An improved model for predicting the efficiency of hydraulic propeller turbines
Field performance testing of hydraulic turbines is undertaken to define the head-power-discharge relationship that identifies the peak operating point of the turbine. This relationship is essential for the efficient operation of a hydraulic turbine. Unfortunately, in some cases it is not feasible to...
Saved in:
Published in | Canadian journal of civil engineering Vol. 32; no. 5; pp. 789 - 795 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ottawa, Canada
NRC Research Press
01.10.2005
National Research Council of Canada Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Field performance testing of hydraulic turbines is undertaken to define the head-power-discharge relationship that identifies the peak operating point of the turbine. This relationship is essential for the efficient operation of a hydraulic turbine. Unfortunately, in some cases it is not feasible to field test turbines because of time, budgetary, or other constraints. Gordon (2001) proposed a method of predicting and (or) simulating the performance curve for several types of turbines. However, a limited data set was available for the development of his model for certain types of turbines. Moreover, his model did not include a precise method of developing performance curves for rerunnered turbines. Manitoba Hydro operates a large network of hydroelectric turbines, which are subject to periodic field performance testing. This provided a large data set with which to refine the model proposed by Gordon (2001). Furthermore, since these data include rerunnered units, this provides an opportunity to refine the effects of rerunnering. Analysis shows that the accuracy of the refined model is within 2% of the performance test results for an "old" turbine, while for a newer turbine or a rerunnered turbine the error is within 1%. For both an old turbine and a rerunnered turbine, this indicates an accuracy improvement of 3% over the original method proposed by Gordon (2001).Key words: hydraulic turbine, efficiency, simulation modeling |
---|---|
AbstractList | Field performance testing of hydraulic turbines is undertaken to define the head-power-discharge relationship that identifies the peak operating point of the turbine. This relationship is essential for the efficient operation of a hydraulic turbine. Unfortunately, in some cases it is not feasible to field test turbines because of time, budgetary, or other constraints. Gordon (2001) proposed a method of predicting and (or) simulating the performance curve for several types of turbines. However, a limited data set was available for the development of his model for certain types of turbines. Moreover, his model did not include a precise method of developing performance curves for rerunnered turbines. Manitoba Hydro operates a large network of hydroelectric turbines, which are subject to periodic field performance testing. This provided a large data set with which to refine the model proposed by Gordon (2001). Furthermore, since these data include rerunnered units, this provides an opportunity to refine the effects of rerunnering. Analysis shows that the accuracy of the refined model is within 2% of the performance test results for an "old" turbine, while for a newer turbine or a rerunnered turbine the error is within 1%. For both an old turbine and a rerunnered turbine, this indicates an accuracy improvement of 3% over the original method proposed by Gordon (2001). [PUBLICATION ABSTRACT] Field performance testing of hydraulic turbines is undertaken to define the head-power-discharge relationship that identifies the peak operating point of the turbine. This relationship is essential for the efficient operation of a hydraulic turbine. Unfortunately, in some cases it is not feasible to field test turbines because of time, budgetary, or other constraints. Gordon (2001) proposed a method of predicting and (or) simulating the performance curve for several types of turbines. However, a limited data set was available for the development of his model for certain types of turbines. Moreover, his model did not include a precise method of developing performance curves for rerunnered turbines. Manitoba Hydro operates a large network of hydroelectric turbines, which are subject to periodic field performance testing. This provided a large data set with which to refine the model proposed by Gordon (2001). Furthermore, since these data include rerunnered units, this provides an opportunity to refine the effects of rerunnering. Analysis shows that the accuracy of the refined model is within 2% of the performance test results for an "old" turbine, while for a newer turbine or a rerunnered turbine the error is within 1%. For both an old turbine and a rerunnered turbine, this indicates an accuracy improvement of 3% over the original method proposed by Gordon (2001).Key words: hydraulic turbine, efficiency, simulation modeling Field performance testing of hydraulic turbines is undertaken to define the head-power-discharge relationship that identifies the peak operating point of the turbine. This relationship is essential for the efficient operation of a hydraulic turbine. Unfortunately, in some cases it is not feasible to field test turbines because of time, budgetary, or other constraints. Gordon (2001) proposed a method of predicting and (or) simulating the performance curve for several types of turbines. However, a limited data set was available for the development of his model for certain types of turbines. Moreover, his model did not include a precise method of developing performance curves for rerunnered turbines. Manitoba Hydro operates a large network of hydroelectric turbines, which are subject to periodic field performance testing. This provided a large data set with which to refine the model proposed by Gordon (2001). Furthermore, since these data include rerunnered units, this provides an opportunity to refine the effects of rerunnering. Analysis shows that the accuracy of the refined model is within 2% of the performance test results for an "old" turbine, while for a newer turbine or a rerunnered turbine the error is within 1%. For both an old turbine and a rerunnered turbine, this indicates an accuracy improvement of 3% over the original method proposed by Gordon (2001).Original Abstract: Des essais de rendement des turbines hydrauliques sur le terrain ont ete entrepris afin de definir la relation tete-puissance-decharge qui identifie le point de fonctionnement maximum de la turbine. Cette relation est essentielle au fonctionnement efficace d'une turbine hydraulique. Malheureusement, dans certains cas, il est impossible de tester des turbines sur le terrain en raison de contraintes de temps, de budget ou autres. Gordon (2001) a propose une methode pour predire/simuler la courbe de performance pour plusieurs types de turbines. Cependant, un ensemble de donnees limite, pour certains types de turbines, etait disponible pour developper ce modele. de plus, son modele n'inclut pas de methode precise pour developper les courbes de performance pour les turbines dont les aubes ont ete remplacees. Manitoba Hydro opere un grand reseau de turbines hydroelectriques qui subissent des essais periodiques de performance sur le terrain. Cela a fourni un grand ensemble de donnees qui sert a perfectionner le modele propose par Gordon (2001). de plus, puisque ces donnees comprennent des unites dont les aubes ont ete remplacees, cela fournit aussi l'occasion de raffiner les effets du remplacement des aubes. L'analyse montre que la precision du modele perfectionne est en deca de 2 % des resultats des essais de performance pour une vieille turbine, alors que, pour une turbine plus recente ou une turbine dont les aubes ont ete remplacees, l'erreur est en deca de 1 %. Pour les turbines plus recentes ou celles dont les aubes ont ete remplacees, cela indique une amelioration de la precision de 3 % par rapport a la methode originale proposee par Gordon (2001). Field performance testing of hydraulic turbines is undertaken to define the head-power-discharge relationship that identifies the peak operating point of the turbine. This relationship is essential for the efficient operation of a hydraulic turbine. Unfortunately, in some cases it is not feasible to field test turbines because of time, budgetary, or other constraints. Gordon (2001) proposed a method of predicting and (or) simulating the performance curve for several types of turbines. However, a limited data set was available for the development of his model for certain types of turbines. Moreover, his model did not include a precise method of developing performance curves for rerunnered turbines. Manitoba Hydro operates a large network of hydroelectric turbines, which are subject to periodic field performance testing. This provided a large data set with which to refine the model proposed by Gordon (2001). Furthermore, since these data include rerunnered units, this provides an opportunity to refine the effects of rerunnering. Analysis shows that the accuracy of the refined model is within 2% of the performance test results for an 'old'turbine, while for a newer turbine or a rerunnered turbine the error is within 1%. For both an old turbine and a rerunnered turbine, this indicates an accuracy improvement of 3% over the original method proposed by Gordon (2001). |
Abstract_FL | Des essais de rendement des turbines hydrauliques sur le terrain ont été entrepris afin de définir la relation tête-puissance-décharge qui identifie le point de fonctionnement maximum de la turbine. Cette relation est essentielle au fonctionnement efficace d'une turbine hydraulique. Malheureusement, dans certains cas, il est impossible de tester des turbines sur le terrain en raison de contraintes de temps, de budget ou autres. Gordon (2001) a proposé une méthode pour prédire/simuler la courbe de performance pour plusieurs types de turbines. Cependant, un ensemble de données limité, pour certains types de turbines, était disponible pour développer ce modèle. De plus, son modèle n'inclut pas de méthode précise pour développer les courbes de performance pour les turbines dont les aubes ont été remplacées. Manitoba Hydro opère un grand réseau de turbines hydroélectriques qui subissent des essais périodiques de performance sur le terrain. Cela a fourni un grand ensemble de données qui sert à perfectionner le modèle proposé par Gordon (2001). De plus, puisque ces données comprennent des unités dont les aubes ont été remplacées, cela fournit aussi l'occasion de raffiner les effets du remplacement des aubes. L'analyse montre que la précision du modèle perfectionné est en deçà de 2 % des résultats des essais de performance pour une « vieille » turbine, alors que, pour une turbine plus récente ou une turbine dont les aubes ont été remplacées, l'erreur est en deçà de 1 %. Pour les turbines plus récentes ou celles dont les aubes ont été remplacées, cela indique une amélioration de la précision de 3 % par rapport à la méthode originale proposée par Gordon (2001).Mots clés : turbine hydraulique, efficacité, modélisation de simulation.[Traduit par la Rédaction] |
Author | Doering, Jay Manness, Jessica |
Author_xml | – sequence: 1 givenname: Jessica surname: Manness fullname: Manness, Jessica – sequence: 2 givenname: Jay surname: Doering fullname: Doering, Jay |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17368670$$DView record in Pascal Francis |
BookMark | eNqF0V1rFDEUBuAgFdxW8S8MghUKoycfMzu5LEWrUOiNXofMyYmbMpuMyYyw_76RXbyoqFc5cB5eTnjP2VlMkRh7zeE951J_mKBrQehnbMMFDG1f5zO2Acm7lqt-eMHOS3kA4CCl3rD769iE_ZzTT3LNPjmaGp9yM2dyAZcQvzfLjhryPmCgiIcm-WZ3cNmuU8DK0kzTRLlZ1jyGSOUle-7tVOjV6b1g3z59_Hrzub27v_1yc33XouKwtOih55zkCKA8OhhBqFEPiivtUUu_rUvUzpFD64YOeuxHNTjonehGz528YJfH3HrCj5XKYvahYL3FRkprMUJroaDr_gv5VglQUlT45gl8SGuO9RNG8LofhFYVvT0hW9BOPtuIoZg5h73Nhxom-6HfQnXt0WFOpWTyBsNil5Dikm2YDAfzqyxTyzK1oOrfPfG_I_-QV0cZM2YqZDPu_oEv_45PyMzOy0ccC7DR |
CODEN | CJCEB8 |
CitedBy_id | crossref_primary_10_1016_j_enconman_2021_114655 crossref_primary_10_1016_j_enconman_2010_06_038 crossref_primary_10_1016_j_rser_2015_06_023 crossref_primary_10_1016_j_renene_2008_07_005 crossref_primary_10_1016_j_renene_2015_03_011 crossref_primary_10_1115_1_4032681 |
Cites_doi | 10.1139/l00-102 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright National Research Council of Canada Oct 2005 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright National Research Council of Canada Oct 2005 |
DBID | AAYXX CITATION IQODW 3V. 7ST 7UA 7XB 88I 8AF 8FD 8FE 8FG 8FK 8FQ 8FV ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M3G M7S PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
DOI | 10.1139/l05-029 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Canadian Business & Current Affairs Database Canadian Business & Current Affairs Database (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials eLibrary ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database CBCA Reference & Current Events Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials elibrary ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central CBCA Complete (Alumni Edition) ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection CBCA Complete ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition CBCA Reference & Current Events ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Water Resources Abstracts Technology Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1208-6029 |
EndPage | 795 |
ExternalDocumentID | 947958141 17368670 10_1139_l05_029 |
Genre | Article Feature |
GeographicLocations | Canada, Manitoba |
GeographicLocations_xml | – name: Canada, Manitoba |
GroupedDBID | 02 0R 1AW 29B 3V. 4.4 4IJ 4S 5GY 5RP 7XC 88I 8AF 8FE 8FG 8FH 8FQ 8RP AAIKC ABDBF ABJCF ABPTK ABUWG ACGFS ACGOD ACIWK ADKZR AENEX AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS AZQEC BCR BCU BEC BENPR BES BGLVJ BHPHI BLC BPHCQ CAG COF CS3 D8U DU5 DWQXO EAD EAP EAS EBS ECC EDH EDO EJD EMK EPL EST ESX GNUQQ HCIFZ HZ I-F IAO IEA IOF L6V L7B LA8 M2P M2Q M3C M3E M3G M7S MV1 N95 NRXXU O9- OVD P2P PATMY PEA PQEST PQQKQ PQUKI PRINS PROAC PTHSS PYCSY QF4 QM1 QN7 QO4 QRP RIG RRP SJFOW TAE TUS U5U X XHC -~X ..I .4S .DC 00T 0R~ 2QL 6J9 AAMNW AAYXX ABJNI ACGFO ACUHS AEGXH AEUYN AIAGR CCPQU CITATION DATHI HZ~ IPNFZ ONR PHGZM PHGZT PV9 RZL TEORI VQG ~02 AAYJJ ICQ IQODW ISN ISR ITC NMEPN NYCZX PQGLB RRCRK 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KR7 L.G PKEHL PUEGO Q9U SOI |
ID | FETCH-LOGICAL-c410t-cf0611e3b004fcd0b024b984149fc93f711ec9ddedcad8506c6b48d06d25bf1d3 |
IEDL.DBID | BENPR |
ISSN | 0315-1468 |
IngestDate | Fri Jul 11 03:27:42 EDT 2025 Fri Jul 11 11:34:17 EDT 2025 Sat Aug 23 12:49:27 EDT 2025 Mon Jul 21 09:15:43 EDT 2025 Tue Jul 01 01:58:13 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Wed Nov 11 00:34:40 EST 2020 Thu May 23 14:20:03 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Data analysis Efficiency Database Yield Mathematical model Forecast model Modeling Hydraulic turbine |
Language | English |
License | http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-cf0611e3b004fcd0b024b984149fc93f711ec9ddedcad8506c6b48d06d25bf1d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PQID | 213238294 |
PQPubID | 47617 |
PageCount | 7 |
ParticipantIDs | proquest_journals_213238294 crossref_citationtrail_10_1139_l05_029 crossref_primary_10_1139_l05_029 nrcresearch_primary_10_1139_l05_029 pascalfrancis_primary_17368670 proquest_miscellaneous_29924055 proquest_miscellaneous_17420432 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-10-01 |
PublicationDateYYYYMMDD | 2005-10-01 |
PublicationDate_xml | – month: 10 year: 2005 text: 2005-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Ottawa, Canada |
PublicationPlace_xml | – name: Ottawa, Canada – name: Ottawa, ON – name: Ottawa |
PublicationTitle | Canadian journal of civil engineering |
PublicationTitleAlternate | Canadian Journal of Civil Engineering |
PublicationYear | 2005 |
Publisher | NRC Research Press National Research Council of Canada Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: National Research Council of Canada – name: Canadian Science Publishing NRC Research Press |
References | Gordon J.L. (p_4/p_4_1) 2001; 28 |
References_xml | – volume: 28 start-page: 238 issue: 2 year: 2001 ident: p_4/p_4_1 publication-title: Canadian Journal of Civil Engineering doi: 10.1139/l00-102 |
SSID | ssj0010339 |
Score | 1.7153262 |
Snippet | Field performance testing of hydraulic turbines is undertaken to define the head-power-discharge relationship that identifies the peak operating point of the... |
SourceID | proquest pascalfrancis crossref nrcresearch |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 789 |
SubjectTerms | Applied sciences Buildings. Public works Computation methods. Tables. Charts Dams and subsidiary installations Energy Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Hydraulic constructions Hydraulic turbines Structural analysis. Stresses Turbines |
Title | An improved model for predicting the efficiency of hydraulic propeller turbines |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/l05-029 https://www.proquest.com/docview/213238294 https://www.proquest.com/docview/17420432 https://www.proquest.com/docview/29924055 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZSwMxEB7UvuiDeGI9akDxLbj38SQqVhE8EAXflmwOLJTddds--O-d2aaHVH3O7AYmycw3ycx8AKcI6X0PrSPXIgg5AXguokTxUIg0ShPEBIbqnR8eo7u34P49fLe5OQObVjmxiY2hVqWkO_JzD8MmP_HS4KL65EQaRY-rlkFjGVpogROMvVpXN4_PL60ZhUFDJUZMBpxqjMZVsy6invM-Ja01wHLmjtaKWtoeOx-UJCkGqCczJrhYsNWNA-puwLpFjuxyvNSbsKSLLVib6ye4DU-XBes1twRasYbjhiEmZVVNrzGU38wQ7jHddI2gkktWGvbxpWox6vckipX0FKNrhm4op3T4HXjr3rxe33HLmMBl4DpDLg26Z1f7dBaNVE6OHjhPkwDDICNT38Q4KFO0aEoKRb3qZJQHiXIi5YW5cZW_CytFWeg9YJ7J41QLHSuMAZWIhEEomKsg1q6jYq3acDZRXCZtO3FitehnTVjhpxlqOEMNt4FNBatxB41FkZM5zf8tdfyblB3NKmXa0PmxZrM_xX6URLHThoPJImb2rA6y6c7CCaajeMjo5UQUuhwN8PuAaoi9vyXQqyM2CsP9f2c4gNVJ61fHPYSVYT3SRwhqhnkHlpPubcdu4G9VG_nm |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcKvpStxSw1MfNIonz8gFVCLpdyqMXkLiljh8CaZVss7uq-FH9j8w4yS4VpTfOntjSeOz5Jp6ZD-AjQnoR4e3IrYoTTgCeqzQ3PFFKpjJHTOCo3vn0LB1dxN8vk8sV-NPXwlBaZX8n-ova1Jr-ke9GGDaJPJLxl8kvTqRR9LjaM2i0VnFsb35jxDbdOzrE7f0URcOv5wcj3pEKcB2HwYxrhx4stILM1WkTlOikSpnHGCk4LYXLcFBLPPRGK0Pt3HRaxrkJUhMlpQuNwHmfwFoshKQDlQ-_rS0JEzxxGfEmcKpoamt0Q8RYu2NKkfMwdun81qtGdx19riglU01xV1xLp3HPM3h3N9yA5x1OZfutYb2AFVu9hPU73QtfwY_9il37fxLWMM-owxABs0lDbz-UTc0QXDLre1RQgSerHbu6MY2aj681itX08GMbhk6vpOT713DxKKp8A6tVXdm3wCJXZtIqmxmMOI1KlUPgWZo4s2FgMmsG8LlXXKG75uXEoTEufBAjZIEaLlDDA2ALwUnbr-O-yIc7mn9YaudfUt1oMTFuANt_7dlypkykeZoFA9jsN7HoboZpsbBjXGAxikea3mlUZev5FL-PqWI5elgCMQQisSR5998VduDp6Pz0pDg5OjvehGd909kgfA-rs2ZutxBOzcptb8QMfj72qbkFOEw1ow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZTxtBDLZoIqHmAZVC1ZQWRgL6Nsrex0OFuCKOElAFEm_b2TkEUrQbNokQP41_h71HAqL0jefx7koej_15x_YHsIWQ3nXQO3ItPJ8TgOciiBT3hYiDOEJMYKjf-WwQHF15J9f-9QI8Nr0wVFbZ-MTSUatc0j_ynoNpkxs5sdczdVXExUF_Z3THiUCKLlobNo3KQk71wz1mb-Nfxwe41duO0z-83D_iNcEAl55tTbg0GM1s7ZLpGqmsFANWGkceZg1Gxq4JcVHG6ACUFIpGu8kg9SJlBcrxU2MrF9_7AdohJkVWC9p7h4OLP-05fUJJY0YsCpz6m6qOXRsRV29IBXMlqJ2Hwk5WyHq-zw0VaIox7pGpyDVexYky-PU_wVKNWtluZWbLsKCzz9B5NstwBc53M3Zb_qHQipX8OgzxMBsVdBNEtdUMoSbT5cQKavdkuWE3D6oQ0-GtRLGcroF0wTAEplSKvwpX76LML9DK8kx_BeaYNIy10KHC_FOJQBiEoanyQm1bKtSqCz8bxSWyHmVOjBrDpExp3DhBDSeo4S6wmeComt7xWmTzmebfltr4l1S9moyU6cL6iz2bvyl0gygIrS6sNZuY1H5inMysGj8wW8UDTrc2ItP5dIzPe9S_7LwtgYgCcZnvf_vvFzZgEU9M8vt4cLoGH5sJtJb9HVqTYqp_ILaapOu1FTP4-94H5wl_Gjs1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+model+for+predicting+the+efficiency+of+hydraulic+propeller+turbines&rft.jtitle=Canadian+journal+of+civil+engineering&rft.au=Manness%2C+Jessica&rft.au=Doering%2C+Jay&rft.date=2005-10-01&rft.issn=0315-1468&rft.eissn=1208-6029&rft.volume=32&rft.issue=5&rft.spage=789&rft.epage=795&rft_id=info:doi/10.1139%2Fl05-029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1139_l05_029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0315-1468&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0315-1468&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0315-1468&client=summon |