Thermodynamics and logarithmic corrections of symmergent black holes
In this paper, we study quantum gravity effect on the symmergent black hole which is derived from quadratic-curvature gravity. To do so, we use the Klein–Gordon equation which is modified by generalized uncertainty principle (GUP). After solving the field equations, we examine the symmergent black h...
Saved in:
Published in | Results in physics Vol. 46; p. 106300 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study quantum gravity effect on the symmergent black hole which is derived from quadratic-curvature gravity. To do so, we use the Klein–Gordon equation which is modified by generalized uncertainty principle (GUP). After solving the field equations, we examine the symmergent black hole’s tunneling and Hawking temperature. We explore the graphs of the temperature through the outer horizon to check the GUP influenced conditions of symmergent black hole stability. We also explain how symmergent black holes behave physically when influenced by quantum gravity. The impacts of thermal fluctuations on the thermodynamics of a symmergent black holes spacetime are examined. We first evaluate the model under consideration’s thermodynamic properties, such as its Hawking temperature, angular velocity, entropy, and electric potential. We evaluate the logarithmic correction terms for entropy around the equilibrium state in order to examine the impacts of thermal fluctuations. In the presence of these correction terms, we also examine the viability of the first law of thermodynamics. Finally, we evaluate the system’s stability using the Hessian matrix and heat capacity. It is determined that a stable model is generated by logarithmic corrections arising from thermal fluctuations.
•We study quantum gravity effect on the symmergent black hole.•We use the GUP modified Klein–Gordon equation.•We show how symmergent black holes behave when influenced by quantum gravity.•We study thermodynamics and logarithmic corrections of symmergent black holes.•Hence, stability is generated by logarithmic corrections from thermal fluctuations. |
---|---|
AbstractList | In this paper, we study quantum gravity effect on the symmergent black hole which is derived from quadratic-curvature gravity. To do so, we use the Klein–Gordon equation which is modified by generalized uncertainty principle (GUP). After solving the field equations, we examine the symmergent black hole’s tunneling and Hawking temperature. We explore the graphs of the temperature through the outer horizon to check the GUP influenced conditions of symmergent black hole stability. We also explain how symmergent black holes behave physically when influenced by quantum gravity. The impacts of thermal fluctuations on the thermodynamics of a symmergent black holes spacetime are examined. We first evaluate the model under consideration’s thermodynamic properties, such as its Hawking temperature, angular velocity, entropy, and electric potential. We evaluate the logarithmic correction terms for entropy around the equilibrium state in order to examine the impacts of thermal fluctuations. In the presence of these correction terms, we also examine the viability of the first law of thermodynamics. Finally, we evaluate the system’s stability using the Hessian matrix and heat capacity. It is determined that a stable model is generated by logarithmic corrections arising from thermal fluctuations. In this paper, we study quantum gravity effect on the symmergent black hole which is derived from quadratic-curvature gravity. To do so, we use the Klein–Gordon equation which is modified by generalized uncertainty principle (GUP). After solving the field equations, we examine the symmergent black hole’s tunneling and Hawking temperature. We explore the graphs of the temperature through the outer horizon to check the GUP influenced conditions of symmergent black hole stability. We also explain how symmergent black holes behave physically when influenced by quantum gravity. The impacts of thermal fluctuations on the thermodynamics of a symmergent black holes spacetime are examined. We first evaluate the model under consideration’s thermodynamic properties, such as its Hawking temperature, angular velocity, entropy, and electric potential. We evaluate the logarithmic correction terms for entropy around the equilibrium state in order to examine the impacts of thermal fluctuations. In the presence of these correction terms, we also examine the viability of the first law of thermodynamics. Finally, we evaluate the system’s stability using the Hessian matrix and heat capacity. It is determined that a stable model is generated by logarithmic corrections arising from thermal fluctuations. •We study quantum gravity effect on the symmergent black hole.•We use the GUP modified Klein–Gordon equation.•We show how symmergent black holes behave when influenced by quantum gravity.•We study thermodynamics and logarithmic corrections of symmergent black holes.•Hence, stability is generated by logarithmic corrections from thermal fluctuations. |
ArticleNumber | 106300 |
Author | Ali, Riasat Babar, Rimsha Övgün, Ali Akhtar, Zunaira |
Author_xml | – sequence: 1 givenname: Riasat surname: Ali fullname: Ali, Riasat email: riasatyasin@gmail.com organization: Department of Mathematics, GC University Faisalabad Layyah Campus, Layyah 31200, Pakistan – sequence: 2 givenname: Rimsha surname: Babar fullname: Babar, Rimsha email: rimsha.babar10@gmail.com organization: Division of Science and Technology, University of Education, Township, Lahore 54590, Pakistan – sequence: 3 givenname: Zunaira surname: Akhtar fullname: Akhtar, Zunaira email: zakhtarmathematics@gmail.com organization: Division of Science and Technology, University of Education, Township, Lahore 54590, Pakistan – sequence: 4 givenname: Ali orcidid: 0000-0002-9889-342X surname: Övgün fullname: Övgün, Ali email: ali.ovgun@emu.edu.tr organization: Physics Department, Eastern Mediterranean University, Famagusta, 99628 North Cyprus, via Mersin 10, Turkey |
BookMark | eNp9kMtqwzAQRUVJoWmaH-jKP5BUL0sxdFPSVyDQTboWY2mcKLWtIJlC_r5200LpIisNF84dzbkmoza0SMgto3NGmbrbz6NvD3NOuegDJSi9IGPOGZsJXejRn_mKTFPaU9pTMs8ZG5PHzQ5jE9yxhcbblEHrsjpsIfpu1weZDTGi7XxoUxaqLB2bBuMW2y4ra7Af2S7UmG7IZQV1wunPOyHvz0-b5ets_fayWj6sZ1Yy2s0clBq0VNJqcIorisCroiiQWbnQwnKnAWjBUACirRhIh0ooLXLNirIUYkJWp14XYG8O0TcQjyaAN99BiFsDsfO2RpOD4iXn_RbJJDgotBZVDswxlxdK8r5rceqyMaQUsTLWdzAc2kXwtWHUDHLN3gxyzSDXnOT2KP-H_n7lLHR_grAX9OkxmmQ9thadHwT3F_hz-BfH95VJ |
CitedBy_id | crossref_primary_10_1016_j_hedp_2025_101189 crossref_primary_10_1088_1361_6382_acf08c crossref_primary_10_1142_S0219887823502055 crossref_primary_10_1002_prop_202300138 crossref_primary_10_1016_j_dark_2023_101314 crossref_primary_10_1088_1572_9494_ad5718 crossref_primary_10_1002_andp_202300236 crossref_primary_10_1007_s12648_024_03122_6 crossref_primary_10_1016_j_mtcomm_2023_107758 crossref_primary_10_1140_epjc_s10052_023_11400_6 crossref_primary_10_1103_PhysRevD_107_105014 crossref_primary_10_1016_j_cjph_2024_01_019 crossref_primary_10_1142_S0217751X23500938 crossref_primary_10_1016_j_nuclphysb_2023_116316 crossref_primary_10_1016_j_nuclphysb_2024_116725 crossref_primary_10_3390_e26100868 crossref_primary_10_1142_S0219887824501494 |
Cites_doi | 10.1063/1.531814 10.1103/PhysRevLett.84.5255 10.1103/PhysRevD.7.2333 10.1088/0264-9381/19/9/302 10.1007/BF01645742 10.1016/j.dark.2021.100900 10.1016/j.nuclphysb.2018.08.010 10.1016/j.nuclphysb.2018.01.018 10.1103/PhysRevD.15.2752 10.1088/1674-1137/44/1/015104 10.1088/0264-9381/25/9/095014 10.1140/epjp/i2017-11574-9 10.1016/j.physletb.2008.06.012 10.1142/S021773231850164X 10.1007/s10714-021-02797-0 10.1140/epjc/s10052-017-5191-0 10.1142/S0217732320501047 10.1142/S0217751X07036130 10.1140/epjc/s10052-016-3998-8 10.1140/epjc/s10052-021-09274-7 10.1007/JHEP07(2015)052 10.1140/epjp/i2016-16177-4 10.1155/2016/6727805 10.1016/j.aop.2021.168572 10.1140/epjc/s10052-017-4859-9 10.1139/cjp-2018-0270 10.1007/s10509-016-2691-6 10.1103/PhysRevD.75.084022 10.1140/epjc/s10052-018-6320-0 10.1155/2019/2759641 10.1088/0264-9381/24/23/008 10.1140/epjp/i2019-12877-5 10.1088/0264-9381/18/15/303 10.1007/JHEP08(2010)089 10.1016/j.physletb.2006.09.028 10.1007/BF01208266 10.1016/j.dark.2022.100948 10.1088/0264-9381/21/6/007 10.1016/j.physletb.2008.07.017 10.1103/PhysRevD.52.4430 10.1103/PhysRevD.52.1108 10.1142/S0217732319500573 10.1139/cjp-2014-0229 10.1016/0550-3213(94)00588-6 10.1103/PhysRevD.73.104010 10.1140/epjc/s10052-019-7178-5 10.1142/S0218271822500699 10.1142/S0217732314502034 10.1016/j.aop.2022.169190 10.1103/PhysRevLett.116.231301 10.1088/0264-9381/17/20/302 10.3906/fiz-2003-1 10.1007/s10773-017-3420-9 10.1016/j.nuclphysb.2016.10.013 10.1209/0295-5075/111/40006 10.1016/j.physletb.2017.08.053 10.1016/j.newast.2021.101759 10.1007/s10773-017-3317-7 10.1155/2019/4652048 10.1088/1126-6708/2005/05/014 10.1007/s10773-008-9652-y |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2023.106300 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_5a62b22626414ada9773f5a1d1d59642 10_1016_j_rinp_2023_106300 S2211379723000931 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-dab7a7464c7ad6260ea2f999e1c4873c2d7aa091e3aeecf1a4de636735719bb33 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:22:22 EDT 2025 Tue Jul 01 02:27:47 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 Tue Jul 25 20:59:18 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hawking radiation WKB method. first order correction of thermodynamics Black hole Quantum tunneling Symmergent gravity Modified lagrangian equation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-dab7a7464c7ad6260ea2f999e1c4873c2d7aa091e3aeecf1a4de636735719bb33 |
ORCID | 0000-0002-9889-342X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379723000931 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a62b22626414ada9773f5a1d1d59642 crossref_citationtrail_10_1016_j_rinp_2023_106300 crossref_primary_10_1016_j_rinp_2023_106300 elsevier_sciencedirect_doi_10_1016_j_rinp_2023_106300 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Övgün, Jusufi (b37) 2016; 131 Zhang (b49) 2018; 935 Bekenstein (b42) 1973; 7 Kaul, Majumdar (b47) 2000; 84 Demir (b52) 2021; 53 Kerner, Mann (b13) 2006; 73 Upadhyay, islam, Ganai (b68) 2022; 2 Kerner, Mann (b12) 2008; 25 Akhmedov, Akhmedova, Singleton (b18) 2006; 642 Ibungochouba Singh, Ablu Meitei, Yugindro Singh (b27) 2016; 25 Javed, Babar (b9) 2019; 2019 Bargueño, Contreras, Rincón (b51) 2021; 81 Faizal, Khalil (b46) 2015; 30 Javed, Ali, Babar, Övgün (b8) 2020; 44 Bardeen, Carter, Hawking (b40) 1973; 31 Akhmedov, Akhmedova, Pilling, Singleton (b20) 2007; 22 Pantig, Övgün, Demir (b57) 2022 Ali, Bamba, Asgher, Shah (b64) 2021; 30 Javed, Ali, Babar, Övgün (b4) 2019; 134 Bekenstein (b58) 1973; 7 Ali, Babar, Sahoo (b66) 2022; 35 Kruglov (b22) 2014; 29 Brevik, Nojiri, Odintsov, Vanzo (b59) 2004; 70 Carlip (b48) 2000; 17 Övgün, Javed, Ali (b5) 2018; 2018 Singleton, Vagenas, Zhu, Ren (b21) 2010; 08 Shahraeini, Nozari, Saghaf (b30) 2022; 2 Kempf, Mangano, Mann (b33) 1995; 52 Ali, Bamba, Shah, Saleem (b63) 2022; 31 Sadeghi, Pourhassan, Rahimi (b76) 2014; 92 Pourhassan, Upadhyay, Saadat, Farahani (b44) 2018; 928 Demir (b53) 2019; 2019 Ibungochouba Singh, Ablu Meitei, Yugindro Singh (b26) 2016; 361 Gecim, Sucu (b36) 2018; 2018 Ali, Babar, Asgher (b67) 2022; 534 Sadeghi, Pourhassan, Rahimi (b70) 2014; 92 Demir (b54) 2016; 2016 Ali, Babar, Asgher, Cheng (b65) 2022; 37 Singh, Meitei, Singh (b28) 2017; 56 Ali (b24) 2008; 47 Övgün, Jusufi (b38) 2017; 132 Kerner, Mann (b14) 2008; 665 Ali, Babar, Asgher, Shah (b61) 2022; 19 Angheben, Nadalini, Vanzo, Zerbini (b2) 2005; 05 Akhmedova, Pilling, de Gill, Singleton (b19) 2008; 666 Akhtar, Babar, Ali (b72) 2023; 448 Ali (b23) 2007; 24 Kerner, Mann (b15) 2007; 75 Iyer, Wald (b74) 1995; 52 Gecim, Sucu (b34) 2018; 33 Kuang, Liu, Övgün (b16) 2018; 78 Hawking, Perry, Strominger (b1) 2016; 116 Çimdiker, Demir, Övgün (b55) 2021; 34 Ali, Babar, Asgher, Shah (b62) 2021; 432 Das, Majumdar, Bhaduri (b75) 2002; 19 Javed, Babar, Övgün (b10) 2019; 34 Babar, Javed, Övgün (b11) 2020; 35 Kempf (b31) 1997; 38 Gecim, Sucu (b35) 2017; 773 Carr, Mureika, Nicolini (b32) 2015; 2015 Jusufi, Övgün (b39) 2017; 56 Govindarajan, Kaul, Suneeta (b69) 2001; 18 Javed, Abbas, Ali (b6) 2017; 77 Kraus, Wilczek (b3) 1995; 437 Meitei, Singh, Meitei (b29) 2020; 44 Pourhassan, Faizal (b45) 2016; 913 Akbar, Das (b71) 2004; 21 Pourhassan, Faizal (b43) 2015; 111 Javed, Ali, Abbas (b7) 2019; 97 Pourhassan, Faizal, Debnath (b50) 2016; 76 Singh, Meitei, Singh, Singh (b25) 2019; 79 Hawking, Page (b41) 1983; 87 Ali, Asgher (b60) 2022; 93 Gibbons, Hawking (b73) 1977; 15 Kuang, Saavedra, Övgün (b17) 2017; 77 Rayimbaev, Pantig, Övgün, Abdujabbarov, Demir (b56) 2022 Ali (10.1016/j.rinp.2023.106300_b64) 2021; 30 Zhang (10.1016/j.rinp.2023.106300_b49) 2018; 935 Akhtar (10.1016/j.rinp.2023.106300_b72) 2023; 448 Iyer (10.1016/j.rinp.2023.106300_b74) 1995; 52 Akhmedov (10.1016/j.rinp.2023.106300_b18) 2006; 642 Upadhyay (10.1016/j.rinp.2023.106300_b68) 2022; 2 Govindarajan (10.1016/j.rinp.2023.106300_b69) 2001; 18 Kerner (10.1016/j.rinp.2023.106300_b14) 2008; 665 Övgün (10.1016/j.rinp.2023.106300_b37) 2016; 131 Javed (10.1016/j.rinp.2023.106300_b8) 2020; 44 Hawking (10.1016/j.rinp.2023.106300_b41) 1983; 87 Akbar (10.1016/j.rinp.2023.106300_b71) 2004; 21 Carr (10.1016/j.rinp.2023.106300_b32) 2015; 2015 Brevik (10.1016/j.rinp.2023.106300_b59) 2004; 70 Kerner (10.1016/j.rinp.2023.106300_b13) 2006; 73 Demir (10.1016/j.rinp.2023.106300_b52) 2021; 53 Övgün (10.1016/j.rinp.2023.106300_b38) 2017; 132 Kempf (10.1016/j.rinp.2023.106300_b33) 1995; 52 Bargueño (10.1016/j.rinp.2023.106300_b51) 2021; 81 Pourhassan (10.1016/j.rinp.2023.106300_b50) 2016; 76 Kempf (10.1016/j.rinp.2023.106300_b31) 1997; 38 Pantig (10.1016/j.rinp.2023.106300_b57) 2022 Gecim (10.1016/j.rinp.2023.106300_b34) 2018; 33 Javed (10.1016/j.rinp.2023.106300_b10) 2019; 34 Ali (10.1016/j.rinp.2023.106300_b62) 2021; 432 Ali (10.1016/j.rinp.2023.106300_b61) 2022; 19 Gecim (10.1016/j.rinp.2023.106300_b35) 2017; 773 Faizal (10.1016/j.rinp.2023.106300_b46) 2015; 30 Ali (10.1016/j.rinp.2023.106300_b63) 2022; 31 Ali (10.1016/j.rinp.2023.106300_b66) 2022; 35 Meitei (10.1016/j.rinp.2023.106300_b29) 2020; 44 Singleton (10.1016/j.rinp.2023.106300_b21) 2010; 08 Hawking (10.1016/j.rinp.2023.106300_b1) 2016; 116 Rayimbaev (10.1016/j.rinp.2023.106300_b56) 2022 Ali (10.1016/j.rinp.2023.106300_b67) 2022; 534 Gibbons (10.1016/j.rinp.2023.106300_b73) 1977; 15 Pourhassan (10.1016/j.rinp.2023.106300_b44) 2018; 928 Ali (10.1016/j.rinp.2023.106300_b60) 2022; 93 Bardeen (10.1016/j.rinp.2023.106300_b40) 1973; 31 Ali (10.1016/j.rinp.2023.106300_b24) 2008; 47 Demir (10.1016/j.rinp.2023.106300_b54) 2016; 2016 Ibungochouba Singh (10.1016/j.rinp.2023.106300_b26) 2016; 361 Gecim (10.1016/j.rinp.2023.106300_b36) 2018; 2018 Angheben (10.1016/j.rinp.2023.106300_b2) 2005; 05 Javed (10.1016/j.rinp.2023.106300_b4) 2019; 134 Babar (10.1016/j.rinp.2023.106300_b11) 2020; 35 Shahraeini (10.1016/j.rinp.2023.106300_b30) 2022; 2 Singh (10.1016/j.rinp.2023.106300_b25) 2019; 79 Kaul (10.1016/j.rinp.2023.106300_b47) 2000; 84 Kuang (10.1016/j.rinp.2023.106300_b16) 2018; 78 Ali (10.1016/j.rinp.2023.106300_b23) 2007; 24 Javed (10.1016/j.rinp.2023.106300_b6) 2017; 77 Carlip (10.1016/j.rinp.2023.106300_b48) 2000; 17 Ali (10.1016/j.rinp.2023.106300_b65) 2022; 37 Javed (10.1016/j.rinp.2023.106300_b7) 2019; 97 Demir (10.1016/j.rinp.2023.106300_b53) 2019; 2019 Sadeghi (10.1016/j.rinp.2023.106300_b76) 2014; 92 Akhmedov (10.1016/j.rinp.2023.106300_b20) 2007; 22 Singh (10.1016/j.rinp.2023.106300_b28) 2017; 56 Bekenstein (10.1016/j.rinp.2023.106300_b42) 1973; 7 Kraus (10.1016/j.rinp.2023.106300_b3) 1995; 437 Kerner (10.1016/j.rinp.2023.106300_b12) 2008; 25 Övgün (10.1016/j.rinp.2023.106300_b5) 2018; 2018 Kerner (10.1016/j.rinp.2023.106300_b15) 2007; 75 Akhmedova (10.1016/j.rinp.2023.106300_b19) 2008; 666 Das (10.1016/j.rinp.2023.106300_b75) 2002; 19 Ibungochouba Singh (10.1016/j.rinp.2023.106300_b27) 2016; 25 Çimdiker (10.1016/j.rinp.2023.106300_b55) 2021; 34 Jusufi (10.1016/j.rinp.2023.106300_b39) 2017; 56 Kuang (10.1016/j.rinp.2023.106300_b17) 2017; 77 Javed (10.1016/j.rinp.2023.106300_b9) 2019; 2019 Kruglov (10.1016/j.rinp.2023.106300_b22) 2014; 29 Pourhassan (10.1016/j.rinp.2023.106300_b43) 2015; 111 Bekenstein (10.1016/j.rinp.2023.106300_b58) 1973; 7 Pourhassan (10.1016/j.rinp.2023.106300_b45) 2016; 913 Sadeghi (10.1016/j.rinp.2023.106300_b70) 2014; 92 |
References_xml | – volume: 131 start-page: 177 year: 2016 ident: b37 publication-title: Eur Phys J Plus – volume: 56 start-page: 1725 year: 2017 ident: b39 publication-title: Internat J Theoret Phys – volume: 665 start-page: 277 year: 2008 end-page: 283 ident: b14 publication-title: Phys Lett B – volume: 24 start-page: 5849 year: 2007 end-page: 5860 ident: b23 publication-title: Classical Quantum Gravity – volume: 2015 start-page: 52 year: 2015 ident: b32 publication-title: J High Energy Phys – volume: 92 start-page: 1638 year: 2014 ident: b70 publication-title: Can J Phys – volume: 93 year: 2022 ident: b60 publication-title: New Astron – volume: 437 start-page: 231 year: 1995 ident: b3 publication-title: Nuclear Phys B – volume: 53 start-page: 22 year: 2021 ident: b52 publication-title: Gen Relativity Gravitation – volume: 132 start-page: 298 year: 2017 ident: b38 publication-title: Eur Phys J Plus – volume: 21 start-page: 1383 year: 2004 ident: b71 publication-title: Classical Quantum Gravity – volume: 52 start-page: 1108 year: 1995 ident: b33 publication-title: Phys Rev D – volume: 913 start-page: 834 year: 2016 ident: b45 publication-title: Nuclear Phys B – volume: 642 start-page: 124 year: 2006 end-page: 128 ident: b18 publication-title: Phys Lett B – volume: 31 start-page: 161 year: 1973 ident: b40 publication-title: Comm Math Phys – volume: 78 start-page: 840 year: 2018 ident: b16 publication-title: Eur Phys J C – volume: 73 year: 2006 ident: b13 publication-title: Phys Rev D – volume: 361 start-page: 103 year: 2016 ident: b26 publication-title: Astrophys Space Sci – volume: 2016 year: 2016 ident: b54 publication-title: Adv High Energy Phys – volume: 81 start-page: 477 year: 2021 ident: b51 publication-title: Eur Phys J C – volume: 38 start-page: 1347 year: 1997 ident: b31 publication-title: J Math Phys – volume: 84 start-page: 5255 year: 2000 ident: b47 publication-title: Phys Rev Lett – volume: 76 start-page: 145 year: 2016 ident: b50 publication-title: Eur Phys J C – volume: 928 start-page: 415 year: 2018 ident: b44 publication-title: Nuclear Phys B – volume: 70 year: 2004 ident: b59 publication-title: Phys Rev D – volume: 432 year: 2021 ident: b62 publication-title: Ann Physics – volume: 18 start-page: 2877 year: 2001 ident: b69 publication-title: Classical Quantum Gravity – volume: 2019 year: 2019 ident: b53 publication-title: Adv High Energy Phys – volume: 56 start-page: 2640 year: 2017 end-page: 2650 ident: b28 publication-title: Internat J Theoret Phys – volume: 2 start-page: 55 year: 2022 ident: b30 publication-title: J Holography Appl Phys – volume: 87 start-page: 577 year: 1983 ident: b41 publication-title: Comm Math Phys – volume: 2 start-page: 25 year: 2022 ident: b68 publication-title: J Holography Appl Phys – volume: 97 start-page: 176 year: 2019 ident: b7 publication-title: Can J Phys – volume: 2019 year: 2019 ident: b9 publication-title: Adv High Energy Phys – volume: 448 year: 2023 ident: b72 publication-title: Ann Physics – volume: 116 year: 2016 ident: b1 publication-title: Phys Rev Lett – volume: 25 year: 2008 ident: b12 publication-title: Classical Quantum Gravity – volume: 773 start-page: 391 year: 2017 ident: b35 publication-title: Phys Lett B – year: 2022 ident: b57 – volume: 37 year: 2022 ident: b65 publication-title: Internat J Modern Phys A – volume: 52 start-page: 4430 year: 1995 end-page: 4439 ident: b74 publication-title: Phys Rev D – volume: 77 start-page: 296 year: 2017 ident: b6 publication-title: Eur Phys J C – year: 2022 ident: b56 – volume: 7 start-page: 2333 year: 1973 end-page: 2346 ident: b58 publication-title: Phys Rev D – volume: 92 start-page: 1638 year: 2014 end-page: 1642 ident: b76 publication-title: Can J Phys – volume: 34 year: 2021 ident: b55 publication-title: Phys Dark Univ – volume: 534 year: 2022 ident: b67 publication-title: Ann Phys – volume: 08 start-page: 089 year: 2010 ident: b21 publication-title: J High Energy Phys – volume: 25 year: 2016 ident: b27 publication-title: Internat J Modern Phys D – volume: 35 year: 2020 ident: b11 publication-title: Modern Phys Lett A – volume: 34 year: 2019 ident: b10 publication-title: Modern Phys Lett A – volume: 44 start-page: 373 year: 2020 end-page: 383 ident: b29 publication-title: Turk J Phys – volume: 33 year: 2018 ident: b34 publication-title: Modern Phys Lett A – volume: 30 year: 2015 ident: b46 publication-title: Internat J Modern Phys A – volume: 30 year: 2021 ident: b64 publication-title: Internat J Modern Phys D – volume: 77 start-page: 613 year: 2017 ident: b17 publication-title: Eur Phys J C – volume: 111 start-page: 40006 year: 2015 ident: b43 publication-title: Europhys Lett – volume: 2018 year: 2018 ident: b5 publication-title: Adv High Energy Phys – volume: 47 start-page: 2203 year: 2008 end-page: 2217 ident: b24 publication-title: Internat J Theoret Phys – volume: 666 start-page: 269 year: 2008 end-page: 271 ident: b19 publication-title: Phys Lett B – volume: 79 start-page: 692 year: 2019 ident: b25 publication-title: Eur Phys J C – volume: 29 year: 2014 ident: b22 publication-title: Modern Phys Lett A – volume: 7 start-page: 2333 year: 1973 ident: b42 publication-title: Phys Rev D – volume: 134 start-page: 511 year: 2019 ident: b4 publication-title: Eur Phys J Plus – volume: 935 start-page: 170 year: 2018 ident: b49 publication-title: Nuclear Phys B – volume: 17 start-page: 4175 year: 2000 ident: b48 publication-title: Class Quant Gravity – volume: 2018 year: 2018 ident: b36 publication-title: Adv High Energy Phys – volume: 31 year: 2022 ident: b63 publication-title: Internat J Modern Phys D – volume: 15 start-page: 2752 year: 1977 end-page: 2756 ident: b73 publication-title: Phys Rev D – volume: 05 start-page: 014 year: 2005 ident: b2 publication-title: J High Energy Phys – volume: 19 start-page: 2355 year: 2002 end-page: 2368 ident: b75 publication-title: Classical Quantum Gravity – volume: 44 year: 2020 ident: b8 publication-title: Chin Phys C – volume: 22 start-page: 1705 year: 2007 end-page: 1715 ident: b20 publication-title: Internat J Modern Phys A – volume: 35 year: 2022 ident: b66 publication-title: Phys Dark Universe – volume: 19 year: 2022 ident: b61 publication-title: Int J Geom Methods Mod Phys – volume: 75 year: 2007 ident: b15 publication-title: Phys Rev D – volume: 30 year: 2021 ident: 10.1016/j.rinp.2023.106300_b64 publication-title: Internat J Modern Phys D – volume: 38 start-page: 1347 year: 1997 ident: 10.1016/j.rinp.2023.106300_b31 publication-title: J Math Phys doi: 10.1063/1.531814 – volume: 84 start-page: 5255 year: 2000 ident: 10.1016/j.rinp.2023.106300_b47 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.84.5255 – volume: 2 start-page: 25 year: 2022 ident: 10.1016/j.rinp.2023.106300_b68 publication-title: J Holography Appl Phys – volume: 7 start-page: 2333 year: 1973 ident: 10.1016/j.rinp.2023.106300_b42 publication-title: Phys Rev D doi: 10.1103/PhysRevD.7.2333 – volume: 70 year: 2004 ident: 10.1016/j.rinp.2023.106300_b59 publication-title: Phys Rev D – volume: 19 start-page: 2355 year: 2002 ident: 10.1016/j.rinp.2023.106300_b75 publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/19/9/302 – volume: 31 start-page: 161 year: 1973 ident: 10.1016/j.rinp.2023.106300_b40 publication-title: Comm Math Phys doi: 10.1007/BF01645742 – volume: 34 year: 2021 ident: 10.1016/j.rinp.2023.106300_b55 publication-title: Phys Dark Univ doi: 10.1016/j.dark.2021.100900 – volume: 935 start-page: 170 year: 2018 ident: 10.1016/j.rinp.2023.106300_b49 publication-title: Nuclear Phys B doi: 10.1016/j.nuclphysb.2018.08.010 – volume: 928 start-page: 415 year: 2018 ident: 10.1016/j.rinp.2023.106300_b44 publication-title: Nuclear Phys B doi: 10.1016/j.nuclphysb.2018.01.018 – volume: 15 start-page: 2752 year: 1977 ident: 10.1016/j.rinp.2023.106300_b73 publication-title: Phys Rev D doi: 10.1103/PhysRevD.15.2752 – volume: 44 year: 2020 ident: 10.1016/j.rinp.2023.106300_b8 publication-title: Chin Phys C doi: 10.1088/1674-1137/44/1/015104 – volume: 2018 year: 2018 ident: 10.1016/j.rinp.2023.106300_b5 publication-title: Adv High Energy Phys – volume: 25 year: 2008 ident: 10.1016/j.rinp.2023.106300_b12 publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/25/9/095014 – volume: 132 start-page: 298 year: 2017 ident: 10.1016/j.rinp.2023.106300_b38 publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2017-11574-9 – volume: 665 start-page: 277 year: 2008 ident: 10.1016/j.rinp.2023.106300_b14 publication-title: Phys Lett B doi: 10.1016/j.physletb.2008.06.012 – volume: 7 start-page: 2333 year: 1973 ident: 10.1016/j.rinp.2023.106300_b58 publication-title: Phys Rev D doi: 10.1103/PhysRevD.7.2333 – volume: 33 year: 2018 ident: 10.1016/j.rinp.2023.106300_b34 publication-title: Modern Phys Lett A doi: 10.1142/S021773231850164X – volume: 53 start-page: 22 issue: 2 year: 2021 ident: 10.1016/j.rinp.2023.106300_b52 publication-title: Gen Relativity Gravitation doi: 10.1007/s10714-021-02797-0 – volume: 77 start-page: 613 issue: 9 year: 2017 ident: 10.1016/j.rinp.2023.106300_b17 publication-title: Eur Phys J C doi: 10.1140/epjc/s10052-017-5191-0 – volume: 35 year: 2020 ident: 10.1016/j.rinp.2023.106300_b11 publication-title: Modern Phys Lett A doi: 10.1142/S0217732320501047 – year: 2022 ident: 10.1016/j.rinp.2023.106300_b56 – volume: 22 start-page: 1705 year: 2007 ident: 10.1016/j.rinp.2023.106300_b20 publication-title: Internat J Modern Phys A doi: 10.1142/S0217751X07036130 – volume: 19 year: 2022 ident: 10.1016/j.rinp.2023.106300_b61 publication-title: Int J Geom Methods Mod Phys – volume: 76 start-page: 145 year: 2016 ident: 10.1016/j.rinp.2023.106300_b50 publication-title: Eur Phys J C doi: 10.1140/epjc/s10052-016-3998-8 – volume: 81 start-page: 477 issue: 5 year: 2021 ident: 10.1016/j.rinp.2023.106300_b51 publication-title: Eur Phys J C doi: 10.1140/epjc/s10052-021-09274-7 – volume: 2015 start-page: 52 year: 2015 ident: 10.1016/j.rinp.2023.106300_b32 publication-title: J High Energy Phys doi: 10.1007/JHEP07(2015)052 – volume: 131 start-page: 177 year: 2016 ident: 10.1016/j.rinp.2023.106300_b37 publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2016-16177-4 – volume: 2016 year: 2016 ident: 10.1016/j.rinp.2023.106300_b54 publication-title: Adv High Energy Phys doi: 10.1155/2016/6727805 – volume: 432 year: 2021 ident: 10.1016/j.rinp.2023.106300_b62 publication-title: Ann Physics doi: 10.1016/j.aop.2021.168572 – volume: 37 year: 2022 ident: 10.1016/j.rinp.2023.106300_b65 publication-title: Internat J Modern Phys A – volume: 77 start-page: 296 year: 2017 ident: 10.1016/j.rinp.2023.106300_b6 publication-title: Eur Phys J C doi: 10.1140/epjc/s10052-017-4859-9 – volume: 97 start-page: 176 year: 2019 ident: 10.1016/j.rinp.2023.106300_b7 publication-title: Can J Phys doi: 10.1139/cjp-2018-0270 – volume: 361 start-page: 103 issue: 3 year: 2016 ident: 10.1016/j.rinp.2023.106300_b26 publication-title: Astrophys Space Sci doi: 10.1007/s10509-016-2691-6 – volume: 534 year: 2022 ident: 10.1016/j.rinp.2023.106300_b67 publication-title: Ann Phys – volume: 75 year: 2007 ident: 10.1016/j.rinp.2023.106300_b15 publication-title: Phys Rev D doi: 10.1103/PhysRevD.75.084022 – volume: 78 start-page: 840 issue: 10 year: 2018 ident: 10.1016/j.rinp.2023.106300_b16 publication-title: Eur Phys J C doi: 10.1140/epjc/s10052-018-6320-0 – volume: 25 issue: 05 year: 2016 ident: 10.1016/j.rinp.2023.106300_b27 publication-title: Internat J Modern Phys D – volume: 2019 year: 2019 ident: 10.1016/j.rinp.2023.106300_b9 publication-title: Adv High Energy Phys doi: 10.1155/2019/2759641 – volume: 24 start-page: 5849 year: 2007 ident: 10.1016/j.rinp.2023.106300_b23 publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/24/23/008 – volume: 134 start-page: 511 year: 2019 ident: 10.1016/j.rinp.2023.106300_b4 publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2019-12877-5 – volume: 18 start-page: 2877 year: 2001 ident: 10.1016/j.rinp.2023.106300_b69 publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/18/15/303 – volume: 08 start-page: 089 year: 2010 ident: 10.1016/j.rinp.2023.106300_b21 publication-title: J High Energy Phys doi: 10.1007/JHEP08(2010)089 – volume: 642 start-page: 124 year: 2006 ident: 10.1016/j.rinp.2023.106300_b18 publication-title: Phys Lett B doi: 10.1016/j.physletb.2006.09.028 – volume: 87 start-page: 577 year: 1983 ident: 10.1016/j.rinp.2023.106300_b41 publication-title: Comm Math Phys doi: 10.1007/BF01208266 – volume: 35 year: 2022 ident: 10.1016/j.rinp.2023.106300_b66 publication-title: Phys Dark Universe doi: 10.1016/j.dark.2022.100948 – volume: 21 start-page: 1383 year: 2004 ident: 10.1016/j.rinp.2023.106300_b71 publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/21/6/007 – volume: 666 start-page: 269 year: 2008 ident: 10.1016/j.rinp.2023.106300_b19 publication-title: Phys Lett B doi: 10.1016/j.physletb.2008.07.017 – volume: 52 start-page: 4430 year: 1995 ident: 10.1016/j.rinp.2023.106300_b74 publication-title: Phys Rev D doi: 10.1103/PhysRevD.52.4430 – volume: 52 start-page: 1108 year: 1995 ident: 10.1016/j.rinp.2023.106300_b33 publication-title: Phys Rev D doi: 10.1103/PhysRevD.52.1108 – volume: 34 year: 2019 ident: 10.1016/j.rinp.2023.106300_b10 publication-title: Modern Phys Lett A doi: 10.1142/S0217732319500573 – volume: 92 start-page: 1638 year: 2014 ident: 10.1016/j.rinp.2023.106300_b70 publication-title: Can J Phys doi: 10.1139/cjp-2014-0229 – volume: 437 start-page: 231 year: 1995 ident: 10.1016/j.rinp.2023.106300_b3 publication-title: Nuclear Phys B doi: 10.1016/0550-3213(94)00588-6 – volume: 92 start-page: 1638 issue: 12 year: 2014 ident: 10.1016/j.rinp.2023.106300_b76 publication-title: Can J Phys doi: 10.1139/cjp-2014-0229 – volume: 73 year: 2006 ident: 10.1016/j.rinp.2023.106300_b13 publication-title: Phys Rev D doi: 10.1103/PhysRevD.73.104010 – volume: 79 start-page: 692 issue: 8 year: 2019 ident: 10.1016/j.rinp.2023.106300_b25 publication-title: Eur Phys J C doi: 10.1140/epjc/s10052-019-7178-5 – volume: 31 year: 2022 ident: 10.1016/j.rinp.2023.106300_b63 publication-title: Internat J Modern Phys D doi: 10.1142/S0218271822500699 – volume: 29 issue: 39 year: 2014 ident: 10.1016/j.rinp.2023.106300_b22 publication-title: Modern Phys Lett A doi: 10.1142/S0217732314502034 – volume: 448 year: 2023 ident: 10.1016/j.rinp.2023.106300_b72 publication-title: Ann Physics doi: 10.1016/j.aop.2022.169190 – volume: 116 year: 2016 ident: 10.1016/j.rinp.2023.106300_b1 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.116.231301 – volume: 17 start-page: 4175 year: 2000 ident: 10.1016/j.rinp.2023.106300_b48 publication-title: Class Quant Gravity doi: 10.1088/0264-9381/17/20/302 – volume: 44 start-page: 373 issue: 4 year: 2020 ident: 10.1016/j.rinp.2023.106300_b29 publication-title: Turk J Phys doi: 10.3906/fiz-2003-1 – volume: 2 start-page: 55 year: 2022 ident: 10.1016/j.rinp.2023.106300_b30 publication-title: J Holography Appl Phys – volume: 56 start-page: 2640 issue: 8 year: 2017 ident: 10.1016/j.rinp.2023.106300_b28 publication-title: Internat J Theoret Phys doi: 10.1007/s10773-017-3420-9 – volume: 913 start-page: 834 year: 2016 ident: 10.1016/j.rinp.2023.106300_b45 publication-title: Nuclear Phys B doi: 10.1016/j.nuclphysb.2016.10.013 – volume: 111 start-page: 40006 year: 2015 ident: 10.1016/j.rinp.2023.106300_b43 publication-title: Europhys Lett doi: 10.1209/0295-5075/111/40006 – volume: 773 start-page: 391 year: 2017 ident: 10.1016/j.rinp.2023.106300_b35 publication-title: Phys Lett B doi: 10.1016/j.physletb.2017.08.053 – volume: 2018 year: 2018 ident: 10.1016/j.rinp.2023.106300_b36 publication-title: Adv High Energy Phys – year: 2022 ident: 10.1016/j.rinp.2023.106300_b57 – volume: 93 year: 2022 ident: 10.1016/j.rinp.2023.106300_b60 publication-title: New Astron doi: 10.1016/j.newast.2021.101759 – volume: 56 start-page: 1725 year: 2017 ident: 10.1016/j.rinp.2023.106300_b39 publication-title: Internat J Theoret Phys doi: 10.1007/s10773-017-3317-7 – volume: 30 year: 2015 ident: 10.1016/j.rinp.2023.106300_b46 publication-title: Internat J Modern Phys A – volume: 2019 year: 2019 ident: 10.1016/j.rinp.2023.106300_b53 publication-title: Adv High Energy Phys doi: 10.1155/2019/4652048 – volume: 05 start-page: 014 year: 2005 ident: 10.1016/j.rinp.2023.106300_b2 publication-title: J High Energy Phys doi: 10.1088/1126-6708/2005/05/014 – volume: 47 start-page: 2203 year: 2008 ident: 10.1016/j.rinp.2023.106300_b24 publication-title: Internat J Theoret Phys doi: 10.1007/s10773-008-9652-y |
SSID | ssj0001645511 |
Score | 2.446931 |
Snippet | In this paper, we study quantum gravity effect on the symmergent black hole which is derived from quadratic-curvature gravity. To do so, we use the... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 106300 |
SubjectTerms | Black hole Hawking radiation Modified lagrangian equation Quantum tunneling Symmergent gravity WKB method. first order correction of thermodynamics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn7i-yMGbFJsmbezR17IIenJhb2XyKK64XdnWg__emaYr9bJevIZkUmbazDfpzDeMXUAK9DcojhTE15ESIKMcYW5kvILcacSwnqqRn56z8UQ9TtNpr9UX5YQFeuCguKsUssQgRkDHLRQ4QLwiyxSEEy4lqXT6os_rBVPt7UqmEApQtJUkxNOnc91VzITkruWsIrLKROIAkU798koteX_POfUczmiHbXdIkd-EJ9xlG77aY5ttxqat99k9Gng5X7jQUb7mUDmO5xiGvs0rDnBLbTfaooWaL0pef81DoWXDDd3ZceqLWx-wyejh5W4cdS0RIqtE3EQOjAatMmU1OIpFPCQlYjwvLEYe0iZOA6A6vATvbSlAOZ_JTMtUi9wYKQ_ZoFpU_ohxRB4JqNzhGqN8gh9ymgvlYm8wgimlHDKxUklhO75walvxXqwSw94KUmNBaiyCGofs8mfNR2DLWDv7ljT9M5OYrtsBtH_R2b_4y_5Dlq7sVHSgIYABFDVbs_nxf2x-wrZIZMhJO2WDZvnpzxCkNOa8fR-_AayU4Bg priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqSkgsiKcoL3lgQ1Hj2EmakRaqCgkWqNQtOscOFNG0SsLAv-cuj9IuHRhz8iXR2Tl_n3MPxm7BB_ob5DoK3IGjBEgnQpjraKsgMiFiWEvZyM8vwWSqnmb-rMNGbS4MhVU2vr_26ZW3biT9xpr91Xzef_WQu8iQumZVvJwokFSDKolvNvw7ZwkUggLiXTTeIYUmd6YO88rnGZWt9CQKqPzU1v5UlfHf2KY2tp7xITtoMCO_r1_riHVsdsz2qtjNpDhhDzjV-WJp6t7yBYfMcPRoSILLDxTwhBpwVOkLBV-mvPhZ1CmXJdd0esepQ25xyqbjx7fRxGmaIziJEm7pGNAhhCpQSQiGWIkFL0W0Z0WCHEQmngkBEAxYCdYmqQBlbCCDUPqhiLSW8ox1s2VmzxlHDOKBigzqaGU9_KT9SCjjWo1cJpWyx0RrkjhpKodTA4uvuA0R-4zJjDGZMa7N2GN3a51VXTdj5-ghWXo9kmpeV4Jl_h43kx77EHga0SJCOKHAACJXmfogjDA-ra8e89t5ireWEN5qvuPhF__Uu2T7dFUHpF2xbpl_22tEKKW-qZbgLxqv4Wk priority: 102 providerName: Elsevier |
Title | Thermodynamics and logarithmic corrections of symmergent black holes |
URI | https://dx.doi.org/10.1016/j.rinp.2023.106300 https://doaj.org/article/5a62b22626414ada9773f5a1d1d59642 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66IngRn7i-yMGbVDZN2tiDiKsuKujJhb2VSZP6YLfVtoL7751puz5ABC-FhiQtk0znm3RmPsYOIAD6G9TzFPSOPSVAehHCXM84BZHViGEdZSPf3oVXQ3UzCkZzbEZ31Aqw_NW1Iz6pYTE-en-dnqLCn3zFahVPGdWe9CU2UA2pebaAlkmTot62cL8-cwkVAgTywXyfqvfpSLd5NL9P88NW1SX9v5msb2ZosMKWW_zIz5oFX2VzLltji3UcZ1Kuswtc9mKS24ZnvuSQWY5fN3SIq0ds4AmRcdSpDCXPU15OJ036ZcUNneRxYsstN9hwcHl_fuW1RAleokSv8iwYDVqFKtFgyUNx4KeI_JxI0B-RiW81AAIDJ8G5JBWgrAtlqGWgRWSMlJusk-WZ22Ic8YgPKrI4xijno3oHkVC25wz6NamUXSZmIomTtoo4kVmM41m42HNMYoxJjHEjxi47_Bzz0tTQ-LN3nyT92ZPqX9cNefEQt-oUBxD6BpEjwjmhwAKiWJkGIKywAe21Lgtm6xS3UKKBCDjV0x8P3_7Xq-6wJbprQtJ2Wacq3tweYpTK7Ne-PV6vR_39ehN-AGea4zc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqEIIF8RTl6YENRa1jJyYj5aGW1wJI3axz7EARTasmDPx77pKUx8LAevEl0dk5f59zD8aOIQL6G9QNFHRPAyVABgnC3MB6BYnTiGE9ZSPf3cf9J3U9jIYtdj7PhaGwysb31z698taNpNNYszMdjToPIXIXqalrVsXLkQItIhrQ1L9hMOx9H7TEClEBES9SCEijSZ6p47xmo5zqVoYSBVR_6tcGVdXx_7FP_dh7rtbYagMa-Vn9Xuus5fMNtlQFb6bFJrvAuZ6NJ65uLl9wyB1Hl4YsuHxBAU-pA0eVv1DwScaLj3Gdc1lyS8d3nFrkFlvs6ery8bwfNN0RglSJbhk4sBq0ilWqwREt8RBmCPe8SJGEyDR0GgDRgJfgfZoJUM7HMtYy0iKxVspttpBPcr_DOIKQEFTiUMcqH-I3HSVCua63SGYyKdtMzE1i0qZ0OHWweDPzGLFXQ2Y0ZEZTm7HNTr50pnXhjD9H98jSXyOp6HUlmMyeTTPrJoI4tAgXEcMJBQ4QusosAuGEi2iBtVk0nyfzaw3hrUZ_PHz3n3pHbLn_eHdrbgf3N3tsha7U0Wn7bKGcvfsDhCulPayW4yd5pOSI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamics+and+logarithmic+corrections+of+symmergent+black+holes&rft.jtitle=Results+in+physics&rft.au=Ali%2C+Riasat&rft.au=Babar%2C+Rimsha&rft.au=Akhtar%2C+Zunaira&rft.au=%C3%96vg%C3%BCn%2C+Ali&rft.date=2023-03-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=46&rft.spage=106300&rft_id=info:doi/10.1016%2Fj.rinp.2023.106300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2023_106300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |