On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip
•Stagnation point flow of micropolar nanofluid over a circular cylinder having sinusoidal radius variation is examined.•Analysis in magnetohydrodynamic and slip regime.•Microorganisms are also incorporated with nanoparticles.•Numerical solutions are computed by Runge-Kutta-Fehlberg scheme. The conce...
Saved in:
Published in | Results in physics Vol. 9; pp. 1224 - 1232 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Stagnation point flow of micropolar nanofluid over a circular cylinder having sinusoidal radius variation is examined.•Analysis in magnetohydrodynamic and slip regime.•Microorganisms are also incorporated with nanoparticles.•Numerical solutions are computed by Runge-Kutta-Fehlberg scheme.
The concerned problem is dedicated to study stagnation point flow of MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal radius variation. Velocity jump slip phenomenon with porous medium is also taken into account. To be more specific, the physical situation of micropolar fluid in the presence of both weak and strong concentration is mathematically modeled in terms of differential equations. Here, three nanoparticles namely Titania (TiO2), Copper (Cu) and Alumina (Al2O3) compared with water as base fluids are incorporated for analysis. The resulting non-linear system has been solved by Runge-Kutta-Fehlberg scheme. Numerical solutions for velocities and temperature profiles are settled for alumina–water nanofluid and deliberated through graphs and numerical tables. It is seen that the skin friction coefficients and the rate of heat transfer are maximum for copper–water nanofluid related to the alumina–water and titania–water nanofluids. Also, the precision of the present findings is certified by equating them with the previously published work. |
---|---|
AbstractList | •Stagnation point flow of micropolar nanofluid over a circular cylinder having sinusoidal radius variation is examined.•Analysis in magnetohydrodynamic and slip regime.•Microorganisms are also incorporated with nanoparticles.•Numerical solutions are computed by Runge-Kutta-Fehlberg scheme.
The concerned problem is dedicated to study stagnation point flow of MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal radius variation. Velocity jump slip phenomenon with porous medium is also taken into account. To be more specific, the physical situation of micropolar fluid in the presence of both weak and strong concentration is mathematically modeled in terms of differential equations. Here, three nanoparticles namely Titania (TiO2), Copper (Cu) and Alumina (Al2O3) compared with water as base fluids are incorporated for analysis. The resulting non-linear system has been solved by Runge-Kutta-Fehlberg scheme. Numerical solutions for velocities and temperature profiles are settled for alumina–water nanofluid and deliberated through graphs and numerical tables. It is seen that the skin friction coefficients and the rate of heat transfer are maximum for copper–water nanofluid related to the alumina–water and titania–water nanofluids. Also, the precision of the present findings is certified by equating them with the previously published work. The concerned problem is dedicated to study stagnation point flow of MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal radius variation. Velocity jump slip phenomenon with porous medium is also taken into account. To be more specific, the physical situation of micropolar fluid in the presence of both weak and strong concentration is mathematically modeled in terms of differential equations. Here, three nanoparticles namely Titania (TiO2), Copper (Cu) and Alumina (Al2O3) compared with water as base fluids are incorporated for analysis. The resulting non-linear system has been solved by Runge-Kutta-Fehlberg scheme. Numerical solutions for velocities and temperature profiles are settled for alumina–water nanofluid and deliberated through graphs and numerical tables. It is seen that the skin friction coefficients and the rate of heat transfer are maximum for copper–water nanofluid related to the alumina–water and titania–water nanofluids. Also, the precision of the present findings is certified by equating them with the previously published work. Keywords: Micropolar nanofluid, MHD, Velocity and thermal Slip, Stagnation point, Porous medium |
Author | Alderremy, A.A. Khan, A.U. Abbas, Nadeem Nadeem, S. Saleem, S. |
Author_xml | – sequence: 1 givenname: Nadeem surname: Abbas fullname: Abbas, Nadeem organization: Department of Mathematics, Quaid-I-Azam University, 45320 Islamabad 44000, Pakistan – sequence: 2 givenname: S. surname: Saleem fullname: Saleem, S. email: saakhtar@kku.edu.sa organization: Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia – sequence: 3 givenname: S. surname: Nadeem fullname: Nadeem, S. organization: Department of Mathematics, Quaid-I-Azam University, 45320 Islamabad 44000, Pakistan – sequence: 4 givenname: A.A. surname: Alderremy fullname: Alderremy, A.A. organization: Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia – sequence: 5 givenname: A.U. surname: Khan fullname: Khan, A.U. organization: Department of Mathematics, Quaid-I-Azam University, 45320 Islamabad 44000, Pakistan |
BookMark | eNp9kcFqHDEQRIVxII7jH8hJP7ATSaOZ2YFcgklig8GX5Cx6pZbda600SLLN_n20XhtCDj5JdPOK6qpP7DSmiIx9kaKTQo5ft12muHRKyHUndCfkdMLOlJJy1U_zdPrP_yO7KGUrRKP0MEh5xh5uIy8V7iJUSpEviWLlPqRnnjwHviObU5sGyDxCTD48kuMLlNqWlrJ9PGzsPlB0mPkz1Xv-hCFZqnsO0fF6j3kHgZdAy2f2wUMoePH6nrM_P3_8vrxa3dz-ur78frOyWoq62gCOg4NJeNdMCut7JVEPeqObaQ_zMI5Tr2ePyul51Lq3bu5nLbwa1-tG9efs-qjrEmzNkmkHeW8SkHkZpHxnIFeyAc1GT1qh0iM2hV6PYD1sBj8IBAFe6qa1Pmq1HErJ6E077SWrmoGCkcIcOjBbc-jAHDowQpvWQUPVf-iblXehb0cIW0BPhNkUSxgtOspoa7uA3sP_AoGVozY |
CitedBy_id | crossref_primary_10_1088_1402_4896_ab3bff crossref_primary_10_1139_cjp_2018_0173 crossref_primary_10_1063_5_0008756 crossref_primary_10_1016_j_cmpb_2019_105194 crossref_primary_10_1016_j_physa_2019_123512 crossref_primary_10_1088_1402_4896_abbeae crossref_primary_10_1080_02286203_2024_2395900 crossref_primary_10_3390_molecules26247441 crossref_primary_10_32604_fdmp_2023_021590 crossref_primary_10_1088_1402_4896_ab24ff crossref_primary_10_1108_HFF_05_2019_0402 crossref_primary_10_1080_17455030_2022_2119299 crossref_primary_10_1002_htj_21605 crossref_primary_10_1007_s13369_019_03828_4 crossref_primary_10_1039_C8RA09698H crossref_primary_10_1007_s13369_019_04205_x crossref_primary_10_1080_10407782_2023_2266569 crossref_primary_10_1016_j_physa_2019_124083 crossref_primary_10_1177_09544089221087811 crossref_primary_10_1177_1687814020925217 crossref_primary_10_1007_s10973_020_09428_x crossref_primary_10_1080_02286203_2023_2281009 crossref_primary_10_1142_S0217979224500048 crossref_primary_10_1007_s12668_019_00667_3 crossref_primary_10_1007_s10973_019_09178_5 crossref_primary_10_1016_j_ijthermalsci_2018_06_016 crossref_primary_10_1016_j_applthermaleng_2022_119310 crossref_primary_10_1142_S0217979222501879 crossref_primary_10_1080_17455030_2022_2048122 crossref_primary_10_1007_s40430_019_1575_4 crossref_primary_10_3390_cryst10030168 crossref_primary_10_1002_zamm_202300186 crossref_primary_10_1016_j_csite_2022_101913 crossref_primary_10_1016_j_cherd_2020_04_017 crossref_primary_10_1139_cjp_2018_0973 crossref_primary_10_3389_fphy_2022_964653 crossref_primary_10_1080_17455030_2022_2123572 crossref_primary_10_1016_j_cma_2018_09_025 crossref_primary_10_1140_epjs_s11734_021_00033_z crossref_primary_10_3390_math7111043 crossref_primary_10_1007_s40819_019_0645_8 crossref_primary_10_1142_S0217979223500169 crossref_primary_10_1016_j_aej_2020_05_022 crossref_primary_10_1002_zamm_202100311 crossref_primary_10_1016_j_heliyon_2023_e14250 crossref_primary_10_1016_j_csite_2023_103163 crossref_primary_10_1038_s41598_021_94187_4 crossref_primary_10_3390_coatings10020163 crossref_primary_10_3390_polym13213696 crossref_primary_10_1515_jnet_2018_0069 crossref_primary_10_1016_j_cmpb_2019_105136 crossref_primary_10_1142_S0217984922501974 crossref_primary_10_1155_2021_5557708 crossref_primary_10_1166_jon_2023_1958 crossref_primary_10_1080_17455030_2022_2111030 crossref_primary_10_3390_math7121199 crossref_primary_10_1007_s10973_023_12283_1 crossref_primary_10_1016_j_csite_2021_101500 crossref_primary_10_1155_2022_3150451 crossref_primary_10_1108_HFF_10_2019_0756 crossref_primary_10_1515_jnet_2018_0022 crossref_primary_10_1016_j_petrol_2022_110857 crossref_primary_10_1016_j_physa_2019_124020 crossref_primary_10_1007_s10973_021_10586_9 crossref_primary_10_1016_j_triboint_2023_108847 crossref_primary_10_1007_s12668_018_0593_5 crossref_primary_10_1177_09544062211045649 crossref_primary_10_1007_s10973_023_12183_4 crossref_primary_10_1155_2022_6777513 crossref_primary_10_1016_j_jrras_2025_101415 crossref_primary_10_1007_s00542_018_4076_y crossref_primary_10_1016_j_asej_2020_03_008 crossref_primary_10_1007_s10973_019_08933_y crossref_primary_10_1016_j_physe_2019_03_006 crossref_primary_10_3390_cryst11111315 crossref_primary_10_1080_17455030_2022_2118896 crossref_primary_10_1142_S0217979223502296 crossref_primary_10_1007_s42452_020_2262_x crossref_primary_10_1016_j_cjph_2020_11_019 crossref_primary_10_1007_s13369_023_08011_4 crossref_primary_10_3390_sym15091794 crossref_primary_10_1016_j_cma_2018_09_042 crossref_primary_10_1007_s13369_020_05195_x crossref_primary_10_1016_j_csite_2019_100447 crossref_primary_10_1016_j_jmmm_2019_03_108 crossref_primary_10_1155_2020_6580409 crossref_primary_10_1177_23977914221103345 crossref_primary_10_1080_17455030_2022_2102271 |
Cites_doi | 10.1016/j.jtice.2017.02.001 10.1016/j.ijheatmasstransfer.2015.02.007 10.1140/epjp/i2016-16261-9 10.1016/j.molliq.2017.03.031 10.2514/1.T4396 10.1371/journal.pone.0059393 10.1016/j.molliq.2016.11.026 10.1016/j.powtec.2013.11.049 10.1155/2014/239082 10.1016/j.aej.2016.04.018 10.1016/j.camwa.2013.05.023 10.1016/j.ijheatmasstransfer.2014.03.026 10.2298/TSCI130212096R 10.1016/j.apt.2016.07.013 10.1016/j.jmmm.2014.06.017 10.1016/j.rinp.2018.03.024 10.1016/j.molliq.2015.01.040 10.1016/j.apt.2016.12.012 10.1007/s11012-012-9621-7 10.1016/j.ijmecsci.2017.03.014 10.1007/s10483-013-1743-7 10.1016/j.molliq.2017.03.078 10.1016/j.molliq.2016.10.102 10.1166/jctn.2016.5353 10.1166/jctn.2015.4077 10.1016/j.physb.2010.09.031 10.1016/j.apm.2012.04.004 10.1016/j.ijheatmasstransfer.2014.01.039 |
ContentType | Journal Article |
Copyright | 2018 The Authors |
Copyright_xml | – notice: 2018 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2018.04.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
EndPage | 1232 |
ExternalDocumentID | oai_doaj_org_article_b4742e246e394346acfab5f50ea0af14 10_1016_j_rinp_2018_04_017 S2211379718300433 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-bae65da70fd4550cf321e454b4645fa95667349fe2d496443cd93940f268870f3 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:27:51 EDT 2025 Tue Jul 01 01:33:39 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Wed May 17 01:21:44 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MHD Stagnation point Micropolar nanofluid Velocity and thermal Slip Porous medium |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-bae65da70fd4550cf321e454b4645fa95667349fe2d496443cd93940f268870f3 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.rinp.2018.04.017 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b4742e246e394346acfab5f50ea0af14 crossref_citationtrail_10_1016_j_rinp_2018_04_017 crossref_primary_10_1016_j_rinp_2018_04_017 elsevier_sciencedirect_doi_10_1016_j_rinp_2018_04_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationTitle | Results in physics |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Qasim, Khan, Shafie (b0050) 2013; 8 Rashidi, Raju, Sandeep, Saleem (b0175) 2016; 13 Rashidi, Momoniat, Ferdows, Basiriparsa (b0105) 2014; 2014 Nayak (b0170) 2017; 124 Dinarvand, Hosseini, Damangir, Pop (b0155) 2013; 48 Rashidi, Ashraf, Rostami, Rastegari, Bashir (b0025) 2016; 20 Bachok, Ishak, Nazar, Pop (b0145) 2010; 405 Khan, Nadeem, Hussain (b0100) 2016; 224 Ellahi (b0085) 2013; 37 Fakour, Vahabzadeh, Ganji, Hatami (b0060) 2015; 204 Choi, Eastman (b0075) 1995 Ali, Sandeep (b0045) 2017; 7 Borrelli, Giantesio, Patria (b0135) 2013; 66 Khan, Makinde, Khan (b0010) 2014; 74 Bhatti, Zeeshan, Tripathi, Ellahi (b0015) 2017 Sandeep, Reddy (b0115) 2017; 225 Sandeep (b0095) 2017; 28 Nadeem, Khan, Saleem (b0120) 2016; 131 Nadeem, Saleem (b0080) 2015; 85 Nadeem, Saleem (b0130) 2015; 12 Khan, Irfan, Khan, Alshomrani, Alzahrani, Alghamdi (b0150) 2017; 234 Hayat, Awais, Iram, Siddiqa, Alsaedi (b0090) 2015; 11 Prasad, Gaffar, Bég (b0110) 2014; 29 Malvandi, Hedayati, Ganji (b0030) 2014; 253 Hayat, Nadeem (b0165) 2017; 7 Anjum, Mir, Farooq, Javed, Malik (b9000) 2018; 9 Eringen (b0040) 2001 Sheikholeslami, Bandpy, Ellahi, Zeeshan (b0005) 2014; 369 Aurangzaib, Bhattacharyya, Shafie (b0020) 2016 Lukaszewicz (b0035) 1999 Turkyilmazoglu (b0055) 2014; 72 Babu, Sandeep (b0070) 2016; 27 Ashraf, Jameel, Ali (b0065) 2013; 34 Kumaran, Sandeep (b0160) 2017; 233 Sayehvand, Parsa (b0125) 2017; 7 Mehmood, Nadeem, Saleem, Akbar (b0140) 2017; 74 Bhatti (10.1016/j.rinp.2018.04.017_b0015) 2017 Ellahi (10.1016/j.rinp.2018.04.017_b0085) 2013; 37 Sandeep (10.1016/j.rinp.2018.04.017_b0115) 2017; 225 Ashraf (10.1016/j.rinp.2018.04.017_b0065) 2013; 34 Borrelli (10.1016/j.rinp.2018.04.017_b0135) 2013; 66 Dinarvand (10.1016/j.rinp.2018.04.017_b0155) 2013; 48 Sandeep (10.1016/j.rinp.2018.04.017_b0095) 2017; 28 Ali (10.1016/j.rinp.2018.04.017_b0045) 2017; 7 Babu (10.1016/j.rinp.2018.04.017_b0070) 2016; 27 Prasad (10.1016/j.rinp.2018.04.017_b0110) 2014; 29 Sheikholeslami (10.1016/j.rinp.2018.04.017_b0005) 2014; 369 Rashidi (10.1016/j.rinp.2018.04.017_b0105) 2014; 2014 Khan (10.1016/j.rinp.2018.04.017_b0150) 2017; 234 Eringen (10.1016/j.rinp.2018.04.017_b0040) 2001 Fakour (10.1016/j.rinp.2018.04.017_b0060) 2015; 204 Nadeem (10.1016/j.rinp.2018.04.017_b0130) 2015; 12 Bachok (10.1016/j.rinp.2018.04.017_b0145) 2010; 405 Rashidi (10.1016/j.rinp.2018.04.017_b0025) 2016; 20 Kumaran (10.1016/j.rinp.2018.04.017_b0160) 2017; 233 Khan (10.1016/j.rinp.2018.04.017_b0010) 2014; 74 Rashidi (10.1016/j.rinp.2018.04.017_b0175) 2016; 13 Turkyilmazoglu (10.1016/j.rinp.2018.04.017_b0055) 2014; 72 Qasim (10.1016/j.rinp.2018.04.017_b0050) 2013; 8 Hayat (10.1016/j.rinp.2018.04.017_b0165) 2017; 7 Malvandi (10.1016/j.rinp.2018.04.017_b0030) 2014; 253 Mehmood (10.1016/j.rinp.2018.04.017_b0140) 2017; 74 Anjum (10.1016/j.rinp.2018.04.017_b9000) 2018; 9 Khan (10.1016/j.rinp.2018.04.017_b0100) 2016; 224 Nadeem (10.1016/j.rinp.2018.04.017_b0120) 2016; 131 Sayehvand (10.1016/j.rinp.2018.04.017_b0125) 2017; 7 Hayat (10.1016/j.rinp.2018.04.017_b0090) 2015; 11 Nayak (10.1016/j.rinp.2018.04.017_b0170) 2017; 124 Nadeem (10.1016/j.rinp.2018.04.017_b0080) 2015; 85 Aurangzaib (10.1016/j.rinp.2018.04.017_b0020) 2016 Lukaszewicz (10.1016/j.rinp.2018.04.017_b0035) 1999 Choi (10.1016/j.rinp.2018.04.017_b0075) 1995 |
References_xml | – volume: 7 start-page: 21 year: 2017 end-page: 30 ident: b0045 article-title: Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: a numerical study publication-title: Res Phys – volume: 29 start-page: 127 year: 2014 end-page: 139 ident: b0110 article-title: Heat and mass transfer of nanofluid from horizontal cylinder to micropolar fluid publication-title: J Thermophys Heat Transfer – volume: 27 start-page: 2039 year: 2016 end-page: 2050 ident: b0070 article-title: Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects publication-title: Adv Powder Technol – start-page: 1 year: 2017 end-page: 8 ident: b0015 article-title: Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids publication-title: Indian J Phys – volume: 9 start-page: 955 year: 2018 end-page: 960 ident: b9000 article-title: Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: Application of Cattaneo-Christov approach publication-title: Results Phys – volume: 233 start-page: 262 year: 2017 end-page: 269 ident: b0160 article-title: Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion publication-title: J Mol Liq – volume: 74 start-page: 49 year: 2017 end-page: 58 ident: b0140 article-title: Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate publication-title: J Taiwan Inst Chem Eng – volume: 234 start-page: 201 year: 2017 end-page: 208 ident: b0150 article-title: Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid publication-title: J Mol Liq – volume: 20 start-page: 21 year: 2016 end-page: 34 ident: b0025 article-title: Mixed convection boundary-layer flow of a micro polar fluid towards a heated shrinking sheet by homotopy analysis method publication-title: Therm Sci – volume: 7 start-page: 1595 year: 2017 end-page: 1607 ident: b0125 article-title: A new numerical method for investigation of thermophoresis and Brownian motion effects on MHD nanofluid flow and heat transfer between parallel plates partially filled with a porous medium publication-title: Res Phys – volume: 74 start-page: 285 year: 2014 end-page: 291 ident: b0010 article-title: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip publication-title: Int J Heat Mass Transf – year: 2001 ident: b0040 article-title: Microcontinuum Field theories II: fluent media – year: 1995 ident: b0075 article-title: (No. ANL/MSD/CP--84938; CONF-951135--29) – volume: 72 start-page: 388 year: 2014 end-page: 391 ident: b0055 article-title: A note on micropolar fluid flow and heat transfer over a porous shrinking sheet publication-title: Int J Heat Mass Transf – start-page: 1285 year: 2016 end-page: 1293 ident: b0020 article-title: Effect of partial slip on an unsteady MHD mixed convection stagnation-point flow of a micropolar fluid towards a permeable shrinking sheet publication-title: Alexandria Eng J – volume: 369 start-page: 69 year: 2014 end-page: 80 ident: b0005 article-title: Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces publication-title: J Magn Magn Mater – volume: 204 start-page: 198 year: 2015 end-page: 204 ident: b0060 article-title: Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls publication-title: J Mol Liq – volume: 85 start-page: 1041 year: 2015 end-page: 1048 ident: b0080 article-title: Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles publication-title: Int J Heat Mass Transf – volume: 224 start-page: 1210 year: 2016 end-page: 1219 ident: b0100 article-title: Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field publication-title: J Mol Liq – volume: 12 start-page: 3028 year: 2015 end-page: 3035 ident: b0130 article-title: An optimized study of mixed convection flow of a rotating Jeffrey nanofluid on a rotating vertical cone publication-title: J Comput Theor Nanosci – volume: 405 start-page: 4914 year: 2010 end-page: 4918 ident: b0145 article-title: Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid publication-title: Physica B: Condensed Matter – volume: 2014 year: 2014 ident: b0105 article-title: Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media publication-title: Math Probl Eng – volume: 11 year: 2015 ident: b0090 article-title: Thermophoresis and heat generation/absorption in flow of third grade nanofluid publication-title: Curr Nanosci – volume: 7 start-page: 2317 year: 2017 end-page: 2324 ident: b0165 article-title: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid publication-title: Res Phys – volume: 225 start-page: 87 year: 2017 end-page: 94 ident: b0115 article-title: Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries publication-title: J Mol Liq – volume: 48 start-page: 643 year: 2013 end-page: 652 ident: b0155 article-title: Series solutions for steady three-dimensional stagnation point flow of a nanofluid past a circular cylinder with sinusoidal radius variation publication-title: Meccanica – volume: 124 start-page: 185 year: 2017 end-page: 193 ident: b0170 article-title: MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation publication-title: Int J Mech Sci – year: 1999 ident: b0035 article-title: Micropolar fluids: theory and applications – volume: 34 start-page: 1263 year: 2013 end-page: 1276 ident: b0065 article-title: MHD non-Newtonian micropolar fluid flow and heat transfer in channel with stretching walls publication-title: Appl Math Mech – volume: 13 start-page: 4835 year: 2016 end-page: 4842 ident: b0175 article-title: A numerical comparative study on 3D nanofluid flows publication-title: J Comput Theor Nanosci – volume: 8 start-page: e59393 year: 2013 ident: b0050 article-title: Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating publication-title: PLoS One – volume: 37 start-page: 1451 year: 2013 end-page: 1467 ident: b0085 article-title: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions publication-title: Appl Math Model – volume: 28 start-page: 865 year: 2017 end-page: 875 ident: b0095 article-title: Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluids embedded with graphene nanoparticles publication-title: Adv Powder Technol – volume: 253 start-page: 377 year: 2014 end-page: 384 ident: b0030 article-title: Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet publication-title: Powder Tech – volume: 131 start-page: 261 year: 2016 ident: b0120 article-title: A comparative analysis on different nanofluid models for the oscillatory stagnation point flow publication-title: Eur Phys J Plus – volume: 66 start-page: 472 year: 2013 end-page: 489 ident: b0135 article-title: Numerical simulations of three-dimensional MHD stagnation-point flow of a micropolar fluid publication-title: Comput Math Appl – volume: 74 start-page: 49 year: 2017 ident: 10.1016/j.rinp.2018.04.017_b0140 article-title: Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2017.02.001 – volume: 85 start-page: 1041 year: 2015 ident: 10.1016/j.rinp.2018.04.017_b0080 article-title: Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.02.007 – volume: 131 start-page: 261 issue: 8 year: 2016 ident: 10.1016/j.rinp.2018.04.017_b0120 article-title: A comparative analysis on different nanofluid models for the oscillatory stagnation point flow publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2016-16261-9 – volume: 233 start-page: 262 year: 2017 ident: 10.1016/j.rinp.2018.04.017_b0160 article-title: Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.03.031 – volume: 11 year: 2015 ident: 10.1016/j.rinp.2018.04.017_b0090 article-title: Thermophoresis and heat generation/absorption in flow of third grade nanofluid publication-title: Curr Nanosci – volume: 29 start-page: 127 issue: 1 year: 2014 ident: 10.1016/j.rinp.2018.04.017_b0110 article-title: Heat and mass transfer of nanofluid from horizontal cylinder to micropolar fluid publication-title: J Thermophys Heat Transfer doi: 10.2514/1.T4396 – volume: 8 start-page: e59393 issue: 4 year: 2013 ident: 10.1016/j.rinp.2018.04.017_b0050 article-title: Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating publication-title: PLoS One doi: 10.1371/journal.pone.0059393 – volume: 225 start-page: 87 year: 2017 ident: 10.1016/j.rinp.2018.04.017_b0115 article-title: Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.11.026 – volume: 7 start-page: 2317 year: 2017 ident: 10.1016/j.rinp.2018.04.017_b0165 article-title: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid publication-title: Res Phys – volume: 253 start-page: 377 year: 2014 ident: 10.1016/j.rinp.2018.04.017_b0030 article-title: Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet publication-title: Powder Tech doi: 10.1016/j.powtec.2013.11.049 – volume: 2014 year: 2014 ident: 10.1016/j.rinp.2018.04.017_b0105 article-title: Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media publication-title: Math Probl Eng doi: 10.1155/2014/239082 – start-page: 1285 issue: 2 year: 2016 ident: 10.1016/j.rinp.2018.04.017_b0020 article-title: Effect of partial slip on an unsteady MHD mixed convection stagnation-point flow of a micropolar fluid towards a permeable shrinking sheet publication-title: Alexandria Eng J doi: 10.1016/j.aej.2016.04.018 – year: 1999 ident: 10.1016/j.rinp.2018.04.017_b0035 – volume: 7 start-page: 1595 year: 2017 ident: 10.1016/j.rinp.2018.04.017_b0125 article-title: A new numerical method for investigation of thermophoresis and Brownian motion effects on MHD nanofluid flow and heat transfer between parallel plates partially filled with a porous medium publication-title: Res Phys – year: 1995 ident: 10.1016/j.rinp.2018.04.017_b0075 – volume: 66 start-page: 472 issue: 4 year: 2013 ident: 10.1016/j.rinp.2018.04.017_b0135 article-title: Numerical simulations of three-dimensional MHD stagnation-point flow of a micropolar fluid publication-title: Comput Math Appl doi: 10.1016/j.camwa.2013.05.023 – volume: 74 start-page: 285 year: 2014 ident: 10.1016/j.rinp.2018.04.017_b0010 article-title: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.03.026 – volume: 20 start-page: 21 issue: 1 year: 2016 ident: 10.1016/j.rinp.2018.04.017_b0025 article-title: Mixed convection boundary-layer flow of a micro polar fluid towards a heated shrinking sheet by homotopy analysis method publication-title: Therm Sci doi: 10.2298/TSCI130212096R – year: 2001 ident: 10.1016/j.rinp.2018.04.017_b0040 – volume: 27 start-page: 2039 issue: 5 year: 2016 ident: 10.1016/j.rinp.2018.04.017_b0070 article-title: Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects publication-title: Adv Powder Technol doi: 10.1016/j.apt.2016.07.013 – volume: 369 start-page: 69 year: 2014 ident: 10.1016/j.rinp.2018.04.017_b0005 article-title: Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2014.06.017 – volume: 9 start-page: 955 year: 2018 ident: 10.1016/j.rinp.2018.04.017_b9000 article-title: Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: Application of Cattaneo-Christov approach publication-title: Results Phys doi: 10.1016/j.rinp.2018.03.024 – volume: 204 start-page: 198 year: 2015 ident: 10.1016/j.rinp.2018.04.017_b0060 article-title: Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls publication-title: J Mol Liq doi: 10.1016/j.molliq.2015.01.040 – volume: 7 start-page: 21 year: 2017 ident: 10.1016/j.rinp.2018.04.017_b0045 article-title: Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: a numerical study publication-title: Res Phys – volume: 28 start-page: 865 issue: 3 year: 2017 ident: 10.1016/j.rinp.2018.04.017_b0095 article-title: Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluids embedded with graphene nanoparticles publication-title: Adv Powder Technol doi: 10.1016/j.apt.2016.12.012 – volume: 48 start-page: 643 issue: 3 year: 2013 ident: 10.1016/j.rinp.2018.04.017_b0155 article-title: Series solutions for steady three-dimensional stagnation point flow of a nanofluid past a circular cylinder with sinusoidal radius variation publication-title: Meccanica doi: 10.1007/s11012-012-9621-7 – volume: 124 start-page: 185 year: 2017 ident: 10.1016/j.rinp.2018.04.017_b0170 article-title: MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2017.03.014 – volume: 34 start-page: 1263 issue: 10 year: 2013 ident: 10.1016/j.rinp.2018.04.017_b0065 article-title: MHD non-Newtonian micropolar fluid flow and heat transfer in channel with stretching walls publication-title: Appl Math Mech doi: 10.1007/s10483-013-1743-7 – volume: 234 start-page: 201 year: 2017 ident: 10.1016/j.rinp.2018.04.017_b0150 article-title: Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.03.078 – volume: 224 start-page: 1210 year: 2016 ident: 10.1016/j.rinp.2018.04.017_b0100 article-title: Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.10.102 – volume: 13 start-page: 4835 issue: 8 year: 2016 ident: 10.1016/j.rinp.2018.04.017_b0175 article-title: A numerical comparative study on 3D nanofluid flows publication-title: J Comput Theor Nanosci doi: 10.1166/jctn.2016.5353 – volume: 12 start-page: 3028 issue: 10 year: 2015 ident: 10.1016/j.rinp.2018.04.017_b0130 article-title: An optimized study of mixed convection flow of a rotating Jeffrey nanofluid on a rotating vertical cone publication-title: J Comput Theor Nanosci doi: 10.1166/jctn.2015.4077 – start-page: 1 year: 2017 ident: 10.1016/j.rinp.2018.04.017_b0015 article-title: Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids publication-title: Indian J Phys – volume: 405 start-page: 4914 issue: 24 year: 2010 ident: 10.1016/j.rinp.2018.04.017_b0145 article-title: Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid publication-title: Physica B: Condensed Matter doi: 10.1016/j.physb.2010.09.031 – volume: 37 start-page: 1451 issue: 3 year: 2013 ident: 10.1016/j.rinp.2018.04.017_b0085 article-title: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions publication-title: Appl Math Model doi: 10.1016/j.apm.2012.04.004 – volume: 72 start-page: 388 year: 2014 ident: 10.1016/j.rinp.2018.04.017_b0055 article-title: A note on micropolar fluid flow and heat transfer over a porous shrinking sheet publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.01.039 |
SSID | ssj0001645511 |
Score | 2.430958 |
Snippet | •Stagnation point flow of micropolar nanofluid over a circular cylinder having sinusoidal radius variation is examined.•Analysis in magnetohydrodynamic and... The concerned problem is dedicated to study stagnation point flow of MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal radius... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1224 |
SubjectTerms | MHD Micropolar nanofluid Porous medium Stagnation point Velocity and thermal Slip |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET1y_yMGbFJs0TdujirII6kVhbyFNE6nupstuRfz3zqRd3dN68dqmSZkMmTfJyxtCzlnqOMQlF6W5zvCY0UaFdCzSxiWZLgtYEfFy8sOjHL6I-1E6Wir1hZywTh64M9xlKSB5s1xIm6CUmYROdJm6NLY61i6UsOYQ85aSqbC7IgVAAcy2OEedvqzI-hszHblrVnsUq2R50DkN1cp-o1IQ718KTksB526bbPVIkV51f7hD1qzfJRuBsWnme-T9yVNAdq_dbh6dNrVvqRs3n7RxVNMJEu3gKSSu1GvfuPFHXdGpnrfw0tSzQD-l5muMcokzituxFOlDBlA51b6iCAwnMD7g0Ok-ebm7fb4ZRn3lhMgIFrdRqa1MK53FrsJby2B3zqxIRYnnmE5DTiSzRBTO8koUgIgSUxVYIt1xCYtO7JIDsu4bbw8JZbnNrWVGs7yAHipdmoJrmQjAiaiGNyBsYTllellxrG4xVgv-2JtCayu0toqFAmsPyMXPN9NOVGNl62uckJ-WKIgdHoCbqN5N1F9uMiDpYjpVjy06zABd1SsGP_qPwY_JJnbZMcxOyHo7-7CngGXa8iy47TeVm-_A priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEA8iCF7k-YX7nkoO3qRs06Rpe1RRRFAPKuwtpGki1TUt3crD_96ZtOvHxYPHpklaJsPMb5KZXwg5YqlLwC-5KM11hseMNiqkY5E2jme6LMAiYnHy9Y28fBBXs3S2Qs6WtTCYVjna_sGmB2s9tkxHaU7bup7eJRC78KwA44qsURwZP7nIQxHf7PRzn0UKAAUYd2H_CAeMtTNDmldXe6StZHlgPA33ln36p0Dj_8VNfXE9F3_IxogZ6cnwW5tkxfotshZyN81imzzfegoY73HY16NtU_ueunnznzaOavqCKXfQCiEs9do3bv5aV7TVix5emroLiajUvM2ROLGjuDFLMZHIAD6n2lcUIeILfB8QabtDHi7O788uo_EOhcgIFvdRqa1MK53FrsL6ZViBhFmRihJPNJ2G6EhmXBTOJpUoABtxUxV4WbpLJJif2PFdsuobb_cIZbnNrWVGs7yAGSpdmiLRkgtAjMiLNyFsKTllRoJxvOdirpaZZE8Kpa1Q2ioWCqQ9IccfY9qBXuPH3qe4IB89kRo7NDTdoxp1Q5UCon2bCGk5ct9J0Dpdpi6NrY61Y2JC0uVyqm-aBlPVP3z87y_H_SPr-DSkl-2T1b57tQcAZPryMGjqOwOk79Y priority: 102 providerName: Elsevier |
Title | On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip |
URI | https://dx.doi.org/10.1016/j.rinp.2018.04.017 https://doaj.org/article/b4742e246e394346acfab5f50ea0af14 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS90wFD44ZbAX2dzGrpuXPPgmHU2bpu3DEB2KU3Qwdtl9C2maSLea3vVWpv_9zml7nQMRfCk0TZP25Mf5cnLyHYBdnrgI9ZILkkyntM1og1w6Hmjj4lQXOc6IdDj5_EKezMTpPJmvwSrc0SjA5YNLO4onNWvrjze_b_dxwH_656vVVp64J3nW05by9BlsoGZKKaLB-Qj3e5uLFAgQaA0WRcTel-bpeI7m4WL-01U9pf89lXVPDR2_hM0RP7KDocFfwZr1W_C89-M0y9fw66tniPcuBxsfWzSV75irmz-scUyzK3K_w1T8Z-a1b1x9XZVsoZcdPjRV2zulMnNbE4liy8hIy8ipyCBWZ9qXjODiFdaP6HTxBmbHR98_nwRjPIXACB52QaGtTEqdhq6ks8zYGhG3IhEF7W46jSslmcYidzYqRY44KTZlToHTXSRxKgpd_BbWfePtO2A8s5m13Gie5VhCqQuTR1rGAtEjceRNgK8kp8xINk4xL2q18ir7qUjaiqStQqFQ2hPYu3tnMVBtPJr7kBrkLifRZPcJTXupxlGnCoErfxsJaWPiwZPYA3WRuCS0OtSOiwkkq-ZUI-IYkAQWVT1S-faTPvU9vKC7wcHsA6x37bXdQSjTFVPYODj79uNs2psC8Pplfjjt--xfqGDzSA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BVUUvVaGtun3hA7cq2jh2nORYUNHy7KEg7c1yHBulXZwoBFX9951JskAvHHr1MxpPxt_Y428A9nnqE9yXfJTmJqNrRhcVyvPIWC8yUxZoEelx8vmFWlzJk2W63IDD9VsYCqucbP9o0wdrPZXMJ2nO27qe_0jQdxFZgcaVWKOE2IRniAYy-juPlwcPBy1KIiogx4s6RNRjejwzxnl1dSDeSp4PlKdD4rKHDWrg8X-0Tz3ae45ewcsJNLKv43ftwIYLu_B8CN60t6_h1_fAEORdjwd7rG3q0DO_an6zxjPDbijmDkvRh2XBhMav7uqKtea2x0pbd0MkKrN_VsSc2DE6mWUUSWQRoDMTKkYY8QbnR0javoGro2-Xh4toSqIQWcnjPiqNU2llsthX9IAZlyDhTqaypCtNb9A9UpmQhXdJJQsER8JWBWVL94lC-xN78Ra2QhPcO2A8d7lz3BqeFzhCZUpbJEYJiZCRiPFmwNeS03ZiGKdEFyu9DiX7qUnamqStY6lR2jP4ct-nHfk1nmx9QAty35K4sYeCprvWk3LoUqK77xKpnCDyO4VqZ8rUp7EzsfFcziBdL6f-R9VwqPqJyd__Z7892F5cnp_ps-OL0w_wgmrGWLOPsNV3d-4Topq-_Dxo7V8ag_L2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+stagnation+point+flow+of+a+micro+polar+nanofluid+past+a+circular+cylinder+with+velocity+and+thermal+slip&rft.jtitle=Results+in+physics&rft.au=Abbas%2C+Nadeem&rft.au=Saleem%2C+S.&rft.au=Nadeem%2C+S.&rft.au=Alderremy%2C+A.A.&rft.date=2018-06-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=9&rft.spage=1224&rft.epage=1232&rft_id=info:doi/10.1016%2Fj.rinp.2018.04.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2018_04_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |