On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip

•Stagnation point flow of micropolar nanofluid over a circular cylinder having sinusoidal radius variation is examined.•Analysis in magnetohydrodynamic and slip regime.•Microorganisms are also incorporated with nanoparticles.•Numerical solutions are computed by Runge-Kutta-Fehlberg scheme. The conce...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 9; pp. 1224 - 1232
Main Authors Abbas, Nadeem, Saleem, S., Nadeem, S., Alderremy, A.A., Khan, A.U.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Stagnation point flow of micropolar nanofluid over a circular cylinder having sinusoidal radius variation is examined.•Analysis in magnetohydrodynamic and slip regime.•Microorganisms are also incorporated with nanoparticles.•Numerical solutions are computed by Runge-Kutta-Fehlberg scheme. The concerned problem is dedicated to study stagnation point flow of MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal radius variation. Velocity jump slip phenomenon with porous medium is also taken into account. To be more specific, the physical situation of micropolar fluid in the presence of both weak and strong concentration is mathematically modeled in terms of differential equations. Here, three nanoparticles namely Titania (TiO2), Copper (Cu) and Alumina (Al2O3) compared with water as base fluids are incorporated for analysis. The resulting non-linear system has been solved by Runge-Kutta-Fehlberg scheme. Numerical solutions for velocities and temperature profiles are settled for alumina–water nanofluid and deliberated through graphs and numerical tables. It is seen that the skin friction coefficients and the rate of heat transfer are maximum for copper–water nanofluid related to the alumina–water and titania–water nanofluids. Also, the precision of the present findings is certified by equating them with the previously published work.
AbstractList •Stagnation point flow of micropolar nanofluid over a circular cylinder having sinusoidal radius variation is examined.•Analysis in magnetohydrodynamic and slip regime.•Microorganisms are also incorporated with nanoparticles.•Numerical solutions are computed by Runge-Kutta-Fehlberg scheme. The concerned problem is dedicated to study stagnation point flow of MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal radius variation. Velocity jump slip phenomenon with porous medium is also taken into account. To be more specific, the physical situation of micropolar fluid in the presence of both weak and strong concentration is mathematically modeled in terms of differential equations. Here, three nanoparticles namely Titania (TiO2), Copper (Cu) and Alumina (Al2O3) compared with water as base fluids are incorporated for analysis. The resulting non-linear system has been solved by Runge-Kutta-Fehlberg scheme. Numerical solutions for velocities and temperature profiles are settled for alumina–water nanofluid and deliberated through graphs and numerical tables. It is seen that the skin friction coefficients and the rate of heat transfer are maximum for copper–water nanofluid related to the alumina–water and titania–water nanofluids. Also, the precision of the present findings is certified by equating them with the previously published work.
The concerned problem is dedicated to study stagnation point flow of MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal radius variation. Velocity jump slip phenomenon with porous medium is also taken into account. To be more specific, the physical situation of micropolar fluid in the presence of both weak and strong concentration is mathematically modeled in terms of differential equations. Here, three nanoparticles namely Titania (TiO2), Copper (Cu) and Alumina (Al2O3) compared with water as base fluids are incorporated for analysis. The resulting non-linear system has been solved by Runge-Kutta-Fehlberg scheme. Numerical solutions for velocities and temperature profiles are settled for alumina–water nanofluid and deliberated through graphs and numerical tables. It is seen that the skin friction coefficients and the rate of heat transfer are maximum for copper–water nanofluid related to the alumina–water and titania–water nanofluids. Also, the precision of the present findings is certified by equating them with the previously published work. Keywords: Micropolar nanofluid, MHD, Velocity and thermal Slip, Stagnation point, Porous medium
Author Alderremy, A.A.
Khan, A.U.
Abbas, Nadeem
Nadeem, S.
Saleem, S.
Author_xml – sequence: 1
  givenname: Nadeem
  surname: Abbas
  fullname: Abbas, Nadeem
  organization: Department of Mathematics, Quaid-I-Azam University, 45320 Islamabad 44000, Pakistan
– sequence: 2
  givenname: S.
  surname: Saleem
  fullname: Saleem, S.
  email: saakhtar@kku.edu.sa
  organization: Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
– sequence: 3
  givenname: S.
  surname: Nadeem
  fullname: Nadeem, S.
  organization: Department of Mathematics, Quaid-I-Azam University, 45320 Islamabad 44000, Pakistan
– sequence: 4
  givenname: A.A.
  surname: Alderremy
  fullname: Alderremy, A.A.
  organization: Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
– sequence: 5
  givenname: A.U.
  surname: Khan
  fullname: Khan, A.U.
  organization: Department of Mathematics, Quaid-I-Azam University, 45320 Islamabad 44000, Pakistan
BookMark eNp9kcFqHDEQRIVxII7jH8hJP7ATSaOZ2YFcgklig8GX5Cx6pZbda600SLLN_n20XhtCDj5JdPOK6qpP7DSmiIx9kaKTQo5ft12muHRKyHUndCfkdMLOlJJy1U_zdPrP_yO7KGUrRKP0MEh5xh5uIy8V7iJUSpEviWLlPqRnnjwHviObU5sGyDxCTD48kuMLlNqWlrJ9PGzsPlB0mPkz1Xv-hCFZqnsO0fF6j3kHgZdAy2f2wUMoePH6nrM_P3_8vrxa3dz-ur78frOyWoq62gCOg4NJeNdMCut7JVEPeqObaQ_zMI5Tr2ePyul51Lq3bu5nLbwa1-tG9efs-qjrEmzNkmkHeW8SkHkZpHxnIFeyAc1GT1qh0iM2hV6PYD1sBj8IBAFe6qa1Pmq1HErJ6E077SWrmoGCkcIcOjBbc-jAHDowQpvWQUPVf-iblXehb0cIW0BPhNkUSxgtOspoa7uA3sP_AoGVozY
CitedBy_id crossref_primary_10_1088_1402_4896_ab3bff
crossref_primary_10_1139_cjp_2018_0173
crossref_primary_10_1063_5_0008756
crossref_primary_10_1016_j_cmpb_2019_105194
crossref_primary_10_1016_j_physa_2019_123512
crossref_primary_10_1088_1402_4896_abbeae
crossref_primary_10_1080_02286203_2024_2395900
crossref_primary_10_3390_molecules26247441
crossref_primary_10_32604_fdmp_2023_021590
crossref_primary_10_1088_1402_4896_ab24ff
crossref_primary_10_1108_HFF_05_2019_0402
crossref_primary_10_1080_17455030_2022_2119299
crossref_primary_10_1002_htj_21605
crossref_primary_10_1007_s13369_019_03828_4
crossref_primary_10_1039_C8RA09698H
crossref_primary_10_1007_s13369_019_04205_x
crossref_primary_10_1080_10407782_2023_2266569
crossref_primary_10_1016_j_physa_2019_124083
crossref_primary_10_1177_09544089221087811
crossref_primary_10_1177_1687814020925217
crossref_primary_10_1007_s10973_020_09428_x
crossref_primary_10_1080_02286203_2023_2281009
crossref_primary_10_1142_S0217979224500048
crossref_primary_10_1007_s12668_019_00667_3
crossref_primary_10_1007_s10973_019_09178_5
crossref_primary_10_1016_j_ijthermalsci_2018_06_016
crossref_primary_10_1016_j_applthermaleng_2022_119310
crossref_primary_10_1142_S0217979222501879
crossref_primary_10_1080_17455030_2022_2048122
crossref_primary_10_1007_s40430_019_1575_4
crossref_primary_10_3390_cryst10030168
crossref_primary_10_1002_zamm_202300186
crossref_primary_10_1016_j_csite_2022_101913
crossref_primary_10_1016_j_cherd_2020_04_017
crossref_primary_10_1139_cjp_2018_0973
crossref_primary_10_3389_fphy_2022_964653
crossref_primary_10_1080_17455030_2022_2123572
crossref_primary_10_1016_j_cma_2018_09_025
crossref_primary_10_1140_epjs_s11734_021_00033_z
crossref_primary_10_3390_math7111043
crossref_primary_10_1007_s40819_019_0645_8
crossref_primary_10_1142_S0217979223500169
crossref_primary_10_1016_j_aej_2020_05_022
crossref_primary_10_1002_zamm_202100311
crossref_primary_10_1016_j_heliyon_2023_e14250
crossref_primary_10_1016_j_csite_2023_103163
crossref_primary_10_1038_s41598_021_94187_4
crossref_primary_10_3390_coatings10020163
crossref_primary_10_3390_polym13213696
crossref_primary_10_1515_jnet_2018_0069
crossref_primary_10_1016_j_cmpb_2019_105136
crossref_primary_10_1142_S0217984922501974
crossref_primary_10_1155_2021_5557708
crossref_primary_10_1166_jon_2023_1958
crossref_primary_10_1080_17455030_2022_2111030
crossref_primary_10_3390_math7121199
crossref_primary_10_1007_s10973_023_12283_1
crossref_primary_10_1016_j_csite_2021_101500
crossref_primary_10_1155_2022_3150451
crossref_primary_10_1108_HFF_10_2019_0756
crossref_primary_10_1515_jnet_2018_0022
crossref_primary_10_1016_j_petrol_2022_110857
crossref_primary_10_1016_j_physa_2019_124020
crossref_primary_10_1007_s10973_021_10586_9
crossref_primary_10_1016_j_triboint_2023_108847
crossref_primary_10_1007_s12668_018_0593_5
crossref_primary_10_1177_09544062211045649
crossref_primary_10_1007_s10973_023_12183_4
crossref_primary_10_1155_2022_6777513
crossref_primary_10_1016_j_jrras_2025_101415
crossref_primary_10_1007_s00542_018_4076_y
crossref_primary_10_1016_j_asej_2020_03_008
crossref_primary_10_1007_s10973_019_08933_y
crossref_primary_10_1016_j_physe_2019_03_006
crossref_primary_10_3390_cryst11111315
crossref_primary_10_1080_17455030_2022_2118896
crossref_primary_10_1142_S0217979223502296
crossref_primary_10_1007_s42452_020_2262_x
crossref_primary_10_1016_j_cjph_2020_11_019
crossref_primary_10_1007_s13369_023_08011_4
crossref_primary_10_3390_sym15091794
crossref_primary_10_1016_j_cma_2018_09_042
crossref_primary_10_1007_s13369_020_05195_x
crossref_primary_10_1016_j_csite_2019_100447
crossref_primary_10_1016_j_jmmm_2019_03_108
crossref_primary_10_1155_2020_6580409
crossref_primary_10_1177_23977914221103345
crossref_primary_10_1080_17455030_2022_2102271
Cites_doi 10.1016/j.jtice.2017.02.001
10.1016/j.ijheatmasstransfer.2015.02.007
10.1140/epjp/i2016-16261-9
10.1016/j.molliq.2017.03.031
10.2514/1.T4396
10.1371/journal.pone.0059393
10.1016/j.molliq.2016.11.026
10.1016/j.powtec.2013.11.049
10.1155/2014/239082
10.1016/j.aej.2016.04.018
10.1016/j.camwa.2013.05.023
10.1016/j.ijheatmasstransfer.2014.03.026
10.2298/TSCI130212096R
10.1016/j.apt.2016.07.013
10.1016/j.jmmm.2014.06.017
10.1016/j.rinp.2018.03.024
10.1016/j.molliq.2015.01.040
10.1016/j.apt.2016.12.012
10.1007/s11012-012-9621-7
10.1016/j.ijmecsci.2017.03.014
10.1007/s10483-013-1743-7
10.1016/j.molliq.2017.03.078
10.1016/j.molliq.2016.10.102
10.1166/jctn.2016.5353
10.1166/jctn.2015.4077
10.1016/j.physb.2010.09.031
10.1016/j.apm.2012.04.004
10.1016/j.ijheatmasstransfer.2014.01.039
ContentType Journal Article
Copyright 2018 The Authors
Copyright_xml – notice: 2018 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2018.04.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
EndPage 1232
ExternalDocumentID oai_doaj_org_article_b4742e246e394346acfab5f50ea0af14
10_1016_j_rinp_2018_04_017
S2211379718300433
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-bae65da70fd4550cf321e454b4645fa95667349fe2d496443cd93940f268870f3
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:27:51 EDT 2025
Tue Jul 01 01:33:39 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Wed May 17 01:21:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MHD
Stagnation point
Micropolar nanofluid
Velocity and thermal Slip
Porous medium
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-bae65da70fd4550cf321e454b4645fa95667349fe2d496443cd93940f268870f3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.rinp.2018.04.017
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_b4742e246e394346acfab5f50ea0af14
crossref_citationtrail_10_1016_j_rinp_2018_04_017
crossref_primary_10_1016_j_rinp_2018_04_017
elsevier_sciencedirect_doi_10_1016_j_rinp_2018_04_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationTitle Results in physics
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Qasim, Khan, Shafie (b0050) 2013; 8
Rashidi, Raju, Sandeep, Saleem (b0175) 2016; 13
Rashidi, Momoniat, Ferdows, Basiriparsa (b0105) 2014; 2014
Nayak (b0170) 2017; 124
Dinarvand, Hosseini, Damangir, Pop (b0155) 2013; 48
Rashidi, Ashraf, Rostami, Rastegari, Bashir (b0025) 2016; 20
Bachok, Ishak, Nazar, Pop (b0145) 2010; 405
Khan, Nadeem, Hussain (b0100) 2016; 224
Ellahi (b0085) 2013; 37
Fakour, Vahabzadeh, Ganji, Hatami (b0060) 2015; 204
Choi, Eastman (b0075) 1995
Ali, Sandeep (b0045) 2017; 7
Borrelli, Giantesio, Patria (b0135) 2013; 66
Khan, Makinde, Khan (b0010) 2014; 74
Bhatti, Zeeshan, Tripathi, Ellahi (b0015) 2017
Sandeep, Reddy (b0115) 2017; 225
Sandeep (b0095) 2017; 28
Nadeem, Khan, Saleem (b0120) 2016; 131
Nadeem, Saleem (b0080) 2015; 85
Nadeem, Saleem (b0130) 2015; 12
Khan, Irfan, Khan, Alshomrani, Alzahrani, Alghamdi (b0150) 2017; 234
Hayat, Awais, Iram, Siddiqa, Alsaedi (b0090) 2015; 11
Prasad, Gaffar, Bég (b0110) 2014; 29
Malvandi, Hedayati, Ganji (b0030) 2014; 253
Hayat, Nadeem (b0165) 2017; 7
Anjum, Mir, Farooq, Javed, Malik (b9000) 2018; 9
Eringen (b0040) 2001
Sheikholeslami, Bandpy, Ellahi, Zeeshan (b0005) 2014; 369
Aurangzaib, Bhattacharyya, Shafie (b0020) 2016
Lukaszewicz (b0035) 1999
Turkyilmazoglu (b0055) 2014; 72
Babu, Sandeep (b0070) 2016; 27
Ashraf, Jameel, Ali (b0065) 2013; 34
Kumaran, Sandeep (b0160) 2017; 233
Sayehvand, Parsa (b0125) 2017; 7
Mehmood, Nadeem, Saleem, Akbar (b0140) 2017; 74
Bhatti (10.1016/j.rinp.2018.04.017_b0015) 2017
Ellahi (10.1016/j.rinp.2018.04.017_b0085) 2013; 37
Sandeep (10.1016/j.rinp.2018.04.017_b0115) 2017; 225
Ashraf (10.1016/j.rinp.2018.04.017_b0065) 2013; 34
Borrelli (10.1016/j.rinp.2018.04.017_b0135) 2013; 66
Dinarvand (10.1016/j.rinp.2018.04.017_b0155) 2013; 48
Sandeep (10.1016/j.rinp.2018.04.017_b0095) 2017; 28
Ali (10.1016/j.rinp.2018.04.017_b0045) 2017; 7
Babu (10.1016/j.rinp.2018.04.017_b0070) 2016; 27
Prasad (10.1016/j.rinp.2018.04.017_b0110) 2014; 29
Sheikholeslami (10.1016/j.rinp.2018.04.017_b0005) 2014; 369
Rashidi (10.1016/j.rinp.2018.04.017_b0105) 2014; 2014
Khan (10.1016/j.rinp.2018.04.017_b0150) 2017; 234
Eringen (10.1016/j.rinp.2018.04.017_b0040) 2001
Fakour (10.1016/j.rinp.2018.04.017_b0060) 2015; 204
Nadeem (10.1016/j.rinp.2018.04.017_b0130) 2015; 12
Bachok (10.1016/j.rinp.2018.04.017_b0145) 2010; 405
Rashidi (10.1016/j.rinp.2018.04.017_b0025) 2016; 20
Kumaran (10.1016/j.rinp.2018.04.017_b0160) 2017; 233
Khan (10.1016/j.rinp.2018.04.017_b0010) 2014; 74
Rashidi (10.1016/j.rinp.2018.04.017_b0175) 2016; 13
Turkyilmazoglu (10.1016/j.rinp.2018.04.017_b0055) 2014; 72
Qasim (10.1016/j.rinp.2018.04.017_b0050) 2013; 8
Hayat (10.1016/j.rinp.2018.04.017_b0165) 2017; 7
Malvandi (10.1016/j.rinp.2018.04.017_b0030) 2014; 253
Mehmood (10.1016/j.rinp.2018.04.017_b0140) 2017; 74
Anjum (10.1016/j.rinp.2018.04.017_b9000) 2018; 9
Khan (10.1016/j.rinp.2018.04.017_b0100) 2016; 224
Nadeem (10.1016/j.rinp.2018.04.017_b0120) 2016; 131
Sayehvand (10.1016/j.rinp.2018.04.017_b0125) 2017; 7
Hayat (10.1016/j.rinp.2018.04.017_b0090) 2015; 11
Nayak (10.1016/j.rinp.2018.04.017_b0170) 2017; 124
Nadeem (10.1016/j.rinp.2018.04.017_b0080) 2015; 85
Aurangzaib (10.1016/j.rinp.2018.04.017_b0020) 2016
Lukaszewicz (10.1016/j.rinp.2018.04.017_b0035) 1999
Choi (10.1016/j.rinp.2018.04.017_b0075) 1995
References_xml – volume: 7
  start-page: 21
  year: 2017
  end-page: 30
  ident: b0045
  article-title: Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: a numerical study
  publication-title: Res Phys
– volume: 29
  start-page: 127
  year: 2014
  end-page: 139
  ident: b0110
  article-title: Heat and mass transfer of nanofluid from horizontal cylinder to micropolar fluid
  publication-title: J Thermophys Heat Transfer
– volume: 27
  start-page: 2039
  year: 2016
  end-page: 2050
  ident: b0070
  article-title: Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects
  publication-title: Adv Powder Technol
– start-page: 1
  year: 2017
  end-page: 8
  ident: b0015
  article-title: Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids
  publication-title: Indian J Phys
– volume: 9
  start-page: 955
  year: 2018
  end-page: 960
  ident: b9000
  article-title: Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: Application of Cattaneo-Christov approach
  publication-title: Results Phys
– volume: 233
  start-page: 262
  year: 2017
  end-page: 269
  ident: b0160
  article-title: Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion
  publication-title: J Mol Liq
– volume: 74
  start-page: 49
  year: 2017
  end-page: 58
  ident: b0140
  article-title: Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate
  publication-title: J Taiwan Inst Chem Eng
– volume: 234
  start-page: 201
  year: 2017
  end-page: 208
  ident: b0150
  article-title: Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid
  publication-title: J Mol Liq
– volume: 20
  start-page: 21
  year: 2016
  end-page: 34
  ident: b0025
  article-title: Mixed convection boundary-layer flow of a micro polar fluid towards a heated shrinking sheet by homotopy analysis method
  publication-title: Therm Sci
– volume: 7
  start-page: 1595
  year: 2017
  end-page: 1607
  ident: b0125
  article-title: A new numerical method for investigation of thermophoresis and Brownian motion effects on MHD nanofluid flow and heat transfer between parallel plates partially filled with a porous medium
  publication-title: Res Phys
– volume: 74
  start-page: 285
  year: 2014
  end-page: 291
  ident: b0010
  article-title: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip
  publication-title: Int J Heat Mass Transf
– year: 2001
  ident: b0040
  article-title: Microcontinuum Field theories II: fluent media
– year: 1995
  ident: b0075
  article-title: (No. ANL/MSD/CP--84938; CONF-951135--29)
– volume: 72
  start-page: 388
  year: 2014
  end-page: 391
  ident: b0055
  article-title: A note on micropolar fluid flow and heat transfer over a porous shrinking sheet
  publication-title: Int J Heat Mass Transf
– start-page: 1285
  year: 2016
  end-page: 1293
  ident: b0020
  article-title: Effect of partial slip on an unsteady MHD mixed convection stagnation-point flow of a micropolar fluid towards a permeable shrinking sheet
  publication-title: Alexandria Eng J
– volume: 369
  start-page: 69
  year: 2014
  end-page: 80
  ident: b0005
  article-title: Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces
  publication-title: J Magn Magn Mater
– volume: 204
  start-page: 198
  year: 2015
  end-page: 204
  ident: b0060
  article-title: Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls
  publication-title: J Mol Liq
– volume: 85
  start-page: 1041
  year: 2015
  end-page: 1048
  ident: b0080
  article-title: Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles
  publication-title: Int J Heat Mass Transf
– volume: 224
  start-page: 1210
  year: 2016
  end-page: 1219
  ident: b0100
  article-title: Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field
  publication-title: J Mol Liq
– volume: 12
  start-page: 3028
  year: 2015
  end-page: 3035
  ident: b0130
  article-title: An optimized study of mixed convection flow of a rotating Jeffrey nanofluid on a rotating vertical cone
  publication-title: J Comput Theor Nanosci
– volume: 405
  start-page: 4914
  year: 2010
  end-page: 4918
  ident: b0145
  article-title: Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid
  publication-title: Physica B: Condensed Matter
– volume: 2014
  year: 2014
  ident: b0105
  article-title: Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media
  publication-title: Math Probl Eng
– volume: 11
  year: 2015
  ident: b0090
  article-title: Thermophoresis and heat generation/absorption in flow of third grade nanofluid
  publication-title: Curr Nanosci
– volume: 7
  start-page: 2317
  year: 2017
  end-page: 2324
  ident: b0165
  article-title: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid
  publication-title: Res Phys
– volume: 225
  start-page: 87
  year: 2017
  end-page: 94
  ident: b0115
  article-title: Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries
  publication-title: J Mol Liq
– volume: 48
  start-page: 643
  year: 2013
  end-page: 652
  ident: b0155
  article-title: Series solutions for steady three-dimensional stagnation point flow of a nanofluid past a circular cylinder with sinusoidal radius variation
  publication-title: Meccanica
– volume: 124
  start-page: 185
  year: 2017
  end-page: 193
  ident: b0170
  article-title: MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation
  publication-title: Int J Mech Sci
– year: 1999
  ident: b0035
  article-title: Micropolar fluids: theory and applications
– volume: 34
  start-page: 1263
  year: 2013
  end-page: 1276
  ident: b0065
  article-title: MHD non-Newtonian micropolar fluid flow and heat transfer in channel with stretching walls
  publication-title: Appl Math Mech
– volume: 13
  start-page: 4835
  year: 2016
  end-page: 4842
  ident: b0175
  article-title: A numerical comparative study on 3D nanofluid flows
  publication-title: J Comput Theor Nanosci
– volume: 8
  start-page: e59393
  year: 2013
  ident: b0050
  article-title: Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating
  publication-title: PLoS One
– volume: 37
  start-page: 1451
  year: 2013
  end-page: 1467
  ident: b0085
  article-title: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions
  publication-title: Appl Math Model
– volume: 28
  start-page: 865
  year: 2017
  end-page: 875
  ident: b0095
  article-title: Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluids embedded with graphene nanoparticles
  publication-title: Adv Powder Technol
– volume: 253
  start-page: 377
  year: 2014
  end-page: 384
  ident: b0030
  article-title: Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet
  publication-title: Powder Tech
– volume: 131
  start-page: 261
  year: 2016
  ident: b0120
  article-title: A comparative analysis on different nanofluid models for the oscillatory stagnation point flow
  publication-title: Eur Phys J Plus
– volume: 66
  start-page: 472
  year: 2013
  end-page: 489
  ident: b0135
  article-title: Numerical simulations of three-dimensional MHD stagnation-point flow of a micropolar fluid
  publication-title: Comput Math Appl
– volume: 74
  start-page: 49
  year: 2017
  ident: 10.1016/j.rinp.2018.04.017_b0140
  article-title: Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2017.02.001
– volume: 85
  start-page: 1041
  year: 2015
  ident: 10.1016/j.rinp.2018.04.017_b0080
  article-title: Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.02.007
– volume: 131
  start-page: 261
  issue: 8
  year: 2016
  ident: 10.1016/j.rinp.2018.04.017_b0120
  article-title: A comparative analysis on different nanofluid models for the oscillatory stagnation point flow
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2016-16261-9
– volume: 233
  start-page: 262
  year: 2017
  ident: 10.1016/j.rinp.2018.04.017_b0160
  article-title: Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2017.03.031
– volume: 11
  year: 2015
  ident: 10.1016/j.rinp.2018.04.017_b0090
  article-title: Thermophoresis and heat generation/absorption in flow of third grade nanofluid
  publication-title: Curr Nanosci
– volume: 29
  start-page: 127
  issue: 1
  year: 2014
  ident: 10.1016/j.rinp.2018.04.017_b0110
  article-title: Heat and mass transfer of nanofluid from horizontal cylinder to micropolar fluid
  publication-title: J Thermophys Heat Transfer
  doi: 10.2514/1.T4396
– volume: 8
  start-page: e59393
  issue: 4
  year: 2013
  ident: 10.1016/j.rinp.2018.04.017_b0050
  article-title: Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0059393
– volume: 225
  start-page: 87
  year: 2017
  ident: 10.1016/j.rinp.2018.04.017_b0115
  article-title: Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.11.026
– volume: 7
  start-page: 2317
  year: 2017
  ident: 10.1016/j.rinp.2018.04.017_b0165
  article-title: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid
  publication-title: Res Phys
– volume: 253
  start-page: 377
  year: 2014
  ident: 10.1016/j.rinp.2018.04.017_b0030
  article-title: Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet
  publication-title: Powder Tech
  doi: 10.1016/j.powtec.2013.11.049
– volume: 2014
  year: 2014
  ident: 10.1016/j.rinp.2018.04.017_b0105
  article-title: Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media
  publication-title: Math Probl Eng
  doi: 10.1155/2014/239082
– start-page: 1285
  issue: 2
  year: 2016
  ident: 10.1016/j.rinp.2018.04.017_b0020
  article-title: Effect of partial slip on an unsteady MHD mixed convection stagnation-point flow of a micropolar fluid towards a permeable shrinking sheet
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2016.04.018
– year: 1999
  ident: 10.1016/j.rinp.2018.04.017_b0035
– volume: 7
  start-page: 1595
  year: 2017
  ident: 10.1016/j.rinp.2018.04.017_b0125
  article-title: A new numerical method for investigation of thermophoresis and Brownian motion effects on MHD nanofluid flow and heat transfer between parallel plates partially filled with a porous medium
  publication-title: Res Phys
– year: 1995
  ident: 10.1016/j.rinp.2018.04.017_b0075
– volume: 66
  start-page: 472
  issue: 4
  year: 2013
  ident: 10.1016/j.rinp.2018.04.017_b0135
  article-title: Numerical simulations of three-dimensional MHD stagnation-point flow of a micropolar fluid
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2013.05.023
– volume: 74
  start-page: 285
  year: 2014
  ident: 10.1016/j.rinp.2018.04.017_b0010
  article-title: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.03.026
– volume: 20
  start-page: 21
  issue: 1
  year: 2016
  ident: 10.1016/j.rinp.2018.04.017_b0025
  article-title: Mixed convection boundary-layer flow of a micro polar fluid towards a heated shrinking sheet by homotopy analysis method
  publication-title: Therm Sci
  doi: 10.2298/TSCI130212096R
– year: 2001
  ident: 10.1016/j.rinp.2018.04.017_b0040
– volume: 27
  start-page: 2039
  issue: 5
  year: 2016
  ident: 10.1016/j.rinp.2018.04.017_b0070
  article-title: Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects
  publication-title: Adv Powder Technol
  doi: 10.1016/j.apt.2016.07.013
– volume: 369
  start-page: 69
  year: 2014
  ident: 10.1016/j.rinp.2018.04.017_b0005
  article-title: Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2014.06.017
– volume: 9
  start-page: 955
  year: 2018
  ident: 10.1016/j.rinp.2018.04.017_b9000
  article-title: Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: Application of Cattaneo-Christov approach
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2018.03.024
– volume: 204
  start-page: 198
  year: 2015
  ident: 10.1016/j.rinp.2018.04.017_b0060
  article-title: Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2015.01.040
– volume: 7
  start-page: 21
  year: 2017
  ident: 10.1016/j.rinp.2018.04.017_b0045
  article-title: Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: a numerical study
  publication-title: Res Phys
– volume: 28
  start-page: 865
  issue: 3
  year: 2017
  ident: 10.1016/j.rinp.2018.04.017_b0095
  article-title: Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluids embedded with graphene nanoparticles
  publication-title: Adv Powder Technol
  doi: 10.1016/j.apt.2016.12.012
– volume: 48
  start-page: 643
  issue: 3
  year: 2013
  ident: 10.1016/j.rinp.2018.04.017_b0155
  article-title: Series solutions for steady three-dimensional stagnation point flow of a nanofluid past a circular cylinder with sinusoidal radius variation
  publication-title: Meccanica
  doi: 10.1007/s11012-012-9621-7
– volume: 124
  start-page: 185
  year: 2017
  ident: 10.1016/j.rinp.2018.04.017_b0170
  article-title: MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2017.03.014
– volume: 34
  start-page: 1263
  issue: 10
  year: 2013
  ident: 10.1016/j.rinp.2018.04.017_b0065
  article-title: MHD non-Newtonian micropolar fluid flow and heat transfer in channel with stretching walls
  publication-title: Appl Math Mech
  doi: 10.1007/s10483-013-1743-7
– volume: 234
  start-page: 201
  year: 2017
  ident: 10.1016/j.rinp.2018.04.017_b0150
  article-title: Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2017.03.078
– volume: 224
  start-page: 1210
  year: 2016
  ident: 10.1016/j.rinp.2018.04.017_b0100
  article-title: Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.10.102
– volume: 13
  start-page: 4835
  issue: 8
  year: 2016
  ident: 10.1016/j.rinp.2018.04.017_b0175
  article-title: A numerical comparative study on 3D nanofluid flows
  publication-title: J Comput Theor Nanosci
  doi: 10.1166/jctn.2016.5353
– volume: 12
  start-page: 3028
  issue: 10
  year: 2015
  ident: 10.1016/j.rinp.2018.04.017_b0130
  article-title: An optimized study of mixed convection flow of a rotating Jeffrey nanofluid on a rotating vertical cone
  publication-title: J Comput Theor Nanosci
  doi: 10.1166/jctn.2015.4077
– start-page: 1
  year: 2017
  ident: 10.1016/j.rinp.2018.04.017_b0015
  article-title: Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids
  publication-title: Indian J Phys
– volume: 405
  start-page: 4914
  issue: 24
  year: 2010
  ident: 10.1016/j.rinp.2018.04.017_b0145
  article-title: Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid
  publication-title: Physica B: Condensed Matter
  doi: 10.1016/j.physb.2010.09.031
– volume: 37
  start-page: 1451
  issue: 3
  year: 2013
  ident: 10.1016/j.rinp.2018.04.017_b0085
  article-title: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2012.04.004
– volume: 72
  start-page: 388
  year: 2014
  ident: 10.1016/j.rinp.2018.04.017_b0055
  article-title: A note on micropolar fluid flow and heat transfer over a porous shrinking sheet
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.01.039
SSID ssj0001645511
Score 2.430958
Snippet •Stagnation point flow of micropolar nanofluid over a circular cylinder having sinusoidal radius variation is examined.•Analysis in magnetohydrodynamic and...
The concerned problem is dedicated to study stagnation point flow of MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal radius...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1224
SubjectTerms MHD
Micropolar nanofluid
Porous medium
Stagnation point
Velocity and thermal Slip
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET1y_yMGbFJs0TdujirII6kVhbyFNE6nupstuRfz3zqRd3dN68dqmSZkMmTfJyxtCzlnqOMQlF6W5zvCY0UaFdCzSxiWZLgtYEfFy8sOjHL6I-1E6Wir1hZywTh64M9xlKSB5s1xIm6CUmYROdJm6NLY61i6UsOYQ85aSqbC7IgVAAcy2OEedvqzI-hszHblrVnsUq2R50DkN1cp-o1IQ718KTksB526bbPVIkV51f7hD1qzfJRuBsWnme-T9yVNAdq_dbh6dNrVvqRs3n7RxVNMJEu3gKSSu1GvfuPFHXdGpnrfw0tSzQD-l5muMcokzituxFOlDBlA51b6iCAwnMD7g0Ok-ebm7fb4ZRn3lhMgIFrdRqa1MK53FrsJby2B3zqxIRYnnmE5DTiSzRBTO8koUgIgSUxVYIt1xCYtO7JIDsu4bbw8JZbnNrWVGs7yAHipdmoJrmQjAiaiGNyBsYTllellxrG4xVgv-2JtCayu0toqFAmsPyMXPN9NOVGNl62uckJ-WKIgdHoCbqN5N1F9uMiDpYjpVjy06zABd1SsGP_qPwY_JJnbZMcxOyHo7-7CngGXa8iy47TeVm-_A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEA8iCF7k-YX7nkoO3qRs06Rpe1RRRFAPKuwtpGki1TUt3crD_96ZtOvHxYPHpklaJsPMb5KZXwg5YqlLwC-5KM11hseMNiqkY5E2jme6LMAiYnHy9Y28fBBXs3S2Qs6WtTCYVjna_sGmB2s9tkxHaU7bup7eJRC78KwA44qsURwZP7nIQxHf7PRzn0UKAAUYd2H_CAeMtTNDmldXe6StZHlgPA33ln36p0Dj_8VNfXE9F3_IxogZ6cnwW5tkxfotshZyN81imzzfegoY73HY16NtU_ueunnznzaOavqCKXfQCiEs9do3bv5aV7TVix5emroLiajUvM2ROLGjuDFLMZHIAD6n2lcUIeILfB8QabtDHi7O788uo_EOhcgIFvdRqa1MK53FrsL6ZViBhFmRihJPNJ2G6EhmXBTOJpUoABtxUxV4WbpLJJif2PFdsuobb_cIZbnNrWVGs7yAGSpdmiLRkgtAjMiLNyFsKTllRoJxvOdirpaZZE8Kpa1Q2ioWCqQ9IccfY9qBXuPH3qe4IB89kRo7NDTdoxp1Q5UCon2bCGk5ct9J0Dpdpi6NrY61Y2JC0uVyqm-aBlPVP3z87y_H_SPr-DSkl-2T1b57tQcAZPryMGjqOwOk79Y
  priority: 102
  providerName: Elsevier
Title On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip
URI https://dx.doi.org/10.1016/j.rinp.2018.04.017
https://doaj.org/article/b4742e246e394346acfab5f50ea0af14
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS90wFD44ZbAX2dzGrpuXPPgmHU2bpu3DEB2KU3Qwdtl9C2maSLea3vVWpv_9zml7nQMRfCk0TZP25Mf5cnLyHYBdnrgI9ZILkkyntM1og1w6Hmjj4lQXOc6IdDj5_EKezMTpPJmvwSrc0SjA5YNLO4onNWvrjze_b_dxwH_656vVVp64J3nW05by9BlsoGZKKaLB-Qj3e5uLFAgQaA0WRcTel-bpeI7m4WL-01U9pf89lXVPDR2_hM0RP7KDocFfwZr1W_C89-M0y9fw66tniPcuBxsfWzSV75irmz-scUyzK3K_w1T8Z-a1b1x9XZVsoZcdPjRV2zulMnNbE4liy8hIy8ipyCBWZ9qXjODiFdaP6HTxBmbHR98_nwRjPIXACB52QaGtTEqdhq6ks8zYGhG3IhEF7W46jSslmcYidzYqRY44KTZlToHTXSRxKgpd_BbWfePtO2A8s5m13Gie5VhCqQuTR1rGAtEjceRNgK8kp8xINk4xL2q18ir7qUjaiqStQqFQ2hPYu3tnMVBtPJr7kBrkLifRZPcJTXupxlGnCoErfxsJaWPiwZPYA3WRuCS0OtSOiwkkq-ZUI-IYkAQWVT1S-faTPvU9vKC7wcHsA6x37bXdQSjTFVPYODj79uNs2psC8Pplfjjt--xfqGDzSA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BVUUvVaGtun3hA7cq2jh2nORYUNHy7KEg7c1yHBulXZwoBFX9951JskAvHHr1MxpPxt_Y428A9nnqE9yXfJTmJqNrRhcVyvPIWC8yUxZoEelx8vmFWlzJk2W63IDD9VsYCqucbP9o0wdrPZXMJ2nO27qe_0jQdxFZgcaVWKOE2IRniAYy-juPlwcPBy1KIiogx4s6RNRjejwzxnl1dSDeSp4PlKdD4rKHDWrg8X-0Tz3ae45ewcsJNLKv43ftwIYLu_B8CN60t6_h1_fAEORdjwd7rG3q0DO_an6zxjPDbijmDkvRh2XBhMav7uqKtea2x0pbd0MkKrN_VsSc2DE6mWUUSWQRoDMTKkYY8QbnR0javoGro2-Xh4toSqIQWcnjPiqNU2llsthX9IAZlyDhTqaypCtNb9A9UpmQhXdJJQsER8JWBWVL94lC-xN78Ra2QhPcO2A8d7lz3BqeFzhCZUpbJEYJiZCRiPFmwNeS03ZiGKdEFyu9DiX7qUnamqStY6lR2jP4ct-nHfk1nmx9QAty35K4sYeCprvWk3LoUqK77xKpnCDyO4VqZ8rUp7EzsfFcziBdL6f-R9VwqPqJyd__Z7892F5cnp_ps-OL0w_wgmrGWLOPsNV3d-4Topq-_Dxo7V8ag_L2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+stagnation+point+flow+of+a+micro+polar+nanofluid+past+a+circular+cylinder+with+velocity+and+thermal+slip&rft.jtitle=Results+in+physics&rft.au=Abbas%2C+Nadeem&rft.au=Saleem%2C+S.&rft.au=Nadeem%2C+S.&rft.au=Alderremy%2C+A.A.&rft.date=2018-06-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=9&rft.spage=1224&rft.epage=1232&rft_id=info:doi/10.1016%2Fj.rinp.2018.04.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2018_04_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon