Artificial EEG signal generated by a network of neurons with one and two dendrites

The electroencephalogram EEG signal analysis is being strongly explored as a new potential tool for control, communication, and clinical diagnosis applications related to many neurological pathologies such as epilepsy, autism, Alzheimer. Analyzing EEG data is a very interesting approach to study cog...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 20; p. 103699
Main Authors Bouallegue, Ghaith, Djemal, Ridha, Belwafi, Kais
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2211-3797
2211-3797
DOI10.1016/j.rinp.2020.103699

Cover

Loading…
Abstract The electroencephalogram EEG signal analysis is being strongly explored as a new potential tool for control, communication, and clinical diagnosis applications related to many neurological pathologies such as epilepsy, autism, Alzheimer. Analyzing EEG data is a very interesting approach to study cognitive processes. Thus, it can help researchers to understand the brain processes, doctor to establish an efficient medical diagnosis. To better understand the nature and the behavior of this signal which seems to be complex, nonlinear, non-stationary, and imbalanced, we propose to generate this signal using a predefined model of neurons with one and two dendrites by studying their activation functions. Then, we build a network of neurons with two dendrites correlated with the α and β frequencies which represent the most significant sub-bands in EEG signals to generate a signal quite close to EEG recordings. Through this paper, we aim to present a comprehensive study and an exploration of artificial EEG signal generation using only neurons with two dendrites that provided different activation and excitation functions. The presented result shows that the generated EEG signal with six neurons of two dendrites is quite similar to the real EEG recording for a healthy subjects. In addition, some artifacts like Alzheimer and Parkinson have been emulated and identified among the generated spikes. Finally we proved that we can eliminate some artifacts related to harmonics by applying activation function with opposite polarities.
AbstractList The electroencephalogram EEG signal analysis is being strongly explored as a new potential tool for control, communication, and clinical diagnosis applications related to many neurological pathologies such as epilepsy, autism, Alzheimer. Analyzing EEG data is a very interesting approach to study cognitive processes. Thus, it can help researchers to understand the brain processes, doctor to establish an efficient medical diagnosis. To better understand the nature and the behavior of this signal which seems to be complex, nonlinear, non-stationary, and imbalanced, we propose to generate this signal using a predefined model of neurons with one and two dendrites by studying their activation functions. Then, we build a network of neurons with two dendrites correlated with the α and β frequencies which represent the most significant sub-bands in EEG signals to generate a signal quite close to EEG recordings. Through this paper, we aim to present a comprehensive study and an exploration of artificial EEG signal generation using only neurons with two dendrites that provided different activation and excitation functions. The presented result shows that the generated EEG signal with six neurons of two dendrites is quite similar to the real EEG recording for a healthy subjects. In addition, some artifacts like Alzheimer and Parkinson have been emulated and identified among the generated spikes. Finally we proved that we can eliminate some artifacts related to harmonics by applying activation function with opposite polarities.
ArticleNumber 103699
Author Bouallegue, Ghaith
Belwafi, Kais
Djemal, Ridha
Author_xml – sequence: 1
  givenname: Ghaith
  surname: Bouallegue
  fullname: Bouallegue, Ghaith
  email: ghaithbouallegue@gmail.com
  organization: University of Sousse, ENISo of Sousse, Sousse, Tunisia
– sequence: 2
  givenname: Ridha
  surname: Djemal
  fullname: Djemal, Ridha
  organization: University of Sousse, Department of Electrical Engineering, High Institute of Applied Sciences and Technology of Sousse, Tunisia
– sequence: 3
  givenname: Kais
  surname: Belwafi
  fullname: Belwafi, Kais
  organization: Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
BookMark eNp9kM1KQzEQRoMoWKsv4Cov0JrM_UkDbkSqFgRBdB1yk0lNrUlJouLbm1oFceEqHxPOMN85IvshBiTklLMpZ7w_W02TD5spMNgOml7KPTIC4HzSCCn2f-VDcpLzirFKtV3H-YjcX6TinTder-l8fk2zX4Yalxgw6YKWDh9U04DlPaZnGl2NrymGTN99eaL1DqqDpfWXWgw2-YL5mBw4vc548v2OyePV_OHyZnJ7d724vLidmJazMhlk2ztoWC96rltE0YKwHVg3cGMcOmy05ACy63owBq0TAxOmlQMYIYB3zZgsdntt1Cu1Sf5Fpw8VtVdfg5iWStdyZo1qNkgLjIEE2bQzbrRtm6433eAkgKjOxmS222VSzDmhU8YXXXwMJWm_VpyprWq1UlvVaqta7VRXFP6gP6f8C53vIKyC3jwmlY3HUGv6hKbUBv4__BOxuZjC
CitedBy_id crossref_primary_10_1007_s11042_025_20610_x
crossref_primary_10_1109_ACCESS_2023_3276483
crossref_primary_10_1109_TCDS_2023_3260084
crossref_primary_10_3390_s24030877
Cites_doi 10.1109/TNSRE.2019.2915621
10.1109/ACCESS.2019.2933814
10.3389/fnins.2020.00606
10.1155/2018/5174815
10.1016/j.compbiomed.2004.05.001
10.1016/j.chaos.2017.07.004
10.1063/1.522689
10.1038/s41572-019-0138-4
10.1016/j.bbe.2017.08.006
10.1016/j.neucom.2017.03.006
10.1016/j.epsr.2007.05.011
10.1016/j.jneumeth.2018.04.013
10.1109/IranianCEE.2019.8786636
10.1109/ICASSP.2018.8462243
10.1103/PhysRevD.18.4510
10.1109/ICASSP.2019.8683197
10.1038/s41598-018-24318-x
10.1016/j.eswa.2018.04.021
10.7555/JBR.34.20190026
10.1103/PhysRevLett.39.1379
10.1016/j.aml.2012.11.009
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2020.103699
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_8b9d20029293481cad4356c5bf922710
10_1016_j_rinp_2020_103699
S2211379720321173
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-b946f2306761a4ee7427d52dfb1ccfefe3a912295562ccedf7b07c49b2c772153
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:26:26 EDT 2025
Tue Jul 01 02:27:37 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Tue Jul 25 21:05:18 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Harmonic behavior
Artificial neuron
Electroencephalography (EEG)
Artificial EEG modeling
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-b946f2306761a4ee7427d52dfb1ccfefe3a912295562ccedf7b07c49b2c772153
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379720321173
ParticipantIDs doaj_primary_oai_doaj_org_article_8b9d20029293481cad4356c5bf922710
crossref_citationtrail_10_1016_j_rinp_2020_103699
crossref_primary_10_1016_j_rinp_2020_103699
elsevier_sciencedirect_doi_10_1016_j_rinp_2020_103699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Misner (b0125) 1978; 18
Parvan M, et al. Transfer learning based motor imagery classification using convolutional neural networks. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE). IEEE; 2019.
Li Y, et al. A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding. Ieee Trans Neural Syst Rehabil Eng; 2019.
Bosl, Tager-Flusberg, Nelson (b0015) 2018; 8
Slimen, Boubchir, Mbarki, Seddik (b0020) 2020; 34
Sutrisno, Djemal, Alsuwailem (b0030) 2018; 38
Zhou, Li (b0010) 2020; 14
Zhenga, Wanga, Zhangb, Ma (b0095) 2013; 26
Gang, Yi-Shi (b0120) 2017; 103
Piplani T, Merill N, Chuang J. Faking it, making it: fooling and improving brain-based authentication with generative adversarial networks; 2020.
Belwafi K, Romain O, Gannouni G, Ghaffari F, Djemal R, Ouni B. An embedded implementation based on adaptive filter bank for brain–computer interface systems. J Neurosci Methods 305; 2018: 1–16.
Thodoroff P, Pineau J, Lim A. Learning robust features using deep learning for automatic seizure detection. Machine Learning for Healthcare Conference; 2016.
Kiymik, Guler, Dizibuyuk, Akin (b0105) 2005; 35
Salama (b0040) 2018; 9
Nutku, Halil (b0130) 1977; 39
Bouallegue (b0110) 2017; 249
Zhang X, et al. DADA: deep adversarial data augmentation for extremely low data regime classification; 2018. arXiv preprint arXiv:1809.00981.
Truong ND, et al. Semi-supervised Seizure Prediction with Generative Adversarial Networks. arXiv preprint arXiv:1806.08235, 2018.
Cassani, Estarellas, San, Fraga, Falk (b0005) 2018
Sun (b0070) 2019; 7
.
Eris, Nutku (b0135) 1975; 16
Ullah, Hussain, Aboalsamh (b0055) 2018; 107
Yilmaz, Alkan, Asyali (b0090) 2008; 78
Lord, Brugha, Charman (b0025) 2020; 6
Kuanar S, et al. Cognitive analysis of working memory load from EEG, by a deep recurrent neural network. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2018.
IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems, IEEE 519; 1992.
Yilmaz (10.1016/j.rinp.2020.103699_b0090) 2008; 78
10.1016/j.rinp.2020.103699_b0050
Sun (10.1016/j.rinp.2020.103699_b0070) 2019; 7
Zhou (10.1016/j.rinp.2020.103699_b0010) 2020; 14
10.1016/j.rinp.2020.103699_b0045
10.1016/j.rinp.2020.103699_b0100
10.1016/j.rinp.2020.103699_b0065
Zhenga (10.1016/j.rinp.2020.103699_b0095) 2013; 26
10.1016/j.rinp.2020.103699_b0085
Kiymik (10.1016/j.rinp.2020.103699_b0105) 2005; 35
Misner (10.1016/j.rinp.2020.103699_b0125) 1978; 18
10.1016/j.rinp.2020.103699_b0060
Ullah (10.1016/j.rinp.2020.103699_b0055) 2018; 107
10.1016/j.rinp.2020.103699_b0080
Gang (10.1016/j.rinp.2020.103699_b0120) 2017; 103
Eris (10.1016/j.rinp.2020.103699_b0135) 1975; 16
Bouallegue (10.1016/j.rinp.2020.103699_b0110) 2017; 249
10.1016/j.rinp.2020.103699_b0115
10.1016/j.rinp.2020.103699_b0035
Nutku (10.1016/j.rinp.2020.103699_b0130) 1977; 39
Cassani (10.1016/j.rinp.2020.103699_b0005) 2018
Bosl (10.1016/j.rinp.2020.103699_b0015) 2018; 8
Salama (10.1016/j.rinp.2020.103699_b0040) 2018; 9
10.1016/j.rinp.2020.103699_b0075
Sutrisno (10.1016/j.rinp.2020.103699_b0030) 2018; 38
Slimen (10.1016/j.rinp.2020.103699_b0020) 2020; 34
Lord (10.1016/j.rinp.2020.103699_b0025) 2020; 6
References_xml – volume: 16
  start-page: 1431
  year: 1975
  end-page: 1434
  ident: b0135
  article-title: Harmonic mappings of Riemannian manifolds and stationary vacuum space-times with whole cylinder symmetry
  publication-title: J Math Phys
– reference: Li Y, et al. A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding. Ieee Trans Neural Syst Rehabil Eng; 2019.
– volume: 249
  start-page: 28
  year: 2017
  end-page: 47
  ident: b0110
  article-title: A new class of neural networks and its applications
  publication-title: Neurocomputing
– volume: 7
  start-page: 109386
  year: 2019
  end-page: 109397
  ident: b0070
  article-title: A two-stage neural network for sleep stage classification based on feature learning, sequence learning, and data augmentation
  publication-title: IEEE Access
– reference: Truong ND, et al. Semi-supervised Seizure Prediction with Generative Adversarial Networks. arXiv preprint arXiv:1806.08235, 2018.
– volume: 78
  start-page: 683
  year: 2008
  end-page: 693
  ident: b0090
  article-title: Applications of parametric spectral estimation methods on detection of power system harmonics
  publication-title: Electric Power Syst Res
– reference: Zhang X, et al. DADA: deep adversarial data augmentation for extremely low data regime classification; 2018. arXiv preprint arXiv:1809.00981.
– volume: 35
  start-page: 603
  year: 2005
  end-page: 661
  ident: b0105
  article-title: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application
  publication-title: Comput Biol Med
– reference: Parvan M, et al. Transfer learning based motor imagery classification using convolutional neural networks. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE). IEEE; 2019.
– volume: 39
  start-page: 1379
  year: 1977
  end-page: 1382
  ident: b0130
  article-title: Colliding impulsive gravitational-waves
  publication-title: Phys Rev Lett
– start-page: 1
  year: 2018
  end-page: 26
  ident: b0005
  article-title: Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment
  publication-title: Disease Markers
– volume: 9
  start-page: 329
  year: 2018
  end-page: 337
  ident: b0040
  article-title: EEG-based emotion recognition using 3D convolutional neural networks
  publication-title: Int J Adv Comput Sci Appl
– volume: 26
  start-page: 463
  year: 2013
  end-page: 468
  ident: b0095
  article-title: The nonlinear Schrödinger harmonic oscillator problem with small odd or even disturbances
  publication-title: Appl Math Lett
– reference: Belwafi K, Romain O, Gannouni G, Ghaffari F, Djemal R, Ouni B. An embedded implementation based on adaptive filter bank for brain–computer interface systems. J Neurosci Methods 305; 2018: 1–16.
– volume: 103
  start-page: 567
  year: 2017
  end-page: 570
  ident: b0120
  article-title: Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism
  publication-title: Chaos Solitons Fractals
– volume: 34
  start-page: 151
  year: 2020
  end-page: 161
  ident: b0020
  article-title: EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms
  publication-title: J Biomed Res
– reference: Piplani T, Merill N, Chuang J. Faking it, making it: fooling and improving brain-based authentication with generative adversarial networks; 2020.
– volume: 6
  start-page: 1
  year: 2020
  end-page: 16
  ident: b0025
  article-title: Autism spectrum disorder
  publication-title: Nat Rev Dis Primers
– reference: IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems, IEEE 519; 1992.
– reference: Kuanar S, et al. Cognitive analysis of working memory load from EEG, by a deep recurrent neural network. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2018.
– reference: Thodoroff P, Pineau J, Lim A. Learning robust features using deep learning for automatic seizure detection. Machine Learning for Healthcare Conference; 2016.
– volume: 107
  start-page: 61
  year: 2018
  end-page: 71
  ident: b0055
  article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach
  publication-title: Expert Syst Appl
– reference: .
– volume: 14
  start-page: 606
  year: 2020
  ident: b0010
  article-title: Epilepsy EEG signal classification algorithm based on improved RBF
  publication-title: Front Neurosci
– volume: 38
  start-page: 16
  year: 2018
  end-page: 26
  ident: b0030
  article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis
  publication-title: Biocybern Biomed Eng
– volume: 8
  start-page: 6828
  year: 2018
  ident: b0015
  article-title: EEG analytics for early detection of autism spectrum disorder: a data-driven approach
  publication-title: Sci Rep
– volume: 18
  year: 1978
  ident: b0125
  article-title: Harmonic maps as models for physical theories
  publication-title: Phys Rev D
– ident: 10.1016/j.rinp.2020.103699_b0050
  doi: 10.1109/TNSRE.2019.2915621
– volume: 7
  start-page: 109386
  year: 2019
  ident: 10.1016/j.rinp.2020.103699_b0070
  article-title: A two-stage neural network for sleep stage classification based on feature learning, sequence learning, and data augmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933814
– volume: 14
  start-page: 606
  year: 2020
  ident: 10.1016/j.rinp.2020.103699_b0010
  article-title: Epilepsy EEG signal classification algorithm based on improved RBF
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00606
– start-page: 1
  year: 2018
  ident: 10.1016/j.rinp.2020.103699_b0005
  article-title: Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment
  publication-title: Disease Markers
  doi: 10.1155/2018/5174815
– volume: 35
  start-page: 603
  issue: 7
  year: 2005
  ident: 10.1016/j.rinp.2020.103699_b0105
  article-title: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2004.05.001
– volume: 103
  start-page: 567
  year: 2017
  ident: 10.1016/j.rinp.2020.103699_b0120
  article-title: Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2017.07.004
– volume: 16
  start-page: 1431
  issue: 7
  year: 1975
  ident: 10.1016/j.rinp.2020.103699_b0135
  article-title: Harmonic mappings of Riemannian manifolds and stationary vacuum space-times with whole cylinder symmetry
  publication-title: J Math Phys
  doi: 10.1063/1.522689
– ident: 10.1016/j.rinp.2020.103699_b0065
– volume: 6
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.rinp.2020.103699_b0025
  article-title: Autism spectrum disorder
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/s41572-019-0138-4
– volume: 38
  start-page: 16
  issue: 1
  year: 2018
  ident: 10.1016/j.rinp.2020.103699_b0030
  article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2017.08.006
– volume: 249
  start-page: 28
  year: 2017
  ident: 10.1016/j.rinp.2020.103699_b0110
  article-title: A new class of neural networks and its applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.006
– volume: 78
  start-page: 683
  year: 2008
  ident: 10.1016/j.rinp.2020.103699_b0090
  article-title: Applications of parametric spectral estimation methods on detection of power system harmonics
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2007.05.011
– ident: 10.1016/j.rinp.2020.103699_b0100
  doi: 10.1016/j.jneumeth.2018.04.013
– ident: 10.1016/j.rinp.2020.103699_b0045
  doi: 10.1109/IranianCEE.2019.8786636
– ident: 10.1016/j.rinp.2020.103699_b0075
– ident: 10.1016/j.rinp.2020.103699_b0035
  doi: 10.1109/ICASSP.2018.8462243
– volume: 18
  year: 1978
  ident: 10.1016/j.rinp.2020.103699_b0125
  article-title: Harmonic maps as models for physical theories
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.18.4510
– ident: 10.1016/j.rinp.2020.103699_b0080
  doi: 10.1109/ICASSP.2019.8683197
– ident: 10.1016/j.rinp.2020.103699_b0060
– volume: 8
  start-page: 6828
  year: 2018
  ident: 10.1016/j.rinp.2020.103699_b0015
  article-title: EEG analytics for early detection of autism spectrum disorder: a data-driven approach
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24318-x
– ident: 10.1016/j.rinp.2020.103699_b0115
– volume: 107
  start-page: 61
  year: 2018
  ident: 10.1016/j.rinp.2020.103699_b0055
  article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.04.021
– volume: 34
  start-page: 151
  issue: 3
  year: 2020
  ident: 10.1016/j.rinp.2020.103699_b0020
  article-title: EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms
  publication-title: J Biomed Res
  doi: 10.7555/JBR.34.20190026
– volume: 39
  start-page: 1379
  issue: 22
  year: 1977
  ident: 10.1016/j.rinp.2020.103699_b0130
  article-title: Colliding impulsive gravitational-waves
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.39.1379
– ident: 10.1016/j.rinp.2020.103699_b0085
– volume: 9
  start-page: 329
  issue: 8
  year: 2018
  ident: 10.1016/j.rinp.2020.103699_b0040
  article-title: EEG-based emotion recognition using 3D convolutional neural networks
  publication-title: Int J Adv Comput Sci Appl
– volume: 26
  start-page: 463
  year: 2013
  ident: 10.1016/j.rinp.2020.103699_b0095
  article-title: The nonlinear Schrödinger harmonic oscillator problem with small odd or even disturbances
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2012.11.009
SSID ssj0001645511
Score 2.2164118
Snippet The electroencephalogram EEG signal analysis is being strongly explored as a new potential tool for control, communication, and clinical diagnosis applications...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 103699
SubjectTerms Artificial EEG modeling
Artificial neuron
Electroencephalography (EEG)
Harmonic behavior
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wvcvAmi03MbpqjSmsR9CAWegt5SkW20taD_96ZZFv3pBdvyya7WSaTnW-GmW8IuRCG4TkKRbBVvxDY2kQ5HotSWq5Y6V1pMN7x-FSNxuJhUk5arb4wJyzTA2fBXfWt8phIAGYca0ad8WDgK1faqDiXubgKbF7LmUrRlUoAFEBvi3Pk6ZNKNhUzOblrPq2RrJKnovMqEb_-WKVE3t8yTi2DM9wh2w1SpDf5C3fJRqj3yGbK2HSLffKMA5n-gQ4G9xQTMeDyNdFIA4yk9osaWucsbzqLNDFX1guKkVc6qwM1tacwSuHP4-eAPBcHZDwcvNyNiqZBQuEE6y0Lq0QV0YeQFTMiBHBzpS-5j5Y5F0MM10Yx7NcNIMe54KO0PemEstwBqIY9OiSdGhY8IhSAgGEmGuYAICnAss5EzgJMgiMeBOsSthKQdg17ODaxeNerNLE3jULVKFSdhdoll-tnPjJ3xq-zb1Hu65nIe51ugDboRhv0X9rQJeVq13QDITI0gFdNf1n8-D8WPyFbHDNeUoDmlHSW889wBpBlac-Tdn4DSzfjTQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQUqUuVZ8qfclDtyoCGyfBY0FQVKkd2iKxRbZjI6oqoECH_vveOQ7QhaFb5Eccne3zd87dd4TcC8VwH9nI6qQXCUxtIg13UZxqLlmcm1jhfcfLazKeiOdpPG2QQR0Lg26VQfdXOt1r61DSDtJsL-fz9jsH26WbSvyPCE8pMn52Rc8H8U3723uWRAAoQLsL20fYIcTOVG5e5bxA2kruw88TTwG7PZ88jf_OMbVz9IyOyVHAjPSx-qwT0rDFKTnwvptmdUbesKIigqDD4RNFlwx4nHlCaQCUVP9QRYvK35suHPUclsWK4h0sXRSWqiKnUEtBB-UlYNDVOZmMhh-DcRRSJURGsM460lIkDq2JNGFKWAsGb5rHPHeaGeOss10lGWbuBrhjQLQu1Z3UCKm5AXgNs3VBmgUMeEkoQALFlFPMAFSSgGqNcpxZaASb3QrWIqwWUGYCjzims_jKaoexzwyFmqFQs0qoLfKw6bOsWDT2tu6j3DctkQHbFyzKWRaWQNbTMkcHE4B3GEtsVA7ALzGxdpJzgE0tEtezlv1ZUPCq-Z7Br_7Z75occnR38bczN6S5Lr_tLeCVtb7zC_IXWjflCA
  priority: 102
  providerName: Elsevier
Title Artificial EEG signal generated by a network of neurons with one and two dendrites
URI https://dx.doi.org/10.1016/j.rinp.2020.103699
https://doaj.org/article/8b9d20029293481cad4356c5bf922710
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zIngRf-L8MXLwJpUlpu1yEHGyOQU9iIPdSpImYzI67Sa4_9730m5OGAMvpTRpU176mu89vnyPkAuhGPqRDayOmoHA0ibScBeEseaShakJFeY7nl-ibk889cN-hczLHZUGnKwM7bCeVC8fXX1_zm7B4W9-uVr5MEPtSe73kEdSbpBNjuMila-E-z7nEgkACBiDcY7qfbGMy300qx_zZ63ykv5LS9bSMtTZJTslfqR3xYTvkYrN9smW53GayQF5xYZCFIK22w8U6RlwOvDi0gAuqZ5RRbOC-03Hjno9y2xCMR9Lx5mlKksptFL4H6U54NHJIel12m_33aAsmxAYwRrTQEsROYws4ogpYS0Ev3Ea8tRpZoyzzl4rybCKN0AfY2zqYt2IjZCaG4DaMHNHpJrBgMeEAjxQTDnFDMAmCQjXKMeZhU7g-FawGmFzAyWm1BTH0hajZE4ee0_QqAkaNSmMWiOXi3s-CkWNtb1baPdFT1TD9hfG-SApnStpapki2QSgHu4rNioFEBiZUDvJOUCoGgnns5aUwKIADPCo4ZrBT_71qqdkmyPhxednzkh1mn_Zc0AsU133kT4cH_utuv8kfwAIa-bj
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BEYIF8RTl6YENRcWuk-CRokJ5Djykbpbt2FURSlFbBv49d07KY2Fgi2xfHJ3P9ufL-TuAI2k4zSOfeJudJpJSmygnQpLmViieFi415O-4u896z_K6n_bn4Hx2F4bCKuu1v1rT42pdl7RqbbbehsPWo8CzSztX9B8Rn_L2PCwgGsjItK_6nW9HSyYRFdDBiwQSkqgvz1RxXuNhSbyVIt4_zyIH7PcGFXn8f-xTP_aei1VYqUEjO6u-aw3mfLkOizF400024IEqKiYI1u1eMorJwMdBZJRGRMnsBzOsrAK-2SiwSGJZThg5Ydmo9MyUBcNahotQMUYQOtmE54vu03kvqXMlJE7yk2lilcwCHSfyjBvpPZ548yIVRbDcueCDbxvFKXU34h2Hug25PcmdVFY4xNc4XFvQKLHDbWCICQw3wXCHWEkhrHUmCO6xEc52L3kT-ExB2tVE4pTP4lXPIsZeNClVk1J1pdQmHH_JvFU0Gn-27pDev1oSBXYsGI0HurYBfWpVQREmiO_oMrEzBSK_zKU2KCEQNzUhnY2a_mVR-KrhH53v_FPuEJZ6T3e3-vbq_mYXlgXFvkRXzR40puN3v4_gZWoPonF-Avze6C8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+EEG+signal+generated+by+a+network+of+neurons+with+one+and+two+dendrites&rft.jtitle=Results+in+physics&rft.au=Bouallegue%2C+Ghaith&rft.au=Djemal%2C+Ridha&rft.au=Belwafi%2C+Kais&rft.date=2021-01-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=20&rft.spage=103699&rft_id=info:doi/10.1016%2Fj.rinp.2020.103699&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2020_103699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon