Artificial EEG signal generated by a network of neurons with one and two dendrites
The electroencephalogram EEG signal analysis is being strongly explored as a new potential tool for control, communication, and clinical diagnosis applications related to many neurological pathologies such as epilepsy, autism, Alzheimer. Analyzing EEG data is a very interesting approach to study cog...
Saved in:
Published in | Results in physics Vol. 20; p. 103699 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-3797 2211-3797 |
DOI | 10.1016/j.rinp.2020.103699 |
Cover
Loading…
Abstract | The electroencephalogram EEG signal analysis is being strongly explored as a new potential tool for control, communication, and clinical diagnosis applications related to many neurological pathologies such as epilepsy, autism, Alzheimer. Analyzing EEG data is a very interesting approach to study cognitive processes. Thus, it can help researchers to understand the brain processes, doctor to establish an efficient medical diagnosis. To better understand the nature and the behavior of this signal which seems to be complex, nonlinear, non-stationary, and imbalanced, we propose to generate this signal using a predefined model of neurons with one and two dendrites by studying their activation functions. Then, we build a network of neurons with two dendrites correlated with the α and β frequencies which represent the most significant sub-bands in EEG signals to generate a signal quite close to EEG recordings. Through this paper, we aim to present a comprehensive study and an exploration of artificial EEG signal generation using only neurons with two dendrites that provided different activation and excitation functions. The presented result shows that the generated EEG signal with six neurons of two dendrites is quite similar to the real EEG recording for a healthy subjects. In addition, some artifacts like Alzheimer and Parkinson have been emulated and identified among the generated spikes. Finally we proved that we can eliminate some artifacts related to harmonics by applying activation function with opposite polarities. |
---|---|
AbstractList | The electroencephalogram EEG signal analysis is being strongly explored as a new potential tool for control, communication, and clinical diagnosis applications related to many neurological pathologies such as epilepsy, autism, Alzheimer. Analyzing EEG data is a very interesting approach to study cognitive processes. Thus, it can help researchers to understand the brain processes, doctor to establish an efficient medical diagnosis. To better understand the nature and the behavior of this signal which seems to be complex, nonlinear, non-stationary, and imbalanced, we propose to generate this signal using a predefined model of neurons with one and two dendrites by studying their activation functions. Then, we build a network of neurons with two dendrites correlated with the α and β frequencies which represent the most significant sub-bands in EEG signals to generate a signal quite close to EEG recordings. Through this paper, we aim to present a comprehensive study and an exploration of artificial EEG signal generation using only neurons with two dendrites that provided different activation and excitation functions. The presented result shows that the generated EEG signal with six neurons of two dendrites is quite similar to the real EEG recording for a healthy subjects. In addition, some artifacts like Alzheimer and Parkinson have been emulated and identified among the generated spikes. Finally we proved that we can eliminate some artifacts related to harmonics by applying activation function with opposite polarities. |
ArticleNumber | 103699 |
Author | Bouallegue, Ghaith Belwafi, Kais Djemal, Ridha |
Author_xml | – sequence: 1 givenname: Ghaith surname: Bouallegue fullname: Bouallegue, Ghaith email: ghaithbouallegue@gmail.com organization: University of Sousse, ENISo of Sousse, Sousse, Tunisia – sequence: 2 givenname: Ridha surname: Djemal fullname: Djemal, Ridha organization: University of Sousse, Department of Electrical Engineering, High Institute of Applied Sciences and Technology of Sousse, Tunisia – sequence: 3 givenname: Kais surname: Belwafi fullname: Belwafi, Kais organization: Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia |
BookMark | eNp9kM1KQzEQRoMoWKsv4Cov0JrM_UkDbkSqFgRBdB1yk0lNrUlJouLbm1oFceEqHxPOMN85IvshBiTklLMpZ7w_W02TD5spMNgOml7KPTIC4HzSCCn2f-VDcpLzirFKtV3H-YjcX6TinTder-l8fk2zX4Yalxgw6YKWDh9U04DlPaZnGl2NrymGTN99eaL1DqqDpfWXWgw2-YL5mBw4vc548v2OyePV_OHyZnJ7d724vLidmJazMhlk2ztoWC96rltE0YKwHVg3cGMcOmy05ACy63owBq0TAxOmlQMYIYB3zZgsdntt1Cu1Sf5Fpw8VtVdfg5iWStdyZo1qNkgLjIEE2bQzbrRtm6433eAkgKjOxmS222VSzDmhU8YXXXwMJWm_VpyprWq1UlvVaqta7VRXFP6gP6f8C53vIKyC3jwmlY3HUGv6hKbUBv4__BOxuZjC |
CitedBy_id | crossref_primary_10_1007_s11042_025_20610_x crossref_primary_10_1109_ACCESS_2023_3276483 crossref_primary_10_1109_TCDS_2023_3260084 crossref_primary_10_3390_s24030877 |
Cites_doi | 10.1109/TNSRE.2019.2915621 10.1109/ACCESS.2019.2933814 10.3389/fnins.2020.00606 10.1155/2018/5174815 10.1016/j.compbiomed.2004.05.001 10.1016/j.chaos.2017.07.004 10.1063/1.522689 10.1038/s41572-019-0138-4 10.1016/j.bbe.2017.08.006 10.1016/j.neucom.2017.03.006 10.1016/j.epsr.2007.05.011 10.1016/j.jneumeth.2018.04.013 10.1109/IranianCEE.2019.8786636 10.1109/ICASSP.2018.8462243 10.1103/PhysRevD.18.4510 10.1109/ICASSP.2019.8683197 10.1038/s41598-018-24318-x 10.1016/j.eswa.2018.04.021 10.7555/JBR.34.20190026 10.1103/PhysRevLett.39.1379 10.1016/j.aml.2012.11.009 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) |
Copyright_xml | – notice: 2020 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2020.103699 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_8b9d20029293481cad4356c5bf922710 10_1016_j_rinp_2020_103699 S2211379720321173 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-b946f2306761a4ee7427d52dfb1ccfefe3a912295562ccedf7b07c49b2c772153 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:26:26 EDT 2025 Tue Jul 01 02:27:37 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Tue Jul 25 21:05:18 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Harmonic behavior Artificial neuron Electroencephalography (EEG) Artificial EEG modeling |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-b946f2306761a4ee7427d52dfb1ccfefe3a912295562ccedf7b07c49b2c772153 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379720321173 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8b9d20029293481cad4356c5bf922710 crossref_citationtrail_10_1016_j_rinp_2020_103699 crossref_primary_10_1016_j_rinp_2020_103699 elsevier_sciencedirect_doi_10_1016_j_rinp_2020_103699 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Misner (b0125) 1978; 18 Parvan M, et al. Transfer learning based motor imagery classification using convolutional neural networks. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE). IEEE; 2019. Li Y, et al. A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding. Ieee Trans Neural Syst Rehabil Eng; 2019. Bosl, Tager-Flusberg, Nelson (b0015) 2018; 8 Slimen, Boubchir, Mbarki, Seddik (b0020) 2020; 34 Sutrisno, Djemal, Alsuwailem (b0030) 2018; 38 Zhou, Li (b0010) 2020; 14 Zhenga, Wanga, Zhangb, Ma (b0095) 2013; 26 Gang, Yi-Shi (b0120) 2017; 103 Piplani T, Merill N, Chuang J. Faking it, making it: fooling and improving brain-based authentication with generative adversarial networks; 2020. Belwafi K, Romain O, Gannouni G, Ghaffari F, Djemal R, Ouni B. An embedded implementation based on adaptive filter bank for brain–computer interface systems. J Neurosci Methods 305; 2018: 1–16. Thodoroff P, Pineau J, Lim A. Learning robust features using deep learning for automatic seizure detection. Machine Learning for Healthcare Conference; 2016. Kiymik, Guler, Dizibuyuk, Akin (b0105) 2005; 35 Salama (b0040) 2018; 9 Nutku, Halil (b0130) 1977; 39 Bouallegue (b0110) 2017; 249 Zhang X, et al. DADA: deep adversarial data augmentation for extremely low data regime classification; 2018. arXiv preprint arXiv:1809.00981. Truong ND, et al. Semi-supervised Seizure Prediction with Generative Adversarial Networks. arXiv preprint arXiv:1806.08235, 2018. Cassani, Estarellas, San, Fraga, Falk (b0005) 2018 Sun (b0070) 2019; 7 . Eris, Nutku (b0135) 1975; 16 Ullah, Hussain, Aboalsamh (b0055) 2018; 107 Yilmaz, Alkan, Asyali (b0090) 2008; 78 Lord, Brugha, Charman (b0025) 2020; 6 Kuanar S, et al. Cognitive analysis of working memory load from EEG, by a deep recurrent neural network. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2018. IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems, IEEE 519; 1992. Yilmaz (10.1016/j.rinp.2020.103699_b0090) 2008; 78 10.1016/j.rinp.2020.103699_b0050 Sun (10.1016/j.rinp.2020.103699_b0070) 2019; 7 Zhou (10.1016/j.rinp.2020.103699_b0010) 2020; 14 10.1016/j.rinp.2020.103699_b0045 10.1016/j.rinp.2020.103699_b0100 10.1016/j.rinp.2020.103699_b0065 Zhenga (10.1016/j.rinp.2020.103699_b0095) 2013; 26 10.1016/j.rinp.2020.103699_b0085 Kiymik (10.1016/j.rinp.2020.103699_b0105) 2005; 35 Misner (10.1016/j.rinp.2020.103699_b0125) 1978; 18 10.1016/j.rinp.2020.103699_b0060 Ullah (10.1016/j.rinp.2020.103699_b0055) 2018; 107 10.1016/j.rinp.2020.103699_b0080 Gang (10.1016/j.rinp.2020.103699_b0120) 2017; 103 Eris (10.1016/j.rinp.2020.103699_b0135) 1975; 16 Bouallegue (10.1016/j.rinp.2020.103699_b0110) 2017; 249 10.1016/j.rinp.2020.103699_b0115 10.1016/j.rinp.2020.103699_b0035 Nutku (10.1016/j.rinp.2020.103699_b0130) 1977; 39 Cassani (10.1016/j.rinp.2020.103699_b0005) 2018 Bosl (10.1016/j.rinp.2020.103699_b0015) 2018; 8 Salama (10.1016/j.rinp.2020.103699_b0040) 2018; 9 10.1016/j.rinp.2020.103699_b0075 Sutrisno (10.1016/j.rinp.2020.103699_b0030) 2018; 38 Slimen (10.1016/j.rinp.2020.103699_b0020) 2020; 34 Lord (10.1016/j.rinp.2020.103699_b0025) 2020; 6 |
References_xml | – volume: 16 start-page: 1431 year: 1975 end-page: 1434 ident: b0135 article-title: Harmonic mappings of Riemannian manifolds and stationary vacuum space-times with whole cylinder symmetry publication-title: J Math Phys – reference: Li Y, et al. A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding. Ieee Trans Neural Syst Rehabil Eng; 2019. – volume: 249 start-page: 28 year: 2017 end-page: 47 ident: b0110 article-title: A new class of neural networks and its applications publication-title: Neurocomputing – volume: 7 start-page: 109386 year: 2019 end-page: 109397 ident: b0070 article-title: A two-stage neural network for sleep stage classification based on feature learning, sequence learning, and data augmentation publication-title: IEEE Access – reference: Truong ND, et al. Semi-supervised Seizure Prediction with Generative Adversarial Networks. arXiv preprint arXiv:1806.08235, 2018. – volume: 78 start-page: 683 year: 2008 end-page: 693 ident: b0090 article-title: Applications of parametric spectral estimation methods on detection of power system harmonics publication-title: Electric Power Syst Res – reference: Zhang X, et al. DADA: deep adversarial data augmentation for extremely low data regime classification; 2018. arXiv preprint arXiv:1809.00981. – volume: 35 start-page: 603 year: 2005 end-page: 661 ident: b0105 article-title: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application publication-title: Comput Biol Med – reference: Parvan M, et al. Transfer learning based motor imagery classification using convolutional neural networks. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE). IEEE; 2019. – volume: 39 start-page: 1379 year: 1977 end-page: 1382 ident: b0130 article-title: Colliding impulsive gravitational-waves publication-title: Phys Rev Lett – start-page: 1 year: 2018 end-page: 26 ident: b0005 article-title: Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment publication-title: Disease Markers – volume: 9 start-page: 329 year: 2018 end-page: 337 ident: b0040 article-title: EEG-based emotion recognition using 3D convolutional neural networks publication-title: Int J Adv Comput Sci Appl – volume: 26 start-page: 463 year: 2013 end-page: 468 ident: b0095 article-title: The nonlinear Schrödinger harmonic oscillator problem with small odd or even disturbances publication-title: Appl Math Lett – reference: Belwafi K, Romain O, Gannouni G, Ghaffari F, Djemal R, Ouni B. An embedded implementation based on adaptive filter bank for brain–computer interface systems. J Neurosci Methods 305; 2018: 1–16. – volume: 103 start-page: 567 year: 2017 end-page: 570 ident: b0120 article-title: Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism publication-title: Chaos Solitons Fractals – volume: 34 start-page: 151 year: 2020 end-page: 161 ident: b0020 article-title: EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms publication-title: J Biomed Res – reference: Piplani T, Merill N, Chuang J. Faking it, making it: fooling and improving brain-based authentication with generative adversarial networks; 2020. – volume: 6 start-page: 1 year: 2020 end-page: 16 ident: b0025 article-title: Autism spectrum disorder publication-title: Nat Rev Dis Primers – reference: IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems, IEEE 519; 1992. – reference: Kuanar S, et al. Cognitive analysis of working memory load from EEG, by a deep recurrent neural network. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2018. – reference: Thodoroff P, Pineau J, Lim A. Learning robust features using deep learning for automatic seizure detection. Machine Learning for Healthcare Conference; 2016. – volume: 107 start-page: 61 year: 2018 end-page: 71 ident: b0055 article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach publication-title: Expert Syst Appl – reference: . – volume: 14 start-page: 606 year: 2020 ident: b0010 article-title: Epilepsy EEG signal classification algorithm based on improved RBF publication-title: Front Neurosci – volume: 38 start-page: 16 year: 2018 end-page: 26 ident: b0030 article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis publication-title: Biocybern Biomed Eng – volume: 8 start-page: 6828 year: 2018 ident: b0015 article-title: EEG analytics for early detection of autism spectrum disorder: a data-driven approach publication-title: Sci Rep – volume: 18 year: 1978 ident: b0125 article-title: Harmonic maps as models for physical theories publication-title: Phys Rev D – ident: 10.1016/j.rinp.2020.103699_b0050 doi: 10.1109/TNSRE.2019.2915621 – volume: 7 start-page: 109386 year: 2019 ident: 10.1016/j.rinp.2020.103699_b0070 article-title: A two-stage neural network for sleep stage classification based on feature learning, sequence learning, and data augmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933814 – volume: 14 start-page: 606 year: 2020 ident: 10.1016/j.rinp.2020.103699_b0010 article-title: Epilepsy EEG signal classification algorithm based on improved RBF publication-title: Front Neurosci doi: 10.3389/fnins.2020.00606 – start-page: 1 year: 2018 ident: 10.1016/j.rinp.2020.103699_b0005 article-title: Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment publication-title: Disease Markers doi: 10.1155/2018/5174815 – volume: 35 start-page: 603 issue: 7 year: 2005 ident: 10.1016/j.rinp.2020.103699_b0105 article-title: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2004.05.001 – volume: 103 start-page: 567 year: 2017 ident: 10.1016/j.rinp.2020.103699_b0120 article-title: Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2017.07.004 – volume: 16 start-page: 1431 issue: 7 year: 1975 ident: 10.1016/j.rinp.2020.103699_b0135 article-title: Harmonic mappings of Riemannian manifolds and stationary vacuum space-times with whole cylinder symmetry publication-title: J Math Phys doi: 10.1063/1.522689 – ident: 10.1016/j.rinp.2020.103699_b0065 – volume: 6 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.rinp.2020.103699_b0025 article-title: Autism spectrum disorder publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-019-0138-4 – volume: 38 start-page: 16 issue: 1 year: 2018 ident: 10.1016/j.rinp.2020.103699_b0030 article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2017.08.006 – volume: 249 start-page: 28 year: 2017 ident: 10.1016/j.rinp.2020.103699_b0110 article-title: A new class of neural networks and its applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.006 – volume: 78 start-page: 683 year: 2008 ident: 10.1016/j.rinp.2020.103699_b0090 article-title: Applications of parametric spectral estimation methods on detection of power system harmonics publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2007.05.011 – ident: 10.1016/j.rinp.2020.103699_b0100 doi: 10.1016/j.jneumeth.2018.04.013 – ident: 10.1016/j.rinp.2020.103699_b0045 doi: 10.1109/IranianCEE.2019.8786636 – ident: 10.1016/j.rinp.2020.103699_b0075 – ident: 10.1016/j.rinp.2020.103699_b0035 doi: 10.1109/ICASSP.2018.8462243 – volume: 18 year: 1978 ident: 10.1016/j.rinp.2020.103699_b0125 article-title: Harmonic maps as models for physical theories publication-title: Phys Rev D doi: 10.1103/PhysRevD.18.4510 – ident: 10.1016/j.rinp.2020.103699_b0080 doi: 10.1109/ICASSP.2019.8683197 – ident: 10.1016/j.rinp.2020.103699_b0060 – volume: 8 start-page: 6828 year: 2018 ident: 10.1016/j.rinp.2020.103699_b0015 article-title: EEG analytics for early detection of autism spectrum disorder: a data-driven approach publication-title: Sci Rep doi: 10.1038/s41598-018-24318-x – ident: 10.1016/j.rinp.2020.103699_b0115 – volume: 107 start-page: 61 year: 2018 ident: 10.1016/j.rinp.2020.103699_b0055 article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.04.021 – volume: 34 start-page: 151 issue: 3 year: 2020 ident: 10.1016/j.rinp.2020.103699_b0020 article-title: EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms publication-title: J Biomed Res doi: 10.7555/JBR.34.20190026 – volume: 39 start-page: 1379 issue: 22 year: 1977 ident: 10.1016/j.rinp.2020.103699_b0130 article-title: Colliding impulsive gravitational-waves publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.39.1379 – ident: 10.1016/j.rinp.2020.103699_b0085 – volume: 9 start-page: 329 issue: 8 year: 2018 ident: 10.1016/j.rinp.2020.103699_b0040 article-title: EEG-based emotion recognition using 3D convolutional neural networks publication-title: Int J Adv Comput Sci Appl – volume: 26 start-page: 463 year: 2013 ident: 10.1016/j.rinp.2020.103699_b0095 article-title: The nonlinear Schrödinger harmonic oscillator problem with small odd or even disturbances publication-title: Appl Math Lett doi: 10.1016/j.aml.2012.11.009 |
SSID | ssj0001645511 |
Score | 2.2164118 |
Snippet | The electroencephalogram EEG signal analysis is being strongly explored as a new potential tool for control, communication, and clinical diagnosis applications... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 103699 |
SubjectTerms | Artificial EEG modeling Artificial neuron Electroencephalography (EEG) Harmonic behavior |
SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wvcvAmi03MbpqjSmsR9CAWegt5SkW20taD_96ZZFv3pBdvyya7WSaTnW-GmW8IuRCG4TkKRbBVvxDY2kQ5HotSWq5Y6V1pMN7x-FSNxuJhUk5arb4wJyzTA2fBXfWt8phIAGYca0ad8WDgK1faqDiXubgKbF7LmUrRlUoAFEBvi3Pk6ZNKNhUzOblrPq2RrJKnovMqEb_-WKVE3t8yTi2DM9wh2w1SpDf5C3fJRqj3yGbK2HSLffKMA5n-gQ4G9xQTMeDyNdFIA4yk9osaWucsbzqLNDFX1guKkVc6qwM1tacwSuHP4-eAPBcHZDwcvNyNiqZBQuEE6y0Lq0QV0YeQFTMiBHBzpS-5j5Y5F0MM10Yx7NcNIMe54KO0PemEstwBqIY9OiSdGhY8IhSAgGEmGuYAICnAss5EzgJMgiMeBOsSthKQdg17ODaxeNerNLE3jULVKFSdhdoll-tnPjJ3xq-zb1Hu65nIe51ugDboRhv0X9rQJeVq13QDITI0gFdNf1n8-D8WPyFbHDNeUoDmlHSW889wBpBlac-Tdn4DSzfjTQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQUqUuVZ8qfclDtyoCGyfBY0FQVKkd2iKxRbZjI6oqoECH_vveOQ7QhaFb5Eccne3zd87dd4TcC8VwH9nI6qQXCUxtIg13UZxqLlmcm1jhfcfLazKeiOdpPG2QQR0Lg26VQfdXOt1r61DSDtJsL-fz9jsH26WbSvyPCE8pMn52Rc8H8U3723uWRAAoQLsL20fYIcTOVG5e5bxA2kruw88TTwG7PZ88jf_OMbVz9IyOyVHAjPSx-qwT0rDFKTnwvptmdUbesKIigqDD4RNFlwx4nHlCaQCUVP9QRYvK35suHPUclsWK4h0sXRSWqiKnUEtBB-UlYNDVOZmMhh-DcRRSJURGsM460lIkDq2JNGFKWAsGb5rHPHeaGeOss10lGWbuBrhjQLQu1Z3UCKm5AXgNs3VBmgUMeEkoQALFlFPMAFSSgGqNcpxZaASb3QrWIqwWUGYCjzims_jKaoexzwyFmqFQs0qoLfKw6bOsWDT2tu6j3DctkQHbFyzKWRaWQNbTMkcHE4B3GEtsVA7ALzGxdpJzgE0tEtezlv1ZUPCq-Z7Br_7Z75occnR38bczN6S5Lr_tLeCVtb7zC_IXWjflCA priority: 102 providerName: Elsevier |
Title | Artificial EEG signal generated by a network of neurons with one and two dendrites |
URI | https://dx.doi.org/10.1016/j.rinp.2020.103699 https://doaj.org/article/8b9d20029293481cad4356c5bf922710 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zIngRf-L8MXLwJpUlpu1yEHGyOQU9iIPdSpImYzI67Sa4_9730m5OGAMvpTRpU176mu89vnyPkAuhGPqRDayOmoHA0ibScBeEseaShakJFeY7nl-ibk889cN-hczLHZUGnKwM7bCeVC8fXX1_zm7B4W9-uVr5MEPtSe73kEdSbpBNjuMila-E-z7nEgkACBiDcY7qfbGMy300qx_zZ63ykv5LS9bSMtTZJTslfqR3xYTvkYrN9smW53GayQF5xYZCFIK22w8U6RlwOvDi0gAuqZ5RRbOC-03Hjno9y2xCMR9Lx5mlKksptFL4H6U54NHJIel12m_33aAsmxAYwRrTQEsROYws4ogpYS0Ev3Ea8tRpZoyzzl4rybCKN0AfY2zqYt2IjZCaG4DaMHNHpJrBgMeEAjxQTDnFDMAmCQjXKMeZhU7g-FawGmFzAyWm1BTH0hajZE4ee0_QqAkaNSmMWiOXi3s-CkWNtb1baPdFT1TD9hfG-SApnStpapki2QSgHu4rNioFEBiZUDvJOUCoGgnns5aUwKIADPCo4ZrBT_71qqdkmyPhxednzkh1mn_Zc0AsU133kT4cH_utuv8kfwAIa-bj |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BEYIF8RTl6YENRcWuk-CRokJ5Djykbpbt2FURSlFbBv49d07KY2Fgi2xfHJ3P9ufL-TuAI2k4zSOfeJudJpJSmygnQpLmViieFi415O-4u896z_K6n_bn4Hx2F4bCKuu1v1rT42pdl7RqbbbehsPWo8CzSztX9B8Rn_L2PCwgGsjItK_6nW9HSyYRFdDBiwQSkqgvz1RxXuNhSbyVIt4_zyIH7PcGFXn8f-xTP_aei1VYqUEjO6u-aw3mfLkOizF400024IEqKiYI1u1eMorJwMdBZJRGRMnsBzOsrAK-2SiwSGJZThg5Ydmo9MyUBcNahotQMUYQOtmE54vu03kvqXMlJE7yk2lilcwCHSfyjBvpPZ548yIVRbDcueCDbxvFKXU34h2Hug25PcmdVFY4xNc4XFvQKLHDbWCICQw3wXCHWEkhrHUmCO6xEc52L3kT-ExB2tVE4pTP4lXPIsZeNClVk1J1pdQmHH_JvFU0Gn-27pDev1oSBXYsGI0HurYBfWpVQREmiO_oMrEzBSK_zKU2KCEQNzUhnY2a_mVR-KrhH53v_FPuEJZ6T3e3-vbq_mYXlgXFvkRXzR40puN3v4_gZWoPonF-Avze6C8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+EEG+signal+generated+by+a+network+of+neurons+with+one+and+two+dendrites&rft.jtitle=Results+in+physics&rft.au=Bouallegue%2C+Ghaith&rft.au=Djemal%2C+Ridha&rft.au=Belwafi%2C+Kais&rft.date=2021-01-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=20&rft.spage=103699&rft_id=info:doi/10.1016%2Fj.rinp.2020.103699&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2020_103699 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |