Extending the application of bifunctional ionic liquid-based integrated capture and conversion of CO2 to produce cyclic carbonates
Nowadays there is an urgent need for mitigating CO2 emissions through clean energy and the development of new carbon capture and utilization (CCU) technologies. Among others, the use of bifunctional ionic liquids (ILs) addressed simultaneously CO2 capture and conversion steps, having applied success...
Saved in:
Published in | Journal of CO2 utilization Vol. 85; p. 102886 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nowadays there is an urgent need for mitigating CO2 emissions through clean energy and the development of new carbon capture and utilization (CCU) technologies. Among others, the use of bifunctional ionic liquids (ILs) addressed simultaneously CO2 capture and conversion steps, having applied successfully to the propylene carbonate production case. In this work, a systematic evaluation of all representative cyclic carbonate literature was made, covering ethylene, propylene, butylene, hexylene, cyclohexene, and styrene cyclic carbonates, in order to guide the product role within the integrated CCU (ICCU) concept. The multiscale strategy combining molecular simulation (DFT -Density Functional Theory-, COSMO -COnductor-like Screening MOdel-), process simulation (COSMO/Aspen methodology), and life cycle assessment (LCA) was used to set up, simulate and evaluate the processes. ICCU configuration is the best approach when compared with sequential configuration for energy consumption analysis (reduction of 28, 28, 22, 11 and 6 %, respectively, for ethylene, propylene, butylene, hexylene, and cyclohexene cases) and CO2 emissions associated (reduction of 38, 40, 31 and 14 %, respectively, for ethylene, propylene, butylene, and hexylene cases). The main variable of the results is the boiling point of the cyclic carbonate since heavy products impose technical limitations and even discard ICCU alternative. The ICCU concept works since all cyclic carbonates’ reaction enthalpies are higher than that of the IL-CO2 one, which reduces heating requirements. Finally, energy demand can be slightly further reduced, partially recycling the cyclic carbonate to the capture unit.
[Display omitted]
•Sequential and integrated CO2 capture and conversion processes were evaluated.•Integrated schemes are better in energy consumption in almost all the cases.•Neat emissions are highly improved in integrated processes.•Product’s boiling point was found to be the optimization key in all scenarios. |
---|---|
AbstractList | Nowadays there is an urgent need for mitigating CO2 emissions through clean energy and the development of new carbon capture and utilization (CCU) technologies. Among others, the use of bifunctional ionic liquids (ILs) addressed simultaneously CO2 capture and conversion steps, having applied successfully to the propylene carbonate production case. In this work, a systematic evaluation of all representative cyclic carbonate literature was made, covering ethylene, propylene, butylene, hexylene, cyclohexene, and styrene cyclic carbonates, in order to guide the product role within the integrated CCU (ICCU) concept. The multiscale strategy combining molecular simulation (DFT -Density Functional Theory-, COSMO -COnductor-like Screening MOdel-), process simulation (COSMO/Aspen methodology), and life cycle assessment (LCA) was used to set up, simulate and evaluate the processes. ICCU configuration is the best approach when compared with sequential configuration for energy consumption analysis (reduction of 28, 28, 22, 11 and 6 %, respectively, for ethylene, propylene, butylene, hexylene, and cyclohexene cases) and CO2 emissions associated (reduction of 38, 40, 31 and 14 %, respectively, for ethylene, propylene, butylene, and hexylene cases). The main variable of the results is the boiling point of the cyclic carbonate since heavy products impose technical limitations and even discard ICCU alternative. The ICCU concept works since all cyclic carbonates’ reaction enthalpies are higher than that of the IL-CO2 one, which reduces heating requirements. Finally, energy demand can be slightly further reduced, partially recycling the cyclic carbonate to the capture unit.
[Display omitted]
•Sequential and integrated CO2 capture and conversion processes were evaluated.•Integrated schemes are better in energy consumption in almost all the cases.•Neat emissions are highly improved in integrated processes.•Product’s boiling point was found to be the optimization key in all scenarios. Nowadays there is an urgent need for mitigating CO2 emissions through clean energy and the development of new carbon capture and utilization (CCU) technologies. Among others, the use of bifunctional ionic liquids (ILs) addressed simultaneously CO2 capture and conversion steps, having applied successfully to the propylene carbonate production case. In this work, a systematic evaluation of all representative cyclic carbonate literature was made, covering ethylene, propylene, butylene, hexylene, cyclohexene, and styrene cyclic carbonates, in order to guide the product role within the integrated CCU (ICCU) concept. The multiscale strategy combining molecular simulation (DFT -Density Functional Theory-, COSMO -COnductor-like Screening MOdel-), process simulation (COSMO/Aspen methodology), and life cycle assessment (LCA) was used to set up, simulate and evaluate the processes. ICCU configuration is the best approach when compared with sequential configuration for energy consumption analysis (reduction of 28, 28, 22, 11 and 6 %, respectively, for ethylene, propylene, butylene, hexylene, and cyclohexene cases) and CO2 emissions associated (reduction of 38, 40, 31 and 14 %, respectively, for ethylene, propylene, butylene, and hexylene cases). The main variable of the results is the boiling point of the cyclic carbonate since heavy products impose technical limitations and even discard ICCU alternative. The ICCU concept works since all cyclic carbonates’ reaction enthalpies are higher than that of the IL-CO2 one, which reduces heating requirements. Finally, energy demand can be slightly further reduced, partially recycling the cyclic carbonate to the capture unit. |
ArticleNumber | 102886 |
Author | Navarro, Pablo Hernández, Elisa Pereira, Álvaro Palomar, José Belinchón, Alejandro |
Author_xml | – sequence: 1 givenname: Alejandro surname: Belinchón fullname: Belinchón, Alejandro – sequence: 2 givenname: Álvaro surname: Pereira fullname: Pereira, Álvaro – sequence: 3 givenname: Elisa surname: Hernández fullname: Hernández, Elisa – sequence: 4 givenname: Pablo surname: Navarro fullname: Navarro, Pablo email: pablo.navarro@uam.es – sequence: 5 givenname: José surname: Palomar fullname: Palomar, José |
BookMark | eNp9kcFOHSEUhonRpNb6Al3xAnMLzDAXkm6aG1tNTNy4J8zhcGUywpRhTN32ycv1qosuZAE_J_wfcP7P5DSmiIR85WzDGe-_jZsR0roRTHS1IJTqT8i5EFw0WrX69F0L9olcLsvI6tCaS9mdk79XfwpGF-Kelgekdp6nALaEFGnydAh-jXDY2YnWOQCdwu81uGawCzoaYsF9tqVKsHNZcyXEqlN8wry8QnZ3gpZE55zcCkjhGeoV9XweKrbg8oWceTstePm6XpD7n1f3u-vm9u7Xze7HbQMdZ6VxbSu16kE62XLm-14JYYft1irWCafloLdcA7TQYs-d7530umu5lZp79Kq9IDdHrEt2NHMOjzY_m2SDeSmkvDc2lwATGs210E5toQPXWSXt4IfWMl-BnWQoK0sdWZDTsmT0BkJ56VrJNkyGM3NIxozmkIw5JGOOyVSr-M_69pQPTd-PJqz9eQqYzQIBI6ALGaHUH4SP7P8A6dKrow |
CitedBy_id | crossref_primary_10_1016_j_molliq_2025_127322 crossref_primary_10_1016_j_jece_2025_116247 crossref_primary_10_1021_acs_iecr_4c02072 crossref_primary_10_1016_j_seppur_2024_129970 crossref_primary_10_1007_s42114_024_01210_z crossref_primary_10_1039_D4YA00620H |
Cites_doi | 10.1021/acsenergylett.0c00406 10.1016/j.jcou.2021.101656 10.1021/acs.jpcb.7b12137 10.1016/j.seppur.2021.119143 10.1038/s41586-019-1364-3 10.1016/j.seppur.2017.08.062 10.4172/2157-7048.1000236 10.1002/cssc.202101590 10.1016/j.fuproc.2020.106639 10.1016/bs.adioch.2021.04.003 10.1039/C3CY00998J 10.1016/j.fuel.2022.124005 10.1016/j.cej.2020.124509 10.1002/adsu.202200384 10.1039/c3ee41151f 10.1016/j.jcou.2023.102417 10.1016/j.jes.2020.06.034 10.1021/acs.energyfuels.3c04993 10.1039/C7EE02342A 10.1016/j.jclepro.2022.133189 10.1016/j.jcou.2014.12.001 10.1002/cssc.202002126 10.1016/j.cherd.2014.10.001 10.1016/j.jclepro.2021.128247 10.1021/acs.langmuir.3c03902 10.1016/j.fuel.2022.126942 10.1039/c3cp51289d 10.1016/j.seppur.2022.121273 10.1021/acs.est.0c05305 10.1002/ente.202000627 10.1021/acssuschemeng.5b01515 10.1021/ie020090b 10.1016/j.cej.2022.137166 10.1021/acs.iecr.7b04031 10.1016/j.compchemeng.2021.107468 10.1016/j.ceja.2020.100038 10.1021/acs.chemrev.3c00512 10.1016/j.biomaterials.2021.120953 10.1016/B978-0-444-64241-7.50017-3 10.1021/jp502279w 10.1016/j.cej.2020.127196 10.1016/j.ccr.2004.04.015 10.1002/cssc.201900676 10.1016/j.seppur.2022.120841 10.1016/j.seppur.2023.123848 10.1016/j.jcou.2018.09.012 10.1002/marc.201400389 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jcou.2024.102886 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2212-9839 |
ExternalDocumentID | oai_doaj_org_article_91929d87c4cd4a85abfb3a0ff94450e5 10_1016_j_jcou_2024_102886 S221298202400221X |
GroupedDBID | --M .~1 0R~ 0SF 1~. 4.4 457 4G. 6I. 7-5 8P~ AACTN AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABLST ABMAC ABNUV ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADVLN AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC EBS EFJIC EJD ENUVR FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HVGLF HZ~ JARJE KCYFY KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SPC SPCBC SSG SSJ SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c410t-d335986c5d5310f66822ab77a8042d95b9719cc3c3e61df6d5f9431a591fef83 |
IEDL.DBID | DOA |
ISSN | 2212-9820 |
IngestDate | Wed Aug 27 01:28:26 EDT 2025 Tue Jul 01 03:50:42 EDT 2025 Thu Apr 24 23:11:57 EDT 2025 Sat Aug 17 15:43:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ionic liquids Cyclic carbonates CO2 capture CO2 conversion Process simulation |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-d335986c5d5310f66822ab77a8042d95b9719cc3c3e61df6d5f9431a591fef83 |
OpenAccessLink | https://doaj.org/article/91929d87c4cd4a85abfb3a0ff94450e5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_91929d87c4cd4a85abfb3a0ff94450e5 crossref_citationtrail_10_1016_j_jcou_2024_102886 crossref_primary_10_1016_j_jcou_2024_102886 elsevier_sciencedirect_doi_10_1016_j_jcou_2024_102886 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of CO2 utilization |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Nocito, Dibenedetto (bib6) 2020; 21 Hospital-Benito, Lemus, Moya, Santiago, Paramio, Palomar (bib20) 2022; 290 Chen, Chien (bib37) 2018 Hernández, Santiago, Moya, Vela, Navarro, Palomar (bib44) 2021; 52 CCUS SET-PLAN. (Accessed 23/01/2024. Y.J.Jo.C.E. Demirel, P. Technology, sustainability and economic analysis of propylene carbonate andpolypropylene carbonate production processes using CO2 and propyleneOxide, 6 (2015) 1-7. Li, Dong, An, Zhang, Li, Wang, Zhang (bib54) 2023; 335 Vasil’eva, E, Vvedenski (bib53) 1972; 46 Marcolongo, Aresta, Dibenedetto (bib5) 2021 Bui, Adjiman, Bardow, Anthony, Boston, Brown, Fennell, Fuss, Galindo, Hackett, Hallett, Herzog, Jackson, Kemper, Krevor, Maitland, Matuszewski, Metcalfe, Petit, Puxty, Reimer, Reiner, Rubin, Scott, Shah, Smit, Trusler, Webley, Wilcox, Mac Dowell (bib2) 2018; 11 Navarro, Moreno, Larriba, García, Rodríguez, Canales, Palomar (bib43) 2023; 316 1989-2007. Navarro, Hernández, Rodríguez-Llorente, Maldonado-López, Santiago, Moya, Belinchón, Larriba, Palomar (bib27) 2022; 321 Santiago, Hernández, Moya, Vela, Navarro, Palomar (bib18) 2021; 275 Belinchón, Santiago, Hernández, Moya, Navarro, Palomar (bib32) 2022; 368 E. Commission, Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions on the revision of the Strategic Energy Technology (SET) Plan, 2023. Hernández, Hospital-Benito, Moya, Ortiz, Belinchón, Paramio, Lemus, Navarro, Palomar (bib13) 2022; 446 Pescarmona (bib26) 2021; 29 Hernández, Santiago, Belinchón, Maria Vaquerizo, Moya, Navarro, Palomar (bib55) 2022; 295 Gurkan, Gohndrone, McCready, Brennecke (bib16) 2013; 15 Moya, Sabater, Yagüe, Larriba, Palomar (bib19) 2018; 28 North (bib11) 2019; 12 Rollin, Soares, Barcellos, Araujo, Lenardão, Jacob, Perin (bib29) 2021; 11 Suhail, Koch, Goeppert, Prakash (bib24) 2024; 40 Zimmermann, Wunderlich, Müller, Buchner, Marxen, Michailos, Armstrong, Naims, McCord, Styring, Sick, Schomäcker (bib35) 2020; 8 Garcia-Garcia, Fernandez, Armstrong, Woolass, Styring (bib34) 2021; 14 Moya, Hospital-Benito, Santiago, Lemus, Palomar (bib41) 2020; 4 Ansari, Singh, Mittal, Mahato, Chitkara (bib30) 2021; 275 Santiago, Moya, Hernández, Cojocaru, Navarro, Palomar (bib28) 2021; 154 He, O'Brien, Kitselman, Tompkins, Curtis, Kerton (bib56) 2014; 4 Sosa, Santiago, Hospital-Benito, Costa Gomes, Araujo, Pereiro, Palomar (bib45) 2020; 54 Hospital-Benito, Lemus, Moya, Santiago, Ferro, Palomar (bib21) 2021; 407 Hospital-Benito, Lemus, Moya, Santiago, Palomar (bib57) 2020; 390 Hernández, Santiago, Moya, Navarro, Palomar (bib42) 2021; 212 Larriba, de Riva, Navarro, Moreno, Delgado-Mellado, García, Ferro, Rodríguez, Palomar (bib47) 2018; 190 Hernández, Belinchón, Pachón, Navarro, Palomar (bib39) 2022; 6 Hernández, Belinchón, Santiago, Moya, Navarro, Palomar (bib58) 2023; 69 von der Assen, Jung, Bardow (bib7) 2013; 6 Lian, Song, Liu, Duan, Ren, Kitamura (bib22) 2021; 99 Cuéllar-Franca, Azapagic (bib36) 2015; 9 Palomar, Lemus, Navarro, Moya, Santiago, Hospital-Benito, Hernandez (bib15) 2024 Garcia-Herrero, Cuéllar-Franca, Enríquez-Gutiérrez, Alvarez-Guerra, Irabien, Azapagic (bib38) 2016; 4 Zhang, Grinstaff (bib31) 2014; 35 Chauvy, De Weireld (bib9) 2020; 8 Tong, Zhang, Zheng, Caldeira, Shearer, Hong, Qin, Davis (bib1) 2019; 572 Lin, Sandler (bib49) 2002; 41 International Energy Agency (IEA), Tracking clean energy progress 2023, 2023. Welton (bib14) 2004; 248 Moya, Alonso-Morales, de Riva, Morales-Collazo, Brennecke, Palomar (bib17) 2018; 122 Kothandaraman, Saavedra Lopez, Jiang, Walter, Burton, Dagle, Heldebrant (bib23) 2021; 14 Seo, Quiroz-Guzman, DeSilva, Lee, Huang, Goodrich, Schneider, Brennecke (bib51) 2014; 118 P. Styring, D. Jansen, H. de Coninck, H. Reith, K. Armstrong, Carbon capture and utilisation in the green economy, Energy Research Centre of the Netherlands and University of Sheffield, 2011. Hospital-Benito, Lemus, Moya, Santiago, Palomar (bib52) 2020; 390 Ferro, de Riva, Sanchez, Ruiz, Palomar (bib46) 2015; 94 Subramanian, Song, Kim, Yavuz (bib12) 2020; 5 Ferro, Moya, Moreno, Santiago, de Riva, Pedrosa, Larriba, Diaz, Palomar (bib50) 2018; 57 Mahmud, Moni, High, Carbajales-Dale (bib33) 2021; 317 Kroll, Kothandaraman, Grubel, Heldebrant (bib25) 2024; 38 University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, TURBOMOLE V7.5 2020; available from Chen (10.1016/j.jcou.2024.102886_bib37) 2018 Kothandaraman (10.1016/j.jcou.2024.102886_bib23) 2021; 14 Marcolongo (10.1016/j.jcou.2024.102886_bib5) 2021 Gurkan (10.1016/j.jcou.2024.102886_bib16) 2013; 15 North (10.1016/j.jcou.2024.102886_bib11) 2019; 12 Hospital-Benito (10.1016/j.jcou.2024.102886_bib52) 2020; 390 Navarro (10.1016/j.jcou.2024.102886_bib27) 2022; 321 Zhang (10.1016/j.jcou.2024.102886_bib31) 2014; 35 Mahmud (10.1016/j.jcou.2024.102886_bib33) 2021; 317 von der Assen (10.1016/j.jcou.2024.102886_bib7) 2013; 6 Garcia-Herrero (10.1016/j.jcou.2024.102886_bib38) 2016; 4 Seo (10.1016/j.jcou.2024.102886_bib51) 2014; 118 Santiago (10.1016/j.jcou.2024.102886_bib18) 2021; 275 Welton (10.1016/j.jcou.2024.102886_bib14) 2004; 248 10.1016/j.jcou.2024.102886_bib4 He (10.1016/j.jcou.2024.102886_bib56) 2014; 4 Bui (10.1016/j.jcou.2024.102886_bib2) 2018; 11 10.1016/j.jcou.2024.102886_bib3 10.1016/j.jcou.2024.102886_bib8 Hernández (10.1016/j.jcou.2024.102886_bib42) 2021; 212 Santiago (10.1016/j.jcou.2024.102886_bib28) 2021; 154 Lin (10.1016/j.jcou.2024.102886_bib49) 2002; 41 Ansari (10.1016/j.jcou.2024.102886_bib30) 2021; 275 Lian (10.1016/j.jcou.2024.102886_bib22) 2021; 99 Rollin (10.1016/j.jcou.2024.102886_bib29) 2021; 11 Chauvy (10.1016/j.jcou.2024.102886_bib9) 2020; 8 Hospital-Benito (10.1016/j.jcou.2024.102886_bib21) 2021; 407 Hernández (10.1016/j.jcou.2024.102886_bib44) 2021; 52 Larriba (10.1016/j.jcou.2024.102886_bib47) 2018; 190 10.1016/j.jcou.2024.102886_bib48 Pescarmona (10.1016/j.jcou.2024.102886_bib26) 2021; 29 Ferro (10.1016/j.jcou.2024.102886_bib50) 2018; 57 Hernández (10.1016/j.jcou.2024.102886_bib55) 2022; 295 Nocito (10.1016/j.jcou.2024.102886_bib6) 2020; 21 Hernández (10.1016/j.jcou.2024.102886_bib39) 2022; 6 Belinchón (10.1016/j.jcou.2024.102886_bib32) 2022; 368 Hospital-Benito (10.1016/j.jcou.2024.102886_bib57) 2020; 390 Sosa (10.1016/j.jcou.2024.102886_bib45) 2020; 54 10.1016/j.jcou.2024.102886_bib10 Vasil’eva, E (10.1016/j.jcou.2024.102886_bib53) 1972; 46 Moya (10.1016/j.jcou.2024.102886_bib19) 2018; 28 Suhail (10.1016/j.jcou.2024.102886_bib24) 2024; 40 Ferro (10.1016/j.jcou.2024.102886_bib46) 2015; 94 Garcia-Garcia (10.1016/j.jcou.2024.102886_bib34) 2021; 14 Navarro (10.1016/j.jcou.2024.102886_bib43) 2023; 316 Li (10.1016/j.jcou.2024.102886_bib54) 2023; 335 Zimmermann (10.1016/j.jcou.2024.102886_bib35) 2020; 8 Cuéllar-Franca (10.1016/j.jcou.2024.102886_bib36) 2015; 9 Hernández (10.1016/j.jcou.2024.102886_bib13) 2022; 446 Hospital-Benito (10.1016/j.jcou.2024.102886_bib20) 2022; 290 Palomar (10.1016/j.jcou.2024.102886_bib15) 2024 Tong (10.1016/j.jcou.2024.102886_bib1) 2019; 572 Hernández (10.1016/j.jcou.2024.102886_bib58) 2023; 69 Moya (10.1016/j.jcou.2024.102886_bib41) 2020; 4 Moya (10.1016/j.jcou.2024.102886_bib17) 2018; 122 Kroll (10.1016/j.jcou.2024.102886_bib25) 2024; 38 10.1016/j.jcou.2024.102886_bib40 Subramanian (10.1016/j.jcou.2024.102886_bib12) 2020; 5 |
References_xml | – volume: 4 start-page: 1513 year: 2014 end-page: 1528 ident: bib56 article-title: Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures publication-title: Catal. Sci. Technol. – volume: 154 year: 2021 ident: bib28 article-title: Extending the ability of cyclic carbonates for extracting BTEX to challenging low aromatic content naphtha: the designer solvent role at process scale publication-title: Comput. Chem. Eng. – volume: 118 start-page: 5740 year: 2014 end-page: 5751 ident: bib51 article-title: Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO(2) capture publication-title: J. Phys. Chem. B – volume: 38 start-page: 7959 year: 2024 end-page: 7965 ident: bib25 article-title: Integrated approach to CO2 capture and conversion to cyclic carbonates under solvent- and additive-free conditions utilizing the CO2 capture solvent EEMPA publication-title: Energy Fuels – volume: 28 start-page: 66 year: 2018 end-page: 72 ident: bib19 article-title: CO2 conversion to cyclic carbonates catalyzed by ionic liquids with aprotic heterocyclic anions: DFT calculations and operando FTIR analysis publication-title: J. CO2 Util. – volume: 99 start-page: 281 year: 2021 end-page: 295 ident: bib22 article-title: Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization publication-title: J. Environ. Sci. – volume: 6 year: 2013 ident: bib7 article-title: Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls publication-title: Energy Environ. Sci. – volume: 11 start-page: 5024 year: 2021 ident: bib29 article-title: Five-membered cyclic carbonates: versatility for applications in organic synthesis publication-title: Pharm. Mater. Sci. – volume: 9 start-page: 82 year: 2015 end-page: 102 ident: bib36 article-title: Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts publication-title: J. CO2 Util. – volume: 446 year: 2022 ident: bib13 article-title: Integrated carbon capture and utilization based on bifunctional ionic liquids to save energy and emissions publication-title: Chem. Eng. J. – volume: 54 start-page: 12784 year: 2020 end-page: 12794 ident: bib45 article-title: Process evaluation of fluorinated ionic liquids as F-gas absorbents publication-title: Environ. Sci. Technol. – volume: 41 start-page: 2332 year: 2002 end-page: 2334 ident: bib49 article-title: Reply to Comments on “A priori phase equilibrium prediction from a segment contribution solvation model” publication-title: Ind. Eng. Chem. Res. – volume: 190 start-page: 211 year: 2018 end-page: 227 ident: bib47 article-title: COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf 2] + [emim][DCA]} ionic liquid mixture publication-title: Sep. Purif. Technol. – volume: 6 year: 2022 ident: bib39 article-title: Toward sustainable and cost-effective CO2 conversion processes to propylene carbonate based on ionic liquids publication-title: Adv. Sustain. Syst. – volume: 317 year: 2021 ident: bib33 article-title: Integration of techno-economic analysis and life cycle assessment for sustainable process design – a review publication-title: J. Clean. Prod. – volume: 572 start-page: 373 year: 2019 end-page: 377 ident: bib1 article-title: Committed emissions from existing energy infrastructure jeopardize 1.5 degrees C climate target publication-title: Nature – reference: E. Commission, Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions on the revision of the Strategic Energy Technology (SET) Plan, 2023. – volume: 5 start-page: 1689 year: 2020 end-page: 1700 ident: bib12 article-title: Redox and nonredox CO2 utilization: dry reforming of methane and catalytic cyclic carbonate formation publication-title: ACS Energy Lett. – volume: 14 start-page: 4812 year: 2021 end-page: 4819 ident: bib23 article-title: Integrated capture and conversion of CO2 to methane using a water-lean, post-combustion CO2 capture solvent publication-title: ChemSusChem – volume: 4 start-page: 2088 year: 2016 end-page: 2097 ident: bib38 article-title: Environmental assessment of dimethyl carbonate production: comparison of a novel electrosynthesis route utilizing CO2 with a commercial oxidative carbonylation process publication-title: ACS Sustain. Chem. Eng. – start-page: 289 year: 2021 end-page: 351 ident: bib5 article-title: Chapter Nine - Stepping toward the carbon circular economy (CCE): integration of solar chemistry and biosystems for an effective CO2 conversion into added value chemicals and fuels publication-title: Advances in Inorganic Chemistry – volume: 275 year: 2021 ident: bib18 article-title: Fatty alcohol/water reaction-separation platform to produce propylene carbonate from captured CO2 using a hydrophobic ionic liquid publication-title: Sep. Purif. Technol. – reference: P. Styring, D. Jansen, H. de Coninck, H. Reith, K. Armstrong, Carbon capture and utilisation in the green economy, Energy Research Centre of the Netherlands and University of Sheffield, 2011. – start-page: 133 year: 2018 end-page: 138 ident: bib37 article-title: Potentials for CO2 utilization: diethyl carbonate synthesis from propylene oxide publication-title: Computer Aided Chemical Engineering – reference: International Energy Agency (IEA), Tracking clean energy progress 2023, 2023. – volume: 12 start-page: 1763 year: 2019 end-page: 1765 ident: bib11 article-title: Across the board: Michael North on carbon dioxide biorefinery publication-title: ChemSusChem – volume: 29 year: 2021 ident: bib26 article-title: Cyclic carbonates synthesised from CO2: applications, challenges and recent research trends publication-title: Curr. Opin. Green Sustain. Chem. – volume: 335 year: 2023 ident: bib54 article-title: Machine learning for the yield prediction of CO2 cyclization reaction catalyzed by the ionic liquids publication-title: Fuel – volume: 122 start-page: 2616 year: 2018 end-page: 2626 ident: bib17 article-title: Encapsulation of ionic liquids with an aprotic heterocyclic anion (AHA-IL) for CO(2) capture: preserving the favorable thermodynamics and enhancing the kinetics of absorption publication-title: J. Phys. Chem. B – volume: 14 start-page: 995 year: 2021 end-page: 1015 ident: bib34 article-title: Analytical review of life-cycle environmental impacts of carbon capture and utilization technologies publication-title: ChemSusChem – volume: 46 start-page: 316 year: 1972 ident: bib53 article-title: Enthalpies of combustion of alkylene carbonates publication-title: Russ. J. Phys. Chem. (Engl. Transl. ) – volume: 21 start-page: 34 year: 2020 end-page: 43 ident: bib6 article-title: Atmospheric CO2 mitigation technologies: carbon capture utilization and storage publication-title: Curr. Opin. Green Sustain. Chem. – volume: 8 year: 2020 ident: bib35 article-title: Techno-economic assessment guidelines for CO2 utilization – reference: , 1989-2007. – volume: 390 year: 2020 ident: bib57 article-title: Process analysis overview of ionic liquids on CO2 chemical capture publication-title: Chem. Eng. J. – volume: 290 year: 2022 ident: bib20 article-title: Aspen plus supported design of pre-combustion CO2 capture processes based on ionic liquids publication-title: Sep. Purif. Technol. – reference: CCUS SET-PLAN. (Accessed 23/01/2024. – year: 2024 ident: bib15 article-title: Process simulation and optimization on ionic liquids publication-title: Chem. Rev. – volume: 368 year: 2022 ident: bib32 article-title: Reaction-extraction platforms towards CO2-derived cyclic carbonates catalyzed by ionic liquids publication-title: J. Clean. Prod. – volume: 295 year: 2022 ident: bib55 article-title: Universal and low energy-demanding platform to produce propylene carbonate from CO2 using hydrophilic ionic liquids publication-title: Sep. Purif. Technol. – volume: 316 year: 2023 ident: bib43 article-title: An overview process analysis of the aromatic-aliphatic separation by liquid–liquid extraction with ionic liquids publication-title: Sep. Purif. Technol. – volume: 57 start-page: 980 year: 2018 end-page: 989 ident: bib50 article-title: Enterprise ionic liquids database (ILUAM) for use in Aspen ONE programs suite with COSMO-based property publication-title: Methods, Ind. Eng. Chem. Res. – volume: 94 start-page: 632 year: 2015 end-page: 647 ident: bib46 article-title: Conceptual design of unit operations to separate aromatic hydrocarbons from naphtha using ionic liquids. COSMO-based process simulations with multi-component “real” mixture feed publication-title: Chem. Eng. Res. Des. – reference: Y.J.Jo.C.E. Demirel, P. Technology, sustainability and economic analysis of propylene carbonate andpolypropylene carbonate production processes using CO2 and propyleneOxide, 6 (2015) 1-7. – volume: 4 year: 2020 ident: bib41 article-title: Prediction of CO2 chemical absorption isotherms for ionic liquid design by DFT/COSMO-RS calculations publication-title: Chem. Eng. J. Adv. – volume: 390 year: 2020 ident: bib52 article-title: Process analysis overview of ionic liquids on CO2 chemical capture publication-title: Chem. Eng. J. – volume: 11 start-page: 1062 year: 2018 end-page: 1176 ident: bib2 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energy Environ. Sci. – volume: 8 year: 2020 ident: bib9 article-title: CO2 Utilization Technologies in Europe: A Short Review publication-title: Energy Technol. – volume: 248 start-page: 2459 year: 2004 end-page: 2477 ident: bib14 article-title: Ionic liquids in catalysis publication-title: Coord. Chem. Rev. – volume: 52 year: 2021 ident: bib44 article-title: Close-cycle process to produce CO2-derived propylene carbonate based on amino acid catalyst and water publication-title: J. CO2 Util. – volume: 407 year: 2021 ident: bib21 article-title: Techno-economic feasibility of ionic liquids-based CO2 chemical capture processes publication-title: Chem. Eng. J. – volume: 35 start-page: 1906 year: 2014 end-page: 1924 ident: bib31 article-title: Recent advances in glycerol polymers: chemistry and biomedical applications publication-title: Macromol. Rapid Commun. – volume: 321 year: 2022 ident: bib27 article-title: Fine-tune simultaneous dearomatization, desulfurization and denitrogenation of liquid fuels with CO2-derived cyclic carbonates publication-title: Fuel – volume: 40 start-page: 5401 year: 2024 end-page: 5408 ident: bib24 article-title: Integrated carbon dioxide capture and conversion to methanol utilizing tertiary amines over a heterogenous Cu/ZnO/Al2O3 catalyst publication-title: Langmuir – volume: 212 year: 2021 ident: bib42 article-title: Multiscale evaluation of CO2-derived cyclic carbonates to separate hydrocarbons: drafting new competitive processes publication-title: Fuel Process. Technol. – volume: 69 year: 2023 ident: bib58 article-title: Solvent-catalyst optimization of ionic liquid-based CO2 conversion to propylene carbonate: laboratory validation and techno-economic analysis publication-title: J. CO2 Util. – volume: 15 start-page: 7796 year: 2013 end-page: 7811 ident: bib16 article-title: Reaction kinetics of CO2 absorption in to phosphonium based anion-functionalized ionic liquids publication-title: Phys. Chem. Chem. Phys. – volume: 275 year: 2021 ident: bib30 article-title: 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications publication-title: Biomaterials – reference: University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, TURBOMOLE V7.5 2020; available from – ident: 10.1016/j.jcou.2024.102886_bib10 – volume: 5 start-page: 1689 issue: 5 year: 2020 ident: 10.1016/j.jcou.2024.102886_bib12 article-title: Redox and nonredox CO2 utilization: dry reforming of methane and catalytic cyclic carbonate formation publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00406 – volume: 52 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib44 article-title: Close-cycle process to produce CO2-derived propylene carbonate based on amino acid catalyst and water publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2021.101656 – volume: 29 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib26 article-title: Cyclic carbonates synthesised from CO2: applications, challenges and recent research trends publication-title: Curr. Opin. Green Sustain. Chem. – volume: 122 start-page: 2616 issue: 9 year: 2018 ident: 10.1016/j.jcou.2024.102886_bib17 article-title: Encapsulation of ionic liquids with an aprotic heterocyclic anion (AHA-IL) for CO(2) capture: preserving the favorable thermodynamics and enhancing the kinetics of absorption publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b12137 – volume: 275 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib18 article-title: Fatty alcohol/water reaction-separation platform to produce propylene carbonate from captured CO2 using a hydrophobic ionic liquid publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119143 – volume: 572 start-page: 373 issue: 7769 year: 2019 ident: 10.1016/j.jcou.2024.102886_bib1 article-title: Committed emissions from existing energy infrastructure jeopardize 1.5 degrees C climate target publication-title: Nature doi: 10.1038/s41586-019-1364-3 – volume: 46 start-page: 316 year: 1972 ident: 10.1016/j.jcou.2024.102886_bib53 article-title: Enthalpies of combustion of alkylene carbonates publication-title: Russ. J. Phys. Chem. (Engl. Transl. ) – volume: 190 start-page: 211 year: 2018 ident: 10.1016/j.jcou.2024.102886_bib47 article-title: COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf 2] + [emim][DCA]} ionic liquid mixture publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.08.062 – ident: 10.1016/j.jcou.2024.102886_bib40 doi: 10.4172/2157-7048.1000236 – volume: 14 start-page: 4812 issue: 21 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib23 article-title: Integrated capture and conversion of CO2 to methane using a water-lean, post-combustion CO2 capture solvent publication-title: ChemSusChem doi: 10.1002/cssc.202101590 – volume: 212 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib42 article-title: Multiscale evaluation of CO2-derived cyclic carbonates to separate hydrocarbons: drafting new competitive processes publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2020.106639 – start-page: 289 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib5 article-title: Chapter Nine - Stepping toward the carbon circular economy (CCE): integration of solar chemistry and biosystems for an effective CO2 conversion into added value chemicals and fuels doi: 10.1016/bs.adioch.2021.04.003 – volume: 4 start-page: 1513 issue: 6 year: 2014 ident: 10.1016/j.jcou.2024.102886_bib56 article-title: Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures publication-title: Catal. Sci. Technol. doi: 10.1039/C3CY00998J – volume: 321 year: 2022 ident: 10.1016/j.jcou.2024.102886_bib27 article-title: Fine-tune simultaneous dearomatization, desulfurization and denitrogenation of liquid fuels with CO2-derived cyclic carbonates publication-title: Fuel doi: 10.1016/j.fuel.2022.124005 – volume: 21 start-page: 34 year: 2020 ident: 10.1016/j.jcou.2024.102886_bib6 article-title: Atmospheric CO2 mitigation technologies: carbon capture utilization and storage publication-title: Curr. Opin. Green Sustain. Chem. – volume: 390 year: 2020 ident: 10.1016/j.jcou.2024.102886_bib57 article-title: Process analysis overview of ionic liquids on CO2 chemical capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124509 – volume: 6 issue: 12 year: 2022 ident: 10.1016/j.jcou.2024.102886_bib39 article-title: Toward sustainable and cost-effective CO2 conversion processes to propylene carbonate based on ionic liquids publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.202200384 – volume: 6 issue: 9 year: 2013 ident: 10.1016/j.jcou.2024.102886_bib7 article-title: Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41151f – volume: 69 year: 2023 ident: 10.1016/j.jcou.2024.102886_bib58 article-title: Solvent-catalyst optimization of ionic liquid-based CO2 conversion to propylene carbonate: laboratory validation and techno-economic analysis publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2023.102417 – ident: 10.1016/j.jcou.2024.102886_bib3 – volume: 99 start-page: 281 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib22 article-title: Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2020.06.034 – volume: 38 start-page: 7959 issue: 9 year: 2024 ident: 10.1016/j.jcou.2024.102886_bib25 article-title: Integrated approach to CO2 capture and conversion to cyclic carbonates under solvent- and additive-free conditions utilizing the CO2 capture solvent EEMPA publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c04993 – volume: 11 start-page: 5024 issue: 11 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib29 article-title: Five-membered cyclic carbonates: versatility for applications in organic synthesis publication-title: Pharm. Mater. Sci. – volume: 11 start-page: 1062 issue: 5 year: 2018 ident: 10.1016/j.jcou.2024.102886_bib2 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02342A – volume: 390 year: 2020 ident: 10.1016/j.jcou.2024.102886_bib52 article-title: Process analysis overview of ionic liquids on CO2 chemical capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124509 – volume: 368 year: 2022 ident: 10.1016/j.jcou.2024.102886_bib32 article-title: Reaction-extraction platforms towards CO2-derived cyclic carbonates catalyzed by ionic liquids publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133189 – volume: 9 start-page: 82 year: 2015 ident: 10.1016/j.jcou.2024.102886_bib36 article-title: Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2014.12.001 – volume: 14 start-page: 995 issue: 4 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib34 article-title: Analytical review of life-cycle environmental impacts of carbon capture and utilization technologies publication-title: ChemSusChem doi: 10.1002/cssc.202002126 – volume: 94 start-page: 632 year: 2015 ident: 10.1016/j.jcou.2024.102886_bib46 article-title: Conceptual design of unit operations to separate aromatic hydrocarbons from naphtha using ionic liquids. COSMO-based process simulations with multi-component “real” mixture feed publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2014.10.001 – volume: 317 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib33 article-title: Integration of techno-economic analysis and life cycle assessment for sustainable process design – a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128247 – volume: 40 start-page: 5401 issue: 10 year: 2024 ident: 10.1016/j.jcou.2024.102886_bib24 article-title: Integrated carbon dioxide capture and conversion to methanol utilizing tertiary amines over a heterogenous Cu/ZnO/Al2O3 catalyst publication-title: Langmuir doi: 10.1021/acs.langmuir.3c03902 – volume: 335 year: 2023 ident: 10.1016/j.jcou.2024.102886_bib54 article-title: Machine learning for the yield prediction of CO2 cyclization reaction catalyzed by the ionic liquids publication-title: Fuel doi: 10.1016/j.fuel.2022.126942 – volume: 15 start-page: 7796 issue: 20 year: 2013 ident: 10.1016/j.jcou.2024.102886_bib16 article-title: Reaction kinetics of CO2 absorption in to phosphonium based anion-functionalized ionic liquids publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51289d – volume: 295 year: 2022 ident: 10.1016/j.jcou.2024.102886_bib55 article-title: Universal and low energy-demanding platform to produce propylene carbonate from CO2 using hydrophilic ionic liquids publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121273 – volume: 54 start-page: 12784 issue: 19 year: 2020 ident: 10.1016/j.jcou.2024.102886_bib45 article-title: Process evaluation of fluorinated ionic liquids as F-gas absorbents publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c05305 – volume: 8 issue: 12 year: 2020 ident: 10.1016/j.jcou.2024.102886_bib9 article-title: CO2 Utilization Technologies in Europe: A Short Review publication-title: Energy Technol. doi: 10.1002/ente.202000627 – ident: 10.1016/j.jcou.2024.102886_bib48 – volume: 4 start-page: 2088 issue: 4 year: 2016 ident: 10.1016/j.jcou.2024.102886_bib38 article-title: Environmental assessment of dimethyl carbonate production: comparison of a novel electrosynthesis route utilizing CO2 with a commercial oxidative carbonylation process publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01515 – volume: 41 start-page: 2332 issue: 9 year: 2002 ident: 10.1016/j.jcou.2024.102886_bib49 article-title: Reply to Comments on “A priori phase equilibrium prediction from a segment contribution solvation model” publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020090b – volume: 8 year: 2020 ident: 10.1016/j.jcou.2024.102886_bib35 article-title: Techno-economic assessment guidelines for CO2 utilization – volume: 446 year: 2022 ident: 10.1016/j.jcou.2024.102886_bib13 article-title: Integrated carbon capture and utilization based on bifunctional ionic liquids to save energy and emissions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137166 – volume: 57 start-page: 980 issue: 3 year: 2018 ident: 10.1016/j.jcou.2024.102886_bib50 article-title: Enterprise ionic liquids database (ILUAM) for use in Aspen ONE programs suite with COSMO-based property publication-title: Methods, Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b04031 – volume: 154 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib28 article-title: Extending the ability of cyclic carbonates for extracting BTEX to challenging low aromatic content naphtha: the designer solvent role at process scale publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107468 – volume: 4 year: 2020 ident: 10.1016/j.jcou.2024.102886_bib41 article-title: Prediction of CO2 chemical absorption isotherms for ionic liquid design by DFT/COSMO-RS calculations publication-title: Chem. Eng. J. Adv. doi: 10.1016/j.ceja.2020.100038 – year: 2024 ident: 10.1016/j.jcou.2024.102886_bib15 article-title: Process simulation and optimization on ionic liquids publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00512 – ident: 10.1016/j.jcou.2024.102886_bib8 – volume: 275 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib30 article-title: 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120953 – ident: 10.1016/j.jcou.2024.102886_bib4 – start-page: 133 year: 2018 ident: 10.1016/j.jcou.2024.102886_bib37 article-title: Potentials for CO2 utilization: diethyl carbonate synthesis from propylene oxide doi: 10.1016/B978-0-444-64241-7.50017-3 – volume: 118 start-page: 5740 issue: 21 year: 2014 ident: 10.1016/j.jcou.2024.102886_bib51 article-title: Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO(2) capture publication-title: J. Phys. Chem. B doi: 10.1021/jp502279w – volume: 407 year: 2021 ident: 10.1016/j.jcou.2024.102886_bib21 article-title: Techno-economic feasibility of ionic liquids-based CO2 chemical capture processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127196 – volume: 248 start-page: 2459 issue: 21 year: 2004 ident: 10.1016/j.jcou.2024.102886_bib14 article-title: Ionic liquids in catalysis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2004.04.015 – volume: 12 start-page: 1763 issue: 8 year: 2019 ident: 10.1016/j.jcou.2024.102886_bib11 article-title: Across the board: Michael North on carbon dioxide biorefinery publication-title: ChemSusChem doi: 10.1002/cssc.201900676 – volume: 290 year: 2022 ident: 10.1016/j.jcou.2024.102886_bib20 article-title: Aspen plus supported design of pre-combustion CO2 capture processes based on ionic liquids publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120841 – volume: 316 year: 2023 ident: 10.1016/j.jcou.2024.102886_bib43 article-title: An overview process analysis of the aromatic-aliphatic separation by liquid–liquid extraction with ionic liquids publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.123848 – volume: 28 start-page: 66 year: 2018 ident: 10.1016/j.jcou.2024.102886_bib19 article-title: CO2 conversion to cyclic carbonates catalyzed by ionic liquids with aprotic heterocyclic anions: DFT calculations and operando FTIR analysis publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2018.09.012 – volume: 35 start-page: 1906 issue: 22 year: 2014 ident: 10.1016/j.jcou.2024.102886_bib31 article-title: Recent advances in glycerol polymers: chemistry and biomedical applications publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201400389 |
SSID | ssj0000991554 |
Score | 2.3485656 |
Snippet | Nowadays there is an urgent need for mitigating CO2 emissions through clean energy and the development of new carbon capture and utilization (CCU)... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 102886 |
SubjectTerms | CO2 capture CO2 conversion Cyclic carbonates Ionic liquids Process simulation |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhgQT1Fe8sCGTOsmtuMRKhBCAgaK1C3yEwWhppR2YGHgl3OXpFVYGNic6PyQz747n-8-E3LmuDSgSByTnmcsNZ4zrYNiA-mEVNGCyYD-jvsHefuc3o3FuEOGy1wYDKtsZH8t0ytp3fzpNbPZmxZF72kAUleDAsMoSCiPMYM9VbjKL774ys8CFhCqTHxjDugZVmhyZ-owr1dXLi6wEQQxyDCluqWfKhj_lppqqZ6bLbLZ2Iz0sh7WNumEyQ7ZaCEJ7pLv68qZDWUKFh1tXUvTMlJboPqqvX4UHbCOvhXvi8IzVGKerjAjPHVmincK1EygjBHplTsNGxk-Dui8pNMKIjZQ9-mgC6CfWXTAh489Mrq5Hg1vWfO8AnMp78-ZTxC9D3jiYR_2o5RgKxirlMlgI3strFZcO5e4JEjuo_QiajA3jNA8hpgl-2RtUk7CAaF4bJRKK2EUnOaMzKwOIQkxaq2CjbpL-HJOc9dAj-MLGG_5MsbsNUc-5MiHvOZDl5yv6kxr4I0_qa-QVStKBM2ufpSzl7xZNbkGa1b7TLnU-dRkwthoE9OHYaap6AfRJWLJ6PzXGoSmij86P_xnvSOyjl918O8xWZvPFuEETJy5Pa3W8A8PcPnF priority: 102 providerName: Elsevier |
Title | Extending the application of bifunctional ionic liquid-based integrated capture and conversion of CO2 to produce cyclic carbonates |
URI | https://dx.doi.org/10.1016/j.jcou.2024.102886 https://doaj.org/article/91929d87c4cd4a85abfb3a0ff94450e5 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4LDAgnqI8Kg9sKFA3sR2PgKgKiLIUiS3yU2pVtaW0AwsDv5y7OK0ywcIWRY4d3Z31fT6fPxNyYZnQACQ2EY7lSaYdS5TyMmkLy4UMBigD5juee6L7mj2-8bfaVV9YExblgaPhrhVQEOVyaTPrMp1zbYJJdSsElWW85Uv1UsC82mJqGHkPAmV1SiYWdA3tZAELwnaGcgU5Hp6uIVEp2F8DpBrIdHbJTsUO6U38qz2y5sf7ZLumGXhAvu_LtDU8U-ButLYBTSeBmgECVczvUUy1WjoavC8GLkG4cnSlDuGo1VPcPaB6DM9Ye14mzrCTu5c2nU_otBSD9dR-WhgC2s8Mptr9xyHpd-77d92kukghsRlrzROXok4fWN_BjGsFIYAVaCOlzmHKOsWNkkxZm9rUC-aCcBysmzLNFQs-5OkR2RhPxv6YUFwgCqkk1xLWbVrkRnmfevCGkt4E1SBsadPCViLjeNfFqFhWkw0L9EOBfiiiHxrkcvXNNEps_Nr6Fl21aony2OULCJqiCprir6BpEL50dFExjcggoKvBL4Of_Mfgp2QLu4w1v2dkYz5b-HNgNnPTJOtXX6xJNm8enrq9ZhnSP8bC-rI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMs5eEDnFC66yS24wMHKK229MGBRdqb5WeVqtos211VvXDgJ_ELmUm8q3DpAak3y3HskWcy33gyniHknWPCAJC4THhWZaXxLFMqyCwXjgsZLZgM6O84ORXjH-XXKZ9ukT_ruzAYVpl0f6fTW22deoZpN4fzuh5-z0HrKgAwjIKE9jRFVh6F6ys4t11-PPwCTH6f5wf7k71xlkoLZK5ko2XmC8xcB_R4kMFRFAJw0lgpTQVC7BW3SjLlXOGKIJiPwvOoAGoNVyyGWBUw7R1ytwRtgVUTdn-xjV8HLC6EaKxpB_RlSGC6q9OFlZ27ZrWLRGPShAqvcPfwsC0b0IPFHtQdPCIPk41KP3Xb8JhshdkT8qCXufAp-b3fOs-hTcGCpL3f4LSJ1NYIl52XkaLD19GL-ueq9hmCpqebHBWeOjPHfxjUzKCNEfCt-w4n2fuW02VD521K2kDdtYMlYPzCosM_XD4jk9vY8-dke9bMwgtC8ZgqpJLcSDg9GlFZFUIRYlRKBhvVgLD1nmqXUp1jxY0LvY5pO9fIB4180B0fBuTD5p15l-jjxtGfkVWbkZiku-1oFmc6SalWYD0rX0lXOl-aihsbbWFGQGZZ8lHgA8LXjNb_yDxMVd-w-Mv_fO8tuTeenBzr48PTox1yH590gcevyPZysQqvwbxa2jetPFOib_n7-QuHqjVk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+the+application+of+bifunctional+ionic+liquid-based+integrated+capture+and+conversion+of+CO2+to+produce+cyclic+carbonates&rft.jtitle=Journal+of+CO2+utilization&rft.au=Alejandro+Belinch%C3%B3n&rft.au=%C3%81lvaro+Pereira&rft.au=Elisa+Hern%C3%A1ndez&rft.au=Pablo+Navarro&rft.date=2024-07-01&rft.pub=Elsevier&rft.eissn=2212-9839&rft.volume=85&rft.spage=102886&rft_id=info:doi/10.1016%2Fj.jcou.2024.102886&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_91929d87c4cd4a85abfb3a0ff94450e5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-9820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-9820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-9820&client=summon |