Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries

Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution and collapse of the cathode as well as H2 evolution and the growth of Zn dendrites on the Zn anode. Herein, we simultaneously regulate the cat...

Full description

Saved in:
Bibliographic Details
Published ineScience (Beijing) Vol. 2; no. 2; pp. 209 - 218
Main Authors Wang, Ziqing, Zhou, Miao, Qin, Liping, Chen, Minghui, Chen, Zixian, Guo, Shan, Wang, Liangbing, Fang, Guozhao, Liang, Shuquan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
KeAi Communications Co. Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution and collapse of the cathode as well as H2 evolution and the growth of Zn dendrites on the Zn anode. Herein, we simultaneously regulate the cations and anions in the electrolyte for high-capacity, high-stability aqueous zinc–vanadium (Zn–V) batteries based on a bimetallic cation-doped Na0.33K0.1V2O5⋅nH2O cathode. We demonstrate that Na+ ​cations suppress cathode dissolution and restrain Zn dendrite growth on the anode via an electrostatic shield effect. We also illustrate that ClO4− anions participate in energy storage at the cathode and are reduced to Cl−, generating a protective layer on the Zn anode surface and providing a stable interface to decrease Zn dendrites and H2 evolution during long-term cycling. When Na+ and ClO4− are introduced into an aqueous ZnSO4 electrolyte, a Zn/Zn symmetric cell shows durable and reversible Zn stripping/plating for 1500 ​h at a current density of 1 ​mA ​cm−2 and with an area capacity of 1 mAh cm−2. Zn/Na0.33K0.1V2O5⋅nH2O full batteries exhibit a high capacity of 600 mAh g−1 at 0.1 ​A ​g−1 and long-term cycling performance for 5000 cycles, with a capacity of 200 mAh g−1 at 20 ​A ​g−1. [Display omitted] •Simultaneously regulating the cation and anion in the electrolyte toward high-performance aqueous zinc-vanadium batteries.•Cation Na+ suppresses the dissolution of the cathode and restrains the Zn dendrite on the anode.•Anion ClO4− participates in the energy storage at the cathode and is reduced to Cl− forming a protective layer on the anode.
AbstractList Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution and collapse of the cathode as well as H2 evolution and the growth of Zn dendrites on the Zn anode. Herein, we simultaneously regulate the cations and anions in the electrolyte for high-capacity, high-stability aqueous zinc–vanadium (Zn–V) batteries based on a bimetallic cation-doped Na0.33K0.1V2O5⋅nH2O cathode. We demonstrate that Na+ ​cations suppress cathode dissolution and restrain Zn dendrite growth on the anode via an electrostatic shield effect. We also illustrate that ClO4− anions participate in energy storage at the cathode and are reduced to Cl−, generating a protective layer on the Zn anode surface and providing a stable interface to decrease Zn dendrites and H2 evolution during long-term cycling. When Na+ and ClO4− are introduced into an aqueous ZnSO4 electrolyte, a Zn/Zn symmetric cell shows durable and reversible Zn stripping/plating for 1500 ​h at a current density of 1 ​mA ​cm−2 and with an area capacity of 1 mAh cm−2. Zn/Na0.33K0.1V2O5⋅nH2O full batteries exhibit a high capacity of 600 mAh g−1 at 0.1 ​A ​g−1 and long-term cycling performance for 5000 cycles, with a capacity of 200 mAh g−1 at 20 ​A ​g−1. [Display omitted] •Simultaneously regulating the cation and anion in the electrolyte toward high-performance aqueous zinc-vanadium batteries.•Cation Na+ suppresses the dissolution of the cathode and restrains the Zn dendrite on the anode.•Anion ClO4− participates in the energy storage at the cathode and is reduced to Cl− forming a protective layer on the anode.
Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution and collapse of the cathode as well as H2 evolution and the growth of Zn dendrites on the Zn anode. Herein, we simultaneously regulate the cations and anions in the electrolyte for high-capacity, high-stability aqueous zinc–vanadium (Zn–V) batteries based on a bimetallic cation-doped Na0.33K0.1V2O5⋅nH2O cathode. We demonstrate that Na+ ​cations suppress cathode dissolution and restrain Zn dendrite growth on the anode via an electrostatic shield effect. We also illustrate that ClO4− anions participate in energy storage at the cathode and are reduced to Cl−, generating a protective layer on the Zn anode surface and providing a stable interface to decrease Zn dendrites and H2 evolution during long-term cycling. When Na+ and ClO4− are introduced into an aqueous ZnSO4 electrolyte, a Zn/Zn symmetric cell shows durable and reversible Zn stripping/plating for 1500 ​h at a current density of 1 ​mA ​cm−2 and with an area capacity of 1 mAh cm−2. Zn/Na0.33K0.1V2O5⋅nH2O full batteries exhibit a high capacity of 600 mAh g−1 at 0.1 ​A ​g−1 and long-term cycling performance for 5000 cycles, with a capacity of 200 mAh g−1 at 20 ​A ​g−1.
Author Guo, Shan
Fang, Guozhao
Qin, Liping
Liang, Shuquan
Wang, Liangbing
Zhou, Miao
Chen, Minghui
Chen, Zixian
Wang, Ziqing
Author_xml – sequence: 1
  givenname: Ziqing
  orcidid: 0000-0001-7746-0409
  surname: Wang
  fullname: Wang, Ziqing
  organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China
– sequence: 2
  givenname: Miao
  surname: Zhou
  fullname: Zhou, Miao
  organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China
– sequence: 3
  givenname: Liping
  surname: Qin
  fullname: Qin, Liping
  organization: College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
– sequence: 4
  givenname: Minghui
  orcidid: 0000-0001-8185-972X
  surname: Chen
  fullname: Chen, Minghui
  organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China
– sequence: 5
  givenname: Zixian
  surname: Chen
  fullname: Chen, Zixian
  organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China
– sequence: 6
  givenname: Shan
  surname: Guo
  fullname: Guo, Shan
  organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China
– sequence: 7
  givenname: Liangbing
  surname: Wang
  fullname: Wang, Liangbing
  organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China
– sequence: 8
  givenname: Guozhao
  orcidid: 0000-0003-2140-0145
  surname: Fang
  fullname: Fang, Guozhao
  email: fg_zhao@csu.edu.cn
  organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China
– sequence: 9
  givenname: Shuquan
  surname: Liang
  fullname: Liang, Shuquan
  email: lsq@csu.edu.cn
  organization: School of Materials Science and Engineering, Central South University, Changsha, 410083, PR China
BookMark eNp9kc2KFDEUhYOM4DjOC7jKA1hlfqpTVeBGBn8GBlyo63CT3OpJU52MSWqgXQ34CL6hT2K6WkRcDCHk3JDzQc55Ts5CDEjIS85azrh6vWsxW98KJkTLZMuYeELOhVJ9wzven_2jn5HLnHesvhg4l11_Tn589vtlLhAwLpkm3C4zFB8DjRO1q8oUgqt7lT5URXFGW1KcDwXpFBO99dvbxsIdWF8Or05jLmD8XGcK35YV_t0H--vh5z0EcH7ZUwOlYPKYX5CnE8wZL_-cF-Tr-3dfrj42N58-XF-9vWlsx1lpzCitk4PlyolpANlt6uqVQmY4s7yTZuwdDHKj1IhMWNNhj50Rxko2SgXyglyfuC7CTt8lv4d00BG8Xi9i2mpIxdsZ9WAmIcEoOcLYuQFGqzY9mN5NE1S4qyxxYtkUc044_eVxpo-t6J0-tqKPrWgmdc28mob_TDWwNeSSwM-PW9-crFgDuveYdH2BwaLzqZZRf-Afs_8G8viulQ
CitedBy_id crossref_primary_10_1016_j_jechem_2025_01_034
crossref_primary_10_1021_acs_cgd_2c00699
crossref_primary_10_1016_j_ensm_2024_103851
crossref_primary_10_1002_anie_202218872
crossref_primary_10_1016_j_jechem_2023_08_022
crossref_primary_10_1002_ange_202218386
crossref_primary_10_1016_S1872_5805_23_60733_4
crossref_primary_10_1002_adma_202416714
crossref_primary_10_1002_adfm_202401537
crossref_primary_10_1016_j_ensm_2022_06_058
crossref_primary_10_1039_D3EE01580G
crossref_primary_10_1016_j_ensm_2023_03_002
crossref_primary_10_1016_j_esci_2022_05_004
crossref_primary_10_1016_j_jpowsour_2025_236315
crossref_primary_10_1016_j_jechem_2022_11_049
crossref_primary_10_1002_adfm_202207732
crossref_primary_10_1002_aenm_202405253
crossref_primary_10_1002_chem_202303211
crossref_primary_10_3390_en16020917
crossref_primary_10_1016_j_ensm_2022_10_043
crossref_primary_10_1016_j_cej_2024_151312
crossref_primary_10_1002_aenm_202403995
crossref_primary_10_1002_smll_202403622
crossref_primary_10_1016_j_cej_2023_142308
crossref_primary_10_1016_j_ensm_2022_09_036
crossref_primary_10_1002_smll_202403062
crossref_primary_10_1002_cssc_202401166
crossref_primary_10_1002_adfm_202311271
crossref_primary_10_1002_smll_202400926
crossref_primary_10_1002_aenm_202203729
crossref_primary_10_1016_j_ensm_2023_103114
crossref_primary_10_1016_j_ensm_2024_103271
crossref_primary_10_1002_celc_202400064
crossref_primary_10_1016_j_cej_2024_156426
crossref_primary_10_1021_acsaem_3c00799
crossref_primary_10_1016_j_jcis_2023_01_088
crossref_primary_10_1016_j_ensm_2022_08_007
crossref_primary_10_1016_j_ensm_2024_103823
crossref_primary_10_1002_batt_202200431
crossref_primary_10_1016_j_jechem_2022_11_028
crossref_primary_10_1039_D4SC02626H
crossref_primary_10_1002_smtd_202300009
crossref_primary_10_26599_EMD_2023_9370007
crossref_primary_10_1016_j_cej_2023_143738
crossref_primary_10_1038_s41467_023_41276_9
crossref_primary_10_1016_j_jpowsour_2024_234747
crossref_primary_10_1002_smll_202303307
crossref_primary_10_1016_j_matlet_2023_134996
crossref_primary_10_1016_j_ensm_2022_08_016
crossref_primary_10_1016_j_esci_2023_100153
crossref_primary_10_1002_eem2_12502
crossref_primary_10_1016_j_mtener_2023_101279
crossref_primary_10_1039_D5NR00074B
crossref_primary_10_1021_acsaem_3c02184
crossref_primary_10_1016_j_jechem_2024_08_061
crossref_primary_10_1016_j_apsusc_2022_154296
crossref_primary_10_1002_smll_202205789
crossref_primary_10_1007_s11581_023_04927_x
crossref_primary_10_1002_adma_202301538
crossref_primary_10_1021_acsomega_2c02930
crossref_primary_10_1002_adfm_202215170
crossref_primary_10_1002_aenm_202203790
crossref_primary_10_1002_aenm_202304010
crossref_primary_10_1039_D4CC01798F
crossref_primary_10_1021_acsami_4c01311
crossref_primary_10_1039_D2SC04143J
crossref_primary_10_1002_anie_202415221
crossref_primary_10_1039_D2QI01171A
crossref_primary_10_1002_anie_202410210
crossref_primary_10_1007_s11426_022_1398_5
crossref_primary_10_1002_adfm_202415451
crossref_primary_10_1002_smtd_202300101
crossref_primary_10_1039_D3QI00781B
crossref_primary_10_1002_adma_202501538
crossref_primary_10_1016_j_memsci_2024_123646
crossref_primary_10_1002_adfm_202309840
crossref_primary_10_1002_advs_202414762
crossref_primary_10_1021_acssuschemeng_3c03386
crossref_primary_10_1007_s12274_022_4990_2
crossref_primary_10_1002_aenm_202301670
crossref_primary_10_1002_adfm_202209028
crossref_primary_10_1016_j_surfin_2024_105647
crossref_primary_10_1002_aenm_202303737
crossref_primary_10_1021_acsenergylett_2c02042
crossref_primary_10_1039_D4SE01542H
crossref_primary_10_1039_D4EE01993H
crossref_primary_10_1002_aenm_202203766
crossref_primary_10_1039_D4EE00109E
crossref_primary_10_1002_anie_202214966
crossref_primary_10_1002_aenm_202302770
crossref_primary_10_1016_j_scib_2024_01_029
crossref_primary_10_1007_s40820_023_01304_1
crossref_primary_10_1038_s42004_024_01405_x
crossref_primary_10_1002_aenm_202403175
crossref_primary_10_1002_aenm_202300250
crossref_primary_10_1016_j_enchem_2022_100092
crossref_primary_10_1007_s11771_023_5228_5
crossref_primary_10_1039_D3IM00111C
crossref_primary_10_1002_cnma_202300615
crossref_primary_10_1016_j_scib_2024_01_011
crossref_primary_10_1021_jacs_2c06927
crossref_primary_10_1002_ange_202410210
crossref_primary_10_1021_acsami_4c07645
crossref_primary_10_1039_D3TA07589C
crossref_primary_10_1002_smll_202306972
crossref_primary_10_1021_acsami_2c20194
crossref_primary_10_1002_ange_202415221
crossref_primary_10_1016_j_ensm_2024_103693
crossref_primary_10_1016_j_jcis_2022_11_153
crossref_primary_10_1002_adma_202414019
crossref_primary_10_1002_anie_202409096
crossref_primary_10_1016_j_nanoen_2023_108671
crossref_primary_10_1007_s40820_024_01334_3
crossref_primary_10_26599_NRE_2022_9120025
crossref_primary_10_1088_1361_6463_ad9483
crossref_primary_10_1021_acsenergylett_2c01890
crossref_primary_10_1016_j_ensm_2024_103571
crossref_primary_10_1016_j_jcis_2024_02_111
crossref_primary_10_1021_acsenergylett_3c00650
crossref_primary_10_1002_adma_202304040
crossref_primary_10_1016_j_fmre_2023_02_018
crossref_primary_10_1021_acsami_2c12744
crossref_primary_10_1021_jacs_3c10638
crossref_primary_10_1021_acs_iecr_2c03462
crossref_primary_10_1002_adfm_202211979
crossref_primary_10_1007_s11771_024_5832_z
crossref_primary_10_1007_s40820_023_01256_6
crossref_primary_10_1021_acssuschemeng_2c05410
crossref_primary_10_1002_smtd_202300660
crossref_primary_10_1016_j_jpowsour_2022_232072
crossref_primary_10_1016_j_cclet_2022_07_046
crossref_primary_10_1039_D4CC06315E
crossref_primary_10_1007_s12598_022_02207_7
crossref_primary_10_1016_j_cej_2022_140260
crossref_primary_10_1002_ange_202214966
crossref_primary_10_1002_smll_202207148
crossref_primary_10_1002_smll_202401857
crossref_primary_10_1016_j_jcis_2022_10_127
crossref_primary_10_1016_j_mattod_2023_04_005
crossref_primary_10_1002_adma_202413948
crossref_primary_10_1021_acsaelm_3c00933
crossref_primary_10_1021_acsami_4c05372
crossref_primary_10_1007_s40820_022_00969_4
crossref_primary_10_1002_ange_202218872
crossref_primary_10_1002_anie_202304444
crossref_primary_10_1021_acssuschemeng_4c08335
crossref_primary_10_1021_acsami_3c03785
crossref_primary_10_1149_1945_7111_ad05e3
crossref_primary_10_1039_D3TA04030E
crossref_primary_10_1002_EXP_20220073
crossref_primary_10_1016_j_jcis_2023_01_136
crossref_primary_10_3390_nano12162767
crossref_primary_10_1021_acsanm_2c02700
crossref_primary_10_1002_sstr_202300191
crossref_primary_10_1021_acs_nanolett_3c04222
crossref_primary_10_3390_inorganics12020037
crossref_primary_10_1002_ange_202304444
crossref_primary_10_1007_s10008_024_05901_x
crossref_primary_10_1016_j_nanoms_2023_11_004
crossref_primary_10_1021_acsenergylett_2c01459
crossref_primary_10_1016_j_jcis_2024_03_116
crossref_primary_10_1002_adfm_202422159
crossref_primary_10_1021_acsenergylett_3c00859
crossref_primary_10_1016_j_cej_2024_151104
crossref_primary_10_1016_j_jallcom_2023_171858
crossref_primary_10_1002_aenm_202403322
crossref_primary_10_1002_aenm_202204365
crossref_primary_10_1002_aenm_202402900
crossref_primary_10_1002_smll_202306808
crossref_primary_10_1002_adma_202303550
crossref_primary_10_1021_acsenergylett_3c01821
crossref_primary_10_1002_ange_202409096
crossref_primary_10_1016_j_ensm_2024_103489
crossref_primary_10_1016_j_apsusc_2023_156481
crossref_primary_10_1002_adma_202400184
crossref_primary_10_1016_j_ensm_2024_103361
crossref_primary_10_26599_EMD_2023_9370023
crossref_primary_10_1007_s42114_025_01283_4
crossref_primary_10_1016_j_esci_2023_100093
crossref_primary_10_3390_batteries10060200
crossref_primary_10_1016_j_jechem_2022_07_034
crossref_primary_10_1002_cssc_202201739
crossref_primary_10_1002_cssc_202400159
crossref_primary_10_1002_eem2_12769
crossref_primary_10_1016_j_jcis_2022_09_010
crossref_primary_10_1016_j_xcrp_2022_101242
crossref_primary_10_1002_aenm_202202039
crossref_primary_10_1039_D2CC04721G
crossref_primary_10_1016_j_jpowsour_2022_231920
crossref_primary_10_1016_j_ensm_2024_103588
crossref_primary_10_1002_anie_202218386
crossref_primary_10_1002_smll_202311923
crossref_primary_10_1007_s11426_023_1918_0
crossref_primary_10_1002_sus2_151
crossref_primary_10_1002_aenm_202204358
crossref_primary_10_1016_j_jelechem_2023_117188
crossref_primary_10_1002_adfm_202313358
crossref_primary_10_1002_smll_202204180
crossref_primary_10_1039_D4CE00252K
crossref_primary_10_1039_D4NJ05238B
Cites_doi 10.1021/jacs.6b05958
10.1038/nenergy.2016.39
10.1039/C8TA02018C
10.1016/0304-386X(95)90673-S
10.1016/j.jallcom.2019.06.084
10.1039/D0EE02620D
10.1002/ange.202016531
10.1002/aenm.202003639
10.1021/acsenergylett.8b01423
10.1016/j.nanoen.2019.05.042
10.1016/j.cej.2021.133795
10.1002/aenm.202001599
10.1038/s41467-018-07980-7
10.1039/C8CC07730D
10.1021/acsami.7b13110
10.1021/ja312241y
10.1002/adma.202103617
10.1038/s41467-020-15478-4
10.1021/acscentsci.7b00361
10.1021/ic50128a059
10.1039/D1EE01472B
10.1038/s41467-018-04060-8
10.1021/acsami.1c11531
10.1016/j.cej.2016.08.072
10.1016/j.jallcom.2019.02.078
10.1039/C8EE01651H
10.1021/acs.nanolett.5b00284
10.1021/acsami.9b10905
10.1039/C5TA05714K
10.1016/j.joule.2020.07.023
10.1039/D0TA01468K
10.1016/j.joule.2020.05.018
10.1039/c1jm11910a
10.1016/j.jcis.2020.10.148
10.1002/eem2.12131
10.1126/sciadv.aba4098
10.1038/nenergy.2016.119
10.1149/2.0381903jes
10.1016/j.nanoen.2018.07.014
10.1002/adma.201800762
10.1002/anie.202006171
10.1002/adfm.201802564
10.1002/adma.201904369
10.1038/s41467-017-00467-x
10.1002/adma.201705580
10.1016/j.nanoen.2021.105876
10.1016/j.electacta.2019.03.087
10.1016/j.jechem.2020.04.061
10.1016/j.mtener.2021.100851
10.1021/acsenergylett.8b01552
10.1039/C5TA04402B
10.1039/C9TA05922A
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.esci.2022.03.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2667-1417
EndPage 218
ExternalDocumentID oai_doaj_org_article_8bf23ab639a94d8a9c657ab7dffa9e0d
10_1016_j_esci_2022_03_002
S2667141722000246
GroupedDBID 6I.
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
ROL
0R~
AALRI
AAYWO
AAYXX
ADVLN
AITUG
CITATION
ID FETCH-LOGICAL-c410t-b93cd38c16d2f8a345454766e0b10c143b97da835669e02cb4e7e4b2bc30936a3
IEDL.DBID DOA
ISSN 2667-1417
IngestDate Wed Aug 27 01:31:36 EDT 2025
Tue Jul 01 00:57:28 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Thu Jul 20 20:09:09 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Interfacial layer
Vanadium-based cathode
High capacity
Zinc-ion batteries
Electrolyte additives
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-b93cd38c16d2f8a345454766e0b10c143b97da835669e02cb4e7e4b2bc30936a3
ORCID 0000-0001-7746-0409
0000-0001-8185-972X
0000-0003-2140-0145
OpenAccessLink https://doaj.org/article/8bf23ab639a94d8a9c657ab7dffa9e0d
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_8bf23ab639a94d8a9c657ab7dffa9e0d
crossref_primary_10_1016_j_esci_2022_03_002
crossref_citationtrail_10_1016_j_esci_2022_03_002
elsevier_sciencedirect_doi_10_1016_j_esci_2022_03_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle eScience (Beijing)
PublicationYear 2022
Publisher Elsevier B.V
KeAi Communications Co. Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co. Ltd
References Pan, Shao, Yan, Cheng, Han, Nie, Wang, Yang, Li, Bhattacharya, Mueller, Liu (bib10) 2016; 5
Wang, Zhang, Hu, Shi, Song, Guo, Liu, Sun (bib40) 2019; 45
Li, Chen, Fang, Shan, Cao, Huang, Liang, Zhou (bib47) 2019; 801
Lu, Zhu, Van Den Bergh, Stefik, Huang (bib53) 2020; 39
Wan, Zhang, Dai, Wang, Niu, Chen (bib5) 2018; 9
Zhu, Yin, Zheng, Emwas, Lei, Mohanmmed, Cui, Alshareef (bib41) 2021; 8
Yang, Tang, Fang, Shan, Guo, Zhang, Wang, Wang, Zhou, Liang (bib20) 2018; 11
Liu, Tian, Wang, Zheng, Wang, Yan, Wang, Yin, Yang, Cao (bib42) 2020; 16
Chao, Qiao (bib2) 2020; 4
Ding, Xu, Graff, Zhang, Sushko, Chen, Shao, Engelhard, Nie, Xiao, Liu, Sushko, Liu, Zhang (bib39) 2013; 11
Hao, Yuan, Ye, Chao, Davey, Guo, Qiao (bib34) 2021; 60
Wei, Deblock, Butts, Choi, Dunn (bib9) 2020; 3
Liu, Qin, Chen, Xie, Zhu, Gao, Zhou, Fang, Liang (bib13) 2021; 22
Ni, Zhang, Ma, Yang, Zhang (bib14) 2015; 35
Chao, Zhou, Xie, Chao, Huan, Jaroniec, Qiao (bib29) 2020; 6
Yang, Du, Zhao, Chen, Li, Xie, Zhang, Cui, Kong, Zhao, Wang, Zhang, Cui (bib30) 2020; 7
Zhang, Cao, Yue, Pakornchote, Bovornratanaraks, Han, Zhang, Qin, Huang (bib44) 2021; 32
Xu, Zhao, Huo, Wang, Yao, Gu, Cheng, Mai, Hu, Wang (bib36) 2019; 62
Dong, Shen, Li, Nie, Zhu, Sheng, Zhang (bib38) 2015; 42
Zhang, Holoubek, Wu, Daniyar, Zhu, Chen, Leonard, Rodríguez-Pérez, Jiang, Fang, Ji (bib37) 2018; 100
Wu, Gu, Zhang, Bai, Li, Yuan, Wang, Liu, Yuan, Zhu, Wu, Li, Gu, Lu (bib3) 2019; 10
Wang, Ran, Yao, Shi, Wen, Zhao, Lang, Jiang (bib31) 2020; 1
Gu, Pascual, Shirkhanzadeh, Saimoto, Scott (bib55) 1995; 3
Tang, Fang, Zhou, Wang, Lei, Wang, Lin, Tang, Liang (bib49) 2018; 51
Zhang, Cheng, Liu, Wang, Long, Liu, Li, Chen (bib11) 2017; 1
Konarov, Voronina, Jo, Bakenov, Sun, Myung (bib32) 2018; 10
Ming, Liang, Lei, Kandambeth, Eddaoudi, Alshareef (bib24) 2018; 10
Feng, Zhang, Sun, Liu, Jiang, Cui, Hu, Meng (bib43) 2021; 433
Wang, Fan, Gao, Sun, Ma, Yang, Han, Xu, Wang (bib4) 2017; 10
Seals, Alexander, Taylor, Dillard (bib56) 1973; 10
Zhang, Cheng, Liu, Zhao, Lei, Chen, Liu, Chen (bib28) 2016; 39
Kundu, Adams, Duffort, Vajargah, Nazar (bib7) 2016; 1
Cao, Zhang, Chanajaree, Yue, Zeng, Zhang, Qin (bib35) 2021; 1
Zhang, Tang, Guo, Cao, Pan, Fang, Zhou, Liang (bib6) 2020; 12
Zhao, Han, Yang, Su, Xu, Li, Xu, Fang, Jiang, Zou, Song, Mai, Zhang (bib25) 2015; 3
Deng, Li, Ye, Zhou, Li, Zhang, Yuan, Hu, Zhao, Huang, Li, Chen, Zheng, Li (bib15) 2021; 31
Qin, Chen, Wang, Chen, Yang (bib19) 2019; 306
Song, Tan, Chao, Fan (bib1) 2018; 41
Xia, Guo, Lei, Liang, Zhao, Alshareef (bib50) 2018; 5
Lan, Peng, Chen, Tang, Dong, Chen, Zhou, Chen, An, Luo (bib22) 2019; 787
Tian, Liu, Zheng, Jia, Jahrman, Seidler, Long, Atif, Alsalhi, Cao (bib21) 2020; 29
Wang, Cao, Luo, Li, Xu, Xiong, He, Wang, Li, Liu, Fang (bib27) 2017; 307
Tian, Liu, Zheng, Jia, Jahrman, Seidler, Long, Atif, Alsalhi, Cao (bib45) 2020; 29
Cao, Zhuang, Zhang, Ye, Shen, Ajayan (bib33) 2020; 30
Xu, Han, Zheng, Yan, Xie (bib26) 2011; 38
Wang, Kale, Cao, Lei, Kandambeth, Zou, Zhu, Abouhamad, Shekhah, Cavallo, Eddaoudi, Alshareef (bib54) 2021; 39
Mao, Wu, Hu, Yuan, He, Kang (bib12) 2021; 52
Kang, Ni, Chen, Li, Chao, Yang, Zhao (bib23) 2019; 3
Ding, Du, Gu, Li, Wang, Wang, Gong, Yang (bib8) 2018; 26
Hu, Yan, Zhu, Wang, Wei, Li, Zhou, Li, Chen, Mai (bib18) 2017; 49
Wang, Xi, Feng, Chen, Li, Jia, Feng, Qian, Xiong (bib52) 2019; 32
Ding, Du, Li, Wang, Wang, Gong, Yang (bib16) 2019; 44
Sambandam, Soundharrajan, Kim, Alfruqi, Jo, Kim, Mathew, Sun, Kim (bib48) 2018; 32
Sun, Zhang, Liu, Jiang, Dong, Hu, Meng (bib46) 2021; 587
Liu, Luo, Qin, Fang, Liang (bib17) 2021; 1
Cao, Zhang, Yue, Wang, Pakornchote, Bovornratanaraks, Zhang, Wu, Qin (bib51) 2021; 84
Sun (10.1016/j.esci.2022.03.002_bib46) 2021; 587
Xu (10.1016/j.esci.2022.03.002_bib36) 2019; 62
Wang (10.1016/j.esci.2022.03.002_bib52) 2019; 32
Dong (10.1016/j.esci.2022.03.002_bib38) 2015; 42
Tian (10.1016/j.esci.2022.03.002_bib21) 2020; 29
Chao (10.1016/j.esci.2022.03.002_bib2) 2020; 4
Lu (10.1016/j.esci.2022.03.002_bib53) 2020; 39
Qin (10.1016/j.esci.2022.03.002_bib19) 2019; 306
Zhang (10.1016/j.esci.2022.03.002_bib37) 2018; 100
Wang (10.1016/j.esci.2022.03.002_bib4) 2017; 10
Xu (10.1016/j.esci.2022.03.002_bib26) 2011; 38
Kundu (10.1016/j.esci.2022.03.002_bib7) 2016; 1
Wang (10.1016/j.esci.2022.03.002_bib27) 2017; 307
Chao (10.1016/j.esci.2022.03.002_bib29) 2020; 6
Ding (10.1016/j.esci.2022.03.002_bib39) 2013; 11
Liu (10.1016/j.esci.2022.03.002_bib17) 2021; 1
Mao (10.1016/j.esci.2022.03.002_bib12) 2021; 52
Wan (10.1016/j.esci.2022.03.002_bib5) 2018; 9
Zhang (10.1016/j.esci.2022.03.002_bib28) 2016; 39
Zhang (10.1016/j.esci.2022.03.002_bib11) 2017; 1
Wu (10.1016/j.esci.2022.03.002_bib3) 2019; 10
Wang (10.1016/j.esci.2022.03.002_bib31) 2020; 1
Liu (10.1016/j.esci.2022.03.002_bib13) 2021; 22
Gu (10.1016/j.esci.2022.03.002_bib55) 1995; 3
Zhang (10.1016/j.esci.2022.03.002_bib6) 2020; 12
Ming (10.1016/j.esci.2022.03.002_bib24) 2018; 10
Lan (10.1016/j.esci.2022.03.002_bib22) 2019; 787
Li (10.1016/j.esci.2022.03.002_bib47) 2019; 801
Liu (10.1016/j.esci.2022.03.002_bib42) 2020; 16
Cao (10.1016/j.esci.2022.03.002_bib35) 2021; 1
Song (10.1016/j.esci.2022.03.002_bib1) 2018; 41
Ni (10.1016/j.esci.2022.03.002_bib14) 2015; 35
Deng (10.1016/j.esci.2022.03.002_bib15) 2021; 31
Tian (10.1016/j.esci.2022.03.002_bib45) 2020; 29
Sambandam (10.1016/j.esci.2022.03.002_bib48) 2018; 32
Xia (10.1016/j.esci.2022.03.002_bib50) 2018; 5
Kang (10.1016/j.esci.2022.03.002_bib23) 2019; 3
Wang (10.1016/j.esci.2022.03.002_bib40) 2019; 45
Hu (10.1016/j.esci.2022.03.002_bib18) 2017; 49
Konarov (10.1016/j.esci.2022.03.002_bib32) 2018; 10
Yang (10.1016/j.esci.2022.03.002_bib20) 2018; 11
Zhao (10.1016/j.esci.2022.03.002_bib25) 2015; 3
Hao (10.1016/j.esci.2022.03.002_bib34) 2021; 60
Feng (10.1016/j.esci.2022.03.002_bib43) 2021; 433
Zhang (10.1016/j.esci.2022.03.002_bib44) 2021; 32
Tang (10.1016/j.esci.2022.03.002_bib49) 2018; 51
Pan (10.1016/j.esci.2022.03.002_bib10) 2016; 5
Yang (10.1016/j.esci.2022.03.002_bib30) 2020; 7
Cao (10.1016/j.esci.2022.03.002_bib33) 2020; 30
Cao (10.1016/j.esci.2022.03.002_bib51) 2021; 84
Wei (10.1016/j.esci.2022.03.002_bib9) 2020; 3
Wang (10.1016/j.esci.2022.03.002_bib54) 2021; 39
Ding (10.1016/j.esci.2022.03.002_bib8) 2018; 26
Ding (10.1016/j.esci.2022.03.002_bib16) 2019; 44
Zhu (10.1016/j.esci.2022.03.002_bib41) 2021; 8
Seals (10.1016/j.esci.2022.03.002_bib56) 1973; 10
References_xml – volume: 12
  start-page: 4625
  year: 2020
  end-page: 4665
  ident: bib6
  article-title: Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review
  publication-title: Energy Environ. Sci.
– volume: 1
  year: 2021
  ident: bib17
  article-title: Progress and prospect of low-temperature zinc metal batteries
  publication-title: Adv. Powder Mater.
– volume: 100
  start-page: 14097
  year: 2018
  end-page: 14099
  ident: bib37
  article-title: A ZnCl
  publication-title: Chem. Commun.
– volume: 3
  start-page: 221
  year: 2020
  end-page: 234
  ident: bib9
  article-title: Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage
  publication-title: Energy Environ. Mater.
– volume: 1
  start-page: 1634
  year: 2020
  ident: bib31
  article-title: Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries
  publication-title: Nat. Commun.
– volume: 42
  start-page: 21277
  year: 2015
  end-page: 21283
  ident: bib38
  article-title: Pseudocapacitive behaviours of Na
  publication-title: J. Mater. Chem. A
– volume: 38
  start-page: 14466
  year: 2011
  end-page: 14472
  ident: bib26
  article-title: Pillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 16039
  year: 2016
  ident: bib10
  article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
  publication-title: Nat. Energy
– volume: 39
  start-page: 17004
  year: 2020
  end-page: 17011
  ident: bib53
  article-title: A high performing Zn-ion battery cathode enabled by in situ transformation of V
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 4463
  year: 2021
  end-page: 4473
  ident: bib41
  article-title: Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 587
  start-page: 845
  year: 2021
  end-page: 854
  ident: bib46
  article-title: Hydrated vanadium pentoxide/reduced graphene oxide-polyvinyl alcohol (V
  publication-title: J. Colloid Interface Sci.
– volume: 801
  start-page: 82
  year: 2019
  end-page: 89
  ident: bib47
  article-title: Synthesis of polycrystalline K
  publication-title: J. Alloys Compd.
– volume: 26
  start-page: 1800762
  year: 2018
  ident: bib8
  article-title: Ultrafast Zn
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2602
  year: 2018
  end-page: 2609
  ident: bib24
  article-title: Layered Mg
  publication-title: ACS Energy Lett.
– volume: 35
  start-page: 17951
  year: 2015
  end-page: 17955
  ident: bib14
  article-title: Superior electrochemical performance of Li
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 2620
  year: 2018
  end-page: 2640
  ident: bib32
  article-title: Present and future perspective on electrode materials for rechargeable zinc-ion batteries
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 16119
  year: 2016
  ident: bib7
  article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
  publication-title: Nat. Energy
– volume: 1
  start-page: 405
  year: 2017
  ident: bib11
  article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
  publication-title: Nat. Commun.
– volume: 6
  start-page: eaba4098
  year: 2020
  ident: bib29
  article-title: Roadmap for advanced aqueous batteries: from design of materials to applications
  publication-title: Sci. Adv.
– volume: 45
  start-page: 42000
  year: 2019
  end-page: 42005
  ident: bib40
  article-title: A Zn(ClO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 2485
  year: 1973
  end-page: 2487
  ident: bib56
  article-title: Core electron binding energy study of group IIb-VIIa compounds
  publication-title: Inorg. Chem.
– volume: 39
  start-page: 2103617
  year: 2021
  ident: bib54
  article-title: Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2180
  year: 2015
  end-page: 2185
  ident: bib25
  article-title: Stable Alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries
  publication-title: Nano Lett.
– volume: 32
  start-page: 38416
  year: 2021
  end-page: 38424
  ident: bib44
  article-title: Two birds with one stone: boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 579
  year: 2018
  end-page: 587
  ident: bib49
  article-title: Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries
  publication-title: Nano Energy
– volume: 11
  start-page: 3157
  year: 2018
  end-page: 3162
  ident: bib20
  article-title: Li
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 277
  year: 2021
  end-page: 283
  ident: bib12
  article-title: Charge storage mechanism of MOF-derived Mn
  publication-title: J. Energy Chem.
– volume: 41
  start-page: 1802564
  year: 2018
  ident: bib1
  article-title: Recent advances in Zn-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 9
  year: 2020
  end-page: 16
  ident: bib21
  article-title: Structural engineering of hydrated vanadium oxide cathode by K
  publication-title: Energy Stor. Mater.
– volume: 9
  start-page: 1656
  year: 2018
  ident: bib5
  article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1557
  year: 2020
  end-page: 1574
  ident: bib30
  article-title: Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries
  publication-title: Joule
– volume: 30
  start-page: 2001599
  year: 2020
  ident: bib33
  article-title: Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 19130
  year: 2019
  end-page: 19139
  ident: bib52
  article-title: Layered (NH
  publication-title: J. Mater. Chem. A
– volume: 306
  start-page: 307
  year: 2019
  end-page: 316
  ident: bib19
  article-title: V
  publication-title: Electrochim. Acta
– volume: 29
  start-page: 9
  year: 2020
  end-page: 16
  ident: bib45
  article-title: Structural engineering of hydrated vanadium oxide cathode by K
  publication-title: Energy Stor. Mater.
– volume: 307
  start-page: 382
  year: 2017
  end-page: 388
  ident: bib27
  article-title: Flexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery
  publication-title: Chem. Eng. J.
– volume: 433
  start-page: 133795
  year: 2021
  ident: bib43
  article-title: Dual ions enable vanadium oxide hydration with superior Zn
  publication-title: Chem. Eng. J.
– volume: 1
  year: 2021
  ident: bib35
  article-title: Stabilizing zinc anode via a chelation and desolvation electrolyte additive
  publication-title: Adv. Powder Mater.
– volume: 5
  start-page: 1705580
  year: 2018
  ident: bib50
  article-title: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1121
  year: 2017
  end-page: 1128
  ident: bib4
  article-title: High-voltage aqueous magnesium ion batteries
  publication-title: ACS Cent. Sci.
– volume: 39
  start-page: 12894
  year: 2016
  end-page: 12901
  ident: bib28
  article-title: Cation-deficient spinel ZnMn
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1846
  year: 2020
  end-page: 1851
  ident: bib2
  article-title: Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte
  publication-title: Joule
– volume: 16
  start-page: 7713
  year: 2020
  end-page: 7723
  ident: bib42
  article-title: Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 84
  start-page: 105876
  year: 2021
  ident: bib51
  article-title: Oxygen defect enriched (NH
  publication-title: Nano Energy
– volume: 49
  start-page: 42717
  year: 2017
  end-page: 42722
  ident: bib18
  article-title: Zn/V
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 73
  year: 2019
  ident: bib3
  article-title: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery
  publication-title: Nat. Commun.
– volume: 31
  start-page: 2003639
  year: 2021
  ident: bib15
  article-title: Zn
  publication-title: Adv. Energy Mater.
– volume: 62
  start-page: 275
  year: 2019
  end-page: 281
  ident: bib36
  article-title: Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries
  publication-title: Nano Energy
– volume: 22
  start-page: 100851
  year: 2021
  ident: bib13
  article-title: Improving stability and reversibility via fluorine doping in aqueous zinc–manganese batteries
  publication-title: Mater. Today Energy
– volume: 60
  start-page: 7442
  year: 2021
  end-page: 7451
  ident: bib34
  article-title: Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents
  publication-title: Angew. Chem. Int. Ed.
– volume: 787
  start-page: 9
  year: 2019
  end-page: 16
  ident: bib22
  article-title: Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries
  publication-title: J. Alloys Compd.
– volume: 11
  start-page: 4450
  year: 2013
  end-page: 4456
  ident: bib39
  article-title: Dendrite-Free lithium deposition via self-healing electrostatic shield mechanism
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 15530
  year: 2018
  end-page: 15539
  ident: bib48
  article-title: K
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 1904369
  year: 2019
  ident: bib16
  article-title: Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries
  publication-title: Adv. Mater.
– volume: 3
  start-page: A5295
  year: 2019
  end-page: A5300
  ident: bib23
  article-title: Ag embedded Li
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 283
  year: 1995
  end-page: 300
  ident: bib55
  article-title: The influence of intermetallic precipitates on the adhesion of electrodeposited zinc to aluminum cathodes
  publication-title: Hydrometallurgy
– volume: 39
  start-page: 12894
  year: 2016
  ident: 10.1016/j.esci.2022.03.002_bib28
  article-title: Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05958
– volume: 5
  start-page: 16039
  year: 2016
  ident: 10.1016/j.esci.2022.03.002_bib10
  article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.39
– volume: 32
  start-page: 15530
  year: 2018
  ident: 10.1016/j.esci.2022.03.002_bib48
  article-title: K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02018C
– volume: 3
  start-page: 283
  year: 1995
  ident: 10.1016/j.esci.2022.03.002_bib55
  article-title: The influence of intermetallic precipitates on the adhesion of electrodeposited zinc to aluminum cathodes
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(95)90673-S
– volume: 801
  start-page: 82
  year: 2019
  ident: 10.1016/j.esci.2022.03.002_bib47
  article-title: Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.06.084
– volume: 12
  start-page: 4625
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib6
  article-title: Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02620D
– volume: 60
  start-page: 7442
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib34
  article-title: Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202016531
– volume: 31
  start-page: 2003639
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib15
  article-title: Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003639
– volume: 10
  start-page: 2602
  year: 2018
  ident: 10.1016/j.esci.2022.03.002_bib24
  article-title: Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01423
– volume: 62
  start-page: 275
  year: 2019
  ident: 10.1016/j.esci.2022.03.002_bib36
  article-title: Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.042
– volume: 433
  start-page: 133795
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib43
  article-title: Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133795
– volume: 30
  start-page: 2001599
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib33
  article-title: Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001599
– volume: 10
  start-page: 73
  year: 2019
  ident: 10.1016/j.esci.2022.03.002_bib3
  article-title: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07980-7
– volume: 29
  start-page: 9
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib21
  article-title: Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries
  publication-title: Energy Stor. Mater.
– volume: 100
  start-page: 14097
  year: 2018
  ident: 10.1016/j.esci.2022.03.002_bib37
  article-title: A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07730D
– volume: 49
  start-page: 42717
  year: 2017
  ident: 10.1016/j.esci.2022.03.002_bib18
  article-title: Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13110
– volume: 11
  start-page: 4450
  year: 2013
  ident: 10.1016/j.esci.2022.03.002_bib39
  article-title: Dendrite-Free lithium deposition via self-healing electrostatic shield mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312241y
– volume: 39
  start-page: 2103617
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib54
  article-title: Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103617
– volume: 1
  start-page: 1634
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib31
  article-title: Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15478-4
– volume: 10
  start-page: 1121
  year: 2017
  ident: 10.1016/j.esci.2022.03.002_bib4
  article-title: High-voltage aqueous magnesium ion batteries
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00361
– volume: 10
  start-page: 2485
  year: 1973
  ident: 10.1016/j.esci.2022.03.002_bib56
  article-title: Core electron binding energy study of group IIb-VIIa compounds
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50128a059
– volume: 8
  start-page: 4463
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib41
  article-title: Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01472B
– volume: 9
  start-page: 1656
  year: 2018
  ident: 10.1016/j.esci.2022.03.002_bib5
  article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04060-8
– volume: 32
  start-page: 38416
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib44
  article-title: Two birds with one stone: boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c11531
– volume: 307
  start-page: 382
  year: 2017
  ident: 10.1016/j.esci.2022.03.002_bib27
  article-title: Flexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.072
– volume: 787
  start-page: 9
  year: 2019
  ident: 10.1016/j.esci.2022.03.002_bib22
  article-title: Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.02.078
– volume: 11
  start-page: 3157
  year: 2018
  ident: 10.1016/j.esci.2022.03.002_bib20
  article-title: Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01651H
– volume: 3
  start-page: 2180
  year: 2015
  ident: 10.1016/j.esci.2022.03.002_bib25
  article-title: Stable Alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00284
– volume: 45
  start-page: 42000
  year: 2019
  ident: 10.1016/j.esci.2022.03.002_bib40
  article-title: A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10905
– volume: 42
  start-page: 21277
  year: 2015
  ident: 10.1016/j.esci.2022.03.002_bib38
  article-title: Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05714K
– volume: 4
  start-page: 1846
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib2
  article-title: Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.023
– volume: 16
  start-page: 7713
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib42
  article-title: Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01468K
– volume: 7
  start-page: 1557
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib30
  article-title: Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2020.05.018
– volume: 38
  start-page: 14466
  year: 2011
  ident: 10.1016/j.esci.2022.03.002_bib26
  article-title: Pillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm11910a
– volume: 587
  start-page: 845
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib46
  article-title: Hydrated vanadium pentoxide/reduced graphene oxide-polyvinyl alcohol (V2O5⋅nH2O/rGO-PVA) film as a binder-free electrode for solid-state Zn-ion batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.10.148
– volume: 3
  start-page: 221
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib9
  article-title: Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12131
– volume: 6
  start-page: eaba4098
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib29
  article-title: Roadmap for advanced aqueous batteries: from design of materials to applications
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba4098
– volume: 1
  start-page: 16119
  year: 2016
  ident: 10.1016/j.esci.2022.03.002_bib7
  article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.119
– volume: 3
  start-page: A5295
  year: 2019
  ident: 10.1016/j.esci.2022.03.002_bib23
  article-title: Ag embedded Li3VO4 as superior anode for Li-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0381903jes
– volume: 51
  start-page: 579
  year: 2018
  ident: 10.1016/j.esci.2022.03.002_bib49
  article-title: Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.014
– volume: 1
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib17
  article-title: Progress and prospect of low-temperature zinc metal batteries
  publication-title: Adv. Powder Mater.
– volume: 26
  start-page: 1800762
  year: 2018
  ident: 10.1016/j.esci.2022.03.002_bib8
  article-title: Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800762
– volume: 39
  start-page: 17004
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib53
  article-title: A high performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006171
– volume: 29
  start-page: 9
  year: 2020
  ident: 10.1016/j.esci.2022.03.002_bib45
  article-title: Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries
  publication-title: Energy Stor. Mater.
– volume: 41
  start-page: 1802564
  year: 2018
  ident: 10.1016/j.esci.2022.03.002_bib1
  article-title: Recent advances in Zn-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802564
– volume: 44
  start-page: 1904369
  year: 2019
  ident: 10.1016/j.esci.2022.03.002_bib16
  article-title: Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904369
– volume: 1
  start-page: 405
  year: 2017
  ident: 10.1016/j.esci.2022.03.002_bib11
  article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00467-x
– volume: 5
  start-page: 1705580
  year: 2018
  ident: 10.1016/j.esci.2022.03.002_bib50
  article-title: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705580
– volume: 84
  start-page: 105876
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib51
  article-title: Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105876
– volume: 306
  start-page: 307
  year: 2019
  ident: 10.1016/j.esci.2022.03.002_bib19
  article-title: V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.087
– volume: 52
  start-page: 277
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib12
  article-title: Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.04.061
– volume: 22
  start-page: 100851
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib13
  article-title: Improving stability and reversibility via fluorine doping in aqueous zinc–manganese batteries
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2021.100851
– volume: 1
  year: 2021
  ident: 10.1016/j.esci.2022.03.002_bib35
  article-title: Stabilizing zinc anode via a chelation and desolvation electrolyte additive
  publication-title: Adv. Powder Mater.
– volume: 10
  start-page: 2620
  year: 2018
  ident: 10.1016/j.esci.2022.03.002_bib32
  article-title: Present and future perspective on electrode materials for rechargeable zinc-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01552
– volume: 35
  start-page: 17951
  year: 2015
  ident: 10.1016/j.esci.2022.03.002_bib14
  article-title: Superior electrochemical performance of Li3VO4/N-doped C as an anode for Li-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04402B
– volume: 32
  start-page: 19130
  year: 2019
  ident: 10.1016/j.esci.2022.03.002_bib52
  article-title: Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05922A
SSID ssj0002811347
Score 2.5821414
Snippet Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 209
SubjectTerms Electrolyte additives
High capacity
Interfacial layer
Vanadium-based cathode
Zinc-ion batteries
Title Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries
URI https://dx.doi.org/10.1016/j.esci.2022.03.002
https://doaj.org/article/8bf23ab639a94d8a9c657ab7dffa9e0d
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXjTYtOkaXNUcRFBLyp4C3lCRbuyrIKeBH-C_9Bf4iTpSr2sFw-FtE2Tkhky3ySTbxDa95YoeMcyx7nLGGhFppWqM0YN0R7mRR13zy-v-Pktu7gr73qpvkJMWKIHTgN3VGtfUKXBkCrBbK2E4WWldGW9V8LlNsy-YPN6ztR9XDIi4YxkyCzHYSYgjFTdiZkU3OXAvoBzWBSJ4bT4ZZUieX_POPUMznAZLXVIER-nP1xBc65dRYs9_sA19HHdhIBA1Trw3_E4pZWHgcYjj7ulOKxaC1csNi2UcJf45uF14jAgVhwIizMDNtMAID9MtwAZY9DsK1ZgN0Ljb01rvt4_X2KM2PMj1pGXE9zsdXQ7PLs5Pc-6rAqZYSSfZFpQY2ltCLeFrxVlZeD0AknlmuQG4JMWlVUAzDiH8S2MZq5yTBfahE1TrugGmm9HrdtEmBIPANBY4T1hRlgBvkzhedj8pdS7coDIdFSl6SjHQ-aLBzmNLbuXQRIySELmVIIkBujg55unRLgxs_ZJENZPzUCWHR-ACslOheRfKjRA5VTUssMdCU9AU82Mzrf-o_NttBCaTGFtO2h-Mn52u4BzJnovqvQ3iov-rA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+regulation+of+cations+and+anions+in+an+electrolyte+for+high-capacity%2C+high-stability+aqueous+zinc%E2%80%93vanadium+batteries&rft.jtitle=eScience+%28Beijing%29&rft.au=Wang%2C+Ziqing&rft.au=Zhou%2C+Miao&rft.au=Qin%2C+Liping&rft.au=Chen%2C+Minghui&rft.date=2022-03-01&rft.issn=2667-1417&rft.eissn=2667-1417&rft.volume=2&rft.issue=2&rft.spage=209&rft.epage=218&rft_id=info:doi/10.1016%2Fj.esci.2022.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_esci_2022_03_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-1417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-1417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-1417&client=summon