Elastic, electronic, bonding, and optical properties of WTe2 Weyl semimetal: A comparative investigation with MoTe2 from first principles

•Elastic, bonding, and optical properties of WeTe2 are investigated in details for the first time.•WeTe2 show semimetallic feature with pseudogap at Fermi level.•Both WeTe2 and MoTe2 possess excellent reflecting characteristics over wide spectral range.•Bonding strength and Debye temperature are low...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 19; p. 103639
Main Authors Rahman Rano, B., Syed, Ishtiaque M., Naqib, S.H.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2211-3797
2211-3797
DOI10.1016/j.rinp.2020.103639

Cover

Loading…
Abstract •Elastic, bonding, and optical properties of WeTe2 are investigated in details for the first time.•WeTe2 show semimetallic feature with pseudogap at Fermi level.•Both WeTe2 and MoTe2 possess excellent reflecting characteristics over wide spectral range.•Bonding strength and Debye temperature are lower in WeTe2 in comparison to MoTe2. Td-WTe2 is a topological Weyl semimetal. WTe2 in the orthorhombic structure is stable at room temperature. Elastic, electronic, bonding, and optoelectronic properties of WTe2 have been investigated in detail in this work using the density functional theory. Elastic behaviour together with anisotropy indices of WTe2 have been investigated for the first time. Bonding nature among the constituent atoms and electric field polarization dependent optical constants are also explored theoretically for the first time. WTe2 is elastically anisotropic; optical anisotropy on the other hand is low. The electronic band structure reveals quasi-linear dispersions along certain direction in the Brillouin zone with semi-metallic features. The Fermi level is located at a pseudogap separating bonding and anti-bonding density of states. The electronic effective mass tensor is predicted to be highly direction dependent. The energy dispersion is significantly weaker in the c-direction. The bonding in WTe2 is an admixture of covalent and metallic bonds. Optoelectronic properties show strongly reflecting character over a wide band of photon energies. The compound is a strong absorber of ultraviolet radiation. The Debye temperature has been calculated from the elastic constants. We have compared all the calculated physical properties of WTe2 with those of isostructural MoTe2 Weyl semimetal studied in a previous work. The properties of WTe2 and MoTe2 have been compared and contrasted. The calculated parameters of WTe2 have also been compared with those already available in the literature. Good agreements have been found.
AbstractList •Elastic, bonding, and optical properties of WeTe2 are investigated in details for the first time.•WeTe2 show semimetallic feature with pseudogap at Fermi level.•Both WeTe2 and MoTe2 possess excellent reflecting characteristics over wide spectral range.•Bonding strength and Debye temperature are lower in WeTe2 in comparison to MoTe2. Td-WTe2 is a topological Weyl semimetal. WTe2 in the orthorhombic structure is stable at room temperature. Elastic, electronic, bonding, and optoelectronic properties of WTe2 have been investigated in detail in this work using the density functional theory. Elastic behaviour together with anisotropy indices of WTe2 have been investigated for the first time. Bonding nature among the constituent atoms and electric field polarization dependent optical constants are also explored theoretically for the first time. WTe2 is elastically anisotropic; optical anisotropy on the other hand is low. The electronic band structure reveals quasi-linear dispersions along certain direction in the Brillouin zone with semi-metallic features. The Fermi level is located at a pseudogap separating bonding and anti-bonding density of states. The electronic effective mass tensor is predicted to be highly direction dependent. The energy dispersion is significantly weaker in the c-direction. The bonding in WTe2 is an admixture of covalent and metallic bonds. Optoelectronic properties show strongly reflecting character over a wide band of photon energies. The compound is a strong absorber of ultraviolet radiation. The Debye temperature has been calculated from the elastic constants. We have compared all the calculated physical properties of WTe2 with those of isostructural MoTe2 Weyl semimetal studied in a previous work. The properties of WTe2 and MoTe2 have been compared and contrasted. The calculated parameters of WTe2 have also been compared with those already available in the literature. Good agreements have been found.
Td-WTe2 is a topological Weyl semimetal. WTe2 in the orthorhombic structure is stable at room temperature. Elastic, electronic, bonding, and optoelectronic properties of WTe2 have been investigated in detail in this work using the density functional theory. Elastic behaviour together with anisotropy indices of WTe2 have been investigated for the first time. Bonding nature among the constituent atoms and electric field polarization dependent optical constants are also explored theoretically for the first time. WTe2 is elastically anisotropic; optical anisotropy on the other hand is low. The electronic band structure reveals quasi-linear dispersions along certain direction in the Brillouin zone with semi-metallic features. The Fermi level is located at a pseudogap separating bonding and anti-bonding density of states. The electronic effective mass tensor is predicted to be highly direction dependent. The energy dispersion is significantly weaker in the c-direction. The bonding in WTe2 is an admixture of covalent and metallic bonds. Optoelectronic properties show strongly reflecting character over a wide band of photon energies. The compound is a strong absorber of ultraviolet radiation. The Debye temperature has been calculated from the elastic constants. We have compared all the calculated physical properties of WTe2 with those of isostructural MoTe2 Weyl semimetal studied in a previous work. The properties of WTe2 and MoTe2 have been compared and contrasted. The calculated parameters of WTe2 have also been compared with those already available in the literature. Good agreements have been found.
ArticleNumber 103639
Author Syed, Ishtiaque M.
Naqib, S.H.
Rahman Rano, B.
Author_xml – sequence: 1
  givenname: B.
  surname: Rahman Rano
  fullname: Rahman Rano, B.
  organization: Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh
– sequence: 2
  givenname: Ishtiaque M.
  surname: Syed
  fullname: Syed, Ishtiaque M.
  organization: Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh
– sequence: 3
  givenname: S.H.
  surname: Naqib
  fullname: Naqib, S.H.
  email: salehnaqib@yahoo.com
  organization: Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh
BookMark eNp9kU1qHDEQRkVwII7jC2SlA3gmkrp7NB2yMcaJDQ7ZOHgp9FOa1KCWGklM8BF866g9JoQsvFKpxHui6ntPTmKKQMhHztac8c2n_TpjnNeCiaXRbbrxDTkVgvNVJ0d58k_9jpyXsmesUf0wcH5Knq6DLhXtBYUAtuYUl9qk6DDuLqiOjqa5vetA55xmyBWh0OTpwz0I-gCPgRaYcIKqw2d6SW2aZp11xQNQjAdo7l27pUh_Y_1Fv6cF8zlN1GMutUkxWpwDlA_krdehwPnLeUZ-fr2-v7pZ3f34dnt1ebeyPWd1ZYVjdgTmoN8yya2XEnoj2SC3euhBcy_Y2DvjhOd9G9x00rKNMJ4b142bsTsjt0evS3qv2v-Tzo8qaVTPjZR3SrcpbQDlrWWwHSz3ne4596MXmmkzMAHGGwnNJY4um1MpGfxfH2dqyUbt1ZKNWrJRx2watP0Pslifd1SzxvA6-uWIQlvQASGrYhGiBYe5pdcmwNfwPxwCrqA
CitedBy_id crossref_primary_10_1016_j_rinma_2024_100568
crossref_primary_10_1038_s41598_021_85074_z
crossref_primary_10_1007_s00339_025_08354_9
crossref_primary_10_1103_PhysRevB_105_L121302
crossref_primary_10_1039_D4NJ04408H
crossref_primary_10_1142_S021798492350224X
crossref_primary_10_1016_j_cocom_2023_e00833
crossref_primary_10_1016_j_rinp_2022_105507
crossref_primary_10_1103_PhysRevResearch_5_L022038
crossref_primary_10_1007_s11468_023_02143_x
crossref_primary_10_1016_j_mtphys_2023_101196
crossref_primary_10_7566_JPSJ_91_054701
crossref_primary_10_1021_acs_jpcc_3c04651
crossref_primary_10_1016_j_physb_2023_415619
crossref_primary_10_1016_j_jmrt_2023_04_147
crossref_primary_10_1016_j_rinp_2023_106236
crossref_primary_10_1002_sus2_236
crossref_primary_10_1016_j_apsusc_2023_157036
crossref_primary_10_1016_j_rinma_2023_100518
crossref_primary_10_1039_D3CP03610C
crossref_primary_10_3390_nano11102755
crossref_primary_10_1088_1361_6528_acf8ce
crossref_primary_10_1109_ACCESS_2021_3137868
crossref_primary_10_1002_ppsc_202400156
crossref_primary_10_1063_5_0086024
crossref_primary_10_1103_PhysRevB_104_064304
crossref_primary_10_1016_j_actamat_2024_120207
crossref_primary_10_1088_1402_4896_abe2d2
crossref_primary_10_1063_5_0073631
crossref_primary_10_1103_PhysRevB_108_144103
crossref_primary_10_1007_s12274_023_5852_2
Cites_doi 10.1016/j.jallcom.2020.154509
10.1103/PhysRevB.13.5188
10.1103/PhysRevB.41.7892
10.1016/j.jallcom.2020.154522
10.1021/j100203a036
10.1016/j.intermet.2011.03.026
10.1038/nature13763
10.1080/00268976.2019.1587026
10.1038/lsa.2016.17
10.1103/PhysRevLett.101.055504
10.1038/nmat4685
10.1103/PhysRevB.35.6940
10.1103/PhysRevLett.114.176601
10.1016/j.jallcom.2018.12.021
10.1063/1.368733
10.1103/PhysRevB.23.5048
10.1002/zamm.19290090104
10.1103/PhysRevB.90.224104
10.1088/0022-3719/20/36/017
10.1103/PhysRevB.94.161401
10.1088/0370-1298/65/5/307
10.1038/s41467-020-16076-0
10.1103/PhysRevB.95.245140
10.1038/nmat3134
10.1016/0022-3697(63)90067-2
10.1073/pnas.15.4.323
10.1063/1.1740588
10.1146/annurev.matsci.31.1.1
10.1016/j.jallcom.2016.09.095
10.1088/1674-1056/26/10/106201
10.1021/ja00049a029
10.1140/epjb/e2018-90388-9
10.1038/nphys3871
10.1103/PhysRevB.94.121112
10.1017/S0305004100017138
10.1134/S1063783419110040
10.1063/1.4962996
10.1007/BF00549096
10.1038/nature15768
10.1103/PhysRevB.99.195203
10.1126/science.aaa9297
10.1103/PhysRev.140.A1133
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2020.103639
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_fcc0e85c1f3a411f9f2a0ab502ebfb7e
10_1016_j_rinp_2020_103639
S2211379720320696
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-c2d0c9e0de48071cf77e4b70578a54ea1f2094dbd2f14221b37c062bf1bd39693
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:22:11 EDT 2025
Tue Jul 01 02:27:36 EDT 2025
Thu Apr 24 22:59:28 EDT 2025
Tue Jul 25 21:05:18 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Weyl semimetal
Orthorhombic WTe2
Band structure
Elastic constants
Optical properties
Density functional theory (DFT)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-c2d0c9e0de48071cf77e4b70578a54ea1f2094dbd2f14221b37c062bf1bd39693
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379720320696
ParticipantIDs doaj_primary_oai_doaj_org_article_fcc0e85c1f3a411f9f2a0ab502ebfb7e
crossref_primary_10_1016_j_rinp_2020_103639
crossref_citationtrail_10_1016_j_rinp_2020_103639
elsevier_sciencedirect_doi_10_1016_j_rinp_2020_103639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Pan, Chen, Liu, Feng, Wei, Zhou (b0070) 2015; 6
S. F. Pugh, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823 (1954).
M. I. Naher and S. H. Naqib, arXiv:2005.10590 (2020).
W. Voigt, Lehrbuch Der Kristallphysik (Teubner Leipzig, 1928).
Sun, Music, Ahuja, Schneider (b0255) 2005; 71
Mar, Jobic, Ibers (b0035) 1992; 114
Tian, Yu, Liu, Wang, Shi (b0025) 2018; 11
Hein, Jauernik, Erk, Yang, Qi, Sun (b0100) 2020; 11
Weyl (b0005) 1929; 15
Wang, Zhang, Huang, Nie, Liu, Liang (b0050) 2016; 94
Zhu, Lin, Liu, Fauqué, Tao, Yang (b0090) 2015; 114
Chen, Niu, Li, Li (b0260) 2011; 19
Hill (b0235) 1952; 65
Ma, Dai, Yu, Huang (b0305) 2016; 5
Naher, Naqib (b0175) 2020; 829
Fischer, Almlöf (b0165) 1992; 96
Studio (b0295) 2019; 1
Rano, Syed, Naqib (b0105) 2020; 829
Lv, Cui, Huang, Li, Wang, Ji (b0215) 2017; 692
Haines, Léger, Bocquillon (b0250) 2001; 31
Anderson (b0275) 1963; 24
Kohn, Sham (b0150) 1965; 140
Sánchez-Barriga, Vergniory, Evtushinsky, Aguilera, Varykhalov, Blügel (b0055) 2016; 94
Born (b0205) 2013; 36
Greaves, Greer, Lakes, Rouxel (b0245) 2011; 10
Wu, Mou, Jo, Sun, Huang, Bud’Ko, Canfield, Kaminski (b0045) 2016; 94
Ravindran, Fast, Korzhavyi, Johansson, Wills, Eriksson (b0220) 1998; 84
Deng, Wan, Deng, Zhang, Ding, Wang (b0120) 2016; 12
Parvin, Naqib (b0190) 2019; 780
Soluyanov, Gresch, Wang, Wu, Troyer, Dai (b0020) 2015; 527
Sun, Wu, Ali, Felser, Yan (b0110) 2015; 92
Xu, Oguchi, Freeman (b0280) 1987; 35
Azam, Khan, Khenata, Naqib, Abdiche, Uğur (b0300) 2020; 118
Naher, Parvin, Islam, Naqib (b0195) 2018; 91
Lv, Weng, Fu, Wang, Miao, Ma (b0015) 2015; 5
Reuss, ZAMM - (b0230) 1929; 9
Hirshfeld (b0290) 1977; 44
Xu, Belopolski, Alidoust, Neupane, Bian, Zhang (b0010) 2015; 349
Perdew, Zunger (b0155) 1981; 23
Clark, Segall, Pickard, Hasnip, Probert, Refson (b0145) 2005; 220
(2020).
Ranganathan, Ostoja-Starzewski (b0270) 2008; 101
Kimura, Nakajima, Mita, Jha, Higashinaka, Matsuda (b0135) 2019; 99
M. A. Afzal and S. H. Naqib, arXiv:2005.13393
Parvin, Naqib (b0200) 2017; 26
Antonenko, Charnaya, Lee, Chang, Haase, Naumov (b0095) 2019; 61
Chang, Xu, Chang, Lee, Huang, Wang (b0130) 2016; 7
Frenzel, Homes, Gibson, Shao, Post, Charnukha (b0140) 2017; 95
Kang, Zhou, Yi, Yang, Guo, Shi (b0065) 2015; 6
Mulliken (b0285) 1955; 23
Lu, Kim, Yang, Gao, Wu, Shao (b0075) 2016; 94
Chan, Alireza, Yip, Niu, Lai, Goh (b0080) 2017; 96
Vanderbilt (b0160) 1990; 41
Monkhorst, Pack (b0170) 1976; 13
Kube (b0265) 2016; 6
Kim, Kang, Hamada, Son (b0125) 2017; 95
Bruno, Tamai, Wu, Cucchi, Barreteau, De La Torre (b0040) 2016; 94
Ali, Xiong, Flynn, Tao, Gibson, Schoop (b0085) 2014; 514
Feng, Chan, Feng, Liu, Chou, Kuroda (b0060) 2016; 94
Dawson, Bullett (b0030) 1987; 20
Huang, McCormick, Ochi, Zhao, Suzuki, Arita (b0115) 2016; 15
Mouhat, Coudert (b0210) 2014; 90
Pan (10.1016/j.rinp.2020.103639_b0070) 2015; 6
Studio (10.1016/j.rinp.2020.103639_b0295) 2019; 1
10.1016/j.rinp.2020.103639_b0240
Greaves (10.1016/j.rinp.2020.103639_b0245) 2011; 10
Anderson (10.1016/j.rinp.2020.103639_b0275) 1963; 24
Antonenko (10.1016/j.rinp.2020.103639_b0095) 2019; 61
Feng (10.1016/j.rinp.2020.103639_b0060) 2016; 94
Chang (10.1016/j.rinp.2020.103639_b0130) 2016; 7
Chan (10.1016/j.rinp.2020.103639_b0080) 2017; 96
Parvin (10.1016/j.rinp.2020.103639_b0200) 2017; 26
Zhu (10.1016/j.rinp.2020.103639_b0090) 2015; 114
Fischer (10.1016/j.rinp.2020.103639_b0165) 1992; 96
Soluyanov (10.1016/j.rinp.2020.103639_b0020) 2015; 527
Monkhorst (10.1016/j.rinp.2020.103639_b0170) 1976; 13
Clark (10.1016/j.rinp.2020.103639_b0145) 2005; 220
Lu (10.1016/j.rinp.2020.103639_b0075) 2016; 94
Naher (10.1016/j.rinp.2020.103639_b0195) 2018; 91
Tian (10.1016/j.rinp.2020.103639_b0025) 2018; 11
Sun (10.1016/j.rinp.2020.103639_b0110) 2015; 92
Haines (10.1016/j.rinp.2020.103639_b0250) 2001; 31
Bruno (10.1016/j.rinp.2020.103639_b0040) 2016; 94
Kohn (10.1016/j.rinp.2020.103639_b0150) 1965; 140
Sánchez-Barriga (10.1016/j.rinp.2020.103639_b0055) 2016; 94
Kang (10.1016/j.rinp.2020.103639_b0065) 2015; 6
Kimura (10.1016/j.rinp.2020.103639_b0135) 2019; 99
Chen (10.1016/j.rinp.2020.103639_b0260) 2011; 19
Sun (10.1016/j.rinp.2020.103639_b0255) 2005; 71
Ali (10.1016/j.rinp.2020.103639_b0085) 2014; 514
Xu (10.1016/j.rinp.2020.103639_b0280) 1987; 35
Perdew (10.1016/j.rinp.2020.103639_b0155) 1981; 23
Parvin (10.1016/j.rinp.2020.103639_b0190) 2019; 780
Ranganathan (10.1016/j.rinp.2020.103639_b0270) 2008; 101
Mouhat (10.1016/j.rinp.2020.103639_b0210) 2014; 90
10.1016/j.rinp.2020.103639_b0225
Azam (10.1016/j.rinp.2020.103639_b0300) 2020; 118
Vanderbilt (10.1016/j.rinp.2020.103639_b0160) 1990; 41
10.1016/j.rinp.2020.103639_b0185
Frenzel (10.1016/j.rinp.2020.103639_b0140) 2017; 95
Xu (10.1016/j.rinp.2020.103639_b0010) 2015; 349
Kim (10.1016/j.rinp.2020.103639_b0125) 2017; 95
10.1016/j.rinp.2020.103639_b0180
Mar (10.1016/j.rinp.2020.103639_b0035) 1992; 114
Wu (10.1016/j.rinp.2020.103639_b0045) 2016; 94
Deng (10.1016/j.rinp.2020.103639_b0120) 2016; 12
Kube (10.1016/j.rinp.2020.103639_b0265) 2016; 6
Hill (10.1016/j.rinp.2020.103639_b0235) 1952; 65
Huang (10.1016/j.rinp.2020.103639_b0115) 2016; 15
Weyl (10.1016/j.rinp.2020.103639_b0005) 1929; 15
Dawson (10.1016/j.rinp.2020.103639_b0030) 1987; 20
Hein (10.1016/j.rinp.2020.103639_b0100) 2020; 11
Lv (10.1016/j.rinp.2020.103639_b0015) 2015; 5
Reuss (10.1016/j.rinp.2020.103639_b0230) 1929; 9
Rano (10.1016/j.rinp.2020.103639_b0105) 2020; 829
Born (10.1016/j.rinp.2020.103639_b0205) 2013; 36
Wang (10.1016/j.rinp.2020.103639_b0050) 2016; 94
Naher (10.1016/j.rinp.2020.103639_b0175) 2020; 829
Mulliken (10.1016/j.rinp.2020.103639_b0285) 1955; 23
Lv (10.1016/j.rinp.2020.103639_b0215) 2017; 692
Ravindran (10.1016/j.rinp.2020.103639_b0220) 1998; 84
Hirshfeld (10.1016/j.rinp.2020.103639_b0290) 1977; 44
Ma (10.1016/j.rinp.2020.103639_b0305) 2016; 5
References_xml – volume: 20
  start-page: 6159
  year: 1987
  ident: b0030
  publication-title: J. Phys. C Solid State Phys.
– volume: 514
  start-page: 205
  year: 2014
  ident: b0085
  publication-title: Nature
– volume: 114
  start-page: 8963
  year: 1992
  ident: b0035
  publication-title: J. Am. Chem. Soc.
– volume: 94
  year: 2016
  ident: b0045
  publication-title: Phys. Rev. B
– volume: 99
  year: 2019
  ident: b0135
  publication-title: Phys. Rev. B
– reference: S. F. Pugh, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823 (1954).
– volume: 140
  start-page: A1133
  year: 1965
  ident: b0150
  publication-title: Phys. Rev.
– volume: 15
  start-page: 1155
  year: 2016
  ident: b0115
  publication-title: Nat. Mater.
– volume: 349
  start-page: 613
  year: 2015
  ident: b0010
  publication-title: Science
– volume: 23
  start-page: 5048
  year: 1981
  ident: b0155
  publication-title: Phys. Rev. B
– volume: 96
  year: 2017
  ident: b0080
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 49
  year: 1929
  ident: b0230
  publication-title: J. Appl. Math. Mech. / Zeitschrift Für Angew. Math. Und Mech.
– volume: 6
  year: 2015
  ident: b0070
  publication-title: Nat. Commun.
– volume: 692
  start-page: 440
  year: 2017
  ident: b0215
  publication-title: J. Alloys Compd.
– volume: 101
  start-page: 55504
  year: 2008
  ident: b0270
  publication-title: Phys. Rev. Lett.
– volume: 95
  year: 2017
  ident: b0125
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 1275
  year: 2011
  ident: b0260
  publication-title: Intermetallics
– reference: (2020).
– volume: 6
  year: 2015
  ident: b0065
  publication-title: Nat. Commun.
– volume: 61
  start-page: 1979
  year: 2019
  ident: b0095
  publication-title: Phys. Solid State
– volume: 96
  start-page: 9768
  year: 1992
  ident: b0165
  publication-title: J. Phys. Chem.
– volume: 41
  start-page: 7892
  year: 1990
  ident: b0160
  publication-title: Phys. Rev. B
– volume: 780
  start-page: 452
  year: 2019
  ident: b0190
  publication-title: J. Alloys Compd.
– volume: 1
  year: 2019
  ident: b0295
  publication-title: Biovia
– volume: 94
  year: 2016
  ident: b0050
  publication-title: Phys. Rev. B
– volume: 26
  year: 2017
  ident: b0200
  publication-title: Chinese Phys. B
– volume: 829
  year: 2020
  ident: b0105
  publication-title: J. Alloys Compd.
– volume: 24
  start-page: 909
  year: 1963
  ident: b0275
  publication-title: J. Phys. Chem. Solids
– reference: W. Voigt, Lehrbuch Der Kristallphysik (Teubner Leipzig, 1928).
– volume: 7
  year: 2016
  ident: b0130
  publication-title: Nat. Commun.
– volume: 94
  year: 2016
  ident: b0055
  publication-title: Phys. Rev. B
– volume: 220
  start-page: 567
  year: 2005
  ident: b0145
  publication-title: Zeitschrift Fur Krist.
– volume: 10
  start-page: 823
  year: 2011
  ident: b0245
  publication-title: Nat. Mater.
– volume: 118
  year: 2020
  ident: b0300
  publication-title: Mol. Phys.
– volume: 6
  start-page: 95209
  year: 2016
  ident: b0265
  publication-title: AIP Adv.
– volume: 95
  year: 2017
  ident: b0140
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 323
  year: 1929
  ident: b0005
  publication-title: Proc. Natl. Acad. Sci.
– volume: 11
  year: 2020
  ident: b0100
  publication-title: Nat. Commun.
– volume: 92
  year: 2015
  ident: b0110
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– reference: M. I. Naher and S. H. Naqib, arXiv:2005.10590 (2020).
– volume: 94
  year: 2016
  ident: b0060
  publication-title: Phys. Rev. B
– volume: 94
  year: 2016
  ident: b0040
  publication-title: Phys. Rev. B
– volume: 84
  start-page: 4891
  year: 1998
  ident: b0220
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 1105
  year: 2016
  ident: b0120
  publication-title: Nat. Phys.
– volume: 527
  start-page: 495
  year: 2015
  ident: b0020
  publication-title: Nature
– volume: 23
  start-page: 1833
  year: 1955
  ident: b0285
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 31013
  year: 2015
  ident: b0015
  publication-title: Phys. Rev. X
– volume: 90
  year: 2014
  ident: b0210
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– volume: 13
  start-page: 5188
  year: 1976
  ident: b0170
  publication-title: Phys. Rev. B
– volume: 31
  start-page: 1
  year: 2001
  ident: b0250
  publication-title: Annu. Rev. Mater. Sci.
– volume: 35
  start-page: 6940
  year: 1987
  ident: b0280
  publication-title: Phys. Rev. B
– volume: 11
  year: 2018
  ident: b0025
  publication-title: Materials (Basel).
– volume: 114
  year: 2015
  ident: b0090
  publication-title: Phys. Rev. Lett.
– volume: 71
  year: 2005
  ident: b0255
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– volume: 94
  year: 2016
  ident: b0075
  publication-title: Phys. Rev. B
– reference: M. A. Afzal and S. H. Naqib, arXiv:2005.13393
– volume: 44
  start-page: 129
  year: 1977
  ident: b0290
  publication-title: Theor. Chem. Acc.
– volume: 5
  year: 2016
  ident: b0305
  publication-title: Light Sci. Appl.
– volume: 829
  year: 2020
  ident: b0175
  publication-title: J. Alloys Compd.
– volume: 65
  start-page: 349
  year: 1952
  ident: b0235
  publication-title: Proc. Phys. Soc. Sect. A
– volume: 36
  start-page: 160
  year: 2013
  ident: b0205
  publication-title: Math. Proc. Cambridge Philos. Soc.
– volume: 91
  year: 2018
  ident: b0195
  publication-title: Eur. Phys. J. B
– volume: 96
  year: 2017
  ident: 10.1016/j.rinp.2020.103639_b0080
  publication-title: Phys. Rev. B
– volume: 829
  year: 2020
  ident: 10.1016/j.rinp.2020.103639_b0175
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154509
– volume: 13
  start-page: 5188
  year: 1976
  ident: 10.1016/j.rinp.2020.103639_b0170
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 41
  start-page: 7892
  year: 1990
  ident: 10.1016/j.rinp.2020.103639_b0160
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 6
  year: 2015
  ident: 10.1016/j.rinp.2020.103639_b0065
  publication-title: Nat. Commun.
– volume: 829
  year: 2020
  ident: 10.1016/j.rinp.2020.103639_b0105
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154522
– volume: 96
  start-page: 9768
  year: 1992
  ident: 10.1016/j.rinp.2020.103639_b0165
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100203a036
– volume: 220
  start-page: 567
  year: 2005
  ident: 10.1016/j.rinp.2020.103639_b0145
  publication-title: Zeitschrift Fur Krist.
– volume: 71
  year: 2005
  ident: 10.1016/j.rinp.2020.103639_b0255
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– volume: 19
  start-page: 1275
  year: 2011
  ident: 10.1016/j.rinp.2020.103639_b0260
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.03.026
– volume: 1
  year: 2019
  ident: 10.1016/j.rinp.2020.103639_b0295
  publication-title: Biovia
– volume: 514
  start-page: 205
  year: 2014
  ident: 10.1016/j.rinp.2020.103639_b0085
  publication-title: Nature
  doi: 10.1038/nature13763
– volume: 118
  year: 2020
  ident: 10.1016/j.rinp.2020.103639_b0300
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2019.1587026
– volume: 5
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0305
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2016.17
– volume: 5
  start-page: 31013
  year: 2015
  ident: 10.1016/j.rinp.2020.103639_b0015
  publication-title: Phys. Rev. X
– volume: 11
  year: 2018
  ident: 10.1016/j.rinp.2020.103639_b0025
  publication-title: Materials (Basel).
– volume: 101
  start-page: 55504
  year: 2008
  ident: 10.1016/j.rinp.2020.103639_b0270
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.055504
– volume: 15
  start-page: 1155
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0115
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4685
– volume: 35
  start-page: 6940
  year: 1987
  ident: 10.1016/j.rinp.2020.103639_b0280
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.35.6940
– volume: 114
  year: 2015
  ident: 10.1016/j.rinp.2020.103639_b0090
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.176601
– volume: 780
  start-page: 452
  year: 2019
  ident: 10.1016/j.rinp.2020.103639_b0190
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.12.021
– volume: 84
  start-page: 4891
  year: 1998
  ident: 10.1016/j.rinp.2020.103639_b0220
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368733
– volume: 23
  start-page: 5048
  year: 1981
  ident: 10.1016/j.rinp.2020.103639_b0155
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5048
– volume: 9
  start-page: 49
  year: 1929
  ident: 10.1016/j.rinp.2020.103639_b0230
  publication-title: J. Appl. Math. Mech. / Zeitschrift Für Angew. Math. Und Mech.
  doi: 10.1002/zamm.19290090104
– ident: 10.1016/j.rinp.2020.103639_b0240
– volume: 90
  year: 2014
  ident: 10.1016/j.rinp.2020.103639_b0210
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.224104
– volume: 20
  start-page: 6159
  year: 1987
  ident: 10.1016/j.rinp.2020.103639_b0030
  publication-title: J. Phys. C Solid State Phys.
  doi: 10.1088/0022-3719/20/36/017
– volume: 94
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0055
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.161401
– volume: 65
  start-page: 349
  year: 1952
  ident: 10.1016/j.rinp.2020.103639_b0235
  publication-title: Proc. Phys. Soc. Sect. A
  doi: 10.1088/0370-1298/65/5/307
– volume: 11
  year: 2020
  ident: 10.1016/j.rinp.2020.103639_b0100
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16076-0
– ident: 10.1016/j.rinp.2020.103639_b0180
– volume: 95
  year: 2017
  ident: 10.1016/j.rinp.2020.103639_b0140
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.245140
– volume: 10
  start-page: 823
  year: 2011
  ident: 10.1016/j.rinp.2020.103639_b0245
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3134
– volume: 24
  start-page: 909
  year: 1963
  ident: 10.1016/j.rinp.2020.103639_b0275
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(63)90067-2
– volume: 15
  start-page: 323
  year: 1929
  ident: 10.1016/j.rinp.2020.103639_b0005
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.15.4.323
– volume: 23
  start-page: 1833
  year: 1955
  ident: 10.1016/j.rinp.2020.103639_b0285
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740588
– volume: 31
  start-page: 1
  year: 2001
  ident: 10.1016/j.rinp.2020.103639_b0250
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.31.1.1
– volume: 692
  start-page: 440
  year: 2017
  ident: 10.1016/j.rinp.2020.103639_b0215
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.09.095
– volume: 26
  year: 2017
  ident: 10.1016/j.rinp.2020.103639_b0200
  publication-title: Chinese Phys. B
  doi: 10.1088/1674-1056/26/10/106201
– volume: 114
  start-page: 8963
  year: 1992
  ident: 10.1016/j.rinp.2020.103639_b0035
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00049a029
– volume: 91
  year: 2018
  ident: 10.1016/j.rinp.2020.103639_b0195
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2018-90388-9
– volume: 95
  year: 2017
  ident: 10.1016/j.rinp.2020.103639_b0125
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 1105
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0120
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3871
– volume: 94
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0050
  publication-title: Phys. Rev. B
– volume: 94
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0040
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.121112
– volume: 36
  start-page: 160
  year: 2013
  ident: 10.1016/j.rinp.2020.103639_b0205
  publication-title: Math. Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004100017138
– volume: 94
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0045
  publication-title: Phys. Rev. B
– volume: 61
  start-page: 1979
  year: 2019
  ident: 10.1016/j.rinp.2020.103639_b0095
  publication-title: Phys. Solid State
  doi: 10.1134/S1063783419110040
– volume: 6
  start-page: 95209
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0265
  publication-title: AIP Adv.
  doi: 10.1063/1.4962996
– volume: 94
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0075
  publication-title: Phys. Rev. B
– volume: 94
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0060
  publication-title: Phys. Rev. B
– volume: 7
  year: 2016
  ident: 10.1016/j.rinp.2020.103639_b0130
  publication-title: Nat. Commun.
– volume: 44
  start-page: 129
  year: 1977
  ident: 10.1016/j.rinp.2020.103639_b0290
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/BF00549096
– volume: 6
  year: 2015
  ident: 10.1016/j.rinp.2020.103639_b0070
  publication-title: Nat. Commun.
– volume: 92
  year: 2015
  ident: 10.1016/j.rinp.2020.103639_b0110
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– ident: 10.1016/j.rinp.2020.103639_b0225
– ident: 10.1016/j.rinp.2020.103639_b0185
– volume: 527
  start-page: 495
  year: 2015
  ident: 10.1016/j.rinp.2020.103639_b0020
  publication-title: Nature
  doi: 10.1038/nature15768
– volume: 99
  year: 2019
  ident: 10.1016/j.rinp.2020.103639_b0135
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.195203
– volume: 349
  start-page: 613
  year: 2015
  ident: 10.1016/j.rinp.2020.103639_b0010
  publication-title: Science
  doi: 10.1126/science.aaa9297
– volume: 140
  start-page: A1133
  year: 1965
  ident: 10.1016/j.rinp.2020.103639_b0150
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
SSID ssj0001645511
Score 2.4137557
Snippet •Elastic, bonding, and optical properties of WeTe2 are investigated in details for the first time.•WeTe2 show semimetallic feature with pseudogap at Fermi...
Td-WTe2 is a topological Weyl semimetal. WTe2 in the orthorhombic structure is stable at room temperature. Elastic, electronic, bonding, and optoelectronic...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 103639
SubjectTerms Band structure
Density functional theory (DFT)
Elastic constants
Optical properties
Orthorhombic WTe2
Weyl semimetal
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EELyIT6wv5uDNBnc3m8d6q6KIoKcWvYV9QkST0taDP8F_7U6S2pz04jXZR5gZMt8MM98Qch4rn3if5hG1SkQit0kkbSwiJbl2TkuqPXYjPz6l9xPx8JK89EZ9YU1YSw_cCu7SG0NdnhjmYyUY89JzRZVOKHfhmMzh3zf4vF4w1WRXUhGgAEZbnCNPXyazrmOmLe6alRWSVfKm6TzFSeE9r9SQ9_ecU8_h3G2TrQ4pwqj9wh2y5qpdstFUbJr5Hvm6Dbg3vBrCapLNEHTddKkMQVUW6mmTqIYpJtxnyJwKtYfnsePw7D7fYO7ey3cX0PcVjMCsaMChXJFv1BVgqhYea9yGzSjgy4AYYbrM0s_3yeTudnxzH3VzFSIjGF1EhltqpKPWYT85Mz7LnNBZQG65SoRTzAeJCqst95ghYjrODE259kzbWKYyPiDrVV25QwJWJ9KqoBJhchEbKxUVTGvNWAjSQ6Q5IGwp18J0pOM4--KtWFaXvRaoiwJ1UbS6GJCLnz3TlnLj19XXqK6flUiX3TwIRlR0RlT8ZUQDkiyVXXTIo0UU4ajyl8uP_uPyY7KJR7Y1MidkfTH7cKcB6Sz0WWPU32SK_lY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9Em3acocesua1csP5ZaEhBBILk3I3oyexSWxze720J_Qf12NbGe3lxxytKyxhWaQZob5viHku9AhD6GoMuq0zGTl8kw5ITOtuPHeKGoCopGvb4rLO3m1zJd75GzCwmBZ5Xj2D2d6Oq3HkcW4m4u-aRY_eIxdRKnK1AO8UEi7LWSVQHzL022epZDRKcC4C-dnKDBiZ4Yyr1XTIm0lT_DzAnuG79xPicZ_55rauXou3pI3o88IJ8Oy3pE9374nr1Ltpl1_IH_PowccX81h29NmDqZLeJU56NZB16eUNfSYel8hhyp0Ae5vPYd7_-cB1v6xefTRDz-GE7BbQnBotjQcXQuYtIXrDsUQlgKhib4j9FO-fv2R3F2c355dZmOHhcxKRjeZ5Y5a5anziCxnNpSll6aMPlylc-k1CzyGf844HjBXxIwoLS24Ccw4oQolPpH9tmv9ZwLO5MrpwLW0lRTWKU0lM8YwFsP1GHPOCJv2tbYj_Th2wXiopzqzXzXqokZd1IMuZuToSaYfyDeenX2K6nqaicTZaaBb_axHy6mDtdRXuWVBaMlYUHHFVJucch-tsvQzkk_Krv-zw_ip5pmff3mh3AF5jU9DgcxXsr9Z_faH0c3ZmG_Jjv8BcUL80g
  priority: 102
  providerName: Elsevier
Title Elastic, electronic, bonding, and optical properties of WTe2 Weyl semimetal: A comparative investigation with MoTe2 from first principles
URI https://dx.doi.org/10.1016/j.rinp.2020.103639
https://doaj.org/article/fcc0e85c1f3a411f9f2a0ab502ebfb7e
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEG5iguBFfOIaXergzR3p7ul5tCCykYRoWA-SZfc29DOMbGbW2Q2Yn-C_tmse2Qgh4GVgZvpFVzf1VVH1FSHvYuUT79M8olaJSOQ2iaSNRaQk185pSbXHbOTZ9_R0Lr4tk-UeGcod9Ru4udO0w3pS82b14fev68_hwn_axWo1ZYXck7zNIQ869wE5CJopw4s66-F-63NJRQAIaINxjux9mcz6PJq7h_lHV7WU_rdU1i01dPKEPO7xI0w7gT8le656Rh62cZxm85z8OQ5oOPyawK6-zQR03eauTEBVFup1676GNbrhG-RThdrD4txxWLjrFWzcZXnpwnZ8hCmYHTk4lDtKjroCdODCrMZumKICvgw4EtaD737zgsxPjs-_nEZ9tYXICEa3keGWGumodZhlzozPMid0FvBcrhLhFPM8mIJWW-7Rb8R0nBmacu2ZtrFMZfyS7Fd15V4RsDqRVnmuhMlFbKxUVDCtNWPBdA_254iwYV8L01ORY0WMVTHEnP0sUBYFyqLoZDEi72_6rDsijntbH6G4bloiiXb7oW4uiv5OFt4Y6vLEMB8rwZiXYcVU6YRyF05o5kYkGYRd9HikwxlhqPKeyV__11IPySN860Jk3pD9bXPl3gags9VjcjA9-7E4G7eOgvD8ujwatyf6LxEdAFE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoVdVeUJ_qlj586K0bre04D_cGCLS0LJcuYm-WnygVJNHucuAn8K_xOAm7vXDo1fYklmdkfzOa-Qah76nymfd5mRCreMJLmyXCpjxRgmnntCDaQzXy7DyfXvBfi2yxg46GWhhIq-zv_u5Oj7d1PzLpT3PSVtXkDwu-S1qIIvYAz0X-DD0PaKCA_g2ni8NNoCXnARWA4wUCCUj0xTNdnteyqoG3ksX68xyahm89UJHHf-ud2np7Tl6jvR404oNuX2_QjqvfohcxedOs3qH74wCBw9QYb5rajLFuYsHKGKva4qaNMWvcQux9CSSquPH4cu4YvnR313jlbqobF4D4T3yAzYYRHFcbHo6mxhC1xbMGxKAuBfsqgEfcDgH71Xt0cXI8P5omfYuFxHBK1olhlhjhiHVQWk6NLwrHdRFAXKky7hT1LPh_VlvmIVhEdVoYkjPtqbapyEX6Ae3WTe0-Imx1JqzyTHFT8tRYoQinWmtKg78enM4RosO5StPzj0MbjGs5JJr9laALCbqQnS5G6MejTNuxbzy5-hDU9bgSmLPjQLO8kr3pSG8McWVmqE8Vp9SLsGOidEaYC2ZZuBHKBmXLfwwxfKp64uef_lPuG3o5nc_O5Nnp-e999ApmumyZz2h3vbx1XwLmWeuv0aYfACjkAAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic%2C+electronic%2C+bonding%2C+and+optical+properties+of+WTe2+Weyl+semimetal%3A+A+comparative+investigation+with+MoTe2+from+first+principles&rft.jtitle=Results+in+physics&rft.au=Rahman+Rano%2C+B.&rft.au=Syed%2C+Ishtiaque+M.&rft.au=Naqib%2C+S.H.&rft.date=2020-12-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=19&rft.spage=103639&rft_id=info:doi/10.1016%2Fj.rinp.2020.103639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2020_103639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon