Retention of Nitrate-N in Mineral Soil Organic Matter in Different Forest Age Classes
Conceptual models of nutrient retention in ecosystems suggest that mature forests receiving chronically elevated atmospheric nitrogen (N) deposition should experience increased nitrate (NO₃⁻) losses to streams. However, at the Hubbard Brook Experimental Forest (New Hampshire, USA), recent stream NO₃...
Saved in:
Published in | Ecosystems (New York) Vol. 22; no. 6; pp. 1280 - 1294 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Science + Business Media
01.09.2019
Springer US Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conceptual models of nutrient retention in ecosystems suggest that mature forests receiving chronically elevated atmospheric nitrogen (N) deposition should experience increased nitrate (NO₃⁻) losses to streams. However, at the Hubbard Brook Experimental Forest (New Hampshire, USA), recent stream NO₃⁻ concentrations have been unexpectedly low in mature watersheds. Poorly understood retention of NO₃⁻-N in soil organic matter (SOM) may explain this discrepancy. The relative availability of C and N in SOM influences NO₃⁻-N retention and may vary during succession due to processes of N mining and reaccumulation. To evaluate the strength of the SOM sink for NO₃⁻-N, we applied a 15 NO₃⁻ tracer to the mineral soil in eight stands spanning a forest chronosequence from about 20 years to old growth (≫ 200 years). We tracked ¹⁵N recovery in SOM 3 tracer to the mineral soil in eight stands spanning a forest chronosequence from about 20 years to old growth (200 years). We tracked 15 N recovery in SOM fractions in the upper 10 cm of B horizon over 5 weeks. Overall, forest age did not directly control the 5-week recovery of ¹⁵N, but it had an indirect effect via its influence on SOM properties such as C/N. Old-growth forest soils had the lowest C/N, implying closer proximity to effective N saturation. Across sites, both the particulate-and mineral-associated SOM fractions rapidly incorporated ¹⁵N, but recovery in each fraction generally declined with time, reflecting the dynamic nature of SOM. These results indicate that mineral horizons can provide an important N sink through the short term in forests of all ages, but that SOM-N remains subject to active cycling and potential loss from the soil pool over the longer term. |
---|---|
AbstractList | Conceptual models of nutrient retention in ecosystems suggest that mature forests receiving chronically elevated atmospheric nitrogen (N) deposition should experience increased nitrate (NO.sub.3.sup.-) losses to streams. However, at the Hubbard Brook Experimental Forest (New Hampshire, USA), recent stream NO.sub.3.sup.- concentrations have been unexpectedly low in mature watersheds. Poorly understood retention of NO.sub.3.sup.--N in soil organic matter (SOM) may explain this discrepancy. The relative availability of C and N in SOM influences NO.sub.3.sup.--N retention and may vary during succession due to processes of N mining and re-accumulation. To evaluate the strength of the SOM sink for NO.sub.3.sup.--N, we applied a .sup.15NO.sub.3.sup.- tracer to the mineral soil in eight stands spanning a forest chronosequence from about 20 years to old growth (>> 200 years). We tracked .sup.15N recovery in SOM fractions in the upper 10 cm of B horizon over 5 weeks. Overall, forest age did not directly control the 5-week recovery of .sup.15N, but it had an indirect effect via its influence on SOM properties such as C/N. Old-growth forest soils had the lowest C/N, implying closer proximity to effective N saturation. Across sites, both the particulate- and mineral-associated SOM fractions rapidly incorporated .sup.15N, but recovery in each fraction generally declined with time, reflecting the dynamic nature of SOM. These results indicate that mineral horizons can provide an important N sink through the short term in forests of all ages, but that SOM-N remains subject to active cycling and potential loss from the soil pool over the longer term. Conceptual models of nutrient retention in ecosystems suggest that mature forests receiving chronically elevated atmospheric nitrogen (N) deposition should experience increased nitrate (NO₃⁻) losses to streams. However, at the Hubbard Brook Experimental Forest (New Hampshire, USA), recent stream NO₃⁻ concentrations have been unexpectedly low in mature watersheds. Poorly understood retention of NO₃⁻-N in soil organic matter (SOM) may explain this discrepancy. The relative availability of C and N in SOM influences NO₃⁻-N retention and may vary during succession due to processes of N mining and re-accumulation. To evaluate the strength of the SOM sink for NO₃⁻-N, we applied a ¹⁵NO₃⁻ tracer to the mineral soil in eight stands spanning a forest chronosequence from about 20 years to old growth (≫ 200 years). We tracked ¹⁵N recovery in SOM fractions in the upper 10 cm of B horizon over 5 weeks. Overall, forest age did not directly control the 5-week recovery of ¹⁵N, but it had an indirect effect via its influence on SOM properties such as C/N. Old-growth forest soils had the lowest C/N, implying closer proximity to effective N saturation. Across sites, both the particulate- and mineral-associated SOM fractions rapidly incorporated ¹⁵N, but recovery in each fraction generally declined with time, reflecting the dynamic nature of SOM. These results indicate that mineral horizons can provide an important N sink through the short term in forests of all ages, but that SOM-N remains subject to active cycling and potential loss from the soil pool over the longer term. Conceptual models of nutrient retention in ecosystems suggest that mature forests receiving chronically elevated atmospheric nitrogen (N) deposition should experience increased nitrate (NO₃⁻) losses to streams. However, at the Hubbard Brook Experimental Forest (New Hampshire, USA), recent stream NO₃⁻ concentrations have been unexpectedly low in mature watersheds. Poorly understood retention of NO₃⁻-N in soil organic matter (SOM) may explain this discrepancy. The relative availability of C and N in SOM influences NO₃⁻-N retention and may vary during succession due to processes of N mining and reaccumulation. To evaluate the strength of the SOM sink for NO₃⁻-N, we applied a 15 NO₃⁻ tracer to the mineral soil in eight stands spanning a forest chronosequence from about 20 years to old growth (≫ 200 years). We tracked ¹⁵N recovery in SOM 3 tracer to the mineral soil in eight stands spanning a forest chronosequence from about 20 years to old growth (200 years). We tracked 15 N recovery in SOM fractions in the upper 10 cm of B horizon over 5 weeks. Overall, forest age did not directly control the 5-week recovery of ¹⁵N, but it had an indirect effect via its influence on SOM properties such as C/N. Old-growth forest soils had the lowest C/N, implying closer proximity to effective N saturation. Across sites, both the particulate-and mineral-associated SOM fractions rapidly incorporated ¹⁵N, but recovery in each fraction generally declined with time, reflecting the dynamic nature of SOM. These results indicate that mineral horizons can provide an important N sink through the short term in forests of all ages, but that SOM-N remains subject to active cycling and potential loss from the soil pool over the longer term. Conceptual models of nutrient retention in ecosystems suggest that mature forests receiving chronically elevated atmospheric nitrogen (N) deposition should experience increased nitrate (NO 3 − ) losses to streams. However, at the Hubbard Brook Experimental Forest (New Hampshire, USA), recent stream NO 3 − concentrations have been unexpectedly low in mature watersheds. Poorly understood retention of NO 3 − -N in soil organic matter (SOM) may explain this discrepancy. The relative availability of C and N in SOM influences NO 3 − -N retention and may vary during succession due to processes of N mining and re-accumulation. To evaluate the strength of the SOM sink for NO 3 − -N, we applied a 15 NO 3 − tracer to the mineral soil in eight stands spanning a forest chronosequence from about 20 years to old growth (≫ 200 years). We tracked 15 N recovery in SOM fractions in the upper 10 cm of B horizon over 5 weeks. Overall, forest age did not directly control the 5-week recovery of 15 N, but it had an indirect effect via its influence on SOM properties such as C/N. Old-growth forest soils had the lowest C/N, implying closer proximity to effective N saturation. Across sites, both the particulate- and mineral-associated SOM fractions rapidly incorporated 15 N, but recovery in each fraction generally declined with time, reflecting the dynamic nature of SOM. These results indicate that mineral horizons can provide an important N sink through the short term in forests of all ages, but that SOM-N remains subject to active cycling and potential loss from the soil pool over the longer term. Conceptual models of nutrient retention in ecosystems suggest that mature forests receiving chronically elevated atmospheric nitrogen (N) deposition should experience increased nitrate (NO3−) losses to streams. However, at the Hubbard Brook Experimental Forest (New Hampshire, USA), recent stream NO3− concentrations have been unexpectedly low in mature watersheds. Poorly understood retention of NO3−-N in soil organic matter (SOM) may explain this discrepancy. The relative availability of C and N in SOM influences NO3−-N retention and may vary during succession due to processes of N mining and re-accumulation. To evaluate the strength of the SOM sink for NO3−-N, we applied a 15NO3− tracer to the mineral soil in eight stands spanning a forest chronosequence from about 20 years to old growth (≫ 200 years). We tracked 15N recovery in SOM fractions in the upper 10 cm of B horizon over 5 weeks. Overall, forest age did not directly control the 5-week recovery of 15N, but it had an indirect effect via its influence on SOM properties such as C/N. Old-growth forest soils had the lowest C/N, implying closer proximity to effective N saturation. Across sites, both the particulate- and mineral-associated SOM fractions rapidly incorporated 15N, but recovery in each fraction generally declined with time, reflecting the dynamic nature of SOM. These results indicate that mineral horizons can provide an important N sink through the short term in forests of all ages, but that SOM-N remains subject to active cycling and potential loss from the soil pool over the longer term. |
Audience | Academic |
Author | Lovett, Gary M. Ouimette, Andrew P. Goodale, Christine L. Lang, Ashley K. Fuss, Colin B. Ollinger, Scott V. |
Author_xml | – sequence: 1 givenname: Colin B. surname: Fuss fullname: Fuss, Colin B. – sequence: 2 givenname: Gary M. surname: Lovett fullname: Lovett, Gary M. – sequence: 3 givenname: Christine L. surname: Goodale fullname: Goodale, Christine L. – sequence: 4 givenname: Scott V. surname: Ollinger fullname: Ollinger, Scott V. – sequence: 5 givenname: Ashley K. surname: Lang fullname: Lang, Ashley K. – sequence: 6 givenname: Andrew P. surname: Ouimette fullname: Ouimette, Andrew P. |
BookMark | eNp9kU1vVCEUhompiW31B7gwIXHj5tbDx71wl5PRqkk_ErVrwlwOEyZ3oAKzaH-9jNdo0kVDAgTe53B43zNyElNEQt4yuGAA6mNpM2cdMN2B4Lp7fEFOmRR9BwMfT_7seTdqCa_IWSk7ANZrKU_J3XesGGtIkSZPb0LNtmJ3Q0Ok1yFitjP9kcJMb_PWxjDRa1sr5uP1p-A95sbSy5SxVLraIl3PthQsr8lLb-eCb_6u5-Tu8vPP9dfu6vbLt_Xqqpskg9o5PQ5OSzv4flTg9ATgsOcTutF58AK40Ao9esV75q3WKOXGotyIzcY66cQ5-bDUvc_p16E1YfahTDjPNmI6FMOlGCXwoddN-v6JdJcOObbuDGcDH5RQWjXVxaLa2hlNiD41Q6Y2HO7D1Cz3oZ2vFBNKsF6NDVALMOVUSkZvplDt0c8GhtkwMMd8zJKPafmYYz7msZHsCXmfw97mh2cZvjClaeMW8_9PPAe9W6BdqSn_e0VqBWzUIH4Do1Stgw |
CitedBy_id | crossref_primary_10_1111_gcb_15526 crossref_primary_10_1002_ecs2_3977 crossref_primary_10_1016_j_catena_2021_105613 crossref_primary_10_1016_j_foreco_2024_122203 crossref_primary_10_1007_s10533_020_00750_y crossref_primary_10_1016_j_soilbio_2021_108237 crossref_primary_10_1016_j_seh_2023_100016 crossref_primary_10_1016_j_soilbio_2020_107732 crossref_primary_10_3389_fenvs_2025_1477459 crossref_primary_10_3390_min11040422 crossref_primary_10_7717_peerj_17512 crossref_primary_10_1016_j_soilbio_2020_107836 crossref_primary_10_1029_2023JG007504 crossref_primary_10_1016_j_ejsobi_2021_103299 crossref_primary_10_1016_j_catena_2021_105175 crossref_primary_10_1016_j_scitotenv_2020_144356 crossref_primary_10_1016_j_micres_2021_126812 crossref_primary_10_1002_ldr_4285 crossref_primary_10_1029_2021JG006352 |
Cites_doi | 10.1007/s100210000039 10.1038/srep08280 10.1023/A:1004213929699 10.1890/14-1852.1 10.2136/sssaj1988.03615995005200040049x 10.1007/s11104-010-0391-5 10.1007/s10533-013-9892-7 10.1046/j.1365-2486.2003.00592.x 10.1038/385061a0 10.1007/s10021-002-0219-0 10.1007/s10533-017-0345-6 10.1016/S0378-1127(00)00402-3 10.1890/13-2196.1 10.1007/978-1-4614-7810-2 10.5194/bg-10-1675-2013 10.1016/j.soilbio.2006.04.014 10.1890/06-2057.1 10.1126/science.1136674 10.1029/2011WR011228 10.1007/s10533-014-9982-1 10.1038/ncomms3947 10.1111/j.1365-2389.2006.00809.x 10.1890/0012-9658(2002)083[0073:NSACIO]2.0.CO;2 10.2136/sssaj1988.03615995005200060024x 10.1890/0012-9658(2000)081[1858:MIATRO]2.0.CO;2 10.1890/0012-9658(2001)082[2245:FAFONI]2.0.CO;2 10.1007/s10021-016-0007-x 10.1007/s00442-007-0700-8 10.2136/sssaj1991.03615995005500020034x 10.1146/annurev.es.10.110179.000413 10.1111/j.1365-2486.2008.01741.x 10.2307/1297148 10.1016/j.geoderma.2004.12.015 10.1016/j.foreco.2004.03.014 10.1007/s10533-004-6321-y 10.1007/s10021-011-9414-1 10.1007/s004420050325 10.1007/s10533-009-9290-3 10.1073/pnas.1121448109 10.1007/s10533-017-0378-x 10.1046/j.1469-8137.1997.00808.x 10.1023/A:1023317516458 10.1002/fee.1949 10.1016/j.soilbio.2012.12.015 10.1021/es0156136 10.1016/j.soilbio.2012.04.002 10.1007/s10533-007-9103-5 10.1021/es4025723 10.1016/j.geoderma.2014.02.017 10.1111/j.1365-2486.2005.01041.x 10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2 10.1007/s10021-004-0239-z 10.1111/j.1365-2389.2010.01226.x 10.1023/A:1010627431722 10.1139/x00-034 10.5194/bg-8-715-2011 10.1007/BF00001809 10.1007/s10533-008-9281-9 10.1016/j.orggeochem.2003.08.007 10.1016/S0038-0717(03)00165-2 10.1038/nature16069 10.1890/11-1146.1 10.1016/j.geoderma.2004.07.006 10.1023/A:1016125726789 10.1007/s10533-015-0180-6 10.1890/06-0834 10.1016/j.geoderma.2014.11.028 10.1038/415416a 10.1021/es026189r 10.1002/2015JG003063 10.1007/s10021-011-9432-z 10.1111/nph.12235 10.2136/sssaj1994.03615995005800010036x 10.1111/gcb.13483 10.1016/j.scitotenv.2016.02.020 10.1029/97GB01366 10.1016/S0378-1127(00)00399-6 10.2136/sssaj1986.03615995005000060017x 10.1007/s10021-002-0203-8 10.1016/j.soilbio.2013.10.052 10.1016/S0038-0717(02)00025-1 10.1007/s10533-018-0445-y 10.2136/sssaj1996.03615995006000030017x 10.1007/s10021-011-9461-7 10.1016/j.envpol.2005.12.004 10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2 10.1007/s10021-011-9501-3 10.1007/s10021-004-0230-8 10.1111/j.1365-2389.2005.00706.x |
ContentType | Journal Article |
Copyright | 2018 Springer Science+Business Media, LLC, part of Springer Nature Springer Science+Business Media, LLC, part of Springer Nature 2018 COPYRIGHT 2019 Springer Ecosystems is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: 2018 Springer Science+Business Media, LLC, part of Springer Nature – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: COPYRIGHT 2019 Springer – notice: Ecosystems is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7XB 88I 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s10021-018-0328-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Research Library Science Database Research Library (Corporate) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Ecology Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Research Library Prep |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences Zoology |
EISSN | 1435-0629 |
EndPage | 1294 |
ExternalDocumentID | A713731579 10_1007_s10021_018_0328_z 48701980 |
GeographicLocations | New Hampshire |
GeographicLocations_xml | – name: New Hampshire |
GrantInformation_xml | – fundername: Division of Environmental Biology grantid: 1257956; 1633026; 1637685 funderid: http://dx.doi.org/10.13039/100000155 |
GroupedDBID | -DZ -~C .86 06C 06D 0R~ 0VY 199 1N0 203 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~F 2~H 30V 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67N 67Z 6NX 78A 7XC 88I 8CJ 8FE 8FH 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHBH AAHKG AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPLY ABQBU ABSXP ABTEG ABTHY ABTKH ABTLG ABTMW ABUWG ABWNU ABXPI ABXSQ ACAOD ACDTI ACGFS ACGOD ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFAZZ AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGUYK AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHXOZ AHYZX AIAKS AICQM AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CBGCD CCPQU CS3 CSCUP D1J DATOO DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEP IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBS JBSCW JCJTX JENOY JLS JPM JST JZLTJ KDC KOV KPH LAS LLZTM M2O M2P M4Y MA- MQGED N9A NB0 NPVJJ NQJWS NU0 O93 O9I O9J OAM P2P PATMY PCBAR PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 PYCSY Q2X QOR QOS R89 R9I RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 Y6R YLTOR YV5 Z45 ZMTXR ZOVNA ~02 ~A9 ~KM -56 -5G -BR -EM -Y2 1SB 2P1 2VQ 3V. AANXM AARHV ABQSL ABULA ACBXY ADINQ ADULT AEBTG AEKMD AFGCZ AGGDS AHSBF AJBLW ANHSF CAG COF DOOOF EN4 EQZMY GQ6 GTFYD H13 HGD HTVGU IHE JAAYA JBMMH JHFFW JKQEH JLXEF JSODD N2Q O9- OVD RIG RNI RZK S1Z TEORI VJK WHG Z7Y Z7Z AAYXX ADHKG AGQPQ CITATION AEIIB PMFND 7SN 7ST 7XB 8FK ABRTQ C1K MBDVC PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-d896d84a6f5970d8c00de52ced9df0f302387efef7251fa88e44bae4b3bbad4d3 |
IEDL.DBID | BENPR |
ISSN | 1432-9840 |
IngestDate | Fri Jul 11 00:31:47 EDT 2025 Fri Jul 25 09:55:07 EDT 2025 Tue Jun 10 20:35:39 EDT 2025 Thu Apr 24 22:56:05 EDT 2025 Tue Jul 01 04:12:52 EDT 2025 Fri Feb 21 02:29:09 EST 2025 Thu Jun 19 22:20:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Spodosol soil water immobilization chronosequence nitrogen N tracer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-d896d84a6f5970d8c00de52ced9df0f302387efef7251fa88e44bae4b3bbad4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2162673787 |
PQPubID | 55443 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2439402658 proquest_journals_2162673787 gale_infotracacademiconefile_A713731579 crossref_citationtrail_10_1007_s10021_018_0328_z crossref_primary_10_1007_s10021_018_0328_z springer_journals_10_1007_s10021_018_0328_z jstor_primary_48701980 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190901 20190900 2019-9-00 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 9 year: 2019 text: 20190901 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Ecosystems (New York) |
PublicationTitleAbbrev | Ecosystems |
PublicationYear | 2019 |
Publisher | Springer Science + Business Media Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Richter, Markewitz, Heine, Jin, Raikes, Tian, Wells (CR69) 2000; 138 Gorham, Vitousek, Reiners (CR33) 1979; 10 Lehmann, Kleber (CR55) 2015; 528 Kalbitz, Schwesig, Schmerwitz, Kaiser, Haumaier, Glaser, Ellerbrock, Leinweber (CR45) 2003; 35 Schmidt, Matzner (CR72) 2009; 93 Compton, Boone (CR12) 2002; 34 Keiluweit, Nico, Kleber, Fendorf (CR47) 2016; 127 Kramer, Lajtha, Aufdenkampe (CR51) 2017; 136 Lewis, Castellano, Kaye (CR56) 2014; 95 Kopáček, Cosby, Evans, Hruška, Moldan, Oulehle, Šantrůčková, Tahovská, Wright (CR50) 2013; 115 Nadelhoffer, Colman, Currie, Magill, Aber (CR62) 2004; 196 Rumpel, Kögel-Knabner (CR71) 2011; 338 Perakis, Hedin (CR65) 2001; 82 Driscoll, Whitall, Aber, Boyer, Castro, Cronan, Goodale, Groffman, Hopkinson, Lambert, Lawrence, Ollinger (CR18) 2003; 53 Eusterhues, Rumpel, Kleber, Kögel-Knabner (CR19) 2003; 34 Dail, Davidson, Chorover (CR15) 2001; 54 Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (CR27) 2008; 320 von Lützow, Kögel-Knabner, Ekschmitt, Matzner, Guggenberger, Marschner, Flessa (CR60) 2006; 57 Goodale (CR29) 2017; 23 Kaiser, Kalbitz (CR44) 2012; 52 Castellano, Kaye, Lin, Schmidt (CR10) 2012; 15 Holub, Lajtha (CR40) 2004; 7 Colman, Fierer, Schimel (CR11) 2008; 91 Weitzman, Kaye (CR87) 2016; 19 Morier, Schleppi, Saurer, Providoli, Guenat (CR61) 2010; 61 Stark, Hart (CR78) 1997; 385 Vitousek, Reiners (CR84) 1975; 25 Tahovská, Kaňa, Bárta, Oulehle, Richter, Šantrůčková (CR80) 2013; 59 Hagedorn, Maurer, Bucher, Siegwolf (CR35) 2005; 11 Kleber, Sollins, Sutton (CR49) 2007; 85 Nadelhoffer, Fry (CR63) 1988; 52 Bailey, Brousseau, McGuire, Ross (CR4) 2014; 226–227 Groffman, Driscoll, Durán, Campbell, Christenson, Fahey, Fisk, Fuss, Likens, Lovett, Rustad, Templer (CR34) 2018; 141 Yanai, Vadeboncoeur, Hamburg, Arthur, Fuss, Groffman, Siccama, Driscoll (CR89) 2013; 47 Aber, Goodale, Ollinger, Smith, Magill, Martin, Hallett, Stoddard (CR2) 2003; 53 Evans, Caporn, Carroll, Pilkington, Wilson, Ray, Cresswell (CR20) 2006; 143 Kaye, Binkley, Rhoades (CR46) 2003; 63 Templer, Lovett, Weathers, Findlay, Dawson (CR82) 2005; 8 Hassink (CR37) 1997; 191 Fahey, Siccama, Driscoll, Likens, Campbell, Johnson, Battles, Aber, Cole, Fisk, Groffman, Hamburg, Holmes, Schwarz, Yanai (CR22) 2005; 75 Holmes, Zak (CR39) 1994; 58 Jastrow, Miller, Boutton (CR42) 1996; 60 Fahey, Yavitt, Sherman, Groffman, Fisk, Maerz (CR23) 2011; 14 Beare, McNeill, Curtin, Parfitt, Jones, Dodd, Sharp (CR5) 2014; 120 Seely, Lajtha (CR75) 1997; 112 Buurman, Jongmans (CR9) 2005; 125 Perakis, Hedin (CR66) 2002; 415 Gbondo-Tugbawa, Driscoll (CR28) 2002; 36 Bingham, Cotrufo (CR7) 2016; 551–552 Aber, Driscoll (CR1) 1997; 11 Lamontagne, Schiff, Elgood (CR53) 2000; 30 Högberg (CR38) 1997; 137 Davidson, Chorover, Dail (CR16) 2003; 9 Huntington, Ryan, Hamburg (CR41) 1988; 52 Lovett, Goodale, Ollinger, Fuss, Ouimette, Likens (CR59) 2018; 16 Goodale, Fredriksen, Weiss, McCalley, Sparks, Thomas (CR32) 2015; 96 Pourmokhtarian, Driscoll, Campbell, Hayhoe (CR67) 2012; 48 Johnson, Johnson, Huntington, Siccama (CR43) 1991; 55 Zogg, Zak, Pregitzer, Burton (CR90) 2000; 81 Bernal, Hedin, Likens, Gerber, Buso (CR6) 2012; 109 Wagai, Kajiura, Asano, Hiradate (CR86) 2015; 241–242 Schrumpf, Kaiser, Guggenberger, Persson, Kögel-Knabner, Schulze (CR73) 2013; 10 Craine, Elmore, Wang, Augusto, Baisden, Brookshire, Cramer, Hasselquist, Hobbie, Kahmen, Koba, Kranabetter, Mack, Marin-Spiotta, Mayor, McLauchlan, Michelsen, Nardoto, Oliveira, Perakis, Peri, Quesada, Richter, Schipper, Stevenson, Turner, Viani, Wanek, Zeller (CR13) 2015; 5 LeBauer, Treseder (CR54) 2008; 89 Templer, Mack, Iii, Christenson, Compton, Crook, Currie, Curtis, Dail, D’Antonio, Emmett, Epstein, Goodale, Gundersen, Hobbie, Holland, Hooper, Hungate, Lamontagne, Nadelhoffer, Osenberg, Perakis, Schleppi, Schimel, Schmidt, Sommerkorn, Spoelstra, Tietema, Wessel, Zak (CR83) 2012; 93 Scott, Rothstein (CR74) 2014; 69 Sollins, Swanston, Kleber, Filley, Kramer, Crow, Caldwell, Lajtha, Bowden (CR77) 2006; 38 Goodale, Aber, McDowell (CR30) 2000; 3 Lovett, Goodale (CR58) 2011; 14 Vogel, Mueller, Höschen, Buegger, Heister, Schulz, Schloter, Kögel-Knabner (CR85) 2014; 5 Riha, Campbell, Wolfe (CR70) 1986; 50 Dittman, Driscoll, Groffman, Fahey (CR17) 2007; 88 Aber, Ollinger, Driscoll, Likens, Holmes, Freuder, Goodale (CR3) 2002; 5 Kleber, Mikutta, Torn, Jahn (CR48) 2005; 56 Yanai, Arthur, Siccama, Federer (CR88) 2000; 138 Curtis, Evans, Goodale, Heaton (CR14) 2011; 14 Goodale, Aber, Vitousek (CR31) 2003; 6 Boström, Comstedt, Ekblad (CR8) 2007; 153 Fisk, Zak, Crow (CR24) 2002; 83 Likens (CR57) 2013 Fuss, Driscoll, Campbell (CR26) 2015; 120 Swanston, Torn, Hanson, Southon, Garten, Hanlon, Ganio (CR79) 2005; 128 Tang, Bolstad, Martin (CR81) 2009; 15 CR21 Fitzhugh, Likens, Driscoll, Mitchell, Groffman, Fahey, Hardy (CR25) 2003; 37 Hart, Firestone (CR36) 1991; 12 Kuzyakov, Xu (CR52) 2013; 198 Six, Conant, Paul, Paustian (CR76) 2002; 241 Pries, Bird, Castanha, Hatton, Torn (CR68) 2017; 134 Pan, Chen, Birdsey, McCullough, He, Deng (CR64) 2011; 8 BHM Schmidt (328_CR72) 2009; 93 JM Stark (328_CR78) 1997; 385 M Kleber (328_CR48) 2005; 56 JD Jastrow (328_CR42) 1996; 60 Y Kuzyakov (328_CR52) 2013; 198 KJ Nadelhoffer (328_CR62) 2004; 196 328_CR21 CEH Pries (328_CR68) 2017; 134 CB Fuss (328_CR26) 2015; 120 RD Yanai (328_CR89) 2013; 47 C Rumpel (328_CR71) 2011; 338 TJ Fahey (328_CR22) 2005; 75 JD Aber (328_CR1) 1997; 11 B Seely (328_CR75) 1997; 112 JD Aber (328_CR2) 2003; 53 DB Lewis (328_CR56) 2014; 95 PM Groffman (328_CR34) 2018; 141 K Kaiser (328_CR44) 2012; 52 SW Bailey (328_CR4) 2014; 226–227 DB Dail (328_CR15) 2001; 54 MG Kramer (328_CR51) 2017; 136 TG Huntington (328_CR41) 1988; 52 DS LeBauer (328_CR54) 2008; 89 JA Dittman (328_CR17) 2007; 88 K Eusterhues (328_CR19) 2003; 34 CL Goodale (328_CR32) 2015; 96 EA Davidson (328_CR16) 2003; 9 S Lamontagne (328_CR53) 2000; 30 GM Lovett (328_CR59) 2018; 16 J Lehmann (328_CR55) 2015; 528 K Tahovská (328_CR80) 2013; 59 BP Colman (328_CR11) 2008; 91 A Pourmokhtarian (328_CR67) 2012; 48 CL Goodale (328_CR31) 2003; 6 K Kalbitz (328_CR45) 2003; 35 PH Templer (328_CR82) 2005; 8 P Buurman (328_CR9) 2005; 125 PH Templer (328_CR83) 2012; 93 GM Lovett (328_CR58) 2011; 14 CL Goodale (328_CR30) 2000; 3 M Keiluweit (328_CR47) 2016; 127 PM Vitousek (328_CR84) 1975; 25 J Tang (328_CR81) 2009; 15 CW Swanston (328_CR79) 2005; 128 J Kopáček (328_CR50) 2013; 115 J Six (328_CR76) 2002; 241 JP Kaye (328_CR46) 2003; 63 SS Perakis (328_CR65) 2001; 82 P Högberg (328_CR38) 1997; 137 CL Goodale (328_CR29) 2017; 23 GE Likens (328_CR57) 2013 Y Pan (328_CR64) 2011; 8 AH Bingham (328_CR7) 2016; 551–552 RD Yanai (328_CR88) 2000; 138 B Boström (328_CR8) 2007; 153 SM Holub (328_CR40) 2004; 7 RD Fitzhugh (328_CR25) 2003; 37 SC Hart (328_CR36) 1991; 12 MH Beare (328_CR5) 2014; 120 TJ Fahey (328_CR23) 2011; 14 WE Holmes (328_CR39) 1994; 58 CD Evans (328_CR20) 2006; 143 F Hagedorn (328_CR35) 2005; 11 P Sollins (328_CR77) 2006; 38 CE Johnson (328_CR43) 1991; 55 M Kleber (328_CR49) 2007; 85 SS Perakis (328_CR66) 2002; 415 DD Richter (328_CR69) 2000; 138 CT Driscoll (328_CR18) 2003; 53 J Hassink (328_CR37) 1997; 191 GP Zogg (328_CR90) 2000; 81 M Schrumpf (328_CR73) 2013; 10 C Vogel (328_CR85) 2014; 5 JD Aber (328_CR3) 2002; 5 S Bernal (328_CR6) 2012; 109 JE Compton (328_CR12) 2002; 34 JN Galloway (328_CR27) 2008; 320 I Morier (328_CR61) 2010; 61 JM Craine (328_CR13) 2015; 5 M von Lützow (328_CR60) 2006; 57 KJ Nadelhoffer (328_CR63) 1988; 52 E Gorham (328_CR33) 1979; 10 CJ Curtis (328_CR14) 2011; 14 SS Gbondo-Tugbawa (328_CR28) 2002; 36 R Wagai (328_CR86) 2015; 241–242 EE Scott (328_CR74) 2014; 69 MJ Castellano (328_CR10) 2012; 15 MC Fisk (328_CR24) 2002; 83 SJ Riha (328_CR70) 1986; 50 JN Weitzman (328_CR87) 2016; 19 |
References_xml | – volume: 3 start-page: 433 year: 2000 end-page: 450 ident: CR30 article-title: The long-term effects of disturbance on organic and inorganic nitrogen export in the white mountains, New Hampshire publication-title: Ecosystems doi: 10.1007/s100210000039 – volume: 5 start-page: 8280 year: 2015 ident: CR13 article-title: Convergence of soil nitrogen isotopes across global climate gradients publication-title: Sci Rep doi: 10.1038/srep08280 – volume: 191 start-page: 77 year: 1997 end-page: 87 ident: CR37 article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles publication-title: Plant Soil doi: 10.1023/A:1004213929699 – volume: 96 start-page: 2653 year: 2015 end-page: 2668 ident: CR32 article-title: Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment publication-title: Ecology doi: 10.1890/14-1852.1 – volume: 52 start-page: 1162 year: 1988 ident: CR41 article-title: Estimating soil nitrogen and carbon pools in a northern hardwood forest ecosystem publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1988.03615995005200040049x – volume: 338 start-page: 143 year: 2011 end-page: 158 ident: CR71 article-title: Deep soil organic matter—a key but poorly understood component of terrestrial C cycle publication-title: Plant Soil doi: 10.1007/s11104-010-0391-5 – volume: 115 start-page: 33 year: 2013 end-page: 51 ident: CR50 article-title: Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes publication-title: Biogeochemistry doi: 10.1007/s10533-013-9892-7 – volume: 9 start-page: 228 year: 2003 end-page: 236 ident: CR16 article-title: A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis publication-title: Glob Change Biol doi: 10.1046/j.1365-2486.2003.00592.x – volume: 385 start-page: 61 year: 1997 ident: CR78 article-title: High rates of nitrification and nitrate turnover in undisturbed coniferous forests publication-title: Nature doi: 10.1038/385061a0 – volume: 6 start-page: 0075 year: 2003 end-page: 0086 ident: CR31 article-title: An unexpected nitrate decline in New Hampshire streams publication-title: Ecosystems doi: 10.1007/s10021-002-0219-0 – volume: 134 start-page: 5 year: 2017 end-page: 16 ident: CR68 article-title: Long term decomposition: the influence of litter type and soil horizon on retention of plant carbon and nitrogen in soils publication-title: Biogeochemistry doi: 10.1007/s10533-017-0345-6 – volume: 138 start-page: 273 year: 2000 end-page: 283 ident: CR88 article-title: Challenges of measuring forest floor organic matter dynamics: repeated measures from a chronosequence publication-title: For Ecol Manag doi: 10.1016/S0378-1127(00)00402-3 – volume: 95 start-page: 2687 year: 2014 end-page: 2693 ident: CR56 article-title: Forest succession, soil carbon accumulation, and rapid nitrogen storage in poorly remineralized soil organic matter publication-title: Ecology doi: 10.1890/13-2196.1 – year: 2013 ident: CR57 publication-title: Biogeochemistry of a forested ecosystem doi: 10.1007/978-1-4614-7810-2 – volume: 10 start-page: 1675 year: 2013 end-page: 1691 ident: CR73 article-title: Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals publication-title: Biogeosciences doi: 10.5194/bg-10-1675-2013 – volume: 38 start-page: 3313 year: 2006 end-page: 3324 ident: CR77 article-title: Organic C and N stabilization in a forest soil: evidence from sequential density fractionation publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2006.04.014 – volume: 89 start-page: 371 year: 2008 end-page: 379 ident: CR54 article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed publication-title: Ecology doi: 10.1890/06-2057.1 – volume: 320 start-page: 889 year: 2008 end-page: 892 ident: CR27 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 48 start-page: W07514 year: 2012 ident: CR67 article-title: Modeling potential hydrochemical responses to climate change and increasing CO at the Hubbard Brook Experimental Forest using a dynamic biogeochemical model (PnET-BGC) publication-title: Water Resour Res doi: 10.1029/2011WR011228 – volume: 120 start-page: 71 year: 2014 end-page: 87 ident: CR5 article-title: Estimating the organic carbon stabilisation capacity and saturation deficit of soils: a New Zealand case study publication-title: Biogeochemistry doi: 10.1007/s10533-014-9982-1 – volume: 5 start-page: 2947 year: 2014 ident: CR85 article-title: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils publication-title: Nat Commun doi: 10.1038/ncomms3947 – volume: 57 start-page: 426 year: 2006 end-page: 445 ident: CR60 article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2006.00809.x – volume: 83 start-page: 73 year: 2002 end-page: 87 ident: CR24 article-title: Nitrogen storage and cycling in old- and second-growth northern hardwood forests publication-title: Ecology doi: 10.1890/0012-9658(2002)083[0073:NSACIO]2.0.CO;2 – volume: 52 start-page: 1633 year: 1988 end-page: 1640 ident: CR63 article-title: Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1988.03615995005200060024x – volume: 81 start-page: 1858 year: 2000 end-page: 1866 ident: CR90 article-title: Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest publication-title: Ecology doi: 10.1890/0012-9658(2000)081[1858:MIATRO]2.0.CO;2 – ident: CR21 – volume: 82 start-page: 2245 year: 2001 end-page: 2260 ident: CR65 article-title: Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, Southern Chile publication-title: Ecology doi: 10.1890/0012-9658(2001)082[2245:FAFONI]2.0.CO;2 – volume: 19 start-page: 1345 year: 2016 end-page: 1361 ident: CR87 article-title: Variability in soil nitrogen retention across forest, urban, and agricultural land uses publication-title: Ecosystems doi: 10.1007/s10021-016-0007-x – volume: 153 start-page: 89 year: 2007 end-page: 98 ident: CR8 article-title: Isotope fractionation and C enrichment in soil profiles during the decomposition of soil organic matter publication-title: Oecologia doi: 10.1007/s00442-007-0700-8 – volume: 55 start-page: 497 year: 1991 end-page: 502 ident: CR43 article-title: Whole-tree clear-cutting effects on soil horizons and organic-matter pools publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1991.03615995005500020034x – volume: 10 start-page: 53 year: 1979 end-page: 84 ident: CR33 article-title: The regulation of chemical budgets over the course of terrestrial ecosystem succession publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.es.10.110179.000413 – volume: 15 start-page: 145 year: 2009 end-page: 155 ident: CR81 article-title: Soil carbon fluxes and stocks in a Great Lakes forest chronosequence publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2008.01741.x – volume: 25 start-page: 376 year: 1975 end-page: 381 ident: CR84 article-title: Ecosystem succession and nutrient retention: a hypothesis publication-title: BioScience doi: 10.2307/1297148 – volume: 128 start-page: 52 year: 2005 end-page: 62 ident: CR79 article-title: Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.015 – volume: 196 start-page: 89 year: 2004 end-page: 107 ident: CR62 article-title: Decadal-scale fates of N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA) publication-title: For Ecol Manag doi: 10.1016/j.foreco.2004.03.014 – volume: 56 start-page: 717 year: 2005 end-page: 725 ident: CR48 article-title: Poorly crystalline mineral phases protect organic matter in acid subsoil horizons publication-title: Eur J Soil Sci – volume: 75 start-page: 109 year: 2005 end-page: 176 ident: CR22 article-title: The biogeochemistry of carbon at Hubbard Brook publication-title: Biogeochemistry doi: 10.1007/s10533-004-6321-y – volume: 14 start-page: 326 year: 2011 end-page: 340 ident: CR23 article-title: Transport of carbon and nitrogen between litter and soil organic matter in a northern hardwood forest publication-title: Ecosystems doi: 10.1007/s10021-011-9414-1 – volume: 112 start-page: 393 year: 1997 end-page: 402 ident: CR75 article-title: Application of a 15N tracer to simulate and track the fate of atmospherically deposited N in the coastal forests of the Waquoit Bay Watershed, Cape Cod, Massachusetts publication-title: Oecologia doi: 10.1007/s004420050325 – volume: 93 start-page: 291 year: 2009 end-page: 296 ident: CR72 article-title: Abiotic reaction of nitrite with dissolved organic carbon? Testing the ferrous wheel hypothesis publication-title: Biogeochemistry doi: 10.1007/s10533-009-9290-3 – volume: 109 start-page: 3406 year: 2012 end-page: 3411 ident: CR6 article-title: Complex response of the forest nitrogen cycle to climate change publication-title: PNAS doi: 10.1073/pnas.1121448109 – volume: 136 start-page: 237 year: 2017 end-page: 248 ident: CR51 article-title: Depth trends of soil organic matter C: N and 15N natural abundance controlled by association with minerals publication-title: Biogeochemistry doi: 10.1007/s10533-017-0378-x – volume: 137 start-page: 179 year: 1997 end-page: 203 ident: CR38 article-title: Tansley Review No. 95 N natural abundance in soil–plant systems publication-title: New Phytol doi: 10.1046/j.1469-8137.1997.00808.x – volume: 63 start-page: 1 year: 2003 end-page: 22 ident: CR46 article-title: Stable soil nitrogen accumulation and flexible organic matter stoichiometry during primary floodplain succession publication-title: Biogeochemistry doi: 10.1023/A:1023317516458 – volume: 16 start-page: 532 year: 2018 end-page: 538 ident: CR59 article-title: Nutrient retention during ecosystem succession: a revised conceptual model publication-title: Front Ecol Environ doi: 10.1002/fee.1949 – volume: 59 start-page: 58 year: 2013 end-page: 71 ident: CR80 article-title: Microbial N immobilization is of great importance in acidified mountain spruce forest soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.12.015 – volume: 36 start-page: 4714 year: 2002 end-page: 4720 ident: CR28 article-title: Retrospective analysis of the response of soil and stream chemistry of a northern forest ecosystem to atmospheric emission controls from the 1970 and 1990 amendments of the Clean Air Act publication-title: Environ Sci Technol doi: 10.1021/es0156136 – volume: 52 start-page: 29 year: 2012 end-page: 32 ident: CR44 article-title: Cycling downwards—dissolved organic matter in soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.04.002 – volume: 85 start-page: 9 year: 2007 end-page: 24 ident: CR49 article-title: A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces publication-title: Biogeochemistry doi: 10.1007/s10533-007-9103-5 – volume: 47 start-page: 11440 year: 2013 end-page: 11448 ident: CR89 article-title: From missing source to missing sink: long-term changes in the nitrogen budget of a northern hardwood forest publication-title: Environ Sci Technol doi: 10.1021/es4025723 – volume: 226–227 start-page: 279 year: 2014 end-page: 289 ident: CR4 article-title: Influence of landscape position and transient water table on soil development and carbon distribution in a steep, headwater catchment publication-title: Geoderma doi: 10.1016/j.geoderma.2014.02.017 – volume: 11 start-page: 1816 year: 2005 end-page: 1827 ident: CR35 article-title: Immobilization, stabilization and remobilization of nitrogen in forest soils at elevated CO2: a N and C tracer study publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2005.01041.x – volume: 53 start-page: 357 year: 2003 end-page: 374 ident: CR18 article-title: Nitrogen pollution in the northeastern United States: sources, effects, and management options publication-title: BioScience doi: 10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2 – volume: 7 start-page: 368 year: 2004 end-page: 380 ident: CR40 article-title: The fate and retention of organic and inorganic 15N-nitrogen in an old-growth forest soil in Western Oregon publication-title: Ecosystems doi: 10.1007/s10021-004-0239-z – volume: 61 start-page: 197 year: 2010 end-page: 206 ident: CR61 article-title: Retention and hydrolysable fraction of atmospherically deposited nitrogen in two contrasting forest soils in Switzerland publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2010.01226.x – volume: 54 start-page: 131 year: 2001 end-page: 146 ident: CR15 article-title: Rapid abiotic transformation of nitrate in an acid forest soil publication-title: Biogeochemistry doi: 10.1023/A:1010627431722 – volume: 30 start-page: 1165 year: 2000 end-page: 1177 ident: CR53 article-title: Recovery of N-labelled nitrate applied to a small upland boreal forest catchment publication-title: Can J For Res doi: 10.1139/x00-034 – volume: 8 start-page: 715 year: 2011 end-page: 732 ident: CR64 article-title: Age structure and disturbance legacy of North American forests publication-title: Biogeosciences doi: 10.5194/bg-8-715-2011 – volume: 12 start-page: 103 year: 1991 end-page: 127 ident: CR36 article-title: Forest floor-mineral soil interactions in the internal nitrogen cycle of an old-growth forest publication-title: Biogeochemistry doi: 10.1007/BF00001809 – volume: 91 start-page: 223 year: 2008 end-page: 227 ident: CR11 article-title: Abiotic nitrate incorporation, anaerobic microsites, and the ferrous wheel publication-title: Biogeochemistry doi: 10.1007/s10533-008-9281-9 – volume: 34 start-page: 1591 year: 2003 end-page: 1600 ident: CR19 article-title: Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation publication-title: Org Geochem doi: 10.1016/j.orggeochem.2003.08.007 – volume: 35 start-page: 1129 year: 2003 end-page: 1142 ident: CR45 article-title: Changes in properties of soil-derived dissolved organic matter induced by biodegradation publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(03)00165-2 – volume: 528 start-page: 60 year: 2015 end-page: 68 ident: CR55 article-title: The contentious nature of soil organic matter publication-title: Nature doi: 10.1038/nature16069 – volume: 93 start-page: 1816 year: 2012 end-page: 1829 ident: CR83 article-title: Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of N tracer field studies publication-title: Ecology doi: 10.1890/11-1146.1 – volume: 125 start-page: 71 year: 2005 end-page: 83 ident: CR9 article-title: Podzolisation and soil organic matter dynamics publication-title: Geoderma doi: 10.1016/j.geoderma.2004.07.006 – volume: 241 start-page: 155 year: 2002 end-page: 176 ident: CR76 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 127 start-page: 157 year: 2016 end-page: 171 ident: CR47 article-title: Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? publication-title: Biogeochemistry doi: 10.1007/s10533-015-0180-6 – volume: 88 start-page: 1153 year: 2007 end-page: 1166 ident: CR17 article-title: Dynamics of nitrogen and dissolved organic carbon at the Hubbard Brook Experimental Forest publication-title: Ecology doi: 10.1890/06-0834 – volume: 241–242 start-page: 295 year: 2015 end-page: 305 ident: CR86 article-title: Nature of soil organo-mineral assemblage examined by sequential density fractionation with and without sonication: is allophanic soil different? publication-title: Geoderma doi: 10.1016/j.geoderma.2014.11.028 – volume: 415 start-page: 416 year: 2002 end-page: 419 ident: CR66 article-title: Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds publication-title: Nature doi: 10.1038/415416a – volume: 37 start-page: 1575 year: 2003 end-page: 1580 ident: CR25 article-title: Role of soil freezing events in interannual patterns of stream chemistry at the Hubbard Brook experimental forest, New Hampshire publication-title: Environ Sci Technol doi: 10.1021/es026189r – volume: 120 start-page: 2360 year: 2015 end-page: 2374 ident: CR26 article-title: Recovery from chronic and snowmelt acidification: long-term trends in stream and soil water chemistry at the Hubbard Brook Experimental Forest, New Hampshire, USA publication-title: J Geophys Res Biogeosci doi: 10.1002/2015JG003063 – volume: 14 start-page: 615 year: 2011 end-page: 631 ident: CR58 article-title: A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest publication-title: Ecosystems doi: 10.1007/s10021-011-9432-z – volume: 198 start-page: 656 year: 2013 end-page: 669 ident: CR52 article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance publication-title: New Phytol doi: 10.1111/nph.12235 – volume: 58 start-page: 238 year: 1994 end-page: 243 ident: CR39 article-title: Soil microbial biomass dynamics and net nitrogen mineralization in northern hardwood ecosystems publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1994.03615995005800010036x – volume: 23 start-page: 867 year: 2017 end-page: 880 ident: CR29 article-title: Multiyear fate of a 15N tracer in a mixed deciduous forest: retention, redistribution, and differences by mycorrhizal association publication-title: Glob Change Biol doi: 10.1111/gcb.13483 – volume: 551–552 start-page: 116 year: 2016 end-page: 126 ident: CR7 article-title: Organic nitrogen storage in mineral soil: implications for policy and management publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.02.020 – volume: 11 start-page: 639 year: 1997 end-page: 648 ident: CR1 article-title: Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests publication-title: Glob Biogeochem Cycles doi: 10.1029/97GB01366 – volume: 138 start-page: 233 year: 2000 end-page: 248 ident: CR69 article-title: Legacies of agriculture and forest regrowth in the nitrogen of old-field soils publication-title: For Ecol Manag doi: 10.1016/S0378-1127(00)00399-6 – volume: 50 start-page: 1463 year: 1986 end-page: 1466 ident: CR70 article-title: A model of competition for ammonium among heterotrophs, nitrifiers, and roots 1 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1986.03615995005000060017x – volume: 5 start-page: 0648 year: 2002 end-page: 0658 ident: CR3 article-title: Inorganic nitrogen losses from a forested ecosystem in response to physical, chemical, biotic, and climatic perturbations publication-title: Ecosystems doi: 10.1007/s10021-002-0203-8 – volume: 69 start-page: 83 year: 2014 end-page: 92 ident: CR74 article-title: The dynamic exchange of dissolved organic matter percolating through six diverse soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.10.052 – volume: 34 start-page: 933 year: 2002 end-page: 943 ident: CR12 article-title: Soil nitrogen transformations and the role of light fraction organic matter in forest soils publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(02)00025-1 – volume: 141 start-page: 523 year: 2018 end-page: 539 ident: CR34 article-title: Nitrogen oligotrophication in northern hardwood forests publication-title: Biogeochemistry doi: 10.1007/s10533-018-0445-y – volume: 60 start-page: 801 year: 1996 end-page: 807 ident: CR42 article-title: Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1996.03615995006000030017x – volume: 14 start-page: 1021 year: 2011 end-page: 1037 ident: CR14 article-title: What have stable isotope studies revealed about the nature and mechanisms of N saturation and nitrate leaching from semi-natural catchments? publication-title: Ecosystems doi: 10.1007/s10021-011-9461-7 – volume: 143 start-page: 468 year: 2006 end-page: 478 ident: CR20 article-title: Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition publication-title: Environ Pollut doi: 10.1016/j.envpol.2005.12.004 – volume: 53 start-page: 375 year: 2003 end-page: 389 ident: CR2 article-title: Is nitrogen deposition altering the nitrogen status of northeastern forests? publication-title: BioScience doi: 10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2 – volume: 15 start-page: 175 year: 2012 end-page: 187 ident: CR10 article-title: Linking carbon saturation concepts to nitrogen saturation and retention publication-title: Ecosystems doi: 10.1007/s10021-011-9501-3 – volume: 8 start-page: 1 year: 2005 end-page: 16 ident: CR82 article-title: Influence of tree species on forest nitrogen retention in the Catskill Mountains, New York, USA publication-title: Ecosystems doi: 10.1007/s10021-004-0230-8 – volume: 5 start-page: 8280 year: 2015 ident: 328_CR13 publication-title: Sci Rep doi: 10.1038/srep08280 – volume-title: Biogeochemistry of a forested ecosystem year: 2013 ident: 328_CR57 doi: 10.1007/978-1-4614-7810-2 – volume: 75 start-page: 109 year: 2005 ident: 328_CR22 publication-title: Biogeochemistry doi: 10.1007/s10533-004-6321-y – volume: 35 start-page: 1129 year: 2003 ident: 328_CR45 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(03)00165-2 – volume: 115 start-page: 33 year: 2013 ident: 328_CR50 publication-title: Biogeochemistry doi: 10.1007/s10533-013-9892-7 – volume: 3 start-page: 433 year: 2000 ident: 328_CR30 publication-title: Ecosystems doi: 10.1007/s100210000039 – volume: 6 start-page: 0075 year: 2003 ident: 328_CR31 publication-title: Ecosystems doi: 10.1007/s10021-002-0219-0 – volume: 14 start-page: 326 year: 2011 ident: 328_CR23 publication-title: Ecosystems doi: 10.1007/s10021-011-9414-1 – volume: 415 start-page: 416 year: 2002 ident: 328_CR66 publication-title: Nature doi: 10.1038/415416a – volume: 320 start-page: 889 year: 2008 ident: 328_CR27 publication-title: Science doi: 10.1126/science.1136674 – volume: 143 start-page: 468 year: 2006 ident: 328_CR20 publication-title: Environ Pollut doi: 10.1016/j.envpol.2005.12.004 – volume: 8 start-page: 715 year: 2011 ident: 328_CR64 publication-title: Biogeosciences doi: 10.5194/bg-8-715-2011 – volume: 56 start-page: 717 year: 2005 ident: 328_CR48 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2005.00706.x – volume: 48 start-page: W07514 year: 2012 ident: 328_CR67 publication-title: Water Resour Res doi: 10.1029/2011WR011228 – volume: 138 start-page: 273 year: 2000 ident: 328_CR88 publication-title: For Ecol Manag doi: 10.1016/S0378-1127(00)00402-3 – volume: 14 start-page: 1021 year: 2011 ident: 328_CR14 publication-title: Ecosystems doi: 10.1007/s10021-011-9461-7 – volume: 191 start-page: 77 year: 1997 ident: 328_CR37 publication-title: Plant Soil doi: 10.1023/A:1004213929699 – volume: 89 start-page: 371 year: 2008 ident: 328_CR54 publication-title: Ecology doi: 10.1890/06-2057.1 – volume: 54 start-page: 131 year: 2001 ident: 328_CR15 publication-title: Biogeochemistry doi: 10.1023/A:1010627431722 – volume: 11 start-page: 1816 year: 2005 ident: 328_CR35 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2005.01041.x – volume: 95 start-page: 2687 year: 2014 ident: 328_CR56 publication-title: Ecology doi: 10.1890/13-2196.1 – volume: 120 start-page: 2360 year: 2015 ident: 328_CR26 publication-title: J Geophys Res Biogeosci doi: 10.1002/2015JG003063 – volume: 14 start-page: 615 year: 2011 ident: 328_CR58 publication-title: Ecosystems doi: 10.1007/s10021-011-9432-z – volume: 61 start-page: 197 year: 2010 ident: 328_CR61 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2010.01226.x – volume: 85 start-page: 9 year: 2007 ident: 328_CR49 publication-title: Biogeochemistry doi: 10.1007/s10533-007-9103-5 – volume: 8 start-page: 1 year: 2005 ident: 328_CR82 publication-title: Ecosystems doi: 10.1007/s10021-004-0230-8 – volume: 88 start-page: 1153 year: 2007 ident: 328_CR17 publication-title: Ecology doi: 10.1890/06-0834 – volume: 10 start-page: 1675 year: 2013 ident: 328_CR73 publication-title: Biogeosciences doi: 10.5194/bg-10-1675-2013 – volume: 528 start-page: 60 year: 2015 ident: 328_CR55 publication-title: Nature doi: 10.1038/nature16069 – volume: 82 start-page: 2245 year: 2001 ident: 328_CR65 publication-title: Ecology doi: 10.1890/0012-9658(2001)082[2245:FAFONI]2.0.CO;2 – volume: 241 start-page: 155 year: 2002 ident: 328_CR76 publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 385 start-page: 61 year: 1997 ident: 328_CR78 publication-title: Nature doi: 10.1038/385061a0 – volume: 10 start-page: 53 year: 1979 ident: 328_CR33 publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.es.10.110179.000413 – volume: 47 start-page: 11440 year: 2013 ident: 328_CR89 publication-title: Environ Sci Technol doi: 10.1021/es4025723 – volume: 125 start-page: 71 year: 2005 ident: 328_CR9 publication-title: Geoderma doi: 10.1016/j.geoderma.2004.07.006 – volume: 11 start-page: 639 year: 1997 ident: 328_CR1 publication-title: Glob Biogeochem Cycles doi: 10.1029/97GB01366 – volume: 93 start-page: 291 year: 2009 ident: 328_CR72 publication-title: Biogeochemistry doi: 10.1007/s10533-009-9290-3 – volume: 57 start-page: 426 year: 2006 ident: 328_CR60 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2006.00809.x – volume: 241–242 start-page: 295 year: 2015 ident: 328_CR86 publication-title: Geoderma doi: 10.1016/j.geoderma.2014.11.028 – volume: 12 start-page: 103 year: 1991 ident: 328_CR36 publication-title: Biogeochemistry doi: 10.1007/BF00001809 – volume: 52 start-page: 29 year: 2012 ident: 328_CR44 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.04.002 – ident: 328_CR21 – volume: 15 start-page: 145 year: 2009 ident: 328_CR81 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2008.01741.x – volume: 34 start-page: 1591 year: 2003 ident: 328_CR19 publication-title: Org Geochem doi: 10.1016/j.orggeochem.2003.08.007 – volume: 58 start-page: 238 year: 1994 ident: 328_CR39 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1994.03615995005800010036x – volume: 136 start-page: 237 year: 2017 ident: 328_CR51 publication-title: Biogeochemistry doi: 10.1007/s10533-017-0378-x – volume: 138 start-page: 233 year: 2000 ident: 328_CR69 publication-title: For Ecol Manag doi: 10.1016/S0378-1127(00)00399-6 – volume: 15 start-page: 175 year: 2012 ident: 328_CR10 publication-title: Ecosystems doi: 10.1007/s10021-011-9501-3 – volume: 53 start-page: 357 year: 2003 ident: 328_CR18 publication-title: BioScience doi: 10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2 – volume: 128 start-page: 52 year: 2005 ident: 328_CR79 publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.015 – volume: 120 start-page: 71 year: 2014 ident: 328_CR5 publication-title: Biogeochemistry doi: 10.1007/s10533-014-9982-1 – volume: 37 start-page: 1575 year: 2003 ident: 328_CR25 publication-title: Environ Sci Technol doi: 10.1021/es026189r – volume: 63 start-page: 1 year: 2003 ident: 328_CR46 publication-title: Biogeochemistry doi: 10.1023/A:1023317516458 – volume: 338 start-page: 143 year: 2011 ident: 328_CR71 publication-title: Plant Soil doi: 10.1007/s11104-010-0391-5 – volume: 196 start-page: 89 year: 2004 ident: 328_CR62 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2004.03.014 – volume: 19 start-page: 1345 year: 2016 ident: 328_CR87 publication-title: Ecosystems doi: 10.1007/s10021-016-0007-x – volume: 91 start-page: 223 year: 2008 ident: 328_CR11 publication-title: Biogeochemistry doi: 10.1007/s10533-008-9281-9 – volume: 112 start-page: 393 year: 1997 ident: 328_CR75 publication-title: Oecologia doi: 10.1007/s004420050325 – volume: 9 start-page: 228 year: 2003 ident: 328_CR16 publication-title: Glob Change Biol doi: 10.1046/j.1365-2486.2003.00592.x – volume: 81 start-page: 1858 year: 2000 ident: 328_CR90 publication-title: Ecology doi: 10.1890/0012-9658(2000)081[1858:MIATRO]2.0.CO;2 – volume: 38 start-page: 3313 year: 2006 ident: 328_CR77 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2006.04.014 – volume: 60 start-page: 801 year: 1996 ident: 328_CR42 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1996.03615995006000030017x – volume: 141 start-page: 523 year: 2018 ident: 328_CR34 publication-title: Biogeochemistry doi: 10.1007/s10533-018-0445-y – volume: 50 start-page: 1463 year: 1986 ident: 328_CR70 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1986.03615995005000060017x – volume: 93 start-page: 1816 year: 2012 ident: 328_CR83 publication-title: Ecology doi: 10.1890/11-1146.1 – volume: 134 start-page: 5 year: 2017 ident: 328_CR68 publication-title: Biogeochemistry doi: 10.1007/s10533-017-0345-6 – volume: 53 start-page: 375 year: 2003 ident: 328_CR2 publication-title: BioScience doi: 10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2 – volume: 69 start-page: 83 year: 2014 ident: 328_CR74 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.10.052 – volume: 551–552 start-page: 116 year: 2016 ident: 328_CR7 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.02.020 – volume: 23 start-page: 867 year: 2017 ident: 328_CR29 publication-title: Glob Change Biol doi: 10.1111/gcb.13483 – volume: 34 start-page: 933 year: 2002 ident: 328_CR12 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(02)00025-1 – volume: 52 start-page: 1162 year: 1988 ident: 328_CR41 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1988.03615995005200040049x – volume: 25 start-page: 376 year: 1975 ident: 328_CR84 publication-title: BioScience doi: 10.2307/1297148 – volume: 153 start-page: 89 year: 2007 ident: 328_CR8 publication-title: Oecologia doi: 10.1007/s00442-007-0700-8 – volume: 5 start-page: 0648 year: 2002 ident: 328_CR3 publication-title: Ecosystems doi: 10.1007/s10021-002-0203-8 – volume: 226–227 start-page: 279 year: 2014 ident: 328_CR4 publication-title: Geoderma doi: 10.1016/j.geoderma.2014.02.017 – volume: 59 start-page: 58 year: 2013 ident: 328_CR80 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.12.015 – volume: 96 start-page: 2653 year: 2015 ident: 328_CR32 publication-title: Ecology doi: 10.1890/14-1852.1 – volume: 7 start-page: 368 year: 2004 ident: 328_CR40 publication-title: Ecosystems doi: 10.1007/s10021-004-0239-z – volume: 30 start-page: 1165 year: 2000 ident: 328_CR53 publication-title: Can J For Res doi: 10.1139/x00-034 – volume: 16 start-page: 532 year: 2018 ident: 328_CR59 publication-title: Front Ecol Environ doi: 10.1002/fee.1949 – volume: 36 start-page: 4714 year: 2002 ident: 328_CR28 publication-title: Environ Sci Technol doi: 10.1021/es0156136 – volume: 137 start-page: 179 year: 1997 ident: 328_CR38 publication-title: New Phytol doi: 10.1046/j.1469-8137.1997.00808.x – volume: 127 start-page: 157 year: 2016 ident: 328_CR47 publication-title: Biogeochemistry doi: 10.1007/s10533-015-0180-6 – volume: 55 start-page: 497 year: 1991 ident: 328_CR43 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1991.03615995005500020034x – volume: 198 start-page: 656 year: 2013 ident: 328_CR52 publication-title: New Phytol doi: 10.1111/nph.12235 – volume: 109 start-page: 3406 year: 2012 ident: 328_CR6 publication-title: PNAS doi: 10.1073/pnas.1121448109 – volume: 83 start-page: 73 year: 2002 ident: 328_CR24 publication-title: Ecology doi: 10.1890/0012-9658(2002)083[0073:NSACIO]2.0.CO;2 – volume: 52 start-page: 1633 year: 1988 ident: 328_CR63 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1988.03615995005200060024x – volume: 5 start-page: 2947 year: 2014 ident: 328_CR85 publication-title: Nat Commun doi: 10.1038/ncomms3947 |
SSID | ssj0015844 |
Score | 2.3988597 |
Snippet | Conceptual models of nutrient retention in ecosystems suggest that mature forests receiving chronically elevated atmospheric nitrogen (N) deposition should... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1280 |
SubjectTerms | age structure Atmospheric models B horizons Biomedical and Life Sciences Carbon content chronosequences Ecology Ecosystems elevated atmospheric gases Environment models Environmental Management Forest soils Forests Geoecology/Natural Processes Hydrology/Water Resources Life Sciences Mineral industry mineral soils mining Mining industry New Hampshire nitrate nitrogen Nitrates nitrogen Nitrogen isotopes Nutrient retention Old growth Old growth forests Organic matter Organic soils Original Articles Plant Sciences Recovery Retention Soil erosion Soil organic matter Soils stable isotopes Streams Tracers (Chemistry) Watersheds Zoology |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RS9xAEB7sSaEvYtXD6Fm2IAiVhdxmk2wej_ZECncP6oH4siTZjRxIUpr4oL_emb3NnRZb6HMmQ8i3uzPD7PcNwCkGxZSEnXhsqohLmUW8SGLLlUqyyOYZBlEiOM_myeVC_ryNbz2Pu-1vu_ctSXdSvyK70XWCcEyUMKH48wfYjql0x0W8EJN16wAjqmsly0jwDMuXvpX5nos3wcgfyatriW8Szj96pC70XOzCjs8Z2WQF8mfYsvUefJw6vemnPRhON2Q1NPO7tUWTu8aZ7MPiinJjwoA1FZsvnSQtn7NlzWZLpzvNrpvlA1sxM0s2c6qb9PiHH6DSMRri2XZscm-Zm6Rp2wNYXExvvl9yP1CBl3IcdtyoLDFK5kmFZURoVBmGxsaitCYzVVjR_CCV2spWKWY9Va6UlbLIrSyiosiNNNEQBnVT20NgRiHGNiaCoZAmFbkQhUL_0pJAXVYGEPZ_VpdebZyGXjzojU4ygaERDE1g6OcAvq1f-bWS2viX8RnBpWkbot8y92wC_DoStNITLL7TaBynWQBDh-jaJ5ZomNeqMIBRD7H2G7fVYowVXhrhMRbA1_Vj3HLUR8lr2zyiDbGJsXaNVQDn_dLYuPjrNx_9l_UxfMLkzN9nG8Gg-_1oTzAB6oovbsG_APxb-Zc priority: 102 providerName: Springer Nature |
Title | Retention of Nitrate-N in Mineral Soil Organic Matter in Different Forest Age Classes |
URI | https://www.jstor.org/stable/48701980 https://link.springer.com/article/10.1007/s10021-018-0328-z https://www.proquest.com/docview/2162673787 https://www.proquest.com/docview/2439402658 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9RAEB5sD8EXqdXD2HqsIAjKYm6zSTZPkrM5i3JBqgf1KSTZTTkoSTXpQ_vrO5Ns7mjBPuVhN5sl3-7OzM7MNwDvUSiGROzEfV15XMrI40XgG65UEHkmj1CIUoLzKg1O1_L7uX9uL9xaG1Y5non9Qa2bku7IP4s5qt6hh-vry9VfTlWjyLtqS2jswQSPYIXG12SRpD_Ptn4EFK-9X1l6gkdoy4x-zSF5jsIT3DmlmAnFb-9JJns-DzGK97TPBw7TXg4tD-C5VSBZPCD-Ap6Y-hCeJj359M0hTJNd5hp2s1u3fQnrM1KPCQbWVCzd9Ky0PGWbmq02PfU0-9VsLtmQnFmyVU-8Sc0ntoZKx6iOZ9ux-MKwvpimaV_Bepn8_nrKbU0FXsq523GtokArmQcVWhKuVqXrauOL0uhIV25FJYRUaCpThaj4VLlSRsoiN7LwiiLXUntT2K-b2rwGphXCbHzKMRRShyIXolA4vjTEUReVDrjj_8xKSzhOdS8usx1VMkGQIQQZQZDdOvBx-8rVwLbxWOcPBFJGOxHHLXObUICzI06rLEb7O_Tmfhg5MO1x3I6JVhqqtsp14HgENrN7t812K82Bd9tm3HXkSslr01xjH0ooRvPVVw58GhfEboj_zvnN4x88gmeokNkYtmPY7_5dm7eo9HTFDCbxcrFI6fntz49kZlf6DPbWIr4Dbw7_AA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ra9RAEB7qFdEX0ephtOoKiqAs5jabZPMgctorV9sLUnvQtzXJbuSg5NomRdof5W90JtncUcG-9TmbybIzuzOT2e8bgDfoFGMiduKhKQMuZRLwPAotVypKApsl6EQJ4DxLo-lcfjsOjzfgT4-FoWuV_ZnYHtRmWdA_8o9ihKF3HKB9fT4949Q1iqqrfQuNziz27eVvTNnqT3s7qN-3QuxOjr5OuesqwAs58htuVBIZJbOoxFjaN6rwfWNDUViTmNIvqYmOim1pyxhdf5kpZaXMMyvzIM8zI02Acu_ApgwwlRnA5pdJ-v1wVbdAd97WsWUgeIK5U19H7cB6dB3CHxGkTSh-dc0TOn_Q3Ym8Fu3-U6Bt_d7uQ3jgAlY27izsEWzYagvuTlqy68stGE7WSDkc5o6K-jHMDykcJ7WzZcnSRcuCy1O2qNhs0VJdsx_LxQnrwKAFm7VEn_R4x_VsaRj1Da0bNv5lWdu809ZPYH4rqz2EQbWs7FNgRqFZ2ZAwjUKaWGRC5ArlS0uceEnhgd-vpy4cwTn12TjRa2pmUoFGFWhSgb7y4P3qldOO3eOmwe9ISZp2PsotMgdgwNkRh5YeY74fB6MwTjwYtnpcycSsEENp5Xuw3StWu7Oi1mvL9uD16jHucirdZJVdXuAYAjBjuhwqDz70BrEW8d85P7v5g6_g3vRodqAP9tL953Afg0F3f24bBs35hX2BAVeTv3RWzuDnbW-svzCwOgc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_qFcUX0ephtOoKiqAszW02yeZB5PTuaK13lOpB39Yku5GDklSTIu1H89M5k2zuqGDf-pzNZNmZnT-Zmd8AvEKjGBOwEw9NEXApk4BnUWi5UlES2DRBI0oNzvNFtL-Un0_Cky340_fCUFllrxNbRW2qnP6R74kRut5xgPK1V7iyiKPJ7MPZT04TpCjT2o_T6ETk0F78xvCtfn8wQV6_FmI2_fZpn7sJAzyXI7_hRiWRUTKNCvSrfaNy3zc2FLk1iSn8ggbqqNgWtojRDShSpayUWWplFmRZaqQJkO4t2I4xKvIHsP1xujg6Xucw0LS3OW0ZCJ5gHNXnVLvGPSqN8EfU3iYUv7xiFZ1t6Oojr3i-_yRrWxs4uw_3nPPKxp20PYAtW-7A7WkLfH2xA8PppmsOlzm1UT-E5TG55iQCrCrYYtUi4vIFW5Vsvmphr9nXanXKusbQnM1b0E96PHHzWxpGM0Trho1_WNYO8rT1I1jeyGkPYVBWpX0MzCgUMRtSf6OQJhapEJlC-tISPl6Se-D356lzB3ZOMzdO9QammVigkQWaWKAvPXi7fuWsQ_q4bvEbYpImLYB089Q1M-DuCE9LjzH2j4NRGCceDFs-rmlihIhutfI92O0Zq53eqPVGyj14uX6MN57SOGlpq3NcQ83MGDqHyoN3vUBsSPx3z0-u_-ALuIMXSn85WBw-hbvoF7pSul0YNL_O7TP0vZrsuRNyBt9v-l79BebyPjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retention+of+Nitrate-N+in+Mineral+Soil+Organic+Matter+in+Different+Forest+Age+Classes&rft.jtitle=Ecosystems+%28New+York%29&rft.au=Fuss%2C+Colin+B&rft.au=Lovett%2C+Gary+M&rft.au=Goodale%2C+Christine+L&rft.au=Ollinger%2C+Scott+V&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-9840&rft.eissn=1435-0629&rft.volume=22&rft.issue=6&rft.spage=1280&rft.epage=1294&rft_id=info:doi/10.1007%2Fs10021-018-0328-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-9840&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-9840&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-9840&client=summon |