Elastic, electronic, bonding, and optical properties of WTe2 Weyl semimetal: A comparative investigation with MoTe2 from first principles
•Elastic, bonding, and optical properties of WeTe2 are investigated in details for the first time.•WeTe2 show semimetallic feature with pseudogap at Fermi level.•Both WeTe2 and MoTe2 possess excellent reflecting characteristics over wide spectral range.•Bonding strength and Debye temperature are low...
Saved in:
Published in | Results in physics Vol. 19; p. 103639 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-3797 2211-3797 |
DOI | 10.1016/j.rinp.2020.103639 |
Cover
Loading…
Abstract | •Elastic, bonding, and optical properties of WeTe2 are investigated in details for the first time.•WeTe2 show semimetallic feature with pseudogap at Fermi level.•Both WeTe2 and MoTe2 possess excellent reflecting characteristics over wide spectral range.•Bonding strength and Debye temperature are lower in WeTe2 in comparison to MoTe2.
Td-WTe2 is a topological Weyl semimetal. WTe2 in the orthorhombic structure is stable at room temperature. Elastic, electronic, bonding, and optoelectronic properties of WTe2 have been investigated in detail in this work using the density functional theory. Elastic behaviour together with anisotropy indices of WTe2 have been investigated for the first time. Bonding nature among the constituent atoms and electric field polarization dependent optical constants are also explored theoretically for the first time. WTe2 is elastically anisotropic; optical anisotropy on the other hand is low. The electronic band structure reveals quasi-linear dispersions along certain direction in the Brillouin zone with semi-metallic features. The Fermi level is located at a pseudogap separating bonding and anti-bonding density of states. The electronic effective mass tensor is predicted to be highly direction dependent. The energy dispersion is significantly weaker in the c-direction. The bonding in WTe2 is an admixture of covalent and metallic bonds. Optoelectronic properties show strongly reflecting character over a wide band of photon energies. The compound is a strong absorber of ultraviolet radiation. The Debye temperature has been calculated from the elastic constants. We have compared all the calculated physical properties of WTe2 with those of isostructural MoTe2 Weyl semimetal studied in a previous work. The properties of WTe2 and MoTe2 have been compared and contrasted. The calculated parameters of WTe2 have also been compared with those already available in the literature. Good agreements have been found. |
---|---|
AbstractList | •Elastic, bonding, and optical properties of WeTe2 are investigated in details for the first time.•WeTe2 show semimetallic feature with pseudogap at Fermi level.•Both WeTe2 and MoTe2 possess excellent reflecting characteristics over wide spectral range.•Bonding strength and Debye temperature are lower in WeTe2 in comparison to MoTe2.
Td-WTe2 is a topological Weyl semimetal. WTe2 in the orthorhombic structure is stable at room temperature. Elastic, electronic, bonding, and optoelectronic properties of WTe2 have been investigated in detail in this work using the density functional theory. Elastic behaviour together with anisotropy indices of WTe2 have been investigated for the first time. Bonding nature among the constituent atoms and electric field polarization dependent optical constants are also explored theoretically for the first time. WTe2 is elastically anisotropic; optical anisotropy on the other hand is low. The electronic band structure reveals quasi-linear dispersions along certain direction in the Brillouin zone with semi-metallic features. The Fermi level is located at a pseudogap separating bonding and anti-bonding density of states. The electronic effective mass tensor is predicted to be highly direction dependent. The energy dispersion is significantly weaker in the c-direction. The bonding in WTe2 is an admixture of covalent and metallic bonds. Optoelectronic properties show strongly reflecting character over a wide band of photon energies. The compound is a strong absorber of ultraviolet radiation. The Debye temperature has been calculated from the elastic constants. We have compared all the calculated physical properties of WTe2 with those of isostructural MoTe2 Weyl semimetal studied in a previous work. The properties of WTe2 and MoTe2 have been compared and contrasted. The calculated parameters of WTe2 have also been compared with those already available in the literature. Good agreements have been found. Td-WTe2 is a topological Weyl semimetal. WTe2 in the orthorhombic structure is stable at room temperature. Elastic, electronic, bonding, and optoelectronic properties of WTe2 have been investigated in detail in this work using the density functional theory. Elastic behaviour together with anisotropy indices of WTe2 have been investigated for the first time. Bonding nature among the constituent atoms and electric field polarization dependent optical constants are also explored theoretically for the first time. WTe2 is elastically anisotropic; optical anisotropy on the other hand is low. The electronic band structure reveals quasi-linear dispersions along certain direction in the Brillouin zone with semi-metallic features. The Fermi level is located at a pseudogap separating bonding and anti-bonding density of states. The electronic effective mass tensor is predicted to be highly direction dependent. The energy dispersion is significantly weaker in the c-direction. The bonding in WTe2 is an admixture of covalent and metallic bonds. Optoelectronic properties show strongly reflecting character over a wide band of photon energies. The compound is a strong absorber of ultraviolet radiation. The Debye temperature has been calculated from the elastic constants. We have compared all the calculated physical properties of WTe2 with those of isostructural MoTe2 Weyl semimetal studied in a previous work. The properties of WTe2 and MoTe2 have been compared and contrasted. The calculated parameters of WTe2 have also been compared with those already available in the literature. Good agreements have been found. |
ArticleNumber | 103639 |
Author | Syed, Ishtiaque M. Naqib, S.H. Rahman Rano, B. |
Author_xml | – sequence: 1 givenname: B. surname: Rahman Rano fullname: Rahman Rano, B. organization: Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh – sequence: 2 givenname: Ishtiaque M. surname: Syed fullname: Syed, Ishtiaque M. organization: Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh – sequence: 3 givenname: S.H. surname: Naqib fullname: Naqib, S.H. email: salehnaqib@yahoo.com organization: Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh |
BookMark | eNp9kU1qHDEQRkVwII7jC2SlA3gmkrp7NB2yMcaJDQ7ZOHgp9FOa1KCWGklM8BF866g9JoQsvFKpxHui6ntPTmKKQMhHztac8c2n_TpjnNeCiaXRbbrxDTkVgvNVJ0d58k_9jpyXsmesUf0wcH5Knq6DLhXtBYUAtuYUl9qk6DDuLqiOjqa5vetA55xmyBWh0OTpwz0I-gCPgRaYcIKqw2d6SW2aZp11xQNQjAdo7l27pUh_Y_1Fv6cF8zlN1GMutUkxWpwDlA_krdehwPnLeUZ-fr2-v7pZ3f34dnt1ebeyPWd1ZYVjdgTmoN8yya2XEnoj2SC3euhBcy_Y2DvjhOd9G9x00rKNMJ4b142bsTsjt0evS3qv2v-Tzo8qaVTPjZR3SrcpbQDlrWWwHSz3ne4596MXmmkzMAHGGwnNJY4um1MpGfxfH2dqyUbt1ZKNWrJRx2watP0Pslifd1SzxvA6-uWIQlvQASGrYhGiBYe5pdcmwNfwPxwCrqA |
CitedBy_id | crossref_primary_10_1016_j_rinma_2024_100568 crossref_primary_10_1038_s41598_021_85074_z crossref_primary_10_1007_s00339_025_08354_9 crossref_primary_10_1103_PhysRevB_105_L121302 crossref_primary_10_1039_D4NJ04408H crossref_primary_10_1142_S021798492350224X crossref_primary_10_1016_j_cocom_2023_e00833 crossref_primary_10_1016_j_rinp_2022_105507 crossref_primary_10_1103_PhysRevResearch_5_L022038 crossref_primary_10_1007_s11468_023_02143_x crossref_primary_10_1016_j_mtphys_2023_101196 crossref_primary_10_7566_JPSJ_91_054701 crossref_primary_10_1021_acs_jpcc_3c04651 crossref_primary_10_1016_j_physb_2023_415619 crossref_primary_10_1016_j_jmrt_2023_04_147 crossref_primary_10_1016_j_rinp_2023_106236 crossref_primary_10_1002_sus2_236 crossref_primary_10_1016_j_apsusc_2023_157036 crossref_primary_10_1016_j_rinma_2023_100518 crossref_primary_10_1039_D3CP03610C crossref_primary_10_3390_nano11102755 crossref_primary_10_1088_1361_6528_acf8ce crossref_primary_10_1109_ACCESS_2021_3137868 crossref_primary_10_1002_ppsc_202400156 crossref_primary_10_1063_5_0086024 crossref_primary_10_1103_PhysRevB_104_064304 crossref_primary_10_1016_j_actamat_2024_120207 crossref_primary_10_1088_1402_4896_abe2d2 crossref_primary_10_1063_5_0073631 crossref_primary_10_1103_PhysRevB_108_144103 crossref_primary_10_1007_s12274_023_5852_2 |
Cites_doi | 10.1016/j.jallcom.2020.154509 10.1103/PhysRevB.13.5188 10.1103/PhysRevB.41.7892 10.1016/j.jallcom.2020.154522 10.1021/j100203a036 10.1016/j.intermet.2011.03.026 10.1038/nature13763 10.1080/00268976.2019.1587026 10.1038/lsa.2016.17 10.1103/PhysRevLett.101.055504 10.1038/nmat4685 10.1103/PhysRevB.35.6940 10.1103/PhysRevLett.114.176601 10.1016/j.jallcom.2018.12.021 10.1063/1.368733 10.1103/PhysRevB.23.5048 10.1002/zamm.19290090104 10.1103/PhysRevB.90.224104 10.1088/0022-3719/20/36/017 10.1103/PhysRevB.94.161401 10.1088/0370-1298/65/5/307 10.1038/s41467-020-16076-0 10.1103/PhysRevB.95.245140 10.1038/nmat3134 10.1016/0022-3697(63)90067-2 10.1073/pnas.15.4.323 10.1063/1.1740588 10.1146/annurev.matsci.31.1.1 10.1016/j.jallcom.2016.09.095 10.1088/1674-1056/26/10/106201 10.1021/ja00049a029 10.1140/epjb/e2018-90388-9 10.1038/nphys3871 10.1103/PhysRevB.94.121112 10.1017/S0305004100017138 10.1134/S1063783419110040 10.1063/1.4962996 10.1007/BF00549096 10.1038/nature15768 10.1103/PhysRevB.99.195203 10.1126/science.aaa9297 10.1103/PhysRev.140.A1133 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) |
Copyright_xml | – notice: 2020 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2020.103639 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_fcc0e85c1f3a411f9f2a0ab502ebfb7e 10_1016_j_rinp_2020_103639 S2211379720320696 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-c2d0c9e0de48071cf77e4b70578a54ea1f2094dbd2f14221b37c062bf1bd39693 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:22:11 EDT 2025 Tue Jul 01 02:27:36 EDT 2025 Thu Apr 24 22:59:28 EDT 2025 Tue Jul 25 21:05:18 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Weyl semimetal Orthorhombic WTe2 Band structure Elastic constants Optical properties Density functional theory (DFT) |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-c2d0c9e0de48071cf77e4b70578a54ea1f2094dbd2f14221b37c062bf1bd39693 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379720320696 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fcc0e85c1f3a411f9f2a0ab502ebfb7e crossref_primary_10_1016_j_rinp_2020_103639 crossref_citationtrail_10_1016_j_rinp_2020_103639 elsevier_sciencedirect_doi_10_1016_j_rinp_2020_103639 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Pan, Chen, Liu, Feng, Wei, Zhou (b0070) 2015; 6 S. F. Pugh, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823 (1954). M. I. Naher and S. H. Naqib, arXiv:2005.10590 (2020). W. Voigt, Lehrbuch Der Kristallphysik (Teubner Leipzig, 1928). Sun, Music, Ahuja, Schneider (b0255) 2005; 71 Mar, Jobic, Ibers (b0035) 1992; 114 Tian, Yu, Liu, Wang, Shi (b0025) 2018; 11 Hein, Jauernik, Erk, Yang, Qi, Sun (b0100) 2020; 11 Weyl (b0005) 1929; 15 Wang, Zhang, Huang, Nie, Liu, Liang (b0050) 2016; 94 Zhu, Lin, Liu, Fauqué, Tao, Yang (b0090) 2015; 114 Chen, Niu, Li, Li (b0260) 2011; 19 Hill (b0235) 1952; 65 Ma, Dai, Yu, Huang (b0305) 2016; 5 Naher, Naqib (b0175) 2020; 829 Fischer, Almlöf (b0165) 1992; 96 Studio (b0295) 2019; 1 Rano, Syed, Naqib (b0105) 2020; 829 Lv, Cui, Huang, Li, Wang, Ji (b0215) 2017; 692 Haines, Léger, Bocquillon (b0250) 2001; 31 Anderson (b0275) 1963; 24 Kohn, Sham (b0150) 1965; 140 Sánchez-Barriga, Vergniory, Evtushinsky, Aguilera, Varykhalov, Blügel (b0055) 2016; 94 Born (b0205) 2013; 36 Greaves, Greer, Lakes, Rouxel (b0245) 2011; 10 Wu, Mou, Jo, Sun, Huang, Bud’Ko, Canfield, Kaminski (b0045) 2016; 94 Ravindran, Fast, Korzhavyi, Johansson, Wills, Eriksson (b0220) 1998; 84 Deng, Wan, Deng, Zhang, Ding, Wang (b0120) 2016; 12 Parvin, Naqib (b0190) 2019; 780 Soluyanov, Gresch, Wang, Wu, Troyer, Dai (b0020) 2015; 527 Sun, Wu, Ali, Felser, Yan (b0110) 2015; 92 Xu, Oguchi, Freeman (b0280) 1987; 35 Azam, Khan, Khenata, Naqib, Abdiche, Uğur (b0300) 2020; 118 Naher, Parvin, Islam, Naqib (b0195) 2018; 91 Lv, Weng, Fu, Wang, Miao, Ma (b0015) 2015; 5 Reuss, ZAMM - (b0230) 1929; 9 Hirshfeld (b0290) 1977; 44 Xu, Belopolski, Alidoust, Neupane, Bian, Zhang (b0010) 2015; 349 Perdew, Zunger (b0155) 1981; 23 Clark, Segall, Pickard, Hasnip, Probert, Refson (b0145) 2005; 220 (2020). Ranganathan, Ostoja-Starzewski (b0270) 2008; 101 Kimura, Nakajima, Mita, Jha, Higashinaka, Matsuda (b0135) 2019; 99 M. A. Afzal and S. H. Naqib, arXiv:2005.13393 Parvin, Naqib (b0200) 2017; 26 Antonenko, Charnaya, Lee, Chang, Haase, Naumov (b0095) 2019; 61 Chang, Xu, Chang, Lee, Huang, Wang (b0130) 2016; 7 Frenzel, Homes, Gibson, Shao, Post, Charnukha (b0140) 2017; 95 Kang, Zhou, Yi, Yang, Guo, Shi (b0065) 2015; 6 Mulliken (b0285) 1955; 23 Lu, Kim, Yang, Gao, Wu, Shao (b0075) 2016; 94 Chan, Alireza, Yip, Niu, Lai, Goh (b0080) 2017; 96 Vanderbilt (b0160) 1990; 41 Monkhorst, Pack (b0170) 1976; 13 Kube (b0265) 2016; 6 Kim, Kang, Hamada, Son (b0125) 2017; 95 Bruno, Tamai, Wu, Cucchi, Barreteau, De La Torre (b0040) 2016; 94 Ali, Xiong, Flynn, Tao, Gibson, Schoop (b0085) 2014; 514 Feng, Chan, Feng, Liu, Chou, Kuroda (b0060) 2016; 94 Dawson, Bullett (b0030) 1987; 20 Huang, McCormick, Ochi, Zhao, Suzuki, Arita (b0115) 2016; 15 Mouhat, Coudert (b0210) 2014; 90 Pan (10.1016/j.rinp.2020.103639_b0070) 2015; 6 Studio (10.1016/j.rinp.2020.103639_b0295) 2019; 1 10.1016/j.rinp.2020.103639_b0240 Greaves (10.1016/j.rinp.2020.103639_b0245) 2011; 10 Anderson (10.1016/j.rinp.2020.103639_b0275) 1963; 24 Antonenko (10.1016/j.rinp.2020.103639_b0095) 2019; 61 Feng (10.1016/j.rinp.2020.103639_b0060) 2016; 94 Chang (10.1016/j.rinp.2020.103639_b0130) 2016; 7 Chan (10.1016/j.rinp.2020.103639_b0080) 2017; 96 Parvin (10.1016/j.rinp.2020.103639_b0200) 2017; 26 Zhu (10.1016/j.rinp.2020.103639_b0090) 2015; 114 Fischer (10.1016/j.rinp.2020.103639_b0165) 1992; 96 Soluyanov (10.1016/j.rinp.2020.103639_b0020) 2015; 527 Monkhorst (10.1016/j.rinp.2020.103639_b0170) 1976; 13 Clark (10.1016/j.rinp.2020.103639_b0145) 2005; 220 Lu (10.1016/j.rinp.2020.103639_b0075) 2016; 94 Naher (10.1016/j.rinp.2020.103639_b0195) 2018; 91 Tian (10.1016/j.rinp.2020.103639_b0025) 2018; 11 Sun (10.1016/j.rinp.2020.103639_b0110) 2015; 92 Haines (10.1016/j.rinp.2020.103639_b0250) 2001; 31 Bruno (10.1016/j.rinp.2020.103639_b0040) 2016; 94 Kohn (10.1016/j.rinp.2020.103639_b0150) 1965; 140 Sánchez-Barriga (10.1016/j.rinp.2020.103639_b0055) 2016; 94 Kang (10.1016/j.rinp.2020.103639_b0065) 2015; 6 Kimura (10.1016/j.rinp.2020.103639_b0135) 2019; 99 Chen (10.1016/j.rinp.2020.103639_b0260) 2011; 19 Sun (10.1016/j.rinp.2020.103639_b0255) 2005; 71 Ali (10.1016/j.rinp.2020.103639_b0085) 2014; 514 Xu (10.1016/j.rinp.2020.103639_b0280) 1987; 35 Perdew (10.1016/j.rinp.2020.103639_b0155) 1981; 23 Parvin (10.1016/j.rinp.2020.103639_b0190) 2019; 780 Ranganathan (10.1016/j.rinp.2020.103639_b0270) 2008; 101 Mouhat (10.1016/j.rinp.2020.103639_b0210) 2014; 90 10.1016/j.rinp.2020.103639_b0225 Azam (10.1016/j.rinp.2020.103639_b0300) 2020; 118 Vanderbilt (10.1016/j.rinp.2020.103639_b0160) 1990; 41 10.1016/j.rinp.2020.103639_b0185 Frenzel (10.1016/j.rinp.2020.103639_b0140) 2017; 95 Xu (10.1016/j.rinp.2020.103639_b0010) 2015; 349 Kim (10.1016/j.rinp.2020.103639_b0125) 2017; 95 10.1016/j.rinp.2020.103639_b0180 Mar (10.1016/j.rinp.2020.103639_b0035) 1992; 114 Wu (10.1016/j.rinp.2020.103639_b0045) 2016; 94 Deng (10.1016/j.rinp.2020.103639_b0120) 2016; 12 Kube (10.1016/j.rinp.2020.103639_b0265) 2016; 6 Hill (10.1016/j.rinp.2020.103639_b0235) 1952; 65 Huang (10.1016/j.rinp.2020.103639_b0115) 2016; 15 Weyl (10.1016/j.rinp.2020.103639_b0005) 1929; 15 Dawson (10.1016/j.rinp.2020.103639_b0030) 1987; 20 Hein (10.1016/j.rinp.2020.103639_b0100) 2020; 11 Lv (10.1016/j.rinp.2020.103639_b0015) 2015; 5 Reuss (10.1016/j.rinp.2020.103639_b0230) 1929; 9 Rano (10.1016/j.rinp.2020.103639_b0105) 2020; 829 Born (10.1016/j.rinp.2020.103639_b0205) 2013; 36 Wang (10.1016/j.rinp.2020.103639_b0050) 2016; 94 Naher (10.1016/j.rinp.2020.103639_b0175) 2020; 829 Mulliken (10.1016/j.rinp.2020.103639_b0285) 1955; 23 Lv (10.1016/j.rinp.2020.103639_b0215) 2017; 692 Ravindran (10.1016/j.rinp.2020.103639_b0220) 1998; 84 Hirshfeld (10.1016/j.rinp.2020.103639_b0290) 1977; 44 Ma (10.1016/j.rinp.2020.103639_b0305) 2016; 5 |
References_xml | – volume: 20 start-page: 6159 year: 1987 ident: b0030 publication-title: J. Phys. C Solid State Phys. – volume: 514 start-page: 205 year: 2014 ident: b0085 publication-title: Nature – volume: 114 start-page: 8963 year: 1992 ident: b0035 publication-title: J. Am. Chem. Soc. – volume: 94 year: 2016 ident: b0045 publication-title: Phys. Rev. B – volume: 99 year: 2019 ident: b0135 publication-title: Phys. Rev. B – reference: S. F. Pugh, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823 (1954). – volume: 140 start-page: A1133 year: 1965 ident: b0150 publication-title: Phys. Rev. – volume: 15 start-page: 1155 year: 2016 ident: b0115 publication-title: Nat. Mater. – volume: 349 start-page: 613 year: 2015 ident: b0010 publication-title: Science – volume: 23 start-page: 5048 year: 1981 ident: b0155 publication-title: Phys. Rev. B – volume: 96 year: 2017 ident: b0080 publication-title: Phys. Rev. B – volume: 9 start-page: 49 year: 1929 ident: b0230 publication-title: J. Appl. Math. Mech. / Zeitschrift Für Angew. Math. Und Mech. – volume: 6 year: 2015 ident: b0070 publication-title: Nat. Commun. – volume: 692 start-page: 440 year: 2017 ident: b0215 publication-title: J. Alloys Compd. – volume: 101 start-page: 55504 year: 2008 ident: b0270 publication-title: Phys. Rev. Lett. – volume: 95 year: 2017 ident: b0125 publication-title: Phys. Rev. B – volume: 19 start-page: 1275 year: 2011 ident: b0260 publication-title: Intermetallics – reference: (2020). – volume: 6 year: 2015 ident: b0065 publication-title: Nat. Commun. – volume: 61 start-page: 1979 year: 2019 ident: b0095 publication-title: Phys. Solid State – volume: 96 start-page: 9768 year: 1992 ident: b0165 publication-title: J. Phys. Chem. – volume: 41 start-page: 7892 year: 1990 ident: b0160 publication-title: Phys. Rev. B – volume: 780 start-page: 452 year: 2019 ident: b0190 publication-title: J. Alloys Compd. – volume: 1 year: 2019 ident: b0295 publication-title: Biovia – volume: 94 year: 2016 ident: b0050 publication-title: Phys. Rev. B – volume: 26 year: 2017 ident: b0200 publication-title: Chinese Phys. B – volume: 829 year: 2020 ident: b0105 publication-title: J. Alloys Compd. – volume: 24 start-page: 909 year: 1963 ident: b0275 publication-title: J. Phys. Chem. Solids – reference: W. Voigt, Lehrbuch Der Kristallphysik (Teubner Leipzig, 1928). – volume: 7 year: 2016 ident: b0130 publication-title: Nat. Commun. – volume: 94 year: 2016 ident: b0055 publication-title: Phys. Rev. B – volume: 220 start-page: 567 year: 2005 ident: b0145 publication-title: Zeitschrift Fur Krist. – volume: 10 start-page: 823 year: 2011 ident: b0245 publication-title: Nat. Mater. – volume: 118 year: 2020 ident: b0300 publication-title: Mol. Phys. – volume: 6 start-page: 95209 year: 2016 ident: b0265 publication-title: AIP Adv. – volume: 95 year: 2017 ident: b0140 publication-title: Phys. Rev. B – volume: 15 start-page: 323 year: 1929 ident: b0005 publication-title: Proc. Natl. Acad. Sci. – volume: 11 year: 2020 ident: b0100 publication-title: Nat. Commun. – volume: 92 year: 2015 ident: b0110 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – reference: M. I. Naher and S. H. Naqib, arXiv:2005.10590 (2020). – volume: 94 year: 2016 ident: b0060 publication-title: Phys. Rev. B – volume: 94 year: 2016 ident: b0040 publication-title: Phys. Rev. B – volume: 84 start-page: 4891 year: 1998 ident: b0220 publication-title: J. Appl. Phys. – volume: 12 start-page: 1105 year: 2016 ident: b0120 publication-title: Nat. Phys. – volume: 527 start-page: 495 year: 2015 ident: b0020 publication-title: Nature – volume: 23 start-page: 1833 year: 1955 ident: b0285 publication-title: J. Chem. Phys. – volume: 5 start-page: 31013 year: 2015 ident: b0015 publication-title: Phys. Rev. X – volume: 90 year: 2014 ident: b0210 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 13 start-page: 5188 year: 1976 ident: b0170 publication-title: Phys. Rev. B – volume: 31 start-page: 1 year: 2001 ident: b0250 publication-title: Annu. Rev. Mater. Sci. – volume: 35 start-page: 6940 year: 1987 ident: b0280 publication-title: Phys. Rev. B – volume: 11 year: 2018 ident: b0025 publication-title: Materials (Basel). – volume: 114 year: 2015 ident: b0090 publication-title: Phys. Rev. Lett. – volume: 71 year: 2005 ident: b0255 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 94 year: 2016 ident: b0075 publication-title: Phys. Rev. B – reference: M. A. Afzal and S. H. Naqib, arXiv:2005.13393 – volume: 44 start-page: 129 year: 1977 ident: b0290 publication-title: Theor. Chem. Acc. – volume: 5 year: 2016 ident: b0305 publication-title: Light Sci. Appl. – volume: 829 year: 2020 ident: b0175 publication-title: J. Alloys Compd. – volume: 65 start-page: 349 year: 1952 ident: b0235 publication-title: Proc. Phys. Soc. Sect. A – volume: 36 start-page: 160 year: 2013 ident: b0205 publication-title: Math. Proc. Cambridge Philos. Soc. – volume: 91 year: 2018 ident: b0195 publication-title: Eur. Phys. J. B – volume: 96 year: 2017 ident: 10.1016/j.rinp.2020.103639_b0080 publication-title: Phys. Rev. B – volume: 829 year: 2020 ident: 10.1016/j.rinp.2020.103639_b0175 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154509 – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.rinp.2020.103639_b0170 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 41 start-page: 7892 year: 1990 ident: 10.1016/j.rinp.2020.103639_b0160 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 6 year: 2015 ident: 10.1016/j.rinp.2020.103639_b0065 publication-title: Nat. Commun. – volume: 829 year: 2020 ident: 10.1016/j.rinp.2020.103639_b0105 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154522 – volume: 96 start-page: 9768 year: 1992 ident: 10.1016/j.rinp.2020.103639_b0165 publication-title: J. Phys. Chem. doi: 10.1021/j100203a036 – volume: 220 start-page: 567 year: 2005 ident: 10.1016/j.rinp.2020.103639_b0145 publication-title: Zeitschrift Fur Krist. – volume: 71 year: 2005 ident: 10.1016/j.rinp.2020.103639_b0255 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 19 start-page: 1275 year: 2011 ident: 10.1016/j.rinp.2020.103639_b0260 publication-title: Intermetallics doi: 10.1016/j.intermet.2011.03.026 – volume: 1 year: 2019 ident: 10.1016/j.rinp.2020.103639_b0295 publication-title: Biovia – volume: 514 start-page: 205 year: 2014 ident: 10.1016/j.rinp.2020.103639_b0085 publication-title: Nature doi: 10.1038/nature13763 – volume: 118 year: 2020 ident: 10.1016/j.rinp.2020.103639_b0300 publication-title: Mol. Phys. doi: 10.1080/00268976.2019.1587026 – volume: 5 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0305 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2016.17 – volume: 5 start-page: 31013 year: 2015 ident: 10.1016/j.rinp.2020.103639_b0015 publication-title: Phys. Rev. X – volume: 11 year: 2018 ident: 10.1016/j.rinp.2020.103639_b0025 publication-title: Materials (Basel). – volume: 101 start-page: 55504 year: 2008 ident: 10.1016/j.rinp.2020.103639_b0270 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.055504 – volume: 15 start-page: 1155 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0115 publication-title: Nat. Mater. doi: 10.1038/nmat4685 – volume: 35 start-page: 6940 year: 1987 ident: 10.1016/j.rinp.2020.103639_b0280 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.35.6940 – volume: 114 year: 2015 ident: 10.1016/j.rinp.2020.103639_b0090 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.176601 – volume: 780 start-page: 452 year: 2019 ident: 10.1016/j.rinp.2020.103639_b0190 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.12.021 – volume: 84 start-page: 4891 year: 1998 ident: 10.1016/j.rinp.2020.103639_b0220 publication-title: J. Appl. Phys. doi: 10.1063/1.368733 – volume: 23 start-page: 5048 year: 1981 ident: 10.1016/j.rinp.2020.103639_b0155 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.5048 – volume: 9 start-page: 49 year: 1929 ident: 10.1016/j.rinp.2020.103639_b0230 publication-title: J. Appl. Math. Mech. / Zeitschrift Für Angew. Math. Und Mech. doi: 10.1002/zamm.19290090104 – ident: 10.1016/j.rinp.2020.103639_b0240 – volume: 90 year: 2014 ident: 10.1016/j.rinp.2020.103639_b0210 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.224104 – volume: 20 start-page: 6159 year: 1987 ident: 10.1016/j.rinp.2020.103639_b0030 publication-title: J. Phys. C Solid State Phys. doi: 10.1088/0022-3719/20/36/017 – volume: 94 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0055 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.161401 – volume: 65 start-page: 349 year: 1952 ident: 10.1016/j.rinp.2020.103639_b0235 publication-title: Proc. Phys. Soc. Sect. A doi: 10.1088/0370-1298/65/5/307 – volume: 11 year: 2020 ident: 10.1016/j.rinp.2020.103639_b0100 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16076-0 – ident: 10.1016/j.rinp.2020.103639_b0180 – volume: 95 year: 2017 ident: 10.1016/j.rinp.2020.103639_b0140 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.245140 – volume: 10 start-page: 823 year: 2011 ident: 10.1016/j.rinp.2020.103639_b0245 publication-title: Nat. Mater. doi: 10.1038/nmat3134 – volume: 24 start-page: 909 year: 1963 ident: 10.1016/j.rinp.2020.103639_b0275 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(63)90067-2 – volume: 15 start-page: 323 year: 1929 ident: 10.1016/j.rinp.2020.103639_b0005 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.15.4.323 – volume: 23 start-page: 1833 year: 1955 ident: 10.1016/j.rinp.2020.103639_b0285 publication-title: J. Chem. Phys. doi: 10.1063/1.1740588 – volume: 31 start-page: 1 year: 2001 ident: 10.1016/j.rinp.2020.103639_b0250 publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.matsci.31.1.1 – volume: 692 start-page: 440 year: 2017 ident: 10.1016/j.rinp.2020.103639_b0215 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.09.095 – volume: 26 year: 2017 ident: 10.1016/j.rinp.2020.103639_b0200 publication-title: Chinese Phys. B doi: 10.1088/1674-1056/26/10/106201 – volume: 114 start-page: 8963 year: 1992 ident: 10.1016/j.rinp.2020.103639_b0035 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00049a029 – volume: 91 year: 2018 ident: 10.1016/j.rinp.2020.103639_b0195 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2018-90388-9 – volume: 95 year: 2017 ident: 10.1016/j.rinp.2020.103639_b0125 publication-title: Phys. Rev. B – volume: 12 start-page: 1105 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0120 publication-title: Nat. Phys. doi: 10.1038/nphys3871 – volume: 94 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0050 publication-title: Phys. Rev. B – volume: 94 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0040 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.121112 – volume: 36 start-page: 160 year: 2013 ident: 10.1016/j.rinp.2020.103639_b0205 publication-title: Math. Proc. Cambridge Philos. Soc. doi: 10.1017/S0305004100017138 – volume: 94 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0045 publication-title: Phys. Rev. B – volume: 61 start-page: 1979 year: 2019 ident: 10.1016/j.rinp.2020.103639_b0095 publication-title: Phys. Solid State doi: 10.1134/S1063783419110040 – volume: 6 start-page: 95209 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0265 publication-title: AIP Adv. doi: 10.1063/1.4962996 – volume: 94 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0075 publication-title: Phys. Rev. B – volume: 94 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0060 publication-title: Phys. Rev. B – volume: 7 year: 2016 ident: 10.1016/j.rinp.2020.103639_b0130 publication-title: Nat. Commun. – volume: 44 start-page: 129 year: 1977 ident: 10.1016/j.rinp.2020.103639_b0290 publication-title: Theor. Chem. Acc. doi: 10.1007/BF00549096 – volume: 6 year: 2015 ident: 10.1016/j.rinp.2020.103639_b0070 publication-title: Nat. Commun. – volume: 92 year: 2015 ident: 10.1016/j.rinp.2020.103639_b0110 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – ident: 10.1016/j.rinp.2020.103639_b0225 – ident: 10.1016/j.rinp.2020.103639_b0185 – volume: 527 start-page: 495 year: 2015 ident: 10.1016/j.rinp.2020.103639_b0020 publication-title: Nature doi: 10.1038/nature15768 – volume: 99 year: 2019 ident: 10.1016/j.rinp.2020.103639_b0135 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.195203 – volume: 349 start-page: 613 year: 2015 ident: 10.1016/j.rinp.2020.103639_b0010 publication-title: Science doi: 10.1126/science.aaa9297 – volume: 140 start-page: A1133 year: 1965 ident: 10.1016/j.rinp.2020.103639_b0150 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 |
SSID | ssj0001645511 |
Score | 2.4137557 |
Snippet | •Elastic, bonding, and optical properties of WeTe2 are investigated in details for the first time.•WeTe2 show semimetallic feature with pseudogap at Fermi... Td-WTe2 is a topological Weyl semimetal. WTe2 in the orthorhombic structure is stable at room temperature. Elastic, electronic, bonding, and optoelectronic... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 103639 |
SubjectTerms | Band structure Density functional theory (DFT) Elastic constants Optical properties Orthorhombic WTe2 Weyl semimetal |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EELyIT6wv5uDNBnc3m8d6q6KIoKcWvYV9QkST0taDP8F_7U6S2pz04jXZR5gZMt8MM98Qch4rn3if5hG1SkQit0kkbSwiJbl2TkuqPXYjPz6l9xPx8JK89EZ9YU1YSw_cCu7SG0NdnhjmYyUY89JzRZVOKHfhmMzh3zf4vF4w1WRXUhGgAEZbnCNPXyazrmOmLe6alRWSVfKm6TzFSeE9r9SQ9_ecU8_h3G2TrQ4pwqj9wh2y5qpdstFUbJr5Hvm6Dbg3vBrCapLNEHTddKkMQVUW6mmTqIYpJtxnyJwKtYfnsePw7D7fYO7ey3cX0PcVjMCsaMChXJFv1BVgqhYea9yGzSjgy4AYYbrM0s_3yeTudnxzH3VzFSIjGF1EhltqpKPWYT85Mz7LnNBZQG65SoRTzAeJCqst95ghYjrODE259kzbWKYyPiDrVV25QwJWJ9KqoBJhchEbKxUVTGvNWAjSQ6Q5IGwp18J0pOM4--KtWFaXvRaoiwJ1UbS6GJCLnz3TlnLj19XXqK6flUiX3TwIRlR0RlT8ZUQDkiyVXXTIo0UU4ajyl8uP_uPyY7KJR7Y1MidkfTH7cKcB6Sz0WWPU32SK_lY priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9Em3acocesua1csP5ZaEhBBILk3I3oyexSWxze720J_Qf12NbGe3lxxytKyxhWaQZob5viHku9AhD6GoMuq0zGTl8kw5ITOtuPHeKGoCopGvb4rLO3m1zJd75GzCwmBZ5Xj2D2d6Oq3HkcW4m4u-aRY_eIxdRKnK1AO8UEi7LWSVQHzL022epZDRKcC4C-dnKDBiZ4Yyr1XTIm0lT_DzAnuG79xPicZ_55rauXou3pI3o88IJ8Oy3pE9374nr1Ltpl1_IH_PowccX81h29NmDqZLeJU56NZB16eUNfSYel8hhyp0Ae5vPYd7_-cB1v6xefTRDz-GE7BbQnBotjQcXQuYtIXrDsUQlgKhib4j9FO-fv2R3F2c355dZmOHhcxKRjeZ5Y5a5anziCxnNpSll6aMPlylc-k1CzyGf844HjBXxIwoLS24Ccw4oQolPpH9tmv9ZwLO5MrpwLW0lRTWKU0lM8YwFsP1GHPOCJv2tbYj_Th2wXiopzqzXzXqokZd1IMuZuToSaYfyDeenX2K6nqaicTZaaBb_axHy6mDtdRXuWVBaMlYUHHFVJucch-tsvQzkk_Krv-zw_ip5pmff3mh3AF5jU9DgcxXsr9Z_faH0c3ZmG_Jjv8BcUL80g priority: 102 providerName: Elsevier |
Title | Elastic, electronic, bonding, and optical properties of WTe2 Weyl semimetal: A comparative investigation with MoTe2 from first principles |
URI | https://dx.doi.org/10.1016/j.rinp.2020.103639 https://doaj.org/article/fcc0e85c1f3a411f9f2a0ab502ebfb7e |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEG5iguBFfOIaXergzR3p7ul5tCCykYRoWA-SZfc29DOMbGbW2Q2Yn-C_tmse2Qgh4GVgZvpFVzf1VVH1FSHvYuUT79M8olaJSOQ2iaSNRaQk185pSbXHbOTZ9_R0Lr4tk-UeGcod9Ru4udO0w3pS82b14fev68_hwn_axWo1ZYXck7zNIQ869wE5CJopw4s66-F-63NJRQAIaINxjux9mcz6PJq7h_lHV7WU_rdU1i01dPKEPO7xI0w7gT8le656Rh62cZxm85z8OQ5oOPyawK6-zQR03eauTEBVFup1676GNbrhG-RThdrD4txxWLjrFWzcZXnpwnZ8hCmYHTk4lDtKjroCdODCrMZumKICvgw4EtaD737zgsxPjs-_nEZ9tYXICEa3keGWGumodZhlzozPMid0FvBcrhLhFPM8mIJWW-7Rb8R0nBmacu2ZtrFMZfyS7Fd15V4RsDqRVnmuhMlFbKxUVDCtNWPBdA_254iwYV8L01ORY0WMVTHEnP0sUBYFyqLoZDEi72_6rDsijntbH6G4bloiiXb7oW4uiv5OFt4Y6vLEMB8rwZiXYcVU6YRyF05o5kYkGYRd9HikwxlhqPKeyV__11IPySN860Jk3pD9bXPl3gags9VjcjA9-7E4G7eOgvD8ujwatyf6LxEdAFE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoVdVeUJ_qlj586K0bre04D_cGCLS0LJcuYm-WnygVJNHucuAn8K_xOAm7vXDo1fYklmdkfzOa-Qah76nymfd5mRCreMJLmyXCpjxRgmnntCDaQzXy7DyfXvBfi2yxg46GWhhIq-zv_u5Oj7d1PzLpT3PSVtXkDwu-S1qIIvYAz0X-DD0PaKCA_g2ni8NNoCXnARWA4wUCCUj0xTNdnteyqoG3ksX68xyahm89UJHHf-ud2np7Tl6jvR404oNuX2_QjqvfohcxedOs3qH74wCBw9QYb5rajLFuYsHKGKva4qaNMWvcQux9CSSquPH4cu4YvnR313jlbqobF4D4T3yAzYYRHFcbHo6mxhC1xbMGxKAuBfsqgEfcDgH71Xt0cXI8P5omfYuFxHBK1olhlhjhiHVQWk6NLwrHdRFAXKky7hT1LPh_VlvmIVhEdVoYkjPtqbapyEX6Ae3WTe0-Imx1JqzyTHFT8tRYoQinWmtKg78enM4RosO5StPzj0MbjGs5JJr9laALCbqQnS5G6MejTNuxbzy5-hDU9bgSmLPjQLO8kr3pSG8McWVmqE8Vp9SLsGOidEaYC2ZZuBHKBmXLfwwxfKp64uef_lPuG3o5nc_O5Nnp-e999ApmumyZz2h3vbx1XwLmWeuv0aYfACjkAAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic%2C+electronic%2C+bonding%2C+and+optical+properties+of+WTe2+Weyl+semimetal%3A+A+comparative+investigation+with+MoTe2+from+first+principles&rft.jtitle=Results+in+physics&rft.au=Rahman+Rano%2C+B.&rft.au=Syed%2C+Ishtiaque+M.&rft.au=Naqib%2C+S.H.&rft.date=2020-12-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=19&rft.spage=103639&rft_id=info:doi/10.1016%2Fj.rinp.2020.103639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2020_103639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |