Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries
Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution and collapse of the cathode as well as H2 evolution and the growth of Zn dendrites on the Zn anode. Herein, we simultaneously regulate the cat...
Saved in:
Published in | eScience (Beijing) Vol. 2; no. 2; pp. 209 - 218 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
KeAi Communications Co. Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution and collapse of the cathode as well as H2 evolution and the growth of Zn dendrites on the Zn anode. Herein, we simultaneously regulate the cations and anions in the electrolyte for high-capacity, high-stability aqueous zinc–vanadium (Zn–V) batteries based on a bimetallic cation-doped Na0.33K0.1V2O5⋅nH2O cathode. We demonstrate that Na+ cations suppress cathode dissolution and restrain Zn dendrite growth on the anode via an electrostatic shield effect. We also illustrate that ClO4− anions participate in energy storage at the cathode and are reduced to Cl−, generating a protective layer on the Zn anode surface and providing a stable interface to decrease Zn dendrites and H2 evolution during long-term cycling. When Na+ and ClO4− are introduced into an aqueous ZnSO4 electrolyte, a Zn/Zn symmetric cell shows durable and reversible Zn stripping/plating for 1500 h at a current density of 1 mA cm−2 and with an area capacity of 1 mAh cm−2. Zn/Na0.33K0.1V2O5⋅nH2O full batteries exhibit a high capacity of 600 mAh g−1 at 0.1 A g−1 and long-term cycling performance for 5000 cycles, with a capacity of 200 mAh g−1 at 20 A g−1.
[Display omitted]
•Simultaneously regulating the cation and anion in the electrolyte toward high-performance aqueous zinc-vanadium batteries.•Cation Na+ suppresses the dissolution of the cathode and restrains the Zn dendrite on the anode.•Anion ClO4− participates in the energy storage at the cathode and is reduced to Cl− forming a protective layer on the anode. |
---|---|
AbstractList | Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution and collapse of the cathode as well as H2 evolution and the growth of Zn dendrites on the Zn anode. Herein, we simultaneously regulate the cations and anions in the electrolyte for high-capacity, high-stability aqueous zinc–vanadium (Zn–V) batteries based on a bimetallic cation-doped Na0.33K0.1V2O5⋅nH2O cathode. We demonstrate that Na+ cations suppress cathode dissolution and restrain Zn dendrite growth on the anode via an electrostatic shield effect. We also illustrate that ClO4− anions participate in energy storage at the cathode and are reduced to Cl−, generating a protective layer on the Zn anode surface and providing a stable interface to decrease Zn dendrites and H2 evolution during long-term cycling. When Na+ and ClO4− are introduced into an aqueous ZnSO4 electrolyte, a Zn/Zn symmetric cell shows durable and reversible Zn stripping/plating for 1500 h at a current density of 1 mA cm−2 and with an area capacity of 1 mAh cm−2. Zn/Na0.33K0.1V2O5⋅nH2O full batteries exhibit a high capacity of 600 mAh g−1 at 0.1 A g−1 and long-term cycling performance for 5000 cycles, with a capacity of 200 mAh g−1 at 20 A g−1.
[Display omitted]
•Simultaneously regulating the cation and anion in the electrolyte toward high-performance aqueous zinc-vanadium batteries.•Cation Na+ suppresses the dissolution of the cathode and restrains the Zn dendrite on the anode.•Anion ClO4− participates in the energy storage at the cathode and is reduced to Cl− forming a protective layer on the anode. Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution and collapse of the cathode as well as H2 evolution and the growth of Zn dendrites on the Zn anode. Herein, we simultaneously regulate the cations and anions in the electrolyte for high-capacity, high-stability aqueous zinc–vanadium (Zn–V) batteries based on a bimetallic cation-doped Na0.33K0.1V2O5⋅nH2O cathode. We demonstrate that Na+ cations suppress cathode dissolution and restrain Zn dendrite growth on the anode via an electrostatic shield effect. We also illustrate that ClO4− anions participate in energy storage at the cathode and are reduced to Cl−, generating a protective layer on the Zn anode surface and providing a stable interface to decrease Zn dendrites and H2 evolution during long-term cycling. When Na+ and ClO4− are introduced into an aqueous ZnSO4 electrolyte, a Zn/Zn symmetric cell shows durable and reversible Zn stripping/plating for 1500 h at a current density of 1 mA cm−2 and with an area capacity of 1 mAh cm−2. Zn/Na0.33K0.1V2O5⋅nH2O full batteries exhibit a high capacity of 600 mAh g−1 at 0.1 A g−1 and long-term cycling performance for 5000 cycles, with a capacity of 200 mAh g−1 at 20 A g−1. |
Author | Guo, Shan Fang, Guozhao Qin, Liping Liang, Shuquan Wang, Liangbing Zhou, Miao Chen, Minghui Chen, Zixian Wang, Ziqing |
Author_xml | – sequence: 1 givenname: Ziqing orcidid: 0000-0001-7746-0409 surname: Wang fullname: Wang, Ziqing organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China – sequence: 2 givenname: Miao surname: Zhou fullname: Zhou, Miao organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China – sequence: 3 givenname: Liping surname: Qin fullname: Qin, Liping organization: College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China – sequence: 4 givenname: Minghui orcidid: 0000-0001-8185-972X surname: Chen fullname: Chen, Minghui organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China – sequence: 5 givenname: Zixian surname: Chen fullname: Chen, Zixian organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China – sequence: 6 givenname: Shan surname: Guo fullname: Guo, Shan organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China – sequence: 7 givenname: Liangbing surname: Wang fullname: Wang, Liangbing organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China – sequence: 8 givenname: Guozhao orcidid: 0000-0003-2140-0145 surname: Fang fullname: Fang, Guozhao email: fg_zhao@csu.edu.cn organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China – sequence: 9 givenname: Shuquan surname: Liang fullname: Liang, Shuquan email: lsq@csu.edu.cn organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China |
BookMark | eNp9kc2KFDEUhYOM4DjOC7jKA1hlfqpTVeBGBn8GBlyo63CT3OpJU52MSWqgXQ34CL6hT2K6WkRcDCHk3JDzQc55Ts5CDEjIS85azrh6vWsxW98KJkTLZMuYeELOhVJ9wzven_2jn5HLnHesvhg4l11_Tn589vtlLhAwLpkm3C4zFB8DjRO1q8oUgqt7lT5URXFGW1KcDwXpFBO99dvbxsIdWF8Or05jLmD8XGcK35YV_t0H--vh5z0EcH7ZUwOlYPKYX5CnE8wZL_-cF-Tr-3dfrj42N58-XF-9vWlsx1lpzCitk4PlyolpANlt6uqVQmY4s7yTZuwdDHKj1IhMWNNhj50Rxko2SgXyglyfuC7CTt8lv4d00BG8Xi9i2mpIxdsZ9WAmIcEoOcLYuQFGqzY9mN5NE1S4qyxxYtkUc044_eVxpo-t6J0-tqKPrWgmdc28mob_TDWwNeSSwM-PW9-crFgDuveYdH2BwaLzqZZRf-Afs_8G8viulQ |
CitedBy_id | crossref_primary_10_1016_j_jechem_2025_01_034 crossref_primary_10_1021_acs_cgd_2c00699 crossref_primary_10_1016_j_ensm_2024_103851 crossref_primary_10_1002_anie_202218872 crossref_primary_10_1016_j_jechem_2023_08_022 crossref_primary_10_1002_ange_202218386 crossref_primary_10_1016_S1872_5805_23_60733_4 crossref_primary_10_1002_adma_202416714 crossref_primary_10_1002_adfm_202401537 crossref_primary_10_1016_j_ensm_2022_06_058 crossref_primary_10_1039_D3EE01580G crossref_primary_10_1016_j_ensm_2023_03_002 crossref_primary_10_1016_j_esci_2022_05_004 crossref_primary_10_1016_j_jpowsour_2025_236315 crossref_primary_10_1016_j_jechem_2022_11_049 crossref_primary_10_1002_adfm_202207732 crossref_primary_10_1002_aenm_202405253 crossref_primary_10_1002_chem_202303211 crossref_primary_10_3390_en16020917 crossref_primary_10_1016_j_ensm_2022_10_043 crossref_primary_10_1016_j_cej_2024_151312 crossref_primary_10_1002_aenm_202403995 crossref_primary_10_1002_smll_202403622 crossref_primary_10_1016_j_cej_2023_142308 crossref_primary_10_1016_j_ensm_2022_09_036 crossref_primary_10_1002_smll_202403062 crossref_primary_10_1002_cssc_202401166 crossref_primary_10_1002_adfm_202311271 crossref_primary_10_1002_smll_202400926 crossref_primary_10_1002_aenm_202203729 crossref_primary_10_1016_j_ensm_2023_103114 crossref_primary_10_1016_j_ensm_2024_103271 crossref_primary_10_1002_celc_202400064 crossref_primary_10_1016_j_cej_2024_156426 crossref_primary_10_1021_acsaem_3c00799 crossref_primary_10_1016_j_jcis_2023_01_088 crossref_primary_10_1016_j_ensm_2022_08_007 crossref_primary_10_1016_j_ensm_2024_103823 crossref_primary_10_1002_batt_202200431 crossref_primary_10_1016_j_jechem_2022_11_028 crossref_primary_10_1039_D4SC02626H crossref_primary_10_1002_smtd_202300009 crossref_primary_10_26599_EMD_2023_9370007 crossref_primary_10_1016_j_cej_2023_143738 crossref_primary_10_1038_s41467_023_41276_9 crossref_primary_10_1016_j_jpowsour_2024_234747 crossref_primary_10_1002_smll_202303307 crossref_primary_10_1016_j_matlet_2023_134996 crossref_primary_10_1016_j_ensm_2022_08_016 crossref_primary_10_1016_j_esci_2023_100153 crossref_primary_10_1002_eem2_12502 crossref_primary_10_1016_j_mtener_2023_101279 crossref_primary_10_1039_D5NR00074B crossref_primary_10_1021_acsaem_3c02184 crossref_primary_10_1016_j_jechem_2024_08_061 crossref_primary_10_1016_j_apsusc_2022_154296 crossref_primary_10_1002_smll_202205789 crossref_primary_10_1007_s11581_023_04927_x crossref_primary_10_1002_adma_202301538 crossref_primary_10_1021_acsomega_2c02930 crossref_primary_10_1002_adfm_202215170 crossref_primary_10_1002_aenm_202203790 crossref_primary_10_1002_aenm_202304010 crossref_primary_10_1039_D4CC01798F crossref_primary_10_1021_acsami_4c01311 crossref_primary_10_1039_D2SC04143J crossref_primary_10_1002_anie_202415221 crossref_primary_10_1039_D2QI01171A crossref_primary_10_1002_anie_202410210 crossref_primary_10_1007_s11426_022_1398_5 crossref_primary_10_1002_adfm_202415451 crossref_primary_10_1002_smtd_202300101 crossref_primary_10_1039_D3QI00781B crossref_primary_10_1002_adma_202501538 crossref_primary_10_1016_j_memsci_2024_123646 crossref_primary_10_1002_adfm_202309840 crossref_primary_10_1002_advs_202414762 crossref_primary_10_1021_acssuschemeng_3c03386 crossref_primary_10_1007_s12274_022_4990_2 crossref_primary_10_1002_aenm_202301670 crossref_primary_10_1002_adfm_202209028 crossref_primary_10_1016_j_surfin_2024_105647 crossref_primary_10_1002_aenm_202303737 crossref_primary_10_1021_acsenergylett_2c02042 crossref_primary_10_1039_D4SE01542H crossref_primary_10_1039_D4EE01993H crossref_primary_10_1002_aenm_202203766 crossref_primary_10_1039_D4EE00109E crossref_primary_10_1002_anie_202214966 crossref_primary_10_1002_aenm_202302770 crossref_primary_10_1016_j_scib_2024_01_029 crossref_primary_10_1007_s40820_023_01304_1 crossref_primary_10_1038_s42004_024_01405_x crossref_primary_10_1002_aenm_202403175 crossref_primary_10_1002_aenm_202300250 crossref_primary_10_1016_j_enchem_2022_100092 crossref_primary_10_1007_s11771_023_5228_5 crossref_primary_10_1039_D3IM00111C crossref_primary_10_1002_cnma_202300615 crossref_primary_10_1016_j_scib_2024_01_011 crossref_primary_10_1021_jacs_2c06927 crossref_primary_10_1002_ange_202410210 crossref_primary_10_1021_acsami_4c07645 crossref_primary_10_1039_D3TA07589C crossref_primary_10_1002_smll_202306972 crossref_primary_10_1021_acsami_2c20194 crossref_primary_10_1002_ange_202415221 crossref_primary_10_1016_j_ensm_2024_103693 crossref_primary_10_1016_j_jcis_2022_11_153 crossref_primary_10_1002_adma_202414019 crossref_primary_10_1002_anie_202409096 crossref_primary_10_1016_j_nanoen_2023_108671 crossref_primary_10_1007_s40820_024_01334_3 crossref_primary_10_26599_NRE_2022_9120025 crossref_primary_10_1088_1361_6463_ad9483 crossref_primary_10_1021_acsenergylett_2c01890 crossref_primary_10_1016_j_ensm_2024_103571 crossref_primary_10_1016_j_jcis_2024_02_111 crossref_primary_10_1021_acsenergylett_3c00650 crossref_primary_10_1002_adma_202304040 crossref_primary_10_1016_j_fmre_2023_02_018 crossref_primary_10_1021_acsami_2c12744 crossref_primary_10_1021_jacs_3c10638 crossref_primary_10_1021_acs_iecr_2c03462 crossref_primary_10_1002_adfm_202211979 crossref_primary_10_1007_s11771_024_5832_z crossref_primary_10_1007_s40820_023_01256_6 crossref_primary_10_1021_acssuschemeng_2c05410 crossref_primary_10_1002_smtd_202300660 crossref_primary_10_1016_j_jpowsour_2022_232072 crossref_primary_10_1016_j_cclet_2022_07_046 crossref_primary_10_1039_D4CC06315E crossref_primary_10_1007_s12598_022_02207_7 crossref_primary_10_1016_j_cej_2022_140260 crossref_primary_10_1002_ange_202214966 crossref_primary_10_1002_smll_202207148 crossref_primary_10_1002_smll_202401857 crossref_primary_10_1016_j_jcis_2022_10_127 crossref_primary_10_1016_j_mattod_2023_04_005 crossref_primary_10_1002_adma_202413948 crossref_primary_10_1021_acsaelm_3c00933 crossref_primary_10_1021_acsami_4c05372 crossref_primary_10_1007_s40820_022_00969_4 crossref_primary_10_1002_ange_202218872 crossref_primary_10_1002_anie_202304444 crossref_primary_10_1021_acssuschemeng_4c08335 crossref_primary_10_1021_acsami_3c03785 crossref_primary_10_1149_1945_7111_ad05e3 crossref_primary_10_1039_D3TA04030E crossref_primary_10_1002_EXP_20220073 crossref_primary_10_1016_j_jcis_2023_01_136 crossref_primary_10_3390_nano12162767 crossref_primary_10_1021_acsanm_2c02700 crossref_primary_10_1002_sstr_202300191 crossref_primary_10_1021_acs_nanolett_3c04222 crossref_primary_10_3390_inorganics12020037 crossref_primary_10_1002_ange_202304444 crossref_primary_10_1007_s10008_024_05901_x crossref_primary_10_1016_j_nanoms_2023_11_004 crossref_primary_10_1021_acsenergylett_2c01459 crossref_primary_10_1016_j_jcis_2024_03_116 crossref_primary_10_1002_adfm_202422159 crossref_primary_10_1021_acsenergylett_3c00859 crossref_primary_10_1016_j_cej_2024_151104 crossref_primary_10_1016_j_jallcom_2023_171858 crossref_primary_10_1002_aenm_202403322 crossref_primary_10_1002_aenm_202204365 crossref_primary_10_1002_aenm_202402900 crossref_primary_10_1002_smll_202306808 crossref_primary_10_1002_adma_202303550 crossref_primary_10_1021_acsenergylett_3c01821 crossref_primary_10_1002_ange_202409096 crossref_primary_10_1016_j_ensm_2024_103489 crossref_primary_10_1016_j_apsusc_2023_156481 crossref_primary_10_1002_adma_202400184 crossref_primary_10_1016_j_ensm_2024_103361 crossref_primary_10_26599_EMD_2023_9370023 crossref_primary_10_1007_s42114_025_01283_4 crossref_primary_10_1016_j_esci_2023_100093 crossref_primary_10_3390_batteries10060200 crossref_primary_10_1016_j_jechem_2022_07_034 crossref_primary_10_1002_cssc_202201739 crossref_primary_10_1002_cssc_202400159 crossref_primary_10_1002_eem2_12769 crossref_primary_10_1016_j_jcis_2022_09_010 crossref_primary_10_1016_j_xcrp_2022_101242 crossref_primary_10_1002_aenm_202202039 crossref_primary_10_1039_D2CC04721G crossref_primary_10_1016_j_jpowsour_2022_231920 crossref_primary_10_1016_j_ensm_2024_103588 crossref_primary_10_1002_anie_202218386 crossref_primary_10_1002_smll_202311923 crossref_primary_10_1007_s11426_023_1918_0 crossref_primary_10_1002_sus2_151 crossref_primary_10_1002_aenm_202204358 crossref_primary_10_1016_j_jelechem_2023_117188 crossref_primary_10_1002_adfm_202313358 crossref_primary_10_1002_smll_202204180 crossref_primary_10_1039_D4CE00252K crossref_primary_10_1039_D4NJ05238B |
Cites_doi | 10.1021/jacs.6b05958 10.1038/nenergy.2016.39 10.1039/C8TA02018C 10.1016/0304-386X(95)90673-S 10.1016/j.jallcom.2019.06.084 10.1039/D0EE02620D 10.1002/ange.202016531 10.1002/aenm.202003639 10.1021/acsenergylett.8b01423 10.1016/j.nanoen.2019.05.042 10.1016/j.cej.2021.133795 10.1002/aenm.202001599 10.1038/s41467-018-07980-7 10.1039/C8CC07730D 10.1021/acsami.7b13110 10.1021/ja312241y 10.1002/adma.202103617 10.1038/s41467-020-15478-4 10.1021/acscentsci.7b00361 10.1021/ic50128a059 10.1039/D1EE01472B 10.1038/s41467-018-04060-8 10.1021/acsami.1c11531 10.1016/j.cej.2016.08.072 10.1016/j.jallcom.2019.02.078 10.1039/C8EE01651H 10.1021/acs.nanolett.5b00284 10.1021/acsami.9b10905 10.1039/C5TA05714K 10.1016/j.joule.2020.07.023 10.1039/D0TA01468K 10.1016/j.joule.2020.05.018 10.1039/c1jm11910a 10.1016/j.jcis.2020.10.148 10.1002/eem2.12131 10.1126/sciadv.aba4098 10.1038/nenergy.2016.119 10.1149/2.0381903jes 10.1016/j.nanoen.2018.07.014 10.1002/adma.201800762 10.1002/anie.202006171 10.1002/adfm.201802564 10.1002/adma.201904369 10.1038/s41467-017-00467-x 10.1002/adma.201705580 10.1016/j.nanoen.2021.105876 10.1016/j.electacta.2019.03.087 10.1016/j.jechem.2020.04.061 10.1016/j.mtener.2021.100851 10.1021/acsenergylett.8b01552 10.1039/C5TA04402B 10.1039/C9TA05922A |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.esci.2022.03.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2667-1417 |
EndPage | 218 |
ExternalDocumentID | oai_doaj_org_article_8bf23ab639a94d8a9c657ab7dffa9e0d 10_1016_j_esci_2022_03_002 S2667141722000246 |
GroupedDBID | 6I. AAFTH AAXUO ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 ROL 0R~ AALRI AAYWO AAYXX ADVLN AITUG CITATION |
ID | FETCH-LOGICAL-c410t-b93cd38c16d2f8a345454766e0b10c143b97da835669e02cb4e7e4b2bc30936a3 |
IEDL.DBID | DOA |
ISSN | 2667-1417 |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Tue Jul 01 00:57:28 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Thu Jul 20 20:09:09 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Interfacial layer Vanadium-based cathode High capacity Zinc-ion batteries Electrolyte additives |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-b93cd38c16d2f8a345454766e0b10c143b97da835669e02cb4e7e4b2bc30936a3 |
ORCID | 0000-0001-7746-0409 0000-0001-8185-972X 0000-0003-2140-0145 |
OpenAccessLink | https://doaj.org/article/8bf23ab639a94d8a9c657ab7dffa9e0d |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8bf23ab639a94d8a9c657ab7dffa9e0d crossref_primary_10_1016_j_esci_2022_03_002 crossref_citationtrail_10_1016_j_esci_2022_03_002 elsevier_sciencedirect_doi_10_1016_j_esci_2022_03_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | eScience (Beijing) |
PublicationYear | 2022 |
Publisher | Elsevier B.V KeAi Communications Co. Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co. Ltd |
References | Pan, Shao, Yan, Cheng, Han, Nie, Wang, Yang, Li, Bhattacharya, Mueller, Liu (bib10) 2016; 5 Wang, Zhang, Hu, Shi, Song, Guo, Liu, Sun (bib40) 2019; 45 Li, Chen, Fang, Shan, Cao, Huang, Liang, Zhou (bib47) 2019; 801 Lu, Zhu, Van Den Bergh, Stefik, Huang (bib53) 2020; 39 Wan, Zhang, Dai, Wang, Niu, Chen (bib5) 2018; 9 Zhu, Yin, Zheng, Emwas, Lei, Mohanmmed, Cui, Alshareef (bib41) 2021; 8 Yang, Tang, Fang, Shan, Guo, Zhang, Wang, Wang, Zhou, Liang (bib20) 2018; 11 Liu, Tian, Wang, Zheng, Wang, Yan, Wang, Yin, Yang, Cao (bib42) 2020; 16 Chao, Qiao (bib2) 2020; 4 Ding, Xu, Graff, Zhang, Sushko, Chen, Shao, Engelhard, Nie, Xiao, Liu, Sushko, Liu, Zhang (bib39) 2013; 11 Hao, Yuan, Ye, Chao, Davey, Guo, Qiao (bib34) 2021; 60 Wei, Deblock, Butts, Choi, Dunn (bib9) 2020; 3 Liu, Qin, Chen, Xie, Zhu, Gao, Zhou, Fang, Liang (bib13) 2021; 22 Ni, Zhang, Ma, Yang, Zhang (bib14) 2015; 35 Chao, Zhou, Xie, Chao, Huan, Jaroniec, Qiao (bib29) 2020; 6 Yang, Du, Zhao, Chen, Li, Xie, Zhang, Cui, Kong, Zhao, Wang, Zhang, Cui (bib30) 2020; 7 Zhang, Cao, Yue, Pakornchote, Bovornratanaraks, Han, Zhang, Qin, Huang (bib44) 2021; 32 Xu, Zhao, Huo, Wang, Yao, Gu, Cheng, Mai, Hu, Wang (bib36) 2019; 62 Dong, Shen, Li, Nie, Zhu, Sheng, Zhang (bib38) 2015; 42 Zhang, Holoubek, Wu, Daniyar, Zhu, Chen, Leonard, Rodríguez-Pérez, Jiang, Fang, Ji (bib37) 2018; 100 Wu, Gu, Zhang, Bai, Li, Yuan, Wang, Liu, Yuan, Zhu, Wu, Li, Gu, Lu (bib3) 2019; 10 Wang, Ran, Yao, Shi, Wen, Zhao, Lang, Jiang (bib31) 2020; 1 Gu, Pascual, Shirkhanzadeh, Saimoto, Scott (bib55) 1995; 3 Tang, Fang, Zhou, Wang, Lei, Wang, Lin, Tang, Liang (bib49) 2018; 51 Zhang, Cheng, Liu, Wang, Long, Liu, Li, Chen (bib11) 2017; 1 Konarov, Voronina, Jo, Bakenov, Sun, Myung (bib32) 2018; 10 Ming, Liang, Lei, Kandambeth, Eddaoudi, Alshareef (bib24) 2018; 10 Feng, Zhang, Sun, Liu, Jiang, Cui, Hu, Meng (bib43) 2021; 433 Wang, Fan, Gao, Sun, Ma, Yang, Han, Xu, Wang (bib4) 2017; 10 Seals, Alexander, Taylor, Dillard (bib56) 1973; 10 Zhang, Cheng, Liu, Zhao, Lei, Chen, Liu, Chen (bib28) 2016; 39 Kundu, Adams, Duffort, Vajargah, Nazar (bib7) 2016; 1 Cao, Zhang, Chanajaree, Yue, Zeng, Zhang, Qin (bib35) 2021; 1 Zhang, Tang, Guo, Cao, Pan, Fang, Zhou, Liang (bib6) 2020; 12 Zhao, Han, Yang, Su, Xu, Li, Xu, Fang, Jiang, Zou, Song, Mai, Zhang (bib25) 2015; 3 Deng, Li, Ye, Zhou, Li, Zhang, Yuan, Hu, Zhao, Huang, Li, Chen, Zheng, Li (bib15) 2021; 31 Qin, Chen, Wang, Chen, Yang (bib19) 2019; 306 Song, Tan, Chao, Fan (bib1) 2018; 41 Xia, Guo, Lei, Liang, Zhao, Alshareef (bib50) 2018; 5 Lan, Peng, Chen, Tang, Dong, Chen, Zhou, Chen, An, Luo (bib22) 2019; 787 Tian, Liu, Zheng, Jia, Jahrman, Seidler, Long, Atif, Alsalhi, Cao (bib21) 2020; 29 Wang, Cao, Luo, Li, Xu, Xiong, He, Wang, Li, Liu, Fang (bib27) 2017; 307 Tian, Liu, Zheng, Jia, Jahrman, Seidler, Long, Atif, Alsalhi, Cao (bib45) 2020; 29 Cao, Zhuang, Zhang, Ye, Shen, Ajayan (bib33) 2020; 30 Xu, Han, Zheng, Yan, Xie (bib26) 2011; 38 Wang, Kale, Cao, Lei, Kandambeth, Zou, Zhu, Abouhamad, Shekhah, Cavallo, Eddaoudi, Alshareef (bib54) 2021; 39 Mao, Wu, Hu, Yuan, He, Kang (bib12) 2021; 52 Kang, Ni, Chen, Li, Chao, Yang, Zhao (bib23) 2019; 3 Ding, Du, Gu, Li, Wang, Wang, Gong, Yang (bib8) 2018; 26 Hu, Yan, Zhu, Wang, Wei, Li, Zhou, Li, Chen, Mai (bib18) 2017; 49 Wang, Xi, Feng, Chen, Li, Jia, Feng, Qian, Xiong (bib52) 2019; 32 Ding, Du, Li, Wang, Wang, Gong, Yang (bib16) 2019; 44 Sambandam, Soundharrajan, Kim, Alfruqi, Jo, Kim, Mathew, Sun, Kim (bib48) 2018; 32 Sun, Zhang, Liu, Jiang, Dong, Hu, Meng (bib46) 2021; 587 Liu, Luo, Qin, Fang, Liang (bib17) 2021; 1 Cao, Zhang, Yue, Wang, Pakornchote, Bovornratanaraks, Zhang, Wu, Qin (bib51) 2021; 84 Sun (10.1016/j.esci.2022.03.002_bib46) 2021; 587 Xu (10.1016/j.esci.2022.03.002_bib36) 2019; 62 Wang (10.1016/j.esci.2022.03.002_bib52) 2019; 32 Dong (10.1016/j.esci.2022.03.002_bib38) 2015; 42 Tian (10.1016/j.esci.2022.03.002_bib21) 2020; 29 Chao (10.1016/j.esci.2022.03.002_bib2) 2020; 4 Lu (10.1016/j.esci.2022.03.002_bib53) 2020; 39 Qin (10.1016/j.esci.2022.03.002_bib19) 2019; 306 Zhang (10.1016/j.esci.2022.03.002_bib37) 2018; 100 Wang (10.1016/j.esci.2022.03.002_bib4) 2017; 10 Xu (10.1016/j.esci.2022.03.002_bib26) 2011; 38 Kundu (10.1016/j.esci.2022.03.002_bib7) 2016; 1 Wang (10.1016/j.esci.2022.03.002_bib27) 2017; 307 Chao (10.1016/j.esci.2022.03.002_bib29) 2020; 6 Ding (10.1016/j.esci.2022.03.002_bib39) 2013; 11 Liu (10.1016/j.esci.2022.03.002_bib17) 2021; 1 Mao (10.1016/j.esci.2022.03.002_bib12) 2021; 52 Wan (10.1016/j.esci.2022.03.002_bib5) 2018; 9 Zhang (10.1016/j.esci.2022.03.002_bib28) 2016; 39 Zhang (10.1016/j.esci.2022.03.002_bib11) 2017; 1 Wu (10.1016/j.esci.2022.03.002_bib3) 2019; 10 Wang (10.1016/j.esci.2022.03.002_bib31) 2020; 1 Liu (10.1016/j.esci.2022.03.002_bib13) 2021; 22 Gu (10.1016/j.esci.2022.03.002_bib55) 1995; 3 Zhang (10.1016/j.esci.2022.03.002_bib6) 2020; 12 Ming (10.1016/j.esci.2022.03.002_bib24) 2018; 10 Lan (10.1016/j.esci.2022.03.002_bib22) 2019; 787 Li (10.1016/j.esci.2022.03.002_bib47) 2019; 801 Liu (10.1016/j.esci.2022.03.002_bib42) 2020; 16 Cao (10.1016/j.esci.2022.03.002_bib35) 2021; 1 Song (10.1016/j.esci.2022.03.002_bib1) 2018; 41 Ni (10.1016/j.esci.2022.03.002_bib14) 2015; 35 Deng (10.1016/j.esci.2022.03.002_bib15) 2021; 31 Tian (10.1016/j.esci.2022.03.002_bib45) 2020; 29 Sambandam (10.1016/j.esci.2022.03.002_bib48) 2018; 32 Xia (10.1016/j.esci.2022.03.002_bib50) 2018; 5 Kang (10.1016/j.esci.2022.03.002_bib23) 2019; 3 Wang (10.1016/j.esci.2022.03.002_bib40) 2019; 45 Hu (10.1016/j.esci.2022.03.002_bib18) 2017; 49 Konarov (10.1016/j.esci.2022.03.002_bib32) 2018; 10 Yang (10.1016/j.esci.2022.03.002_bib20) 2018; 11 Zhao (10.1016/j.esci.2022.03.002_bib25) 2015; 3 Hao (10.1016/j.esci.2022.03.002_bib34) 2021; 60 Feng (10.1016/j.esci.2022.03.002_bib43) 2021; 433 Zhang (10.1016/j.esci.2022.03.002_bib44) 2021; 32 Tang (10.1016/j.esci.2022.03.002_bib49) 2018; 51 Pan (10.1016/j.esci.2022.03.002_bib10) 2016; 5 Yang (10.1016/j.esci.2022.03.002_bib30) 2020; 7 Cao (10.1016/j.esci.2022.03.002_bib33) 2020; 30 Cao (10.1016/j.esci.2022.03.002_bib51) 2021; 84 Wei (10.1016/j.esci.2022.03.002_bib9) 2020; 3 Wang (10.1016/j.esci.2022.03.002_bib54) 2021; 39 Ding (10.1016/j.esci.2022.03.002_bib8) 2018; 26 Ding (10.1016/j.esci.2022.03.002_bib16) 2019; 44 Zhu (10.1016/j.esci.2022.03.002_bib41) 2021; 8 Seals (10.1016/j.esci.2022.03.002_bib56) 1973; 10 |
References_xml | – volume: 12 start-page: 4625 year: 2020 end-page: 4665 ident: bib6 article-title: Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review publication-title: Energy Environ. Sci. – volume: 1 year: 2021 ident: bib17 article-title: Progress and prospect of low-temperature zinc metal batteries publication-title: Adv. Powder Mater. – volume: 100 start-page: 14097 year: 2018 end-page: 14099 ident: bib37 article-title: A ZnCl publication-title: Chem. Commun. – volume: 3 start-page: 221 year: 2020 end-page: 234 ident: bib9 article-title: Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage publication-title: Energy Environ. Mater. – volume: 1 start-page: 1634 year: 2020 ident: bib31 article-title: Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries publication-title: Nat. Commun. – volume: 42 start-page: 21277 year: 2015 end-page: 21283 ident: bib38 article-title: Pseudocapacitive behaviours of Na publication-title: J. Mater. Chem. A – volume: 38 start-page: 14466 year: 2011 end-page: 14472 ident: bib26 article-title: Pillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M publication-title: J. Mater. Chem. – volume: 5 start-page: 16039 year: 2016 ident: bib10 article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions publication-title: Nat. Energy – volume: 39 start-page: 17004 year: 2020 end-page: 17011 ident: bib53 article-title: A high performing Zn-ion battery cathode enabled by in situ transformation of V publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 4463 year: 2021 end-page: 4473 ident: bib41 article-title: Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries publication-title: Energy Environ. Sci. – volume: 587 start-page: 845 year: 2021 end-page: 854 ident: bib46 article-title: Hydrated vanadium pentoxide/reduced graphene oxide-polyvinyl alcohol (V publication-title: J. Colloid Interface Sci. – volume: 801 start-page: 82 year: 2019 end-page: 89 ident: bib47 article-title: Synthesis of polycrystalline K publication-title: J. Alloys Compd. – volume: 26 start-page: 1800762 year: 2018 ident: bib8 article-title: Ultrafast Zn publication-title: Adv. Mater. – volume: 10 start-page: 2602 year: 2018 end-page: 2609 ident: bib24 article-title: Layered Mg publication-title: ACS Energy Lett. – volume: 35 start-page: 17951 year: 2015 end-page: 17955 ident: bib14 article-title: Superior electrochemical performance of Li publication-title: J. Mater. Chem. A – volume: 10 start-page: 2620 year: 2018 end-page: 2640 ident: bib32 article-title: Present and future perspective on electrode materials for rechargeable zinc-ion batteries publication-title: ACS Energy Lett. – volume: 1 start-page: 16119 year: 2016 ident: bib7 article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode publication-title: Nat. Energy – volume: 1 start-page: 405 year: 2017 ident: bib11 article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities publication-title: Nat. Commun. – volume: 6 start-page: eaba4098 year: 2020 ident: bib29 article-title: Roadmap for advanced aqueous batteries: from design of materials to applications publication-title: Sci. Adv. – volume: 45 start-page: 42000 year: 2019 end-page: 42005 ident: bib40 article-title: A Zn(ClO publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 2485 year: 1973 end-page: 2487 ident: bib56 article-title: Core electron binding energy study of group IIb-VIIa compounds publication-title: Inorg. Chem. – volume: 39 start-page: 2103617 year: 2021 ident: bib54 article-title: Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries publication-title: Adv. Mater. – volume: 3 start-page: 2180 year: 2015 end-page: 2185 ident: bib25 article-title: Stable Alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries publication-title: Nano Lett. – volume: 32 start-page: 38416 year: 2021 end-page: 38424 ident: bib44 article-title: Two birds with one stone: boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 579 year: 2018 end-page: 587 ident: bib49 article-title: Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries publication-title: Nano Energy – volume: 11 start-page: 3157 year: 2018 end-page: 3162 ident: bib20 article-title: Li publication-title: Energy Environ. Sci. – volume: 52 start-page: 277 year: 2021 end-page: 283 ident: bib12 article-title: Charge storage mechanism of MOF-derived Mn publication-title: J. Energy Chem. – volume: 41 start-page: 1802564 year: 2018 ident: bib1 article-title: Recent advances in Zn-ion batteries publication-title: Adv. Funct. Mater. – volume: 29 start-page: 9 year: 2020 end-page: 16 ident: bib21 article-title: Structural engineering of hydrated vanadium oxide cathode by K publication-title: Energy Stor. Mater. – volume: 9 start-page: 1656 year: 2018 ident: bib5 article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers publication-title: Nat. Commun. – volume: 7 start-page: 1557 year: 2020 end-page: 1574 ident: bib30 article-title: Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries publication-title: Joule – volume: 30 start-page: 2001599 year: 2020 ident: bib33 article-title: Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries publication-title: Adv. Energy Mater. – volume: 32 start-page: 19130 year: 2019 end-page: 19139 ident: bib52 article-title: Layered (NH publication-title: J. Mater. Chem. A – volume: 306 start-page: 307 year: 2019 end-page: 316 ident: bib19 article-title: V publication-title: Electrochim. Acta – volume: 29 start-page: 9 year: 2020 end-page: 16 ident: bib45 article-title: Structural engineering of hydrated vanadium oxide cathode by K publication-title: Energy Stor. Mater. – volume: 307 start-page: 382 year: 2017 end-page: 388 ident: bib27 article-title: Flexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery publication-title: Chem. Eng. J. – volume: 433 start-page: 133795 year: 2021 ident: bib43 article-title: Dual ions enable vanadium oxide hydration with superior Zn publication-title: Chem. Eng. J. – volume: 1 year: 2021 ident: bib35 article-title: Stabilizing zinc anode via a chelation and desolvation electrolyte additive publication-title: Adv. Powder Mater. – volume: 5 start-page: 1705580 year: 2018 ident: bib50 article-title: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode publication-title: Adv. Mater. – volume: 10 start-page: 1121 year: 2017 end-page: 1128 ident: bib4 article-title: High-voltage aqueous magnesium ion batteries publication-title: ACS Cent. Sci. – volume: 39 start-page: 12894 year: 2016 end-page: 12901 ident: bib28 article-title: Cation-deficient spinel ZnMn publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1846 year: 2020 end-page: 1851 ident: bib2 article-title: Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte publication-title: Joule – volume: 16 start-page: 7713 year: 2020 end-page: 7723 ident: bib42 article-title: Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries publication-title: J. Mater. Chem. A – volume: 84 start-page: 105876 year: 2021 ident: bib51 article-title: Oxygen defect enriched (NH publication-title: Nano Energy – volume: 49 start-page: 42717 year: 2017 end-page: 42722 ident: bib18 article-title: Zn/V publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 73 year: 2019 ident: bib3 article-title: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery publication-title: Nat. Commun. – volume: 31 start-page: 2003639 year: 2021 ident: bib15 article-title: Zn publication-title: Adv. Energy Mater. – volume: 62 start-page: 275 year: 2019 end-page: 281 ident: bib36 article-title: Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries publication-title: Nano Energy – volume: 22 start-page: 100851 year: 2021 ident: bib13 article-title: Improving stability and reversibility via fluorine doping in aqueous zinc–manganese batteries publication-title: Mater. Today Energy – volume: 60 start-page: 7442 year: 2021 end-page: 7451 ident: bib34 article-title: Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents publication-title: Angew. Chem. Int. Ed. – volume: 787 start-page: 9 year: 2019 end-page: 16 ident: bib22 article-title: Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries publication-title: J. Alloys Compd. – volume: 11 start-page: 4450 year: 2013 end-page: 4456 ident: bib39 article-title: Dendrite-Free lithium deposition via self-healing electrostatic shield mechanism publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 15530 year: 2018 end-page: 15539 ident: bib48 article-title: K publication-title: J. Mater. Chem. A – volume: 44 start-page: 1904369 year: 2019 ident: bib16 article-title: Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries publication-title: Adv. Mater. – volume: 3 start-page: A5295 year: 2019 end-page: A5300 ident: bib23 article-title: Ag embedded Li publication-title: J. Electrochem. Soc. – volume: 3 start-page: 283 year: 1995 end-page: 300 ident: bib55 article-title: The influence of intermetallic precipitates on the adhesion of electrodeposited zinc to aluminum cathodes publication-title: Hydrometallurgy – volume: 39 start-page: 12894 year: 2016 ident: 10.1016/j.esci.2022.03.002_bib28 article-title: Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05958 – volume: 5 start-page: 16039 year: 2016 ident: 10.1016/j.esci.2022.03.002_bib10 article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 32 start-page: 15530 year: 2018 ident: 10.1016/j.esci.2022.03.002_bib48 article-title: K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02018C – volume: 3 start-page: 283 year: 1995 ident: 10.1016/j.esci.2022.03.002_bib55 article-title: The influence of intermetallic precipitates on the adhesion of electrodeposited zinc to aluminum cathodes publication-title: Hydrometallurgy doi: 10.1016/0304-386X(95)90673-S – volume: 801 start-page: 82 year: 2019 ident: 10.1016/j.esci.2022.03.002_bib47 article-title: Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.06.084 – volume: 12 start-page: 4625 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib6 article-title: Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02620D – volume: 60 start-page: 7442 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib34 article-title: Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202016531 – volume: 31 start-page: 2003639 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib15 article-title: Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003639 – volume: 10 start-page: 2602 year: 2018 ident: 10.1016/j.esci.2022.03.002_bib24 article-title: Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01423 – volume: 62 start-page: 275 year: 2019 ident: 10.1016/j.esci.2022.03.002_bib36 article-title: Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.042 – volume: 433 start-page: 133795 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib43 article-title: Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133795 – volume: 30 start-page: 2001599 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib33 article-title: Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001599 – volume: 10 start-page: 73 year: 2019 ident: 10.1016/j.esci.2022.03.002_bib3 article-title: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery publication-title: Nat. Commun. doi: 10.1038/s41467-018-07980-7 – volume: 29 start-page: 9 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib21 article-title: Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries publication-title: Energy Stor. Mater. – volume: 100 start-page: 14097 year: 2018 ident: 10.1016/j.esci.2022.03.002_bib37 article-title: A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode publication-title: Chem. Commun. doi: 10.1039/C8CC07730D – volume: 49 start-page: 42717 year: 2017 ident: 10.1016/j.esci.2022.03.002_bib18 article-title: Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13110 – volume: 11 start-page: 4450 year: 2013 ident: 10.1016/j.esci.2022.03.002_bib39 article-title: Dendrite-Free lithium deposition via self-healing electrostatic shield mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312241y – volume: 39 start-page: 2103617 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib54 article-title: Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.202103617 – volume: 1 start-page: 1634 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib31 article-title: Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries publication-title: Nat. Commun. doi: 10.1038/s41467-020-15478-4 – volume: 10 start-page: 1121 year: 2017 ident: 10.1016/j.esci.2022.03.002_bib4 article-title: High-voltage aqueous magnesium ion batteries publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00361 – volume: 10 start-page: 2485 year: 1973 ident: 10.1016/j.esci.2022.03.002_bib56 article-title: Core electron binding energy study of group IIb-VIIa compounds publication-title: Inorg. Chem. doi: 10.1021/ic50128a059 – volume: 8 start-page: 4463 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib41 article-title: Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01472B – volume: 9 start-page: 1656 year: 2018 ident: 10.1016/j.esci.2022.03.002_bib5 article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers publication-title: Nat. Commun. doi: 10.1038/s41467-018-04060-8 – volume: 32 start-page: 38416 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib44 article-title: Two birds with one stone: boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11531 – volume: 307 start-page: 382 year: 2017 ident: 10.1016/j.esci.2022.03.002_bib27 article-title: Flexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.072 – volume: 787 start-page: 9 year: 2019 ident: 10.1016/j.esci.2022.03.002_bib22 article-title: Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.02.078 – volume: 11 start-page: 3157 year: 2018 ident: 10.1016/j.esci.2022.03.002_bib20 article-title: Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01651H – volume: 3 start-page: 2180 year: 2015 ident: 10.1016/j.esci.2022.03.002_bib25 article-title: Stable Alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00284 – volume: 45 start-page: 42000 year: 2019 ident: 10.1016/j.esci.2022.03.002_bib40 article-title: A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10905 – volume: 42 start-page: 21277 year: 2015 ident: 10.1016/j.esci.2022.03.002_bib38 article-title: Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05714K – volume: 4 start-page: 1846 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib2 article-title: Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte publication-title: Joule doi: 10.1016/j.joule.2020.07.023 – volume: 16 start-page: 7713 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib42 article-title: Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01468K – volume: 7 start-page: 1557 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib30 article-title: Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries publication-title: Joule doi: 10.1016/j.joule.2020.05.018 – volume: 38 start-page: 14466 year: 2011 ident: 10.1016/j.esci.2022.03.002_bib26 article-title: Pillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires publication-title: J. Mater. Chem. doi: 10.1039/c1jm11910a – volume: 587 start-page: 845 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib46 article-title: Hydrated vanadium pentoxide/reduced graphene oxide-polyvinyl alcohol (V2O5⋅nH2O/rGO-PVA) film as a binder-free electrode for solid-state Zn-ion batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.10.148 – volume: 3 start-page: 221 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib9 article-title: Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12131 – volume: 6 start-page: eaba4098 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib29 article-title: Roadmap for advanced aqueous batteries: from design of materials to applications publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4098 – volume: 1 start-page: 16119 year: 2016 ident: 10.1016/j.esci.2022.03.002_bib7 article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 3 start-page: A5295 year: 2019 ident: 10.1016/j.esci.2022.03.002_bib23 article-title: Ag embedded Li3VO4 as superior anode for Li-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0381903jes – volume: 51 start-page: 579 year: 2018 ident: 10.1016/j.esci.2022.03.002_bib49 article-title: Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.014 – volume: 1 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib17 article-title: Progress and prospect of low-temperature zinc metal batteries publication-title: Adv. Powder Mater. – volume: 26 start-page: 1800762 year: 2018 ident: 10.1016/j.esci.2022.03.002_bib8 article-title: Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide publication-title: Adv. Mater. doi: 10.1002/adma.201800762 – volume: 39 start-page: 17004 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib53 article-title: A high performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006171 – volume: 29 start-page: 9 year: 2020 ident: 10.1016/j.esci.2022.03.002_bib45 article-title: Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries publication-title: Energy Stor. Mater. – volume: 41 start-page: 1802564 year: 2018 ident: 10.1016/j.esci.2022.03.002_bib1 article-title: Recent advances in Zn-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802564 – volume: 44 start-page: 1904369 year: 2019 ident: 10.1016/j.esci.2022.03.002_bib16 article-title: Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201904369 – volume: 1 start-page: 405 year: 2017 ident: 10.1016/j.esci.2022.03.002_bib11 article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities publication-title: Nat. Commun. doi: 10.1038/s41467-017-00467-x – volume: 5 start-page: 1705580 year: 2018 ident: 10.1016/j.esci.2022.03.002_bib50 article-title: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode publication-title: Adv. Mater. doi: 10.1002/adma.201705580 – volume: 84 start-page: 105876 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib51 article-title: Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105876 – volume: 306 start-page: 307 year: 2019 ident: 10.1016/j.esci.2022.03.002_bib19 article-title: V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.087 – volume: 52 start-page: 277 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib12 article-title: Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.04.061 – volume: 22 start-page: 100851 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib13 article-title: Improving stability and reversibility via fluorine doping in aqueous zinc–manganese batteries publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2021.100851 – volume: 1 year: 2021 ident: 10.1016/j.esci.2022.03.002_bib35 article-title: Stabilizing zinc anode via a chelation and desolvation electrolyte additive publication-title: Adv. Powder Mater. – volume: 10 start-page: 2620 year: 2018 ident: 10.1016/j.esci.2022.03.002_bib32 article-title: Present and future perspective on electrode materials for rechargeable zinc-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01552 – volume: 35 start-page: 17951 year: 2015 ident: 10.1016/j.esci.2022.03.002_bib14 article-title: Superior electrochemical performance of Li3VO4/N-doped C as an anode for Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04402B – volume: 32 start-page: 19130 year: 2019 ident: 10.1016/j.esci.2022.03.002_bib52 article-title: Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05922A |
SSID | ssj0002811347 |
Score | 2.5821414 |
Snippet | Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 209 |
SubjectTerms | Electrolyte additives High capacity Interfacial layer Vanadium-based cathode Zinc-ion batteries |
Title | Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries |
URI | https://dx.doi.org/10.1016/j.esci.2022.03.002 https://doaj.org/article/8bf23ab639a94d8a9c657ab7dffa9e0d |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXjTYtOkaXNUcRFBLyp4C3lCRbuyrIKeBH-C_9Bf4iTpSr2sFw-FtE2Tkhky3ySTbxDa95YoeMcyx7nLGGhFppWqM0YN0R7mRR13zy-v-Pktu7gr73qpvkJMWKIHTgN3VGtfUKXBkCrBbK2E4WWldGW9V8LlNsy-YPN6ztR9XDIi4YxkyCzHYSYgjFTdiZkU3OXAvoBzWBSJ4bT4ZZUieX_POPUMznAZLXVIER-nP1xBc65dRYs9_sA19HHdhIBA1Trw3_E4pZWHgcYjj7ulOKxaC1csNi2UcJf45uF14jAgVhwIizMDNtMAID9MtwAZY9DsK1ZgN0Ljb01rvt4_X2KM2PMj1pGXE9zsdXQ7PLs5Pc-6rAqZYSSfZFpQY2ltCLeFrxVlZeD0AknlmuQG4JMWlVUAzDiH8S2MZq5yTBfahE1TrugGmm9HrdtEmBIPANBY4T1hRlgBvkzhedj8pdS7coDIdFSl6SjHQ-aLBzmNLbuXQRIySELmVIIkBujg55unRLgxs_ZJENZPzUCWHR-ACslOheRfKjRA5VTUssMdCU9AU82Mzrf-o_NttBCaTGFtO2h-Mn52u4BzJnovqvQ3iov-rA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+regulation+of+cations+and+anions+in+an+electrolyte+for+high-capacity%2C+high-stability+aqueous+zinc%E2%80%93vanadium+batteries&rft.jtitle=eScience+%28Beijing%29&rft.au=Wang%2C+Ziqing&rft.au=Zhou%2C+Miao&rft.au=Qin%2C+Liping&rft.au=Chen%2C+Minghui&rft.date=2022-03-01&rft.issn=2667-1417&rft.eissn=2667-1417&rft.volume=2&rft.issue=2&rft.spage=209&rft.epage=218&rft_id=info:doi/10.1016%2Fj.esci.2022.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_esci_2022_03_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-1417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-1417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-1417&client=summon |