Comparison of methods for analyzing longitudinal binary outcomes: cognitive status as an example

Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences of parameters. In the example used here, standard logistic regression, a population-averaged (PA) model fit using generalized estimating equ...

Full description

Saved in:
Bibliographic Details
Published inAging & mental health Vol. 7; no. 6; pp. 462 - 468
Main Authors Kuchibhatla, M., Fillenbaum, G. G.
Format Journal Article
LanguageEnglish
Published England BrunnerRoutledge 01.11.2003
Subjects
Online AccessGet full text
ISSN1360-7863
1364-6915
DOI10.1080/13607860310001594727

Cover

Abstract Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences of parameters. In the example used here, standard logistic regression, a population-averaged (PA) model fit using generalized estimating equations (GEE), and random-intercept models are used to model binary outcomes at baseline, three and six years later. The outcomes indicate cognitive impairment versus no cognitive impairment in a sample of community dwelling elders. The models include both time-invariant (age, gender) and time-varying (time, interactions with time) covariates. The absolute estimates from random-intercept models are larger than those of both standard logistic and GEE models. Compared to the model fit using GEE that accounts for time dependency, standard logistic regression models overestimate standard errors of time-varying covariates (such as time, and time by problems with activities of daily living), and underestimate the standard errors of time-invariant covariates (such as age and gender). The standard errors from the random-intercept model are larger than those from logistic regression and GEE models. The choice of models, GEE or random-intercept, depends on the research question and the nature of the covariates. Population-averaged methods are appropriate when between-subjects effects are of interest, and random-effects are useful when subject-specific effects are important.
AbstractList Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences of parameters. In the example used here, standard logistic regression, a population-averaged (PA) model fit using generalized estimating equations (GEE), and random-intercept models are used to model binary outcomes at baseline, three and six years later. The outcomes indicate cognitive impairment versus no cognitive impairment in a sample of community dwelling elders. The models include both time-invariant (age, gender) and time-varying (time, interactions with time) covariates. The absolute estimates from random-intercept models are larger than those of both standard logistic and GEE models. Compared to the model fit using GEE that accounts for time dependency, standard logistic regression models overestimate standard errors of time-varying covariates (such as time, and time by problems with activities of daily living), and underestimate the standard errors of time-invariant covariates (such as age and gender). The standard errors from the random-intercept model are larger than those from logistic regression and GEE models. The choice of models, GEE or random-intercept, depends on the research question and the nature of the covariates. Population-averaged methods are appropriate when between-subjects effects are of interest, and random-effects are useful when subject-specific effects are important.
Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences of parameters. In the example used here, standard logistic regression, a population-averaged (PA) model fit using generalized estimating equations (GEE), and random-intercept models are used to model binary outcomes at baseline, three and six years later. The outcomes indicate cognitive impairment versus no cognitive impairment in a sample of community dwelling elders. The models include both time-invariant (age, gender) and time-varying (time, interactions with time) covariates. The absolute estimates from random-intercept models are larger than those of both standard logistic and GEE models. Compared to the model fit using GEE that accounts for time dependency, standard logistic regression models overestimate standard errors of time-varying covariates (such as time, and time by problems with activities of daily living), and underestimate the standard errors of time-invariant covariates (such as age and gender). The standard errors from the random-intercept model are larger than those from logistic regression and GEE models. The choice of models, GEE or random-intercept, depends on the research question and the nature of the covariates. Population-averaged methods are appropriate when between-subjects effects are of interest, and random-effects are useful when subject-specific effects are important.Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences of parameters. In the example used here, standard logistic regression, a population-averaged (PA) model fit using generalized estimating equations (GEE), and random-intercept models are used to model binary outcomes at baseline, three and six years later. The outcomes indicate cognitive impairment versus no cognitive impairment in a sample of community dwelling elders. The models include both time-invariant (age, gender) and time-varying (time, interactions with time) covariates. The absolute estimates from random-intercept models are larger than those of both standard logistic and GEE models. Compared to the model fit using GEE that accounts for time dependency, standard logistic regression models overestimate standard errors of time-varying covariates (such as time, and time by problems with activities of daily living), and underestimate the standard errors of time-invariant covariates (such as age and gender). The standard errors from the random-intercept model are larger than those from logistic regression and GEE models. The choice of models, GEE or random-intercept, depends on the research question and the nature of the covariates. Population-averaged methods are appropriate when between-subjects effects are of interest, and random-effects are useful when subject-specific effects are important.
Author Fillenbaum, G. G.
Kuchibhatla, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Kuchibhatla
  fullname: Kuchibhatla, M.
  email: mnk@geri.duke.edu
– sequence: 2
  givenname: G. G.
  surname: Fillenbaum
  fullname: Fillenbaum, G. G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14578008$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtKAzEUhoNU7EXfQCQrd6PJJJlLNyLFGwhudD2mmUyNZJKaZLT16U1tRZCiQkjC4fvO4fxD0DPWSAAOMTrBqECnmGQoLzJEMEIIs5Lmab4DBrFMk6zErPf5R0lkSB8MvX9ecRRne6CPKcsLhIoBeJzYds6d8tZA28BWhidbe9hYB7nhevmuzAxqa2YqdLWKFTiNt1tC2wVhW-nHUNiZUUG9SugDD52HPB4D5YK3cy33wW7DtZcHm3cEHi4v7ifXye3d1c3k_DYRFKOQCI6KFBdM1inHkrEpK-q8KQRuuGCkSbM6L2WZ5ilNCWO0LLFYbUcI4VmGBCEjcLzuO3f2pZM-VK3yQmrNjbSdr3JMSIoIjeDRBuymrayruVNtXKj6yiQCdA0IZ713svlGULWKvtoWfdTGPzShYh7KmuC40v-UlYnRt_zNOl1XgS-1dY3jRii_VazCIkT57E-Z_Dr-A3tvrds
CitedBy_id crossref_primary_10_1016_j_lansea_2023_100185
crossref_primary_10_1186_s12889_017_4865_8
crossref_primary_10_1088_1742_6596_1592_1_012077
crossref_primary_10_1080_13607860500090102
crossref_primary_10_1002_gps_1062
crossref_primary_10_1016_j_trip_2021_100326
crossref_primary_10_1080_02664763_2011_578619
crossref_primary_10_3390_risks7040123
crossref_primary_10_1111_j_1360_0443_2007_01940_x
crossref_primary_10_1016_j_amepre_2009_01_025
crossref_primary_10_5153_sro_2049
crossref_primary_10_1097_OLQ_0b013e3181c71d61
crossref_primary_10_1080_03610910701539617
Cites_doi 10.1214/ss/1177010899
10.2307/2986113
10.1037/10409-012
10.1002/(SICI)1097-0258(19990130)18:2<213::AID-SIM999>3.0.CO;2-E
10.1002/sim.1241
10.2307/2531147
10.2307/2529876
10.2307/1403572
10.2307/1403425
10.1080/01621459.1995.10476615
10.1111/j.0006-341X.2000.00528.x
10.1177/096228029200100303
10.1002/(SICI)1097-0258(20000530)19:10<1265::AID-SIM486>3.0.CO;2-U
10.1093/biomet/73.1.13
10.1111/j.1532-5415.1975.tb00927.x
10.1111/j.0006-341X.2001.00120.x
10.2307/2533548
10.1080/01621459.1995.10476493
10.1093/biomet/82.4.805
10.1002/sim.4780070131
10.1002/(SICI)1097-0258(20000530)19:10<1277::AID-SIM494>3.0.CO;2-S
10.2190/UURL-2RYU-WRYD-EY3K
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2003
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2003
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/13607860310001594727
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Psychology
EISSN 1364-6915
EndPage 468
ExternalDocumentID 14578008
10_1080_13607860310001594727
9610363
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Comparative Study
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: 5P60 AG11268-09
– fundername: NIA NIH HHS
  grantid: 5R37-AG08937
– fundername: NIA NIH HHS
  grantid: N01-AG-1-2102
– fundername: NIMH NIH HHS
  grantid: 5R01-MH-057027-05
GroupedDBID ---
-~X
.7I
.QK
04C
0BK
0R~
23M
2DF
36B
4.4
4H-
53G
5GY
5VS
6PF
AAGZJ
AAIFK
AAMFJ
AAMIU
AAPUL
AATTQ
AAWTL
AAZMC
ABCCY
ABDBF
ABFIM
ABITY
ABIVO
ABJNI
ABLIJ
ABLUQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYAV
ABZLS
ACGEJ
ACGFS
ACHQT
ACTIO
ACTOA
ADAHI
ADBBV
ADCVX
ADKVQ
ADOJX
ADXPE
ADZJE
AECIN
AEISY
AEKEX
AEMXT
AENEX
AEOZL
AEPSL
AEYOC
AEZRU
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BMSDO
BOHLJ
CAG
CCCUG
COF
CQ1
CS3
DAOCQ
DGFLZ
DKSSO
DTEEQ
DYOWO
EAP
EAS
EBS
ECF
ECT
ECV
EHN
EIHBH
EJD
EMB
EMK
ENB
ENC
ENX
EPS
ESI
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HVGLF
HZ~
IPNFZ
J.O
KSSTO
KYCEM
LGLTD
M4Z
NA5
O9-
P2P
PPYGK
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
SV3
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TNJ
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
WQ9
~01
~S~
AACLK
AAGDL
AAHIA
AAYXX
ADYSH
AEFOU
AFRVT
AIYEW
AMPGV
CITATION
AFUSO
CGR
CUY
CVF
ECM
EIF
HF~
LJTGL
NPM
7X8
TASJS
ID FETCH-LOGICAL-c410t-ca082185ed2a1e55b58d7f8c1fac53f26d79e9272423554991c1360333a660c33
ISSN 1360-7863
IngestDate Fri Sep 05 07:43:57 EDT 2025
Wed Apr 30 01:57:43 EDT 2025
Tue Jul 01 02:24:33 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Wed Dec 25 09:02:30 EST 2024
Mon May 13 12:08:31 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-ca082185ed2a1e55b58d7f8c1fac53f26d79e9272423554991c1360333a660c33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 14578008
PQID 71332034
PQPubID 23479
PageCount 7
ParticipantIDs crossref_primary_10_1080_13607860310001594727
informaworld_taylorfrancis_310_1080_13607860310001594727
pubmed_primary_14578008
proquest_miscellaneous_71332034
crossref_citationtrail_10_1080_13607860310001594727
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 11/1/2003
2003-11-01
2003-Nov
20031101
PublicationDateYYYYMMDD 2003-11-01
PublicationDate_xml – month: 11
  year: 2003
  text: 11/1/2003
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Aging & mental health
PublicationTitleAlternate Aging Ment Health
PublicationYear 2003
Publisher BrunnerRoutledge
Publisher_xml – name: BrunnerRoutledge
References Bryk A.S. (bib1) 1992
Little R.J.A. (bib14) 1987
bib15
bib12
bib13
bib11
bib30
bib31
(bib26) 2001
Diggle P.J. (bib6) 1996
bib29
bib28
Davidian M. (bib4) 1992
bib25
Cornoni-Huntley J. (bib3) 1990
bib23
bib24
bib21
bib22
Hosmer D.W. (bib10) 1989
bib20
bib9
bib7
bib8
bib5
bib18
bib19
bib16
bib17
bib2
Schafer J.L. (bib27) 2000
References_xml – volume-title: Statistical analysis with missing data
  year: 1987
  ident: bib14
– ident: bib8
  doi: 10.1214/ss/1177010899
– ident: bib5
  doi: 10.2307/2986113
– volume-title: Analysis of incomplete multivariate data
  year: 2000
  ident: bib27
– ident: bib28
  doi: 10.1037/10409-012
– ident: bib9
  doi: 10.1002/(SICI)1097-0258(19990130)18:2<213::AID-SIM999>3.0.CO;2-E
– ident: bib23
  doi: 10.1002/sim.1241
– year: 1990
  ident: bib3
  publication-title: Resource data book
– volume-title: Applied logistic regression
  year: 1989
  ident: bib10
– ident: bib29
  doi: 10.2307/2531147
– ident: bib13
  doi: 10.2307/2529876
– volume-title: Hierarchical linear models
  year: 1992
  ident: bib1
– ident: bib18
  doi: 10.2307/1403572
– volume-title: Stata Statistical Software: Release 7.0
  year: 2001
  ident: bib26
– ident: bib21
  doi: 10.2307/1403425
– ident: bib15
  doi: 10.1080/01621459.1995.10476615
– ident: bib17
  doi: 10.1111/j.0006-341X.2000.00528.x
– ident: bib19
  doi: 10.1177/096228029200100303
– ident: bib31
  doi: 10.1002/(SICI)1097-0258(20000530)19:10<1265::AID-SIM486>3.0.CO;2-U
– ident: bib7
– ident: bib16
  doi: 10.1093/biomet/73.1.13
– ident: bib22
  doi: 10.1111/j.1532-5415.1975.tb00927.x
– ident: bib20
  doi: 10.1111/j.0006-341X.2001.00120.x
– ident: bib30
  doi: 10.2307/2533548
– ident: bib24
  doi: 10.1080/01621459.1995.10476493
– ident: bib25
  doi: 10.1093/biomet/82.4.805
– volume-title: Analysis of longitudinal data
  year: 1996
  ident: bib6
– start-page: 27695
  volume-title: Department of Statistics, Technical Report, North Carolina State University
  year: 1992
  ident: bib4
– ident: bib12
  doi: 10.1002/sim.4780070131
– ident: bib2
  doi: 10.1002/(SICI)1097-0258(20000530)19:10<1277::AID-SIM494>3.0.CO;2-S
– ident: bib11
  doi: 10.2190/UURL-2RYU-WRYD-EY3K
SSID ssj0001416
Score 1.7174681
Snippet Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 462
SubjectTerms Aged
Cognition Disorders - diagnosis
Cognition Disorders - epidemiology
Female
Humans
Logistic Models
Longitudinal Studies
Male
Research Design
Surveys and Questionnaires
Title Comparison of methods for analyzing longitudinal binary outcomes: cognitive status as an example
URI https://www.tandfonline.com/doi/abs/10.1080/13607860310001594727
https://www.ncbi.nlm.nih.gov/pubmed/14578008
https://www.proquest.com/docview/71332034
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk9BeJhi3blz8wBtKSeJLHN6mCagmlQfUSXsLtuPAQ0mmNZG2_fodx86lKAyYFEWt1fSkOV-PPx-fC0LvOMslFWkUKBmygCotAilDHajYwHwoCs3bYs_Lr3xxRk_P2fmQQtBml9Rqrm8m80ruo1UYA73aLNn_0Gz_pTAAr0G_cAYNw_mfdHwybiLom0FvfFykXF_fWDfAurIdiZq87X6lXPZt1dRwOy4abogfsrlFzcY2npG28r-0dYPH3PX4h3Mr8Pe_xjmUw2aQ_mnbW9frlo8u5z00bLphqaTrqPxlDseWr4H4pLveoXbZ2H5g27FKzm4SbgMTva0y3RgNeOqyNTtjm4wwNTac1Ntk49-JSfPu4iGtMJAVtnsTQMdo4soL_FY4OwVmSDh5iHbjJLFb-Lurb6eLRT9PR7RtjNvfepdYKcIPUxK2iMtWWds_L05akrJ6jPb96gIfO6g8QQ9MeYAeLX38xAHa6-e766fo-wAfXBXYwweDRNzDB4_hgx18cAefj7gHD3bgwRKOEnvwPENnnz-tThaBb7gRaBqFdaAlEEIgcCaPZWQYU0zkSSF0VEjNSBHzPElNGieWgzPrWIi0fVKEEMl5qAl5jnbKqjQvEU5FqBjXcSFUThUjinKmCZDtSFJYlOQzRLqnmWlfjd42RVlnkS9aO6WDGQr6qy5cNZa_fJ6MFZXVrRescC1rJq_I6qt6hsQdV5G7Bb7toJCBnbabb7I0VbPJrDMoDgmdoRcOIcMPoDBrAhU_vL_YI7Q3_F1foZ36sjGvgSzX6o1H_S18abaR
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwEB5BK0EvLGXpY6sPXF3ieHkJN1RRhdLXA3qVuAXbcS6tEkQSqe2vZyYbFLVFAimHHDJJJvEsHo-_D-Ct0YVVSSq4s5HmyvmEWxt57uKA8TApvenBnlfHJjtRh1_11E3YjG2VNIcuB6CI3leTcVMxemqJeyekwchG_Mj9VuBUYRC-C5t4ItE2N9dfDrNsdsdC9fynJMNRSE775264z5X4dAW99OYctI9FBw_BTVoMLSine13r9vzlHwCP_6XmI3gwZqrswzC0HsOdUG3DvdW4Fr8NW7PvvHgC3_ZnPkNWl2zgpW4YqsUswZ5cYoRkZzWRI3UFEXEx128EZnXX4luF5j2bG5kYbXLqGmbxqFg4twRg_BRODj6u9zM-kjdwr0TUcm8xucBkIBSxFUFrp5NiWSZelNZrWcamWKYhjZeUz2mapApP-koprTGRl_IZbFR1FXaApUnktPFxmbhCOS2dMtpLTNyExdlpWixATr8s9yOyORFsnOViBEC97ksugM9S3wdkj79cL38fDXnbV1TKgf7kWom8PW8XkNwiJW9_4O403nK0eVrIsVWouyanwkIcSbWA58Mw_KWAQg-Mad2Lf3_sLtzP1quj_OjT8eeXsDU0L1LJ6RVstD-68BqTsNa9Gc3sJ3tCIOc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRUJcWqAt3ULBh15N4_ixSW8VdLWlBVUVSNxS27EvoASxiQT8ejx58RAPqZVyzMSZZDwztme-D-CzkrkWScqo0ZGkwtiEah1ZamIX4mHirWrAng8O1exY7J_Ikztd_FhWiWto3wJFNL4aJ_d57vuKuC-MqxDYkB656QRORYjBr2BRYdPoCBaP_uzPZoM3ZqKhP0UZGoR43z73xHPuhad74KVPp6BNKJq-Ad0r0VagnO7Uldmx1w_wHf9HyxV43eWp5FtrWKuw4Io1WDroTuLXYHnwnFdv4e_uwGZISk9aVuo5CVoRjaAn1yE-krMSqZHqHGm4iGnagElZV-Gl3PwrGcqYCLY41XOiw1UQd6kRvvgdHE-_H-3OaEfdQK1gUUWtDqlFSAVcHmvmpDQyySc-scxrK7mPVT5JXRpPMJuTuERlFvXlnGulIsv5exgVZeE-AEmTyEhlY5-YXBjJjVDS8pC2MR3Wpmk-Bt7_scx2uOZIr3GWsQ7-9LEvOQY6SJ23uB4v3M_vGkNWNfspviU_eVQiqy6rMSTPSPHnB9zuzS0LMx6PcXThynqe4bZCHHExhvXWCm8VEMH_hqTu478Puw1Lv_em2a8fhz83YLmtXMT9pk0YVRe1-xQysMpsdZPsBr99H4s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+methods+for+analyzing+longitudinal+binary+outcomes%3A+cognitive+status+as+an+example&rft.jtitle=Aging+%26+mental+health&rft.au=Kuchibhatla%2C+M.&rft.au=Fillenbaum%2C+G.+G.&rft.date=2003-11-01&rft.pub=BrunnerRoutledge&rft.issn=1360-7863&rft.eissn=1364-6915&rft.volume=7&rft.issue=6&rft.spage=462&rft.epage=468&rft_id=info:doi/10.1080%2F13607860310001594727&rft.externalDocID=9610363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-7863&client=summon