  start-page: 1638
  year: 2014
  end-page: 1642
  ident: b76
  publication-title: Can J Phys
– volume: 34
  year: 2021
  ident: b55
  publication-title: Phys Dark Univ
– volume: 534
  year: 2022
  ident: b67
  publication-title: Ann Phys
– volume: 08
  start-page: 089
  year: 2010
  ident: b21
  publication-title: J High Energy Phys
– volume: 25
  year: 2016
  ident: b27
  publication-title: Internat J Modern Phys D
– volume: 35
  year: 2020
  ident: b11
  publication-title: Modern Phys Lett A
– volume: 34
  year: 2019
  ident: b10
  publication-title: Modern Phys Lett A
– volume: 44
  start-page: 373
  year: 2020
  end-page: 383
  ident: b29
  publication-title: Turk J Phys
– volume: 33
  year: 2018
  ident: b34
  publication-title: Modern Phys Lett A
– volume: 30
  year: 2015
  ident: b46
  publication-title: Internat J Modern Phys A
– volume: 30
  year: 2021
  ident: b64
  publication-title: Internat J Modern Phys D
– volume: 77
  start-page: 613
  year: 2017
  ident: b17
  publication-title: Eur Phys J C
– volume: 111
  start-page: 40006
  year: 2015
  ident: b43
  publication-title: Europhys Lett
– volume: 2018
  year: 2018
  ident: b5
  publication-title: Adv High Energy Phys
– volume: 47
  start-page: 2203
  year: 2008
  end-page: 2217
  ident: b24
  publication-title: Internat J Theoret Phys
– volume: 666
  start-page: 269
  year: 2008
  end-page: 271
  ident: b19
  publication-title: Phys Lett B
– volume: 79
  start-page: 692
  year: 2019
  ident: b25
  publication-title: Eur Phys J C
– volume: 29
  year: 2014
  ident: b22
  publication-title: Modern Phys Lett A
– volume: 7
  start-page: 2333
  year: 1973
  ident: b42
  publication-title: Phys Rev D
– volume: 134
  start-page: 511
  year: 2019
  ident: b4
  publication-title: Eur Phys J Plus
– volume: 935
  start-page: 170
  year: 2018
  ident: b49
  publication-title: Nuclear Phys B
– volume: 17
  start-page: 4175
  year: 2000
  ident: b48
  publication-title: Class Quant Gravity
– volume: 2018
  year: 2018
  ident: b36
  publication-title: Adv High Energy Phys
– volume: 31
  year: 2022
  ident: b63
  publication-title: Internat J Modern Phys D
– volume: 15
  start-page: 2752
  year: 1977
  end-page: 2756
  ident: b73
  publication-title: Phys Rev D
– volume: 05
  start-page: 014
  year: 2005
  ident: b2
  publication-title: J High Energy Phys
– volume: 19
  start-page: 2355
  year: 2002
  end-page: 2368
  ident: b75
  publication-title: Classical Quantum Gravity
– volume: 44
  year: 2020
  ident: b8
  publication-title: Chin Phys C
– volume: 22
  start-page: 1705
  year: 2007
  end-page: 1715
  ident: b20
  publication-title: Internat J Modern Phys A
– volume: 35
  year: 2022
  ident: b66
  publication-title: Phys Dark Universe
– volume: 19
  year: 2022
  ident: b61
  publication-title: Int J Geom Methods Mod Phys
– volume: 75
  year: 2007
  ident: b15
  publication-title: Phys Rev D
– volume: 30
  year: 2021
  ident: 10.1016/j.rinp.2023.106300_b64
  publication-title: Internat J Modern Phys D
– volume: 38
  start-page: 1347
  year: 1997
  ident: 10.1016/j.rinp.2023.106300_b31
  publication-title: J Math Phys
  doi: 10.1063/1.531814
– volume: 84
  start-page: 5255
  year: 2000
  ident: 10.1016/j.rinp.2023.106300_b47
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.84.5255
– volume: 2
  start-page: 25
  year: 2022
  ident: 10.1016/j.rinp.2023.106300_b68
  publication-title: J Holography Appl Phys
– volume: 7
  start-page: 2333
  year: 1973
  ident: 10.1016/j.rinp.2023.106300_b42
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.7.2333
– volume: 70
  year: 2004
  ident: 10.1016/j.rinp.2023.106300_b59
  publication-title: Phys Rev D
– volume: 19
  start-page: 2355
  year: 2002
  ident: 10.1016/j.rinp.2023.106300_b75
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/19/9/302
– volume: 31
  start-page: 161
  year: 1973
  ident: 10.1016/j.rinp.2023.106300_b40
  publication-title: Comm Math Phys
  doi: 10.1007/BF01645742
– volume: 34
  year: 2021
  ident: 10.1016/j.rinp.2023.106300_b55
  publication-title: Phys Dark Univ
  doi: 10.1016/j.dark.2021.100900
– volume: 935
  start-page: 170
  year: 2018
  ident: 10.1016/j.rinp.2023.106300_b49
  publication-title: Nuclear Phys B
  doi: 10.1016/j.nuclphysb.2018.08.010
– volume: 928
  start-page: 415
  year: 2018
  ident: 10.1016/j.rinp.2023.106300_b44
  publication-title: Nuclear Phys B
  doi: 10.1016/j.nuclphysb.2018.01.018
– volume: 15
  start-page: 2752
  year: 1977
  ident: 10.1016/j.rinp.2023.106300_b73
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.15.2752
– volume: 44
  year: 2020
  ident: 10.1016/j.rinp.2023.106300_b8
  publication-title: Chin Phys C
  doi: 10.1088/1674-1137/44/1/015104
– volume: 2018
  year: 2018
  ident: 10.1016/j.rinp.2023.106300_b5
  publication-title: Adv High Energy Phys
– volume: 25
  year: 2008
  ident: 10.1016/j.rinp.2023.106300_b12
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/25/9/095014
– volume: 132
  start-page: 298
  year: 2017
  ident: 10.1016/j.rinp.2023.106300_b38
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2017-11574-9
– volume: 665
  start-page: 277
  year: 2008
  ident: 10.1016/j.rinp.2023.106300_b14
  publication-title: Phys Lett B
  doi: 10.1016/j.physletb.2008.06.012
– volume: 7
  start-page: 2333
  year: 1973
  ident: 10.1016/j.rinp.2023.106300_b58
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.7.2333
– volume: 33
  year: 2018
  ident: 10.1016/j.rinp.2023.106300_b34
  publication-title: Modern Phys Lett A
  doi: 10.1142/S021773231850164X
– volume: 53
  start-page: 22
  issue: 2
  year: 2021
  ident: 10.1016/j.rinp.2023.106300_b52
  publication-title: Gen Relativity Gravitation
  doi: 10.1007/s10714-021-02797-0
– volume: 77
  start-page: 613
  issue: 9
  year: 2017
  ident: 10.1016/j.rinp.2023.106300_b17
  publication-title: Eur Phys J C
  doi: 10.1140/epjc/s10052-017-5191-0
– volume: 35
  year: 2020
  ident: 10.1016/j.rinp.2023.106300_b11
  publication-title: Modern Phys Lett A
  doi: 10.1142/S0217732320501047
– year: 2022
  ident: 10.1016/j.rinp.2023.106300_b56
– volume: 22
  start-page: 1705
  year: 2007
  ident: 10.1016/j.rinp.2023.106300_b20
  publication-title: Internat J Modern Phys A
  doi: 10.1142/S0217751X07036130
– volume: 19
  year: 2022
  ident: 10.1016/j.rinp.2023.106300_b61
  publication-title: Int J Geom Methods Mod Phys
– volume: 76
  start-page: 145
  year: 2016
  ident: 10.1016/j.rinp.2023.106300_b50
  publication-title: Eur Phys J C
  doi: 10.1140/epjc/s10052-016-3998-8
– volume: 81
  start-page: 477
  issue: 5
  year: 2021
  ident: 10.1016/j.rinp.2023.106300_b51
  publication-title: Eur Phys J C
  doi: 10.1140/epjc/s10052-021-09274-7
– volume: 2015
  start-page: 52
  year: 2015
  ident: 10.1016/j.rinp.2023.106300_b32
  publication-title: J High Energy Phys
  doi: 10.1007/JHEP07(2015)052
– volume: 131
  start-page: 177
  year: 2016
  ident: 10.1016/j.rinp.2023.106300_b37
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2016-16177-4
– volume: 2016
  year: 2016
  ident: 10.1016/j.rinp.2023.106300_b54
  publication-title: Adv High Energy Phys
  doi: 10.1155/2016/6727805
– volume: 432
  year: 2021
  ident: 10.1016/j.rinp.2023.106300_b62
  publication-title: Ann Physics
  doi: 10.1016/j.aop.2021.168572
– volume: 37
  year: 2022
  ident: 10.1016/j.rinp.2023.106300_b65
  publication-title: Internat J Modern Phys A
– volume: 77
  start-page: 296
  year: 2017
  ident: 10.1016/j.rinp.2023.106300_b6
  publication-title: Eur Phys J C
  doi: 10.1140/epjc/s10052-017-4859-9
– volume: 97
  start-page: 176
  year: 2019
  ident: 10.1016/j.rinp.2023.106300_b7
  publication-title: Can J Phys
  doi: 10.1139/cjp-2018-0270
– volume: 361
  start-page: 103
  issue: 3
  year: 2016
  ident: 10.1016/j.rinp.2023.106300_b26
  publication-title: Astrophys Space Sci
  doi: 10.1007/s10509-016-2691-6
– volume: 534
  year: 2022
  ident: 10.1016/j.rinp.2023.106300_b67
  publication-title: Ann Phys
– volume: 75
  year: 2007
  ident: 10.1016/j.rinp.2023.106300_b15
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.75.084022
– volume: 78
  start-page: 840
  issue: 10
  year: 2018
  ident: 10.1016/j.rinp.2023.106300_b16
  publication-title: Eur Phys J C
  doi: 10.1140/epjc/s10052-018-6320-0
– volume: 25
  issue: 05
  year: 2016
  ident: 10.1016/j.rinp.2023.106300_b27
  publication-title: Internat J Modern Phys D
– volume: 2019
  year: 2019
  ident: 10.1016/j.rinp.2023.106300_b9
  publication-title: Adv High Energy Phys
  doi: 10.1155/2019/2759641
– volume: 24
  start-page: 5849
  year: 2007
  ident: 10.1016/j.rinp.2023.106300_b23
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/24/23/008
– volume: 134
  start-page: 511
  year: 2019
  ident: 10.1016/j.rinp.2023.106300_b4
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2019-12877-5
– volume: 18
  start-page: 2877
  year: 2001
  ident: 10.1016/j.rinp.2023.106300_b69
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/18/15/303
– volume: 08
  start-page: 089
  year: 2010
  ident: 10.1016/j.rinp.2023.106300_b21
  publication-title: J High Energy Phys
  doi: 10.1007/JHEP08(2010)089
– volume: 642
  start-page: 124
  year: 2006
  ident: 10.1016/j.rinp.2023.106300_b18
  publication-title: Phys Lett B
  doi: 10.1016/j.physletb.2006.09.028
– volume: 87
  start-page: 577
  year: 1983
  ident: 10.1016/j.rinp.2023.106300_b41
  publication-title: Comm Math Phys
  doi: 10.1007/BF01208266
– volume: 35
  year: 2022
  ident: 10.1016/j.rinp.2023.106300_b66
  publication-title: Phys Dark Universe
  doi: 10.1016/j.dark.2022.100948
– volume: 21
  start-page: 1383
  year: 2004
  ident: 10.1016/j.rinp.2023.106300_b71
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/21/6/007
– volume: 666
  start-page: 269
  year: 2008
  ident: 10.1016/j.rinp.2023.106300_b19
  publication-title: Phys Lett B
  doi: 10.1016/j.physletb.2008.07.017
– volume: 52
  start-page: 4430
  year: 1995
  ident: 10.1016/j.rinp.2023.106300_b74
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.52.4430
– volume: 52
  start-page: 1108
  year: 1995
  ident: 10.1016/j.rinp.2023.106300_b33
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.52.1108
– volume: 34
  year: 2019
  ident: 10.1016/j.rinp.2023.106300_b10
  publication-title: Modern Phys Lett A
  doi: 10.1142/S0217732319500573
– volume: 92
  start-page: 1638
  year: 2014
  ident: 10.1016/j.rinp.2023.106300_b70
  publication-title: Can J Phys
  doi: 10.1139/cjp-2014-0229
– volume: 437
  start-page: 231
  year: 1995
  ident: 10.1016/j.rinp.2023.106300_b3
  publication-title: Nuclear Phys B
  doi: 10.1016/0550-3213(94)00588-6
– volume: 92
  start-page: 1638
  issue: 12
  year: 2014
  ident: 10.1016/j.rinp.2023.106300_b76
  publication-title: Can J Phys
  doi: 10.1139/cjp-2014-0229
– volume: 73
  year: 2006
  ident: 10.1016/j.rinp.2023.106300_b13
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.73.104010
– volume: 79
  start-page: 692
  issue: 8
  year: 2019
  ident: 10.1016/j.rinp.2023.106300_b25
  publication-title: Eur Phys J C
  doi: 10.1140/epjc/s10052-019-7178-5
– volume: 31
  year: 2022
  ident: 10.1016/j.rinp.2023.106300_b63
  publication-title: Internat J Modern Phys D
  doi: 10.1142/S0218271822500699
– volume: 29
  issue: 39
  year: 2014
  ident: 10.1016/j.rinp.2023.106300_b22
  publication-title: Modern Phys Lett A
  doi: 10.1142/S0217732314502034
– volume: 448
  year: 2023
  ident: 10.1016/j.rinp.2023.106300_b72
  publication-title: Ann Physics
  doi: 10.1016/j.aop.2022.169190
– volume: 116
  year: 2016
  ident: 10.1016/j.rinp.2023.106300_b1
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.116.231301
– volume: 17
  start-page: 4175
  year: 2000
  ident: 10.1016/j.rinp.2023.106300_b48
  publication-title: Class Quant Gravity
  doi: 10.1088/0264-9381/17/20/302
– volume: 44
  start-page: 373
  issue: 4
  year: 2020
  ident: 10.1016/j.rinp.2023.106300_b29
  publication-title: Turk J Phys
  doi: 10.3906/fiz-2003-1
– volume: 2
  start-page: 55
  year: 2022
  ident: 10.1016/j.rinp.2023.106300_b30
  publication-title: J Holography Appl Phys
– volume: 56
  start-page: 2640
  issue: 8
  year: 2017
  ident: 10.1016/j.rinp.2023.106300_b28
  publication-title: Internat J Theoret Phys
  doi: 10.1007/s10773-017-3420-9
– volume: 913
  start-page: 834
  year: 2016
  ident: 10.1016/j.rinp.2023.106300_b45
  publication-title: Nuclear Phys B
  doi: 10.1016/j.nuclphysb.2016.10.013
– volume: 111
  start-page: 40006
  year: 2015
  ident: 10.1016/j.rinp.2023.106300_b43
  publication-title: Europhys Lett
  doi: 10.1209/0295-5075/111/40006
– volume: 773
  start-page: 391
  year: 2017
  ident: 10.1016/j.rinp.2023.106300_b35
  publication-title: Phys Lett B
  doi: 10.1016/j.physletb.2017.08.053
– volume: 2018
  year: 2018
  ident: 10.1016/j.rinp.2023.106300_b36
  publication-title: Adv High Energy Phys
– year: 2022
  ident: 10.1016/j.rinp.2023.106300_b57
– volume: 93
  year: 2022
  ident: 10.1016/j.rinp.2023.106300_b60
  publication-title: New Astron
  doi: 10.1016/j.newast.2021.101759
– volume: 56
  start-page: 1725
  year: 2017
  ident: 10.1016/j.rinp.2023.106300_b39
  publication-title: Internat J Theoret Phys
  doi: 10.1007/s10773-017-3317-7
– volume: 30
  year: 2015
  ident: 10.1016/j.rinp.2023.106300_b46
  publication-title: Internat J Modern Phys A
– volume: 2019
  year: 2019
  ident: 10.1016/j.rinp.2023.106300_b53
  publication-title: Adv High Energy Phys
  doi: 10.1155/2019/4652048
– volume: 05
  start-page: 014
  year: 2005
  ident: 10.1016/j.rinp.2023.106300_b2
  publication-title: J High Energy Phys
  doi: 10.1088/1126-6708/2005/05/014
– volume: 47
  start-page: 2203
  year: 2008
  ident: 10.1016/j.rinp.2023.106300_b24
  publication-title: Internat J Theoret Phys
  doi: 10.1007/s10773-008-9652-y
SSID ssj0001645511
Score 2.446931
Snippet In this paper, we study quantum gravity effect on the symmergent black hole which is derived from quadratic-curvature gravity. To do so, we use the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 106300
SubjectTerms Black hole
Hawking radiation
Modified lagrangian equation
Quantum tunneling
Symmergent gravity
WKB method. first order correction of thermodynamics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn7i-yMGbFJsmbezR17IIenJhb2XyKK64XdnWg__emaYr9bJevIZkUmbazDfpzDeMXUAK9DcojhTE15ESIKMcYW5kvILcacSwnqqRn56z8UQ9TtNpr9UX5YQFeuCguKsUssQgRkDHLRQ4QLwiyxSEEy4lqXT6os_rBVPt7UqmEApQtJUkxNOnc91VzITkruWsIrLKROIAkU798koteX_POfUczmiHbXdIkd-EJ9xlG77aY5ttxqat99k9Gng5X7jQUb7mUDmO5xiGvs0rDnBLbTfaooWaL0pef81DoWXDDd3ZceqLWx-wyejh5W4cdS0RIqtE3EQOjAatMmU1OIpFPCQlYjwvLEYe0iZOA6A6vATvbSlAOZ_JTMtUi9wYKQ_ZoFpU_ohxRB4JqNzhGqN8gh9ymgvlYm8wgimlHDKxUklhO75walvxXqwSw94KUmNBaiyCGofs8mfNR2DLWDv7ljT9M5OYrtsBtH_R2b_4y_5Dlq7sVHSgIYABFDVbs_nxf2x-wrZIZMhJO2WDZvnpzxCkNOa8fR-_AayU4Bg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqSkgsiKcoL3lgQ1Hj2EmakRaqCgkWqNQtOscOFNG0SsLAv-cuj9IuHRhz8iXR2Tl_n3MPxm7BB_ob5DoK3IGjBEgnQpjraKsgMiFiWEvZyM8vwWSqnmb-rMNGbS4MhVU2vr_26ZW3biT9xpr91Xzef_WQu8iQumZVvJwokFSDKolvNvw7ZwkUggLiXTTeIYUmd6YO88rnGZWt9CQKqPzU1v5UlfHf2KY2tp7xITtoMCO_r1_riHVsdsz2qtjNpDhhDzjV-WJp6t7yBYfMcPRoSILLDxTwhBpwVOkLBV-mvPhZ1CmXJdd0esepQ25xyqbjx7fRxGmaIziJEm7pGNAhhCpQSQiGWIkFL0W0Z0WCHEQmngkBEAxYCdYmqQBlbCCDUPqhiLSW8ox1s2VmzxlHDOKBigzqaGU9_KT9SCjjWo1cJpWyx0RrkjhpKodTA4uvuA0R-4zJjDGZMa7N2GN3a51VXTdj5-ghWXo9kmpeV4Jl_h43kx77EHga0SJCOKHAACJXmfogjDA-ra8e89t5ireWEN5qvuPhF__Uu2T7dFUHpF2xbpl_22tEKKW-qZbgLxqv4Wk
  priority: 102
  providerName: Elsevier
Title Thermodynamics and logarithmic corrections of symmergent black holes
URI https://dx.doi.org/10.1016/j.rinp.2023.106300
https://doaj.org/article/5a62b22626414ada9773f5a1d1d59642
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66IngRn7i-yMGbVDZN2tiDiKsuKujJhb2VSZP6YLfVtoL7751puz5ABC-FhiQtk0znm3RmPsYOIAD6G9TzFPSOPSVAehHCXM84BZHViGEdZSPf3oVXQ3UzCkZzbEZ31Aqw_NW1Iz6pYTE-en-dnqLCn3zFahVPGdWe9CU2UA2pebaAlkmTot62cL8-cwkVAgTywXyfqvfpSLd5NL9P88NW1SX9v5msb2ZosMKWW_zIz5oFX2VzLltji3UcZ1Kuswtc9mKS24ZnvuSQWY5fN3SIq0ds4AmRcdSpDCXPU15OJ036ZcUNneRxYsstN9hwcHl_fuW1RAleokSv8iwYDVqFKtFgyUNx4KeI_JxI0B-RiW81AAIDJ8G5JBWgrAtlqGWgRWSMlJusk-WZ22Ic8YgPKrI4xijno3oHkVC25wz6NamUXSZmIomTtoo4kVmM41m42HNMYoxJjHEjxi47_Bzz0tTQ-LN3nyT92ZPqX9cNefEQt-oUBxD6BpEjwjmhwAKiWJkGIKywAe21Lgtm6xS3UKKBCDjV0x8P3_7Xq-6wJbprQtJ2Wacq3tweYpTK7Ne-PV6vR_39ehN-AGea4zc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqEIIF8RTl6YENRa1jJyYj5aGW1wJI3axz7EARTasmDPx77pKUx8LAevEl0dk5f59zD8aOIQL6G9QNFHRPAyVABgnC3MB6BYnTiGE9ZSPf3cf9J3U9jIYtdj7PhaGwysb31z698taNpNNYszMdjToPIXIXqalrVsXLkQItIhrQ1L9hMOx9H7TEClEBES9SCEijSZ6p47xmo5zqVoYSBVR_6tcGVdXx_7FP_dh7rtbYagMa-Vn9Xuus5fMNtlQFb6bFJrvAuZ6NJ65uLl9wyB1Hl4YsuHxBAU-pA0eVv1DwScaLj3Gdc1lyS8d3nFrkFlvs6ery8bwfNN0RglSJbhk4sBq0ilWqwREt8RBmCPe8SJGEyDR0GgDRgJfgfZoJUM7HMtYy0iKxVspttpBPcr_DOIKQEFTiUMcqH-I3HSVCua63SGYyKdtMzE1i0qZ0OHWweDPzGLFXQ2Y0ZEZTm7HNTr50pnXhjD9H98jSXyOp6HUlmMyeTTPrJoI4tAgXEcMJBQ4QusosAuGEi2iBtVk0nyfzaw3hrUZ_PHz3n3pHbLn_eHdrbgf3N3tsha7U0Wn7bKGcvfsDhCulPayW4yd5pOSI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamics+and+logarithmic+corrections+of+symmergent+black+holes&rft.jtitle=Results+in+physics&rft.au=Ali%2C+Riasat&rft.au=Babar%2C+Rimsha&rft.au=Akhtar%2C+Zunaira&rft.au=%C3%96vg%C3%BCn%2C+Ali&rft.date=2023-03-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=46&rft.spage=106300&rft_id=info:doi/10.1016%2Fj.rinp.2023.106300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2023_106300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon