Extending the application of bifunctional ionic liquid-based integrated capture and conversion of CO2 to produce cyclic carbonates

Nowadays there is an urgent need for mitigating CO2 emissions through clean energy and the development of new carbon capture and utilization (CCU) technologies. Among others, the use of bifunctional ionic liquids (ILs) addressed simultaneously CO2 capture and conversion steps, having applied success...

Full description

Saved in:
Bibliographic Details
Published inJournal of CO2 utilization Vol. 85; p. 102886
Main Authors Belinchón, Alejandro, Pereira, Álvaro, Hernández, Elisa, Navarro, Pablo, Palomar, José
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nowadays there is an urgent need for mitigating CO2 emissions through clean energy and the development of new carbon capture and utilization (CCU) technologies. Among others, the use of bifunctional ionic liquids (ILs) addressed simultaneously CO2 capture and conversion steps, having applied successfully to the propylene carbonate production case. In this work, a systematic evaluation of all representative cyclic carbonate literature was made, covering ethylene, propylene, butylene, hexylene, cyclohexene, and styrene cyclic carbonates, in order to guide the product role within the integrated CCU (ICCU) concept. The multiscale strategy combining molecular simulation (DFT -Density Functional Theory-, COSMO -COnductor-like Screening MOdel-), process simulation (COSMO/Aspen methodology), and life cycle assessment (LCA) was used to set up, simulate and evaluate the processes. ICCU configuration is the best approach when compared with sequential configuration for energy consumption analysis (reduction of 28, 28, 22, 11 and 6 %, respectively, for ethylene, propylene, butylene, hexylene, and cyclohexene cases) and CO2 emissions associated (reduction of 38, 40, 31 and 14 %, respectively, for ethylene, propylene, butylene, and hexylene cases). The main variable of the results is the boiling point of the cyclic carbonate since heavy products impose technical limitations and even discard ICCU alternative. The ICCU concept works since all cyclic carbonates’ reaction enthalpies are higher than that of the IL-CO2 one, which reduces heating requirements. Finally, energy demand can be slightly further reduced, partially recycling the cyclic carbonate to the capture unit. [Display omitted] •Sequential and integrated CO2 capture and conversion processes were evaluated.•Integrated schemes are better in energy consumption in almost all the cases.•Neat emissions are highly improved in integrated processes.•Product’s boiling point was found to be the optimization key in all scenarios.
AbstractList Nowadays there is an urgent need for mitigating CO2 emissions through clean energy and the development of new carbon capture and utilization (CCU) technologies. Among others, the use of bifunctional ionic liquids (ILs) addressed simultaneously CO2 capture and conversion steps, having applied successfully to the propylene carbonate production case. In this work, a systematic evaluation of all representative cyclic carbonate literature was made, covering ethylene, propylene, butylene, hexylene, cyclohexene, and styrene cyclic carbonates, in order to guide the product role within the integrated CCU (ICCU) concept. The multiscale strategy combining molecular simulation (DFT -Density Functional Theory-, COSMO -COnductor-like Screening MOdel-), process simulation (COSMO/Aspen methodology), and life cycle assessment (LCA) was used to set up, simulate and evaluate the processes. ICCU configuration is the best approach when compared with sequential configuration for energy consumption analysis (reduction of 28, 28, 22, 11 and 6 %, respectively, for ethylene, propylene, butylene, hexylene, and cyclohexene cases) and CO2 emissions associated (reduction of 38, 40, 31 and 14 %, respectively, for ethylene, propylene, butylene, and hexylene cases). The main variable of the results is the boiling point of the cyclic carbonate since heavy products impose technical limitations and even discard ICCU alternative. The ICCU concept works since all cyclic carbonates’ reaction enthalpies are higher than that of the IL-CO2 one, which reduces heating requirements. Finally, energy demand can be slightly further reduced, partially recycling the cyclic carbonate to the capture unit. [Display omitted] •Sequential and integrated CO2 capture and conversion processes were evaluated.•Integrated schemes are better in energy consumption in almost all the cases.•Neat emissions are highly improved in integrated processes.•Product’s boiling point was found to be the optimization key in all scenarios.
Nowadays there is an urgent need for mitigating CO2 emissions through clean energy and the development of new carbon capture and utilization (CCU) technologies. Among others, the use of bifunctional ionic liquids (ILs) addressed simultaneously CO2 capture and conversion steps, having applied successfully to the propylene carbonate production case. In this work, a systematic evaluation of all representative cyclic carbonate literature was made, covering ethylene, propylene, butylene, hexylene, cyclohexene, and styrene cyclic carbonates, in order to guide the product role within the integrated CCU (ICCU) concept. The multiscale strategy combining molecular simulation (DFT -Density Functional Theory-, COSMO -COnductor-like Screening MOdel-), process simulation (COSMO/Aspen methodology), and life cycle assessment (LCA) was used to set up, simulate and evaluate the processes. ICCU configuration is the best approach when compared with sequential configuration for energy consumption analysis (reduction of 28, 28, 22, 11 and 6 %, respectively, for ethylene, propylene, butylene, hexylene, and cyclohexene cases) and CO2 emissions associated (reduction of 38, 40, 31 and 14 %, respectively, for ethylene, propylene, butylene, and hexylene cases). The main variable of the results is the boiling point of the cyclic carbonate since heavy products impose technical limitations and even discard ICCU alternative. The ICCU concept works since all cyclic carbonates’ reaction enthalpies are higher than that of the IL-CO2 one, which reduces heating requirements. Finally, energy demand can be slightly further reduced, partially recycling the cyclic carbonate to the capture unit.
ArticleNumber 102886
Author Navarro, Pablo
Hernández, Elisa
Pereira, Álvaro
Palomar, José
Belinchón, Alejandro
Author_xml – sequence: 1
  givenname: Alejandro
  surname: Belinchón
  fullname: Belinchón, Alejandro
– sequence: 2
  givenname: Álvaro
  surname: Pereira
  fullname: Pereira, Álvaro
– sequence: 3
  givenname: Elisa
  surname: Hernández
  fullname: Hernández, Elisa
– sequence: 4
  givenname: Pablo
  surname: Navarro
  fullname: Navarro, Pablo
  email: pablo.navarro@uam.es
– sequence: 5
  givenname: José
  surname: Palomar
  fullname: Palomar, José
BookMark eNp9kcFOHSEUhonRpNb6Al3xAnMLzDAXkm6aG1tNTNy4J8zhcGUywpRhTN32ycv1qosuZAE_J_wfcP7P5DSmiIR85WzDGe-_jZsR0roRTHS1IJTqT8i5EFw0WrX69F0L9olcLsvI6tCaS9mdk79XfwpGF-Kelgekdp6nALaEFGnydAh-jXDY2YnWOQCdwu81uGawCzoaYsF9tqVKsHNZcyXEqlN8wry8QnZ3gpZE55zcCkjhGeoV9XweKrbg8oWceTstePm6XpD7n1f3u-vm9u7Xze7HbQMdZ6VxbSu16kE62XLm-14JYYft1irWCafloLdcA7TQYs-d7530umu5lZp79Kq9IDdHrEt2NHMOjzY_m2SDeSmkvDc2lwATGs210E5toQPXWSXt4IfWMl-BnWQoK0sdWZDTsmT0BkJ56VrJNkyGM3NIxozmkIw5JGOOyVSr-M_69pQPTd-PJqz9eQqYzQIBI6ALGaHUH4SP7P8A6dKrow
CitedBy_id crossref_primary_10_1016_j_molliq_2025_127322
crossref_primary_10_1016_j_jece_2025_116247
crossref_primary_10_1021_acs_iecr_4c02072
crossref_primary_10_1016_j_seppur_2024_129970
crossref_primary_10_1007_s42114_024_01210_z
crossref_primary_10_1039_D4YA00620H
Cites_doi 10.1021/acsenergylett.0c00406
10.1016/j.jcou.2021.101656
10.1021/acs.jpcb.7b12137
10.1016/j.seppur.2021.119143
10.1038/s41586-019-1364-3
10.1016/j.seppur.2017.08.062
10.4172/2157-7048.1000236
10.1002/cssc.202101590
10.1016/j.fuproc.2020.106639
10.1016/bs.adioch.2021.04.003
10.1039/C3CY00998J
10.1016/j.fuel.2022.124005
10.1016/j.cej.2020.124509
10.1002/adsu.202200384
10.1039/c3ee41151f
10.1016/j.jcou.2023.102417
10.1016/j.jes.2020.06.034
10.1021/acs.energyfuels.3c04993
10.1039/C7EE02342A
10.1016/j.jclepro.2022.133189
10.1016/j.jcou.2014.12.001
10.1002/cssc.202002126
10.1016/j.cherd.2014.10.001
10.1016/j.jclepro.2021.128247
10.1021/acs.langmuir.3c03902
10.1016/j.fuel.2022.126942
10.1039/c3cp51289d
10.1016/j.seppur.2022.121273
10.1021/acs.est.0c05305
10.1002/ente.202000627
10.1021/acssuschemeng.5b01515
10.1021/ie020090b
10.1016/j.cej.2022.137166
10.1021/acs.iecr.7b04031
10.1016/j.compchemeng.2021.107468
10.1016/j.ceja.2020.100038
10.1021/acs.chemrev.3c00512
10.1016/j.biomaterials.2021.120953
10.1016/B978-0-444-64241-7.50017-3
10.1021/jp502279w
10.1016/j.cej.2020.127196
10.1016/j.ccr.2004.04.015
10.1002/cssc.201900676
10.1016/j.seppur.2022.120841
10.1016/j.seppur.2023.123848
10.1016/j.jcou.2018.09.012
10.1002/marc.201400389
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jcou.2024.102886
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2212-9839
ExternalDocumentID oai_doaj_org_article_91929d87c4cd4a85abfb3a0ff94450e5
10_1016_j_jcou_2024_102886
S221298202400221X
GroupedDBID --M
.~1
0R~
0SF
1~.
4.4
457
4G.
6I.
7-5
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADVLN
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
EBS
EFJIC
EJD
ENUVR
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
JARJE
KCYFY
KOM
M41
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SPC
SPCBC
SSG
SSJ
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c410t-d335986c5d5310f66822ab77a8042d95b9719cc3c3e61df6d5f9431a591fef83
IEDL.DBID DOA
ISSN 2212-9820
IngestDate Wed Aug 27 01:28:26 EDT 2025
Tue Jul 01 03:50:42 EDT 2025
Thu Apr 24 23:11:57 EDT 2025
Sat Aug 17 15:43:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ionic liquids
Cyclic carbonates
CO2 capture
CO2 conversion
Process simulation
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-d335986c5d5310f66822ab77a8042d95b9719cc3c3e61df6d5f9431a591fef83
OpenAccessLink https://doaj.org/article/91929d87c4cd4a85abfb3a0ff94450e5
ParticipantIDs doaj_primary_oai_doaj_org_article_91929d87c4cd4a85abfb3a0ff94450e5
crossref_citationtrail_10_1016_j_jcou_2024_102886
crossref_primary_10_1016_j_jcou_2024_102886
elsevier_sciencedirect_doi_10_1016_j_jcou_2024_102886
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Journal of CO2 utilization
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Nocito, Dibenedetto (bib6) 2020; 21
Hospital-Benito, Lemus, Moya, Santiago, Paramio, Palomar (bib20) 2022; 290
Chen, Chien (bib37) 2018
Hernández, Santiago, Moya, Vela, Navarro, Palomar (bib44) 2021; 52
CCUS SET-PLAN. (Accessed 23/01/2024.
Y.J.Jo.C.E. Demirel, P. Technology, sustainability and economic analysis of propylene carbonate andpolypropylene carbonate production processes using CO2 and propyleneOxide, 6 (2015) 1-7.
Li, Dong, An, Zhang, Li, Wang, Zhang (bib54) 2023; 335
Vasil’eva, E, Vvedenski (bib53) 1972; 46
Marcolongo, Aresta, Dibenedetto (bib5) 2021
Bui, Adjiman, Bardow, Anthony, Boston, Brown, Fennell, Fuss, Galindo, Hackett, Hallett, Herzog, Jackson, Kemper, Krevor, Maitland, Matuszewski, Metcalfe, Petit, Puxty, Reimer, Reiner, Rubin, Scott, Shah, Smit, Trusler, Webley, Wilcox, Mac Dowell (bib2) 2018; 11
Navarro, Moreno, Larriba, García, Rodríguez, Canales, Palomar (bib43) 2023; 316
1989-2007.
Navarro, Hernández, Rodríguez-Llorente, Maldonado-López, Santiago, Moya, Belinchón, Larriba, Palomar (bib27) 2022; 321
Santiago, Hernández, Moya, Vela, Navarro, Palomar (bib18) 2021; 275
Belinchón, Santiago, Hernández, Moya, Navarro, Palomar (bib32) 2022; 368
E. Commission, Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions on the revision of the Strategic Energy Technology (SET) Plan, 2023.
Hernández, Hospital-Benito, Moya, Ortiz, Belinchón, Paramio, Lemus, Navarro, Palomar (bib13) 2022; 446
Pescarmona (bib26) 2021; 29
Hernández, Santiago, Belinchón, Maria Vaquerizo, Moya, Navarro, Palomar (bib55) 2022; 295
Gurkan, Gohndrone, McCready, Brennecke (bib16) 2013; 15
Moya, Sabater, Yagüe, Larriba, Palomar (bib19) 2018; 28
North (bib11) 2019; 12
Rollin, Soares, Barcellos, Araujo, Lenardão, Jacob, Perin (bib29) 2021; 11
Suhail, Koch, Goeppert, Prakash (bib24) 2024; 40
Zimmermann, Wunderlich, Müller, Buchner, Marxen, Michailos, Armstrong, Naims, McCord, Styring, Sick, Schomäcker (bib35) 2020; 8
Garcia-Garcia, Fernandez, Armstrong, Woolass, Styring (bib34) 2021; 14
Moya, Hospital-Benito, Santiago, Lemus, Palomar (bib41) 2020; 4
Ansari, Singh, Mittal, Mahato, Chitkara (bib30) 2021; 275
Santiago, Moya, Hernández, Cojocaru, Navarro, Palomar (bib28) 2021; 154
He, O'Brien, Kitselman, Tompkins, Curtis, Kerton (bib56) 2014; 4
Sosa, Santiago, Hospital-Benito, Costa Gomes, Araujo, Pereiro, Palomar (bib45) 2020; 54
Hospital-Benito, Lemus, Moya, Santiago, Ferro, Palomar (bib21) 2021; 407
Hospital-Benito, Lemus, Moya, Santiago, Palomar (bib57) 2020; 390
Hernández, Santiago, Moya, Navarro, Palomar (bib42) 2021; 212
Larriba, de Riva, Navarro, Moreno, Delgado-Mellado, García, Ferro, Rodríguez, Palomar (bib47) 2018; 190
Hernández, Belinchón, Pachón, Navarro, Palomar (bib39) 2022; 6
Hernández, Belinchón, Santiago, Moya, Navarro, Palomar (bib58) 2023; 69
von der Assen, Jung, Bardow (bib7) 2013; 6
Lian, Song, Liu, Duan, Ren, Kitamura (bib22) 2021; 99
Cuéllar-Franca, Azapagic (bib36) 2015; 9
Palomar, Lemus, Navarro, Moya, Santiago, Hospital-Benito, Hernandez (bib15) 2024
Garcia-Herrero, Cuéllar-Franca, Enríquez-Gutiérrez, Alvarez-Guerra, Irabien, Azapagic (bib38) 2016; 4
Zhang, Grinstaff (bib31) 2014; 35
Chauvy, De Weireld (bib9) 2020; 8
Tong, Zhang, Zheng, Caldeira, Shearer, Hong, Qin, Davis (bib1) 2019; 572
Lin, Sandler (bib49) 2002; 41
International Energy Agency (IEA), Tracking clean energy progress 2023, 2023.
Welton (bib14) 2004; 248
Moya, Alonso-Morales, de Riva, Morales-Collazo, Brennecke, Palomar (bib17) 2018; 122
Kothandaraman, Saavedra Lopez, Jiang, Walter, Burton, Dagle, Heldebrant (bib23) 2021; 14
Seo, Quiroz-Guzman, DeSilva, Lee, Huang, Goodrich, Schneider, Brennecke (bib51) 2014; 118
P. Styring, D. Jansen, H. de Coninck, H. Reith, K. Armstrong, Carbon capture and utilisation in the green economy, Energy Research Centre of the Netherlands and University of Sheffield, 2011.
Hospital-Benito, Lemus, Moya, Santiago, Palomar (bib52) 2020; 390
Ferro, de Riva, Sanchez, Ruiz, Palomar (bib46) 2015; 94
Subramanian, Song, Kim, Yavuz (bib12) 2020; 5
Ferro, Moya, Moreno, Santiago, de Riva, Pedrosa, Larriba, Diaz, Palomar (bib50) 2018; 57
Mahmud, Moni, High, Carbajales-Dale (bib33) 2021; 317
Kroll, Kothandaraman, Grubel, Heldebrant (bib25) 2024; 38
University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, TURBOMOLE V7.5 2020; available from
Chen (10.1016/j.jcou.2024.102886_bib37) 2018
Kothandaraman (10.1016/j.jcou.2024.102886_bib23) 2021; 14
Marcolongo (10.1016/j.jcou.2024.102886_bib5) 2021
Gurkan (10.1016/j.jcou.2024.102886_bib16) 2013; 15
North (10.1016/j.jcou.2024.102886_bib11) 2019; 12
Hospital-Benito (10.1016/j.jcou.2024.102886_bib52) 2020; 390
Navarro (10.1016/j.jcou.2024.102886_bib27) 2022; 321
Zhang (10.1016/j.jcou.2024.102886_bib31) 2014; 35
Mahmud (10.1016/j.jcou.2024.102886_bib33) 2021; 317
von der Assen (10.1016/j.jcou.2024.102886_bib7) 2013; 6
Garcia-Herrero (10.1016/j.jcou.2024.102886_bib38) 2016; 4
Seo (10.1016/j.jcou.2024.102886_bib51) 2014; 118
Santiago (10.1016/j.jcou.2024.102886_bib18) 2021; 275
Welton (10.1016/j.jcou.2024.102886_bib14) 2004; 248
10.1016/j.jcou.2024.102886_bib4
He (10.1016/j.jcou.2024.102886_bib56) 2014; 4
Bui (10.1016/j.jcou.2024.102886_bib2) 2018; 11
10.1016/j.jcou.2024.102886_bib3
10.1016/j.jcou.2024.102886_bib8
Hernández (10.1016/j.jcou.2024.102886_bib42) 2021; 212
Santiago (10.1016/j.jcou.2024.102886_bib28) 2021; 154
Lin (10.1016/j.jcou.2024.102886_bib49) 2002; 41
Ansari (10.1016/j.jcou.2024.102886_bib30) 2021; 275
Lian (10.1016/j.jcou.2024.102886_bib22) 2021; 99
Rollin (10.1016/j.jcou.2024.102886_bib29) 2021; 11
Chauvy (10.1016/j.jcou.2024.102886_bib9) 2020; 8
Hospital-Benito (10.1016/j.jcou.2024.102886_bib21) 2021; 407
Hernández (10.1016/j.jcou.2024.102886_bib44) 2021; 52
Larriba (10.1016/j.jcou.2024.102886_bib47) 2018; 190
10.1016/j.jcou.2024.102886_bib48
Pescarmona (10.1016/j.jcou.2024.102886_bib26) 2021; 29
Ferro (10.1016/j.jcou.2024.102886_bib50) 2018; 57
Hernández (10.1016/j.jcou.2024.102886_bib55) 2022; 295
Nocito (10.1016/j.jcou.2024.102886_bib6) 2020; 21
Hernández (10.1016/j.jcou.2024.102886_bib39) 2022; 6
Belinchón (10.1016/j.jcou.2024.102886_bib32) 2022; 368
Hospital-Benito (10.1016/j.jcou.2024.102886_bib57) 2020; 390
Sosa (10.1016/j.jcou.2024.102886_bib45) 2020; 54
10.1016/j.jcou.2024.102886_bib10
Vasil’eva, E (10.1016/j.jcou.2024.102886_bib53) 1972; 46
Moya (10.1016/j.jcou.2024.102886_bib19) 2018; 28
Suhail (10.1016/j.jcou.2024.102886_bib24) 2024; 40
Ferro (10.1016/j.jcou.2024.102886_bib46) 2015; 94
Garcia-Garcia (10.1016/j.jcou.2024.102886_bib34) 2021; 14
Navarro (10.1016/j.jcou.2024.102886_bib43) 2023; 316
Li (10.1016/j.jcou.2024.102886_bib54) 2023; 335
Zimmermann (10.1016/j.jcou.2024.102886_bib35) 2020; 8
Cuéllar-Franca (10.1016/j.jcou.2024.102886_bib36) 2015; 9
Hernández (10.1016/j.jcou.2024.102886_bib13) 2022; 446
Hospital-Benito (10.1016/j.jcou.2024.102886_bib20) 2022; 290
Palomar (10.1016/j.jcou.2024.102886_bib15) 2024
Tong (10.1016/j.jcou.2024.102886_bib1) 2019; 572
Hernández (10.1016/j.jcou.2024.102886_bib58) 2023; 69
Moya (10.1016/j.jcou.2024.102886_bib41) 2020; 4
Moya (10.1016/j.jcou.2024.102886_bib17) 2018; 122
Kroll (10.1016/j.jcou.2024.102886_bib25) 2024; 38
10.1016/j.jcou.2024.102886_bib40
Subramanian (10.1016/j.jcou.2024.102886_bib12) 2020; 5
References_xml – volume: 4
  start-page: 1513
  year: 2014
  end-page: 1528
  ident: bib56
  article-title: Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures
  publication-title: Catal. Sci. Technol.
– volume: 154
  year: 2021
  ident: bib28
  article-title: Extending the ability of cyclic carbonates for extracting BTEX to challenging low aromatic content naphtha: the designer solvent role at process scale
  publication-title: Comput. Chem. Eng.
– volume: 118
  start-page: 5740
  year: 2014
  end-page: 5751
  ident: bib51
  article-title: Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO(2) capture
  publication-title: J. Phys. Chem. B
– volume: 38
  start-page: 7959
  year: 2024
  end-page: 7965
  ident: bib25
  article-title: Integrated approach to CO2 capture and conversion to cyclic carbonates under solvent- and additive-free conditions utilizing the CO2 capture solvent EEMPA
  publication-title: Energy Fuels
– volume: 28
  start-page: 66
  year: 2018
  end-page: 72
  ident: bib19
  article-title: CO2 conversion to cyclic carbonates catalyzed by ionic liquids with aprotic heterocyclic anions: DFT calculations and operando FTIR analysis
  publication-title: J. CO2 Util.
– volume: 99
  start-page: 281
  year: 2021
  end-page: 295
  ident: bib22
  article-title: Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization
  publication-title: J. Environ. Sci.
– volume: 6
  year: 2013
  ident: bib7
  article-title: Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 5024
  year: 2021
  ident: bib29
  article-title: Five-membered cyclic carbonates: versatility for applications in organic synthesis
  publication-title: Pharm. Mater. Sci.
– volume: 9
  start-page: 82
  year: 2015
  end-page: 102
  ident: bib36
  article-title: Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts
  publication-title: J. CO2 Util.
– volume: 446
  year: 2022
  ident: bib13
  article-title: Integrated carbon capture and utilization based on bifunctional ionic liquids to save energy and emissions
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 12784
  year: 2020
  end-page: 12794
  ident: bib45
  article-title: Process evaluation of fluorinated ionic liquids as F-gas absorbents
  publication-title: Environ. Sci. Technol.
– volume: 41
  start-page: 2332
  year: 2002
  end-page: 2334
  ident: bib49
  article-title: Reply to Comments on “A priori phase equilibrium prediction from a segment contribution solvation model”
  publication-title: Ind. Eng. Chem. Res.
– volume: 190
  start-page: 211
  year: 2018
  end-page: 227
  ident: bib47
  article-title: COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf 2] + [emim][DCA]} ionic liquid mixture
  publication-title: Sep. Purif. Technol.
– volume: 6
  year: 2022
  ident: bib39
  article-title: Toward sustainable and cost-effective CO2 conversion processes to propylene carbonate based on ionic liquids
  publication-title: Adv. Sustain. Syst.
– volume: 317
  year: 2021
  ident: bib33
  article-title: Integration of techno-economic analysis and life cycle assessment for sustainable process design – a review
  publication-title: J. Clean. Prod.
– volume: 572
  start-page: 373
  year: 2019
  end-page: 377
  ident: bib1
  article-title: Committed emissions from existing energy infrastructure jeopardize 1.5 degrees C climate target
  publication-title: Nature
– reference: E. Commission, Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions on the revision of the Strategic Energy Technology (SET) Plan, 2023.
– volume: 5
  start-page: 1689
  year: 2020
  end-page: 1700
  ident: bib12
  article-title: Redox and nonredox CO2 utilization: dry reforming of methane and catalytic cyclic carbonate formation
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 4812
  year: 2021
  end-page: 4819
  ident: bib23
  article-title: Integrated capture and conversion of CO2 to methane using a water-lean, post-combustion CO2 capture solvent
  publication-title: ChemSusChem
– volume: 4
  start-page: 2088
  year: 2016
  end-page: 2097
  ident: bib38
  article-title: Environmental assessment of dimethyl carbonate production: comparison of a novel electrosynthesis route utilizing CO2 with a commercial oxidative carbonylation process
  publication-title: ACS Sustain. Chem. Eng.
– start-page: 289
  year: 2021
  end-page: 351
  ident: bib5
  article-title: Chapter Nine - Stepping toward the carbon circular economy (CCE): integration of solar chemistry and biosystems for an effective CO2 conversion into added value chemicals and fuels
  publication-title: Advances in Inorganic Chemistry
– volume: 275
  year: 2021
  ident: bib18
  article-title: Fatty alcohol/water reaction-separation platform to produce propylene carbonate from captured CO2 using a hydrophobic ionic liquid
  publication-title: Sep. Purif. Technol.
– reference: P. Styring, D. Jansen, H. de Coninck, H. Reith, K. Armstrong, Carbon capture and utilisation in the green economy, Energy Research Centre of the Netherlands and University of Sheffield, 2011.
– start-page: 133
  year: 2018
  end-page: 138
  ident: bib37
  article-title: Potentials for CO2 utilization: diethyl carbonate synthesis from propylene oxide
  publication-title: Computer Aided Chemical Engineering
– reference: International Energy Agency (IEA), Tracking clean energy progress 2023, 2023.
– volume: 12
  start-page: 1763
  year: 2019
  end-page: 1765
  ident: bib11
  article-title: Across the board: Michael North on carbon dioxide biorefinery
  publication-title: ChemSusChem
– volume: 29
  year: 2021
  ident: bib26
  article-title: Cyclic carbonates synthesised from CO2: applications, challenges and recent research trends
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 335
  year: 2023
  ident: bib54
  article-title: Machine learning for the yield prediction of CO2 cyclization reaction catalyzed by the ionic liquids
  publication-title: Fuel
– volume: 122
  start-page: 2616
  year: 2018
  end-page: 2626
  ident: bib17
  article-title: Encapsulation of ionic liquids with an aprotic heterocyclic anion (AHA-IL) for CO(2) capture: preserving the favorable thermodynamics and enhancing the kinetics of absorption
  publication-title: J. Phys. Chem. B
– volume: 14
  start-page: 995
  year: 2021
  end-page: 1015
  ident: bib34
  article-title: Analytical review of life-cycle environmental impacts of carbon capture and utilization technologies
  publication-title: ChemSusChem
– volume: 46
  start-page: 316
  year: 1972
  ident: bib53
  article-title: Enthalpies of combustion of alkylene carbonates
  publication-title: Russ. J. Phys. Chem. (Engl. Transl. )
– volume: 21
  start-page: 34
  year: 2020
  end-page: 43
  ident: bib6
  article-title: Atmospheric CO2 mitigation technologies: carbon capture utilization and storage
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 8
  year: 2020
  ident: bib35
  article-title: Techno-economic assessment guidelines for CO2 utilization
– reference: , 1989-2007.
– volume: 390
  year: 2020
  ident: bib57
  article-title: Process analysis overview of ionic liquids on CO2 chemical capture
  publication-title: Chem. Eng. J.
– volume: 290
  year: 2022
  ident: bib20
  article-title: Aspen plus supported design of pre-combustion CO2 capture processes based on ionic liquids
  publication-title: Sep. Purif. Technol.
– reference: CCUS SET-PLAN. (Accessed 23/01/2024.
– year: 2024
  ident: bib15
  article-title: Process simulation and optimization on ionic liquids
  publication-title: Chem. Rev.
– volume: 368
  year: 2022
  ident: bib32
  article-title: Reaction-extraction platforms towards CO2-derived cyclic carbonates catalyzed by ionic liquids
  publication-title: J. Clean. Prod.
– volume: 295
  year: 2022
  ident: bib55
  article-title: Universal and low energy-demanding platform to produce propylene carbonate from CO2 using hydrophilic ionic liquids
  publication-title: Sep. Purif. Technol.
– volume: 316
  year: 2023
  ident: bib43
  article-title: An overview process analysis of the aromatic-aliphatic separation by liquid–liquid extraction with ionic liquids
  publication-title: Sep. Purif. Technol.
– volume: 57
  start-page: 980
  year: 2018
  end-page: 989
  ident: bib50
  article-title: Enterprise ionic liquids database (ILUAM) for use in Aspen ONE programs suite with COSMO-based property
  publication-title: Methods, Ind. Eng. Chem. Res.
– volume: 94
  start-page: 632
  year: 2015
  end-page: 647
  ident: bib46
  article-title: Conceptual design of unit operations to separate aromatic hydrocarbons from naphtha using ionic liquids. COSMO-based process simulations with multi-component “real” mixture feed
  publication-title: Chem. Eng. Res. Des.
– reference: Y.J.Jo.C.E. Demirel, P. Technology, sustainability and economic analysis of propylene carbonate andpolypropylene carbonate production processes using CO2 and propyleneOxide, 6 (2015) 1-7.
– volume: 4
  year: 2020
  ident: bib41
  article-title: Prediction of CO2 chemical absorption isotherms for ionic liquid design by DFT/COSMO-RS calculations
  publication-title: Chem. Eng. J. Adv.
– volume: 390
  year: 2020
  ident: bib52
  article-title: Process analysis overview of ionic liquids on CO2 chemical capture
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 1062
  year: 2018
  end-page: 1176
  ident: bib2
  article-title: Carbon capture and storage (CCS): the way forward
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2020
  ident: bib9
  article-title: CO2 Utilization Technologies in Europe: A Short Review
  publication-title: Energy Technol.
– volume: 248
  start-page: 2459
  year: 2004
  end-page: 2477
  ident: bib14
  article-title: Ionic liquids in catalysis
  publication-title: Coord. Chem. Rev.
– volume: 52
  year: 2021
  ident: bib44
  article-title: Close-cycle process to produce CO2-derived propylene carbonate based on amino acid catalyst and water
  publication-title: J. CO2 Util.
– volume: 407
  year: 2021
  ident: bib21
  article-title: Techno-economic feasibility of ionic liquids-based CO2 chemical capture processes
  publication-title: Chem. Eng. J.
– volume: 35
  start-page: 1906
  year: 2014
  end-page: 1924
  ident: bib31
  article-title: Recent advances in glycerol polymers: chemistry and biomedical applications
  publication-title: Macromol. Rapid Commun.
– volume: 321
  year: 2022
  ident: bib27
  article-title: Fine-tune simultaneous dearomatization, desulfurization and denitrogenation of liquid fuels with CO2-derived cyclic carbonates
  publication-title: Fuel
– volume: 40
  start-page: 5401
  year: 2024
  end-page: 5408
  ident: bib24
  article-title: Integrated carbon dioxide capture and conversion to methanol utilizing tertiary amines over a heterogenous Cu/ZnO/Al2O3 catalyst
  publication-title: Langmuir
– volume: 212
  year: 2021
  ident: bib42
  article-title: Multiscale evaluation of CO2-derived cyclic carbonates to separate hydrocarbons: drafting new competitive processes
  publication-title: Fuel Process. Technol.
– volume: 69
  year: 2023
  ident: bib58
  article-title: Solvent-catalyst optimization of ionic liquid-based CO2 conversion to propylene carbonate: laboratory validation and techno-economic analysis
  publication-title: J. CO2 Util.
– volume: 15
  start-page: 7796
  year: 2013
  end-page: 7811
  ident: bib16
  article-title: Reaction kinetics of CO2 absorption in to phosphonium based anion-functionalized ionic liquids
  publication-title: Phys. Chem. Chem. Phys.
– volume: 275
  year: 2021
  ident: bib30
  article-title: 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications
  publication-title: Biomaterials
– reference: University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, TURBOMOLE V7.5 2020; available from
– ident: 10.1016/j.jcou.2024.102886_bib10
– volume: 5
  start-page: 1689
  issue: 5
  year: 2020
  ident: 10.1016/j.jcou.2024.102886_bib12
  article-title: Redox and nonredox CO2 utilization: dry reforming of methane and catalytic cyclic carbonate formation
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00406
– volume: 52
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib44
  article-title: Close-cycle process to produce CO2-derived propylene carbonate based on amino acid catalyst and water
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2021.101656
– volume: 29
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib26
  article-title: Cyclic carbonates synthesised from CO2: applications, challenges and recent research trends
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 122
  start-page: 2616
  issue: 9
  year: 2018
  ident: 10.1016/j.jcou.2024.102886_bib17
  article-title: Encapsulation of ionic liquids with an aprotic heterocyclic anion (AHA-IL) for CO(2) capture: preserving the favorable thermodynamics and enhancing the kinetics of absorption
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b12137
– volume: 275
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib18
  article-title: Fatty alcohol/water reaction-separation platform to produce propylene carbonate from captured CO2 using a hydrophobic ionic liquid
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119143
– volume: 572
  start-page: 373
  issue: 7769
  year: 2019
  ident: 10.1016/j.jcou.2024.102886_bib1
  article-title: Committed emissions from existing energy infrastructure jeopardize 1.5 degrees C climate target
  publication-title: Nature
  doi: 10.1038/s41586-019-1364-3
– volume: 46
  start-page: 316
  year: 1972
  ident: 10.1016/j.jcou.2024.102886_bib53
  article-title: Enthalpies of combustion of alkylene carbonates
  publication-title: Russ. J. Phys. Chem. (Engl. Transl. )
– volume: 190
  start-page: 211
  year: 2018
  ident: 10.1016/j.jcou.2024.102886_bib47
  article-title: COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf 2] + [emim][DCA]} ionic liquid mixture
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.08.062
– ident: 10.1016/j.jcou.2024.102886_bib40
  doi: 10.4172/2157-7048.1000236
– volume: 14
  start-page: 4812
  issue: 21
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib23
  article-title: Integrated capture and conversion of CO2 to methane using a water-lean, post-combustion CO2 capture solvent
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202101590
– volume: 212
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib42
  article-title: Multiscale evaluation of CO2-derived cyclic carbonates to separate hydrocarbons: drafting new competitive processes
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2020.106639
– start-page: 289
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib5
  article-title: Chapter Nine - Stepping toward the carbon circular economy (CCE): integration of solar chemistry and biosystems for an effective CO2 conversion into added value chemicals and fuels
  doi: 10.1016/bs.adioch.2021.04.003
– volume: 4
  start-page: 1513
  issue: 6
  year: 2014
  ident: 10.1016/j.jcou.2024.102886_bib56
  article-title: Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C3CY00998J
– volume: 321
  year: 2022
  ident: 10.1016/j.jcou.2024.102886_bib27
  article-title: Fine-tune simultaneous dearomatization, desulfurization and denitrogenation of liquid fuels with CO2-derived cyclic carbonates
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.124005
– volume: 21
  start-page: 34
  year: 2020
  ident: 10.1016/j.jcou.2024.102886_bib6
  article-title: Atmospheric CO2 mitigation technologies: carbon capture utilization and storage
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 390
  year: 2020
  ident: 10.1016/j.jcou.2024.102886_bib57
  article-title: Process analysis overview of ionic liquids on CO2 chemical capture
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124509
– volume: 6
  issue: 12
  year: 2022
  ident: 10.1016/j.jcou.2024.102886_bib39
  article-title: Toward sustainable and cost-effective CO2 conversion processes to propylene carbonate based on ionic liquids
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.202200384
– volume: 6
  issue: 9
  year: 2013
  ident: 10.1016/j.jcou.2024.102886_bib7
  article-title: Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41151f
– volume: 69
  year: 2023
  ident: 10.1016/j.jcou.2024.102886_bib58
  article-title: Solvent-catalyst optimization of ionic liquid-based CO2 conversion to propylene carbonate: laboratory validation and techno-economic analysis
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2023.102417
– ident: 10.1016/j.jcou.2024.102886_bib3
– volume: 99
  start-page: 281
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib22
  article-title: Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2020.06.034
– volume: 38
  start-page: 7959
  issue: 9
  year: 2024
  ident: 10.1016/j.jcou.2024.102886_bib25
  article-title: Integrated approach to CO2 capture and conversion to cyclic carbonates under solvent- and additive-free conditions utilizing the CO2 capture solvent EEMPA
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c04993
– volume: 11
  start-page: 5024
  issue: 11
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib29
  article-title: Five-membered cyclic carbonates: versatility for applications in organic synthesis
  publication-title: Pharm. Mater. Sci.
– volume: 11
  start-page: 1062
  issue: 5
  year: 2018
  ident: 10.1016/j.jcou.2024.102886_bib2
  article-title: Carbon capture and storage (CCS): the way forward
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02342A
– volume: 390
  year: 2020
  ident: 10.1016/j.jcou.2024.102886_bib52
  article-title: Process analysis overview of ionic liquids on CO2 chemical capture
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124509
– volume: 368
  year: 2022
  ident: 10.1016/j.jcou.2024.102886_bib32
  article-title: Reaction-extraction platforms towards CO2-derived cyclic carbonates catalyzed by ionic liquids
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133189
– volume: 9
  start-page: 82
  year: 2015
  ident: 10.1016/j.jcou.2024.102886_bib36
  article-title: Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2014.12.001
– volume: 14
  start-page: 995
  issue: 4
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib34
  article-title: Analytical review of life-cycle environmental impacts of carbon capture and utilization technologies
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002126
– volume: 94
  start-page: 632
  year: 2015
  ident: 10.1016/j.jcou.2024.102886_bib46
  article-title: Conceptual design of unit operations to separate aromatic hydrocarbons from naphtha using ionic liquids. COSMO-based process simulations with multi-component “real” mixture feed
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2014.10.001
– volume: 317
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib33
  article-title: Integration of techno-economic analysis and life cycle assessment for sustainable process design – a review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128247
– volume: 40
  start-page: 5401
  issue: 10
  year: 2024
  ident: 10.1016/j.jcou.2024.102886_bib24
  article-title: Integrated carbon dioxide capture and conversion to methanol utilizing tertiary amines over a heterogenous Cu/ZnO/Al2O3 catalyst
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.3c03902
– volume: 335
  year: 2023
  ident: 10.1016/j.jcou.2024.102886_bib54
  article-title: Machine learning for the yield prediction of CO2 cyclization reaction catalyzed by the ionic liquids
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.126942
– volume: 15
  start-page: 7796
  issue: 20
  year: 2013
  ident: 10.1016/j.jcou.2024.102886_bib16
  article-title: Reaction kinetics of CO2 absorption in to phosphonium based anion-functionalized ionic liquids
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51289d
– volume: 295
  year: 2022
  ident: 10.1016/j.jcou.2024.102886_bib55
  article-title: Universal and low energy-demanding platform to produce propylene carbonate from CO2 using hydrophilic ionic liquids
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121273
– volume: 54
  start-page: 12784
  issue: 19
  year: 2020
  ident: 10.1016/j.jcou.2024.102886_bib45
  article-title: Process evaluation of fluorinated ionic liquids as F-gas absorbents
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c05305
– volume: 8
  issue: 12
  year: 2020
  ident: 10.1016/j.jcou.2024.102886_bib9
  article-title: CO2 Utilization Technologies in Europe: A Short Review
  publication-title: Energy Technol.
  doi: 10.1002/ente.202000627
– ident: 10.1016/j.jcou.2024.102886_bib48
– volume: 4
  start-page: 2088
  issue: 4
  year: 2016
  ident: 10.1016/j.jcou.2024.102886_bib38
  article-title: Environmental assessment of dimethyl carbonate production: comparison of a novel electrosynthesis route utilizing CO2 with a commercial oxidative carbonylation process
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01515
– volume: 41
  start-page: 2332
  issue: 9
  year: 2002
  ident: 10.1016/j.jcou.2024.102886_bib49
  article-title: Reply to Comments on “A priori phase equilibrium prediction from a segment contribution solvation model”
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020090b
– volume: 8
  year: 2020
  ident: 10.1016/j.jcou.2024.102886_bib35
  article-title: Techno-economic assessment guidelines for CO2 utilization
– volume: 446
  year: 2022
  ident: 10.1016/j.jcou.2024.102886_bib13
  article-title: Integrated carbon capture and utilization based on bifunctional ionic liquids to save energy and emissions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137166
– volume: 57
  start-page: 980
  issue: 3
  year: 2018
  ident: 10.1016/j.jcou.2024.102886_bib50
  article-title: Enterprise ionic liquids database (ILUAM) for use in Aspen ONE programs suite with COSMO-based property
  publication-title: Methods, Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b04031
– volume: 154
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib28
  article-title: Extending the ability of cyclic carbonates for extracting BTEX to challenging low aromatic content naphtha: the designer solvent role at process scale
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107468
– volume: 4
  year: 2020
  ident: 10.1016/j.jcou.2024.102886_bib41
  article-title: Prediction of CO2 chemical absorption isotherms for ionic liquid design by DFT/COSMO-RS calculations
  publication-title: Chem. Eng. J. Adv.
  doi: 10.1016/j.ceja.2020.100038
– year: 2024
  ident: 10.1016/j.jcou.2024.102886_bib15
  article-title: Process simulation and optimization on ionic liquids
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00512
– ident: 10.1016/j.jcou.2024.102886_bib8
– volume: 275
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib30
  article-title: 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120953
– ident: 10.1016/j.jcou.2024.102886_bib4
– start-page: 133
  year: 2018
  ident: 10.1016/j.jcou.2024.102886_bib37
  article-title: Potentials for CO2 utilization: diethyl carbonate synthesis from propylene oxide
  doi: 10.1016/B978-0-444-64241-7.50017-3
– volume: 118
  start-page: 5740
  issue: 21
  year: 2014
  ident: 10.1016/j.jcou.2024.102886_bib51
  article-title: Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO(2) capture
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp502279w
– volume: 407
  year: 2021
  ident: 10.1016/j.jcou.2024.102886_bib21
  article-title: Techno-economic feasibility of ionic liquids-based CO2 chemical capture processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127196
– volume: 248
  start-page: 2459
  issue: 21
  year: 2004
  ident: 10.1016/j.jcou.2024.102886_bib14
  article-title: Ionic liquids in catalysis
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2004.04.015
– volume: 12
  start-page: 1763
  issue: 8
  year: 2019
  ident: 10.1016/j.jcou.2024.102886_bib11
  article-title: Across the board: Michael North on carbon dioxide biorefinery
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201900676
– volume: 290
  year: 2022
  ident: 10.1016/j.jcou.2024.102886_bib20
  article-title: Aspen plus supported design of pre-combustion CO2 capture processes based on ionic liquids
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120841
– volume: 316
  year: 2023
  ident: 10.1016/j.jcou.2024.102886_bib43
  article-title: An overview process analysis of the aromatic-aliphatic separation by liquid–liquid extraction with ionic liquids
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.123848
– volume: 28
  start-page: 66
  year: 2018
  ident: 10.1016/j.jcou.2024.102886_bib19
  article-title: CO2 conversion to cyclic carbonates catalyzed by ionic liquids with aprotic heterocyclic anions: DFT calculations and operando FTIR analysis
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2018.09.012
– volume: 35
  start-page: 1906
  issue: 22
  year: 2014
  ident: 10.1016/j.jcou.2024.102886_bib31
  article-title: Recent advances in glycerol polymers: chemistry and biomedical applications
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201400389
SSID ssj0000991554
Score 2.3485656
Snippet Nowadays there is an urgent need for mitigating CO2 emissions through clean energy and the development of new carbon capture and utilization (CCU)...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102886
SubjectTerms CO2 capture
CO2 conversion
Cyclic carbonates
Ionic liquids
Process simulation
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhgQT1Fe8sCGTOsmtuMRKhBCAgaK1C3yEwWhppR2YGHgl3OXpFVYGNic6PyQz747n-8-E3LmuDSgSByTnmcsNZ4zrYNiA-mEVNGCyYD-jvsHefuc3o3FuEOGy1wYDKtsZH8t0ytp3fzpNbPZmxZF72kAUleDAsMoSCiPMYM9VbjKL774ys8CFhCqTHxjDugZVmhyZ-owr1dXLi6wEQQxyDCluqWfKhj_lppqqZ6bLbLZ2Iz0sh7WNumEyQ7ZaCEJ7pLv68qZDWUKFh1tXUvTMlJboPqqvX4UHbCOvhXvi8IzVGKerjAjPHVmincK1EygjBHplTsNGxk-Dui8pNMKIjZQ9-mgC6CfWXTAh489Mrq5Hg1vWfO8AnMp78-ZTxC9D3jiYR_2o5RgKxirlMlgI3strFZcO5e4JEjuo_QiajA3jNA8hpgl-2RtUk7CAaF4bJRKK2EUnOaMzKwOIQkxaq2CjbpL-HJOc9dAj-MLGG_5MsbsNUc-5MiHvOZDl5yv6kxr4I0_qa-QVStKBM2ufpSzl7xZNbkGa1b7TLnU-dRkwthoE9OHYaap6AfRJWLJ6PzXGoSmij86P_xnvSOyjl918O8xWZvPFuEETJy5Pa3W8A8PcPnF
  priority: 102
  providerName: Elsevier
Title Extending the application of bifunctional ionic liquid-based integrated capture and conversion of CO2 to produce cyclic carbonates
URI https://dx.doi.org/10.1016/j.jcou.2024.102886
https://doaj.org/article/91929d87c4cd4a85abfb3a0ff94450e5
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4LDAgnqI8Kg9sKFA3sR2PgKgKiLIUiS3yU2pVtaW0AwsDv5y7OK0ywcIWRY4d3Z31fT6fPxNyYZnQACQ2EY7lSaYdS5TyMmkLy4UMBigD5juee6L7mj2-8bfaVV9YExblgaPhrhVQEOVyaTPrMp1zbYJJdSsElWW85Uv1UsC82mJqGHkPAmV1SiYWdA3tZAELwnaGcgU5Hp6uIVEp2F8DpBrIdHbJTsUO6U38qz2y5sf7ZLumGXhAvu_LtDU8U-ButLYBTSeBmgECVczvUUy1WjoavC8GLkG4cnSlDuGo1VPcPaB6DM9Ye14mzrCTu5c2nU_otBSD9dR-WhgC2s8Mptr9xyHpd-77d92kukghsRlrzROXok4fWN_BjGsFIYAVaCOlzmHKOsWNkkxZm9rUC-aCcBysmzLNFQs-5OkR2RhPxv6YUFwgCqkk1xLWbVrkRnmfevCGkt4E1SBsadPCViLjeNfFqFhWkw0L9EOBfiiiHxrkcvXNNEps_Nr6Fl21aony2OULCJqiCprir6BpEL50dFExjcggoKvBL4Of_Mfgp2QLu4w1v2dkYz5b-HNgNnPTJOtXX6xJNm8enrq9ZhnSP8bC-rI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMs5eEDnFC66yS24wMHKK229MGBRdqb5WeVqtos211VvXDgJ_ELmUm8q3DpAak3y3HskWcy33gyniHknWPCAJC4THhWZaXxLFMqyCwXjgsZLZgM6O84ORXjH-XXKZ9ukT_ruzAYVpl0f6fTW22deoZpN4fzuh5-z0HrKgAwjIKE9jRFVh6F6ys4t11-PPwCTH6f5wf7k71xlkoLZK5ko2XmC8xcB_R4kMFRFAJw0lgpTQVC7BW3SjLlXOGKIJiPwvOoAGoNVyyGWBUw7R1ytwRtgVUTdn-xjV8HLC6EaKxpB_RlSGC6q9OFlZ27ZrWLRGPShAqvcPfwsC0b0IPFHtQdPCIPk41KP3Xb8JhshdkT8qCXufAp-b3fOs-hTcGCpL3f4LSJ1NYIl52XkaLD19GL-ueq9hmCpqebHBWeOjPHfxjUzKCNEfCt-w4n2fuW02VD521K2kDdtYMlYPzCosM_XD4jk9vY8-dke9bMwgtC8ZgqpJLcSDg9GlFZFUIRYlRKBhvVgLD1nmqXUp1jxY0LvY5pO9fIB4180B0fBuTD5p15l-jjxtGfkVWbkZiku-1oFmc6SalWYD0rX0lXOl-aihsbbWFGQGZZ8lHgA8LXjNb_yDxMVd-w-Mv_fO8tuTeenBzr48PTox1yH590gcevyPZysQqvwbxa2jetPFOib_n7-QuHqjVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+the+application+of+bifunctional+ionic+liquid-based+integrated+capture+and+conversion+of+CO2+to+produce+cyclic+carbonates&rft.jtitle=Journal+of+CO2+utilization&rft.au=Alejandro+Belinch%C3%B3n&rft.au=%C3%81lvaro+Pereira&rft.au=Elisa+Hern%C3%A1ndez&rft.au=Pablo+Navarro&rft.date=2024-07-01&rft.pub=Elsevier&rft.eissn=2212-9839&rft.volume=85&rft.spage=102886&rft_id=info:doi/10.1016%2Fj.jcou.2024.102886&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_91929d87c4cd4a85abfb3a0ff94450e5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-9820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-9820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-9820&client=summon