Comparison of methods for analyzing longitudinal binary outcomes: cognitive status as an example
Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences of parameters. In the example used here, standard logistic regression, a population-averaged (PA) model fit using generalized estimating equ...
Saved in:
Published in | Aging & mental health Vol. 7; no. 6; pp. 462 - 468 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
BrunnerRoutledge
01.11.2003
|
Subjects | |
Online Access | Get full text |
ISSN | 1360-7863 1364-6915 |
DOI | 10.1080/13607860310001594727 |
Cover
Abstract | Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences of parameters. In the example used here, standard logistic regression, a population-averaged (PA) model fit using generalized estimating equations (GEE), and random-intercept models are used to model binary outcomes at baseline, three and six years later. The outcomes indicate cognitive impairment versus no cognitive impairment in a sample of community dwelling elders. The models include both time-invariant (age, gender) and time-varying (time, interactions with time) covariates. The absolute estimates from random-intercept models are larger than those of both standard logistic and GEE models. Compared to the model fit using GEE that accounts for time dependency, standard logistic regression models overestimate standard errors of time-varying covariates (such as time, and time by problems with activities of daily living), and underestimate the standard errors of time-invariant covariates (such as age and gender). The standard errors from the random-intercept model are larger than those from logistic regression and GEE models. The choice of models, GEE or random-intercept, depends on the research question and the nature of the covariates. Population-averaged methods are appropriate when between-subjects effects are of interest, and random-effects are useful when subject-specific effects are important. |
---|---|
AbstractList | Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences of parameters. In the example used here, standard logistic regression, a population-averaged (PA) model fit using generalized estimating equations (GEE), and random-intercept models are used to model binary outcomes at baseline, three and six years later. The outcomes indicate cognitive impairment versus no cognitive impairment in a sample of community dwelling elders. The models include both time-invariant (age, gender) and time-varying (time, interactions with time) covariates. The absolute estimates from random-intercept models are larger than those of both standard logistic and GEE models. Compared to the model fit using GEE that accounts for time dependency, standard logistic regression models overestimate standard errors of time-varying covariates (such as time, and time by problems with activities of daily living), and underestimate the standard errors of time-invariant covariates (such as age and gender). The standard errors from the random-intercept model are larger than those from logistic regression and GEE models. The choice of models, GEE or random-intercept, depends on the research question and the nature of the covariates. Population-averaged methods are appropriate when between-subjects effects are of interest, and random-effects are useful when subject-specific effects are important. Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences of parameters. In the example used here, standard logistic regression, a population-averaged (PA) model fit using generalized estimating equations (GEE), and random-intercept models are used to model binary outcomes at baseline, three and six years later. The outcomes indicate cognitive impairment versus no cognitive impairment in a sample of community dwelling elders. The models include both time-invariant (age, gender) and time-varying (time, interactions with time) covariates. The absolute estimates from random-intercept models are larger than those of both standard logistic and GEE models. Compared to the model fit using GEE that accounts for time dependency, standard logistic regression models overestimate standard errors of time-varying covariates (such as time, and time by problems with activities of daily living), and underestimate the standard errors of time-invariant covariates (such as age and gender). The standard errors from the random-intercept model are larger than those from logistic regression and GEE models. The choice of models, GEE or random-intercept, depends on the research question and the nature of the covariates. Population-averaged methods are appropriate when between-subjects effects are of interest, and random-effects are useful when subject-specific effects are important.Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences of parameters. In the example used here, standard logistic regression, a population-averaged (PA) model fit using generalized estimating equations (GEE), and random-intercept models are used to model binary outcomes at baseline, three and six years later. The outcomes indicate cognitive impairment versus no cognitive impairment in a sample of community dwelling elders. The models include both time-invariant (age, gender) and time-varying (time, interactions with time) covariates. The absolute estimates from random-intercept models are larger than those of both standard logistic and GEE models. Compared to the model fit using GEE that accounts for time dependency, standard logistic regression models overestimate standard errors of time-varying covariates (such as time, and time by problems with activities of daily living), and underestimate the standard errors of time-invariant covariates (such as age and gender). The standard errors from the random-intercept model are larger than those from logistic regression and GEE models. The choice of models, GEE or random-intercept, depends on the research question and the nature of the covariates. Population-averaged methods are appropriate when between-subjects effects are of interest, and random-effects are useful when subject-specific effects are important. |
Author | Fillenbaum, G. G. Kuchibhatla, M. |
Author_xml | – sequence: 1 givenname: M. surname: Kuchibhatla fullname: Kuchibhatla, M. email: mnk@geri.duke.edu – sequence: 2 givenname: G. G. surname: Fillenbaum fullname: Fillenbaum, G. G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14578008$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkMtKAzEUhoNU7EXfQCQrd6PJJJlLNyLFGwhudD2mmUyNZJKaZLT16U1tRZCiQkjC4fvO4fxD0DPWSAAOMTrBqECnmGQoLzJEMEIIs5Lmab4DBrFMk6zErPf5R0lkSB8MvX9ecRRne6CPKcsLhIoBeJzYds6d8tZA28BWhidbe9hYB7nhevmuzAxqa2YqdLWKFTiNt1tC2wVhW-nHUNiZUUG9SugDD52HPB4D5YK3cy33wW7DtZcHm3cEHi4v7ifXye3d1c3k_DYRFKOQCI6KFBdM1inHkrEpK-q8KQRuuGCkSbM6L2WZ5ilNCWO0LLFYbUcI4VmGBCEjcLzuO3f2pZM-VK3yQmrNjbSdr3JMSIoIjeDRBuymrayruVNtXKj6yiQCdA0IZ713svlGULWKvtoWfdTGPzShYh7KmuC40v-UlYnRt_zNOl1XgS-1dY3jRii_VazCIkT57E-Z_Dr-A3tvrds |
CitedBy_id | crossref_primary_10_1016_j_lansea_2023_100185 crossref_primary_10_1186_s12889_017_4865_8 crossref_primary_10_1088_1742_6596_1592_1_012077 crossref_primary_10_1080_13607860500090102 crossref_primary_10_1002_gps_1062 crossref_primary_10_1016_j_trip_2021_100326 crossref_primary_10_1080_02664763_2011_578619 crossref_primary_10_3390_risks7040123 crossref_primary_10_1111_j_1360_0443_2007_01940_x crossref_primary_10_1016_j_amepre_2009_01_025 crossref_primary_10_5153_sro_2049 crossref_primary_10_1097_OLQ_0b013e3181c71d61 crossref_primary_10_1080_03610910701539617 |
Cites_doi | 10.1214/ss/1177010899 10.2307/2986113 10.1037/10409-012 10.1002/(SICI)1097-0258(19990130)18:2<213::AID-SIM999>3.0.CO;2-E 10.1002/sim.1241 10.2307/2531147 10.2307/2529876 10.2307/1403572 10.2307/1403425 10.1080/01621459.1995.10476615 10.1111/j.0006-341X.2000.00528.x 10.1177/096228029200100303 10.1002/(SICI)1097-0258(20000530)19:10<1265::AID-SIM486>3.0.CO;2-U 10.1093/biomet/73.1.13 10.1111/j.1532-5415.1975.tb00927.x 10.1111/j.0006-341X.2001.00120.x 10.2307/2533548 10.1080/01621459.1995.10476493 10.1093/biomet/82.4.805 10.1002/sim.4780070131 10.1002/(SICI)1097-0258(20000530)19:10<1277::AID-SIM494>3.0.CO;2-S 10.2190/UURL-2RYU-WRYD-EY3K |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2003 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2003 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1080/13607860310001594727 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Psychology |
EISSN | 1364-6915 |
EndPage | 468 |
ExternalDocumentID | 14578008 10_1080_13607860310001594727 9610363 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Comparative Study |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: 5P60 AG11268-09 – fundername: NIA NIH HHS grantid: 5R37-AG08937 – fundername: NIA NIH HHS grantid: N01-AG-1-2102 – fundername: NIMH NIH HHS grantid: 5R01-MH-057027-05 |
GroupedDBID | --- -~X .7I .QK 04C 0BK 0R~ 23M 2DF 36B 4.4 4H- 53G 5GY 5VS 6PF AAGZJ AAIFK AAMFJ AAMIU AAPUL AATTQ AAWTL AAZMC ABCCY ABDBF ABFIM ABITY ABIVO ABJNI ABLIJ ABLUQ ABPEM ABTAI ABXUL ABXYU ABYAV ABZLS ACGEJ ACGFS ACHQT ACTIO ACTOA ADAHI ADBBV ADCVX ADKVQ ADOJX ADXPE ADZJE AECIN AEISY AEKEX AEMXT AENEX AEOZL AEPSL AEYOC AEZRU AGDLA AGMYJ AGRBW AHDZW AIJEM AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BMSDO BOHLJ CAG CCCUG COF CQ1 CS3 DAOCQ DGFLZ DKSSO DTEEQ DYOWO EAP EAS EBS ECF ECT ECV EHN EIHBH EJD EMB EMK ENB ENC ENX EPS ESI ESX E~B E~C F5P FEDTE G-F GTTXZ H13 HVGLF HZ~ IPNFZ J.O KSSTO KYCEM LGLTD M4Z NA5 O9- P2P PPYGK RIG RNANH ROSJB RSYQP S-F STATR SV3 TBQAZ TDBHL TEH TFH TFL TFW TNJ TNTFI TRJHH TUROJ UT5 UT9 VAE WQ9 ~01 ~S~ AACLK AAGDL AAHIA AAYXX ADYSH AEFOU AFRVT AIYEW AMPGV CITATION AFUSO CGR CUY CVF ECM EIF HF~ LJTGL NPM 7X8 TASJS |
ID | FETCH-LOGICAL-c410t-ca082185ed2a1e55b58d7f8c1fac53f26d79e9272423554991c1360333a660c33 |
ISSN | 1360-7863 |
IngestDate | Fri Sep 05 07:43:57 EDT 2025 Wed Apr 30 01:57:43 EDT 2025 Tue Jul 01 02:24:33 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Wed Dec 25 09:02:30 EST 2024 Mon May 13 12:08:31 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c410t-ca082185ed2a1e55b58d7f8c1fac53f26d79e9272423554991c1360333a660c33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 14578008 |
PQID | 71332034 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1080_13607860310001594727 informaworld_taylorfrancis_310_1080_13607860310001594727 pubmed_primary_14578008 proquest_miscellaneous_71332034 crossref_citationtrail_10_1080_13607860310001594727 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 11/1/2003 2003-11-01 2003-Nov 20031101 |
PublicationDateYYYYMMDD | 2003-11-01 |
PublicationDate_xml | – month: 11 year: 2003 text: 11/1/2003 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Aging & mental health |
PublicationTitleAlternate | Aging Ment Health |
PublicationYear | 2003 |
Publisher | BrunnerRoutledge |
Publisher_xml | – name: BrunnerRoutledge |
References | Bryk A.S. (bib1) 1992 Little R.J.A. (bib14) 1987 bib15 bib12 bib13 bib11 bib30 bib31 (bib26) 2001 Diggle P.J. (bib6) 1996 bib29 bib28 Davidian M. (bib4) 1992 bib25 Cornoni-Huntley J. (bib3) 1990 bib23 bib24 bib21 bib22 Hosmer D.W. (bib10) 1989 bib20 bib9 bib7 bib8 bib5 bib18 bib19 bib16 bib17 bib2 Schafer J.L. (bib27) 2000 |
References_xml | – volume-title: Statistical analysis with missing data year: 1987 ident: bib14 – ident: bib8 doi: 10.1214/ss/1177010899 – ident: bib5 doi: 10.2307/2986113 – volume-title: Analysis of incomplete multivariate data year: 2000 ident: bib27 – ident: bib28 doi: 10.1037/10409-012 – ident: bib9 doi: 10.1002/(SICI)1097-0258(19990130)18:2<213::AID-SIM999>3.0.CO;2-E – ident: bib23 doi: 10.1002/sim.1241 – year: 1990 ident: bib3 publication-title: Resource data book – volume-title: Applied logistic regression year: 1989 ident: bib10 – ident: bib29 doi: 10.2307/2531147 – ident: bib13 doi: 10.2307/2529876 – volume-title: Hierarchical linear models year: 1992 ident: bib1 – ident: bib18 doi: 10.2307/1403572 – volume-title: Stata Statistical Software: Release 7.0 year: 2001 ident: bib26 – ident: bib21 doi: 10.2307/1403425 – ident: bib15 doi: 10.1080/01621459.1995.10476615 – ident: bib17 doi: 10.1111/j.0006-341X.2000.00528.x – ident: bib19 doi: 10.1177/096228029200100303 – ident: bib31 doi: 10.1002/(SICI)1097-0258(20000530)19:10<1265::AID-SIM486>3.0.CO;2-U – ident: bib7 – ident: bib16 doi: 10.1093/biomet/73.1.13 – ident: bib22 doi: 10.1111/j.1532-5415.1975.tb00927.x – ident: bib20 doi: 10.1111/j.0006-341X.2001.00120.x – ident: bib30 doi: 10.2307/2533548 – ident: bib24 doi: 10.1080/01621459.1995.10476493 – ident: bib25 doi: 10.1093/biomet/82.4.805 – volume-title: Analysis of longitudinal data year: 1996 ident: bib6 – start-page: 27695 volume-title: Department of Statistics, Technical Report, North Carolina State University year: 1992 ident: bib4 – ident: bib12 doi: 10.1002/sim.4780070131 – ident: bib2 doi: 10.1002/(SICI)1097-0258(20000530)19:10<1277::AID-SIM494>3.0.CO;2-S – ident: bib11 doi: 10.2190/UURL-2RYU-WRYD-EY3K |
SSID | ssj0001416 |
Score | 1.7174681 |
Snippet | Longitudinal data generate correlated observations. Ignoring correlation can lead to incorrect estimation of standard errors, resulting in incorrect inferences... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 462 |
SubjectTerms | Aged Cognition Disorders - diagnosis Cognition Disorders - epidemiology Female Humans Logistic Models Longitudinal Studies Male Research Design Surveys and Questionnaires |
Title | Comparison of methods for analyzing longitudinal binary outcomes: cognitive status as an example |
URI | https://www.tandfonline.com/doi/abs/10.1080/13607860310001594727 https://www.ncbi.nlm.nih.gov/pubmed/14578008 https://www.proquest.com/docview/71332034 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk9BeJhi3blz8wBtKSeJLHN6mCagmlQfUSXsLtuPAQ0mmNZG2_fodx86lKAyYFEWt1fSkOV-PPx-fC0LvOMslFWkUKBmygCotAilDHajYwHwoCs3bYs_Lr3xxRk_P2fmQQtBml9Rqrm8m80ruo1UYA73aLNn_0Gz_pTAAr0G_cAYNw_mfdHwybiLom0FvfFykXF_fWDfAurIdiZq87X6lXPZt1dRwOy4abogfsrlFzcY2npG28r-0dYPH3PX4h3Mr8Pe_xjmUw2aQ_mnbW9frlo8u5z00bLphqaTrqPxlDseWr4H4pLveoXbZ2H5g27FKzm4SbgMTva0y3RgNeOqyNTtjm4wwNTac1Ntk49-JSfPu4iGtMJAVtnsTQMdo4soL_FY4OwVmSDh5iHbjJLFb-Lurb6eLRT9PR7RtjNvfepdYKcIPUxK2iMtWWds_L05akrJ6jPb96gIfO6g8QQ9MeYAeLX38xAHa6-e766fo-wAfXBXYwweDRNzDB4_hgx18cAefj7gHD3bgwRKOEnvwPENnnz-tThaBb7gRaBqFdaAlEEIgcCaPZWQYU0zkSSF0VEjNSBHzPElNGieWgzPrWIi0fVKEEMl5qAl5jnbKqjQvEU5FqBjXcSFUThUjinKmCZDtSFJYlOQzRLqnmWlfjd42RVlnkS9aO6WDGQr6qy5cNZa_fJ6MFZXVrRescC1rJq_I6qt6hsQdV5G7Bb7toJCBnbabb7I0VbPJrDMoDgmdoRcOIcMPoDBrAhU_vL_YI7Q3_F1foZ36sjGvgSzX6o1H_S18abaR |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwEB5BK0EvLGXpY6sPXF3ieHkJN1RRhdLXA3qVuAXbcS6tEkQSqe2vZyYbFLVFAimHHDJJJvEsHo-_D-Ct0YVVSSq4s5HmyvmEWxt57uKA8TApvenBnlfHJjtRh1_11E3YjG2VNIcuB6CI3leTcVMxemqJeyekwchG_Mj9VuBUYRC-C5t4ItE2N9dfDrNsdsdC9fynJMNRSE775264z5X4dAW99OYctI9FBw_BTVoMLSine13r9vzlHwCP_6XmI3gwZqrswzC0HsOdUG3DvdW4Fr8NW7PvvHgC3_ZnPkNWl2zgpW4YqsUswZ5cYoRkZzWRI3UFEXEx128EZnXX4luF5j2bG5kYbXLqGmbxqFg4twRg_BRODj6u9zM-kjdwr0TUcm8xucBkIBSxFUFrp5NiWSZelNZrWcamWKYhjZeUz2mapApP-koprTGRl_IZbFR1FXaApUnktPFxmbhCOS2dMtpLTNyExdlpWixATr8s9yOyORFsnOViBEC97ksugM9S3wdkj79cL38fDXnbV1TKgf7kWom8PW8XkNwiJW9_4O403nK0eVrIsVWouyanwkIcSbWA58Mw_KWAQg-Mad2Lf3_sLtzP1quj_OjT8eeXsDU0L1LJ6RVstD-68BqTsNa9Gc3sJ3tCIOc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRUJcWqAt3ULBh15N4_ixSW8VdLWlBVUVSNxS27EvoASxiQT8ejx58RAPqZVyzMSZZDwztme-D-CzkrkWScqo0ZGkwtiEah1ZamIX4mHirWrAng8O1exY7J_Ikztd_FhWiWto3wJFNL4aJ_d57vuKuC-MqxDYkB656QRORYjBr2BRYdPoCBaP_uzPZoM3ZqKhP0UZGoR43z73xHPuhad74KVPp6BNKJq-Ad0r0VagnO7Uldmx1w_wHf9HyxV43eWp5FtrWKuw4Io1WDroTuLXYHnwnFdv4e_uwGZISk9aVuo5CVoRjaAn1yE-krMSqZHqHGm4iGnagElZV-Gl3PwrGcqYCLY41XOiw1UQd6kRvvgdHE-_H-3OaEfdQK1gUUWtDqlFSAVcHmvmpDQyySc-scxrK7mPVT5JXRpPMJuTuERlFvXlnGulIsv5exgVZeE-AEmTyEhlY5-YXBjJjVDS8pC2MR3Wpmk-Bt7_scx2uOZIr3GWsQ7-9LEvOQY6SJ23uB4v3M_vGkNWNfspviU_eVQiqy6rMSTPSPHnB9zuzS0LMx6PcXThynqe4bZCHHExhvXWCm8VEMH_hqTu478Puw1Lv_em2a8fhz83YLmtXMT9pk0YVRe1-xQysMpsdZPsBr99H4s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+methods+for+analyzing+longitudinal+binary+outcomes%3A+cognitive+status+as+an+example&rft.jtitle=Aging+%26+mental+health&rft.au=Kuchibhatla%2C+M.&rft.au=Fillenbaum%2C+G.+G.&rft.date=2003-11-01&rft.pub=BrunnerRoutledge&rft.issn=1360-7863&rft.eissn=1364-6915&rft.volume=7&rft.issue=6&rft.spage=462&rft.epage=468&rft_id=info:doi/10.1080%2F13607860310001594727&rft.externalDocID=9610363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-7863&client=summon |