Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems
Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g−1) of Cd2+ and Ni2+ on RB400 and RB700 were in the ord...
Saved in:
Published in | Chemosphere (Oxford) Vol. 218; pp. 308 - 318 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g−1) of Cd2+ and Ni2+ on RB400 and RB700 were in the order of Cd2+ (37.24 and 65.40) > Ni2+ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni2+ (25.20 and 32.28) > Cd2+ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd2+ competed with Ni2+ for binding sites at initial metal concentrations >10 mg L−1 for RB400 and > 20 mg L−1 for RB700. The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped, and the binding of Cd2+ and Ni2+ to these sites was affected by the occupation sequence of these metals. For Cd2+ and Ni2+ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars.
[Display omitted]
•The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped.•Rice straw biochars exhibited adsorption preferences for Ni2+ over Cd2+ when coexisted.•Competition occurred once the concentrations of Cd2+ and Ni2+ exceeded the threshold values.•Competition between Cd2+ and Ni2+ decreased the adsorption amounts but increased the mobility.•Competition between Cd2+ and Ni2+ decreased the contribution of cation exchange mechanism. |
---|---|
AbstractList | Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g−1) of Cd2+ and Ni2+ on RB400 and RB700 were in the order of Cd2+ (37.24 and 65.40) > Ni2+ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni2+ (25.20 and 32.28) > Cd2+ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd2+ competed with Ni2+ for binding sites at initial metal concentrations >10 mg L−1 for RB400 and > 20 mg L−1 for RB700. The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped, and the binding of Cd2+ and Ni2+ to these sites was affected by the occupation sequence of these metals. For Cd2+ and Ni2+ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars.
[Display omitted]
•The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped.•Rice straw biochars exhibited adsorption preferences for Ni2+ over Cd2+ when coexisted.•Competition occurred once the concentrations of Cd2+ and Ni2+ exceeded the threshold values.•Competition between Cd2+ and Ni2+ decreased the adsorption amounts but increased the mobility.•Competition between Cd2+ and Ni2+ decreased the contribution of cation exchange mechanism. Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g-1) of Cd2+ and Ni2+ on RB400 and RB700 were in the order of Cd2+ (37.24 and 65.40) > Ni2+ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni2+ (25.20 and 32.28) > Cd2+ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd2+ competed with Ni2+ for binding sites at initial metal concentrations >10 mg L-1 for RB400 and > 20 mg L-1 for RB700. The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped, and the binding of Cd2+ and Ni2+ to these sites was affected by the occupation sequence of these metals. For Cd2+ and Ni2+ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars.Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g-1) of Cd2+ and Ni2+ on RB400 and RB700 were in the order of Cd2+ (37.24 and 65.40) > Ni2+ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni2+ (25.20 and 32.28) > Cd2+ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd2+ competed with Ni2+ for binding sites at initial metal concentrations >10 mg L-1 for RB400 and > 20 mg L-1 for RB700. The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped, and the binding of Cd2+ and Ni2+ to these sites was affected by the occupation sequence of these metals. For Cd2+ and Ni2+ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars. Adsorption mechanisms and competition between Cd²⁺ and Ni²⁺ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g⁻¹) of Cd²⁺ and Ni²⁺ on RB400 and RB700 were in the order of Cd²⁺ (37.24 and 65.40) > Ni²⁺ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni²⁺ (25.20 and 32.28) > Cd²⁺ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd²⁺ competed with Ni²⁺ for binding sites at initial metal concentrations >10 mg L⁻¹ for RB400 and > 20 mg L⁻¹ for RB700. The adsorption sites for Cd²⁺ and Ni²⁺ on the biochars largely overlapped, and the binding of Cd²⁺ and Ni²⁺ to these sites was affected by the occupation sequence of these metals. For Cd²⁺ and Ni²⁺ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars. Adsorption mechanisms and competition between Cd and Ni for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g ) of Cd and Ni on RB400 and RB700 were in the order of Cd (37.24 and 65.40) > Ni (27.31 and 54.60) in the single-metal adsorption isotherms and Ni (25.20 and 32.28) > Cd (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd competed with Ni for binding sites at initial metal concentrations >10 mg L for RB400 and > 20 mg L for RB700. The adsorption sites for Cd and Ni on the biochars largely overlapped, and the binding of Cd and Ni to these sites was affected by the occupation sequence of these metals. For Cd and Ni adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars. |
Author | Deng, Yiyi Laird, David A. Meng, Zhuowen Wang, Xiugui Huang, Shuang |
Author_xml | – sequence: 1 givenname: Yiyi orcidid: 0000-0001-5395-4842 surname: Deng fullname: Deng, Yiyi email: dyy7076@whu.edu.cn organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China – sequence: 2 givenname: Shuang orcidid: 0000-0002-0071-6055 surname: Huang fullname: Huang, Shuang email: hsh5527@whu.edu.cn organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China – sequence: 3 givenname: David A. surname: Laird fullname: Laird, David A. organization: Department of Agronomy, Iowa State University, Ames, IA, 50011, USA – sequence: 4 givenname: Xiugui surname: Wang fullname: Wang, Xiugui organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China – sequence: 5 givenname: Zhuowen surname: Meng fullname: Meng, Zhuowen organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30476762$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAYRS1URKeFV0BmxybBP7ETr1A14k-qxAbWlu18YTzE9mAnrfr2eDoFIVaz8uI790q-5wpdxBQBoTeUtJRQ-W7fuh2EVA47yNAyQoeW0pYM9Bna0KFXDWVquEAbQjrRSMHFJboqZU9IDQv1Al1y0vWyl2yDlpuxpHxYfIrYws7c-bRmbOKIA7idib6EgtOEnRmDX8PjJXr3E2ZcE9k7wGXJ5h5bnyqfC_YRFx9_zNA8wtZHkx-aAIuZcXkoC4TyEj2fzFzg1dN7jb5__PBt-7m5_frpy_bmtnEdJUtje2kHyZw0HLqhZyC5moRyEoglIBxVnbXMjoINTljXT1yBVXKk3DnJKOfX6O2p95DTrxXKooMvDubZREhr0YwOSjBGSH8GygfZ9ZzTir5-QlcbYNSH7EP9ov4zagXUCXA5lZJh-otQoo8C9V7_I1AfBWpKdRVYs-__yzq_mKOeurKfz2rYnhqgLnvnIeviPEQHo8_gFj0mf0bLb4oEwGk |
CitedBy_id | crossref_primary_10_1080_21622515_2024_2409397 crossref_primary_10_1016_j_envpol_2020_114449 crossref_primary_10_1049_mna2_12052 crossref_primary_10_1016_j_jwpe_2024_105769 crossref_primary_10_1016_j_scitotenv_2023_169524 crossref_primary_10_1007_s00289_022_04568_6 crossref_primary_10_1016_j_jclepro_2024_143790 crossref_primary_10_1016_j_biortech_2020_122853 crossref_primary_10_1016_j_jwpe_2020_101561 crossref_primary_10_1007_s12155_022_10560_9 crossref_primary_10_1016_j_biortech_2023_129657 crossref_primary_10_1080_00986445_2024_2316610 crossref_primary_10_1021_acsomega_1c02126 crossref_primary_10_3390_ijerph182111413 crossref_primary_10_5004_dwt_2020_26260 crossref_primary_10_1016_j_ecoenv_2022_113524 crossref_primary_10_1016_j_envres_2020_110594 crossref_primary_10_1039_D1RA05636K crossref_primary_10_1016_j_agee_2021_107446 crossref_primary_10_1177_0734242X241231394 crossref_primary_10_1016_j_sjbs_2021_09_035 crossref_primary_10_3390_toxics12080535 crossref_primary_10_1016_j_scitotenv_2020_137535 crossref_primary_10_1007_s11783_023_1672_6 crossref_primary_10_1016_j_jhazmat_2020_124291 crossref_primary_10_1016_j_cep_2021_108766 crossref_primary_10_1016_j_scitotenv_2021_152876 crossref_primary_10_1016_j_jece_2022_108636 crossref_primary_10_1016_j_jhazmat_2020_122391 crossref_primary_10_1007_s10311_022_01424_x crossref_primary_10_1016_j_jhazmat_2021_126468 crossref_primary_10_1016_j_chemosphere_2020_128833 crossref_primary_10_1016_j_jclepro_2020_122743 crossref_primary_10_1016_j_scitotenv_2022_154018 crossref_primary_10_1016_j_chemosphere_2020_127505 crossref_primary_10_1016_j_jaap_2023_105881 crossref_primary_10_1016_j_envres_2024_118220 crossref_primary_10_1016_j_jwpe_2023_103612 crossref_primary_10_3390_ma14206134 crossref_primary_10_1016_j_envpol_2023_122186 crossref_primary_10_1016_j_envres_2020_109809 crossref_primary_10_1016_j_sciaf_2021_e00934 crossref_primary_10_1016_j_jaap_2021_105081 crossref_primary_10_1016_j_jenvman_2021_114270 crossref_primary_10_1016_j_scitotenv_2019_136395 crossref_primary_10_1016_j_jenvman_2024_123705 crossref_primary_10_1080_09593330_2022_2148572 crossref_primary_10_3390_su14127250 crossref_primary_10_1016_j_matpr_2020_12_953 crossref_primary_10_1016_j_scitotenv_2022_157393 crossref_primary_10_1016_j_chemosphere_2023_138804 crossref_primary_10_1016_j_envpol_2022_120335 crossref_primary_10_1016_j_scitotenv_2020_144058 crossref_primary_10_1016_j_envpol_2024_123969 crossref_primary_10_1016_j_jtice_2019_05_002 crossref_primary_10_1007_s11356_024_33807_8 crossref_primary_10_1016_j_arabjc_2023_104962 crossref_primary_10_1016_j_scitotenv_2025_178898 crossref_primary_10_1016_j_cej_2021_132227 crossref_primary_10_3389_fmicb_2024_1384639 crossref_primary_10_1016_j_indcrop_2022_115122 crossref_primary_10_1016_j_jece_2020_103975 crossref_primary_10_1177_0734242X20904426 crossref_primary_10_1016_j_jhazmat_2020_124581 crossref_primary_10_1016_j_chemosphere_2021_130361 crossref_primary_10_1016_j_chemosphere_2021_131438 crossref_primary_10_1021_acsenvironau_1c00018 crossref_primary_10_1021_acsomega_2c00014 crossref_primary_10_1007_s11356_024_32308_y crossref_primary_10_1016_j_chemosphere_2022_133621 crossref_primary_10_1016_j_ces_2024_120906 crossref_primary_10_3390_microorganisms12071406 crossref_primary_10_4236_gep_2021_99004 crossref_primary_10_1016_j_envres_2022_113723 crossref_primary_10_5004_dwt_2021_27558 crossref_primary_10_1016_j_scenv_2024_100174 crossref_primary_10_1007_s11270_024_07653_w crossref_primary_10_1002_eem2_12074 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_2166_wst_2022_032 crossref_primary_10_1016_j_eti_2020_101143 crossref_primary_10_1016_j_scitotenv_2022_154599 crossref_primary_10_1016_j_envres_2023_116723 crossref_primary_10_14233_ajchem_2023_27804 crossref_primary_10_3390_toxics13020069 crossref_primary_10_1038_s41598_019_54105_1 crossref_primary_10_1021_acsomega_9b04356 crossref_primary_10_1080_03067319_2020_1772768 crossref_primary_10_1016_j_chemosphere_2024_142262 crossref_primary_10_1016_j_jwpe_2019_100942 crossref_primary_10_1016_j_scitotenv_2020_139163 crossref_primary_10_1016_j_mtcomm_2024_108647 crossref_primary_10_1016_j_heliyon_2024_e31967 crossref_primary_10_1016_j_envpol_2021_117094 crossref_primary_10_20517_wecn_2024_60 crossref_primary_10_1016_j_chemosphere_2019_125182 crossref_primary_10_1016_j_chemosphere_2021_131312 crossref_primary_10_1016_j_scitotenv_2020_137822 crossref_primary_10_1007_s00128_021_03259_8 crossref_primary_10_1007_s11696_024_03726_6 crossref_primary_10_1016_j_chemosphere_2020_126745 crossref_primary_10_1016_j_scitotenv_2024_170398 crossref_primary_10_1088_1755_1315_687_1_012023 crossref_primary_10_1016_j_envres_2023_116098 crossref_primary_10_1016_j_scp_2020_100299 crossref_primary_10_5004_dwt_2021_27130 crossref_primary_10_1016_j_fuel_2022_125243 crossref_primary_10_1007_s11356_023_26092_4 crossref_primary_10_3390_ijerph191912381 crossref_primary_10_1007_s12665_024_12069_0 crossref_primary_10_1016_j_fuel_2023_130679 crossref_primary_10_1016_j_jece_2020_104232 crossref_primary_10_1016_j_jenvman_2019_109959 crossref_primary_10_3390_ma13020261 crossref_primary_10_1080_03067319_2019_1679803 crossref_primary_10_17533_udea_redin_20200691 crossref_primary_10_1016_j_jconhyd_2024_104442 crossref_primary_10_1016_j_jhazmat_2024_133938 crossref_primary_10_1080_03067319_2021_1958324 crossref_primary_10_1016_j_jhazmat_2022_128903 crossref_primary_10_1016_j_jhazmat_2022_128746 crossref_primary_10_1007_s11356_023_27137_4 crossref_primary_10_1016_j_jhazmat_2021_126421 crossref_primary_10_1016_j_chemosphere_2021_130830 crossref_primary_10_1016_j_heliyon_2021_e06315 crossref_primary_10_14710_jvsar_v4i2_14749 crossref_primary_10_1016_j_envadv_2022_100256 crossref_primary_10_3390_jcs7020059 crossref_primary_10_1016_j_chemosphere_2022_134942 crossref_primary_10_1016_j_clema_2024_100262 crossref_primary_10_1016_j_ijbiomac_2025_140356 crossref_primary_10_1007_s13762_023_05161_8 crossref_primary_10_2139_ssrn_3967449 crossref_primary_10_1016_j_colsurfa_2021_127198 crossref_primary_10_1007_s11356_023_31119_x crossref_primary_10_1038_s41598_022_17901_w crossref_primary_10_1016_j_envres_2024_119423 crossref_primary_10_1007_s11270_021_05130_2 crossref_primary_10_1007_s13399_021_01866_3 crossref_primary_10_1016_j_rser_2021_111791 crossref_primary_10_1038_s41598_022_15494_y crossref_primary_10_1038_s41598_023_46913_3 crossref_primary_10_1007_s11356_022_18637_w crossref_primary_10_1021_acs_langmuir_2c02693 crossref_primary_10_1016_j_cartre_2024_100441 crossref_primary_10_1039_D0MA00087F crossref_primary_10_1007_s42452_020_3088_2 crossref_primary_10_1007_s11356_024_35151_3 crossref_primary_10_1016_j_jwpe_2020_101339 crossref_primary_10_1016_j_indcrop_2023_117234 crossref_primary_10_1007_s13762_024_05819_x crossref_primary_10_1016_j_chemosphere_2024_143936 crossref_primary_10_26565_2312_4334_2024_3_59 crossref_primary_10_1016_j_jclepro_2023_138896 crossref_primary_10_1007_s11356_024_31889_y crossref_primary_10_1016_j_jclepro_2021_130296 crossref_primary_10_1016_j_cej_2022_139809 crossref_primary_10_1007_s11356_019_05610_3 crossref_primary_10_1007_s10668_024_05238_5 crossref_primary_10_1016_j_jclepro_2021_126229 crossref_primary_10_1016_j_sajb_2024_10_014 crossref_primary_10_1016_j_jhazmat_2019_06_004 crossref_primary_10_1038_s41598_022_05652_7 crossref_primary_10_1016_j_molliq_2023_121386 crossref_primary_10_5004_dwt_2020_25187 crossref_primary_10_1016_j_jwpe_2021_102221 crossref_primary_10_3390_land12040866 crossref_primary_10_1016_j_jece_2023_111706 crossref_primary_10_1371_journal_pone_0278315 crossref_primary_10_1016_j_seppur_2024_128311 crossref_primary_10_5004_dwt_2022_28421 crossref_primary_10_1016_j_jhazmat_2023_131106 crossref_primary_10_5194_soil_10_487_2024 crossref_primary_10_2166_wst_2022_067 |
Cites_doi | 10.1016/j.scitotenv.2016.03.248 10.1016/j.chemosphere.2013.10.071 10.1016/j.jhazmat.2006.11.028 10.1016/j.biortech.2014.11.077 10.1016/j.chemosphere.2013.03.009 10.1016/j.watres.2011.11.058 10.1016/j.biortech.2012.05.042 10.1016/j.watres.2017.04.014 10.1016/j.jiec.2015.10.007 10.1007/s11270-014-2275-4 10.1021/cr9603744 10.1016/S0960-8524(03)00147-0 10.1021/jf9044217 10.1021/es9031419 10.1016/j.biortech.2012.04.094 10.1080/10934529.2015.1047680 10.1016/j.jcis.2017.07.069 10.1002/etc.3023 10.1016/j.envpol.2011.07.023 10.1016/j.cej.2012.05.025 10.1016/j.jhazmat.2011.03.063 10.1080/19443994.2015.1095129 10.1016/j.jaap.2017.07.015 10.1177/0734242X15615698 10.1016/j.envpol.2017.07.004 10.1016/j.biortech.2018.04.032 10.1016/j.chemosphere.2015.06.079 10.1016/j.jcis.2015.05.043 10.1016/j.biortech.2010.02.052 10.1016/j.chemosphere.2015.05.093 10.1016/j.geoderma.2010.05.013 10.1007/s11356-017-1189-2 10.1007/s13399-013-0076-4 10.1016/j.biortech.2011.06.078 10.1021/es803092k 10.1016/j.chemosphere.2014.04.043 10.1016/j.biortech.2013.03.186 10.1016/j.jhazmat.2009.04.020 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2018.11.081 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 318 |
ExternalDocumentID | 30476762 10_1016_j_chemosphere_2018_11_081 S004565351832188X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-b76b862c6a3e4872e639f59c6e0b0e5c194bb2bd528c5bc7f39eb96d13cc62133 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Jul 11 10:30:40 EDT 2025 Fri Jul 11 02:41:57 EDT 2025 Wed Feb 19 02:35:56 EST 2025 Thu Apr 24 22:54:16 EDT 2025 Tue Jul 01 02:33:34 EDT 2025 Fri Feb 23 02:48:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Competition Cadmium Nickel Biochar Mechanism |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-b76b862c6a3e4872e639f59c6e0b0e5c194bb2bd528c5bc7f39eb96d13cc62133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5395-4842 0000-0002-0071-6055 |
PMID | 30476762 |
PQID | 2138647331 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2189522007 proquest_miscellaneous_2138647331 pubmed_primary_30476762 crossref_primary_10_1016_j_chemosphere_2018_11_081 crossref_citationtrail_10_1016_j_chemosphere_2018_11_081 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_11_081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 2019-Mar 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Wang, Huang, Yan, Yang, Xiao, Li (bib21) 2015; 455 Cao, Ma, Gao, Harris (bib100) 2009; 43 Tran, You, Chao (bib36) 2016; 34 Lee, Park, Ahn, Chung (bib20) 2015; 226 Park, Ok, Kim, Cho, Heo, Delaune, Seo (bib30) 2016; 142 Uchimiya, Lima, Thomas Klasson, Chang, Wartelle, Rodgers (bib39) 2010; 58 Fu, Wang (bib11) 2011; 92 Sinha, Kumar, Singh (bib34) 2013; 3 Xu, Zhao, Sun, Gao, Wang, Jin, Zhang, Wang, Yan, Liu, Wu (bib43) 2014; 111 Kołodyńska, Wnętrzak, Leahy, Hayes, Kwapiński, Hubicki (bib18) 2012; 197 Keiluweit, Nico, Johnson, Kleber (bib15) 2010; 44 Xu, Cao, Zhao (bib44) 2013; 92 Kim, Shim, Kim, Hyun, Ryu, Park, Jung (bib17) 2013; 138 Shi, Jia, Chen, Wen, Du, Guo, Wang (bib32) 2009; 169 Jiang, Huang, Nguyen, Ok, Rudolph, Yang, Zhang (bib14) 2016; 142 Lima, Cestari, Adebayo (bib22) 2016; 57 Ding, Hu, Wan, Wang, Gao (bib10) 2016; 33 Liu, Fan (bib24) 2018; 25 Zhang, Wang, Yin, Peng, Tan, Liu, Tan, Wu (bib46) 2015; 153 Beesley, Morenojimenez, Gomezeyles, Harris, Robinson, Sizmur (bib3) 2011; 159 Cui, Fang, Yao, Li, Ni, Yang, He (bib6) 2016; 562 Ahmad, Lee, Dou, Mohan, Sung, Yang, Ok (bib1) 2012; 118 Han, Boateng, Qi, Lima, Chang (bib12) 2013; 118 Vilvanathan, Shanthakumar (bib40) 2017; 10 Ho, Mckay (bib13) 1998; 76B Tran, You, Hosseini-Bandegharaei, Chao (bib37) 2017; 120 Uchimiya, Chang, Klasson (bib38) 2011; 190 Ma, Dougherty (bib26) 1997; 97 Tan, Liu, Gu, Zeng, Hu, Wang, Guo, Zeng, Sun (bib35) 2015; 34 Di Natale, Lancia, Molino, Musmarra (bib9) 2007; 145 Ma, Yang, Ma, Zhou, Luo, Liu, Wang (bib27) 2017; 127 Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib2) 2014; 99 Laird, Fleming, Davis, Horton, Wang, Karlen (bib19) 2010; 158 Mahdi, Yu, El Hanandeh (bib28) 2018; 6 Lu, Zhang, Yang, Huang, Wang, Qiu (bib25) 2012; 46 Wang, Huang, Liu, Zhang, Lai, Zeng, Cheng, Gong, Wan, Luo (bib41) 2018; 261 Kim, Kim, Cho, Choi (bib16) 2012; 118 Peng, Gao, Chu, Pan, Peng, Xing (bib31) 2017; 229 Shinogi, Kanri (bib33) 2003; 90 Cao, Harris (bib4) 2010; 101 Lima, Adebayo, Machado (bib23) 2015 Wang, Liu, Zheng, Li, Ngo, Guo, Liu, Chen, Xing (bib42) 2015; 177 Deng, Liu, Liu, Zeng, Tan, Huang, Tang, Wang, Hua, Yan (bib8) 2017; 506 Chen, Chen, Chen, Chen, Lehmann, McBride, Hay (bib5) 2011; 102 Park, Cho, Ok, Kim, Kang, Choi, Heo, DeLaune, Seo (bib29) 2015; 50 Wang (10.1016/j.chemosphere.2018.11.081_bib42) 2015; 177 Tran (10.1016/j.chemosphere.2018.11.081_bib36) 2016; 34 Shinogi (10.1016/j.chemosphere.2018.11.081_bib33) 2003; 90 Lima (10.1016/j.chemosphere.2018.11.081_bib23) 2015 Lu (10.1016/j.chemosphere.2018.11.081_bib25) 2012; 46 Ma (10.1016/j.chemosphere.2018.11.081_bib26) 1997; 97 Jiang (10.1016/j.chemosphere.2018.11.081_bib14) 2016; 142 Ma (10.1016/j.chemosphere.2018.11.081_bib27) 2017; 127 Zhang (10.1016/j.chemosphere.2018.11.081_bib46) 2015; 153 Deng (10.1016/j.chemosphere.2018.11.081_bib8) 2017; 506 Mahdi (10.1016/j.chemosphere.2018.11.081_bib28) 2018; 6 Park (10.1016/j.chemosphere.2018.11.081_bib30) 2016; 142 Kim (10.1016/j.chemosphere.2018.11.081_bib17) 2013; 138 Vilvanathan (10.1016/j.chemosphere.2018.11.081_bib40) 2017; 10 Cui (10.1016/j.chemosphere.2018.11.081_bib6) 2016; 562 Kim (10.1016/j.chemosphere.2018.11.081_bib16) 2012; 118 Xu (10.1016/j.chemosphere.2018.11.081_bib43) 2014; 111 Xu (10.1016/j.chemosphere.2018.11.081_bib44) 2013; 92 Tran (10.1016/j.chemosphere.2018.11.081_bib37) 2017; 120 Ahmad (10.1016/j.chemosphere.2018.11.081_bib2) 2014; 99 Han (10.1016/j.chemosphere.2018.11.081_bib12) 2013; 118 Keiluweit (10.1016/j.chemosphere.2018.11.081_bib15) 2010; 44 Ahmad (10.1016/j.chemosphere.2018.11.081_bib1) 2012; 118 Chen (10.1016/j.chemosphere.2018.11.081_bib5) 2011; 102 Fu (10.1016/j.chemosphere.2018.11.081_bib11) 2011; 92 Tan (10.1016/j.chemosphere.2018.11.081_bib35) 2015; 34 Uchimiya (10.1016/j.chemosphere.2018.11.081_bib39) 2010; 58 Uchimiya (10.1016/j.chemosphere.2018.11.081_bib38) 2011; 190 Cao (10.1016/j.chemosphere.2018.11.081_bib4) 2010; 101 Shi (10.1016/j.chemosphere.2018.11.081_bib32) 2009; 169 Di Natale (10.1016/j.chemosphere.2018.11.081_bib9) 2007; 145 Lee (10.1016/j.chemosphere.2018.11.081_bib20) 2015; 226 Sinha (10.1016/j.chemosphere.2018.11.081_bib34) 2013; 3 Li (10.1016/j.chemosphere.2018.11.081_bib21) 2015; 455 Wang (10.1016/j.chemosphere.2018.11.081_bib41) 2018; 261 Liu (10.1016/j.chemosphere.2018.11.081_bib24) 2018; 25 Park (10.1016/j.chemosphere.2018.11.081_bib29) 2015; 50 Cao (10.1016/j.chemosphere.2018.11.081_bib100) 2009; 43 Peng (10.1016/j.chemosphere.2018.11.081_bib31) 2017; 229 Laird (10.1016/j.chemosphere.2018.11.081_bib19) 2010; 158 Ding (10.1016/j.chemosphere.2018.11.081_bib10) 2016; 33 Beesley (10.1016/j.chemosphere.2018.11.081_bib3) 2011; 159 Lima (10.1016/j.chemosphere.2018.11.081_bib22) 2016; 57 Ho (10.1016/j.chemosphere.2018.11.081_bib13) 1998; 76B Kołodyńska (10.1016/j.chemosphere.2018.11.081_bib18) 2012; 197 |
References_xml | – volume: 101 start-page: 5222 year: 2010 end-page: 5228 ident: bib4 article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation publication-title: Bioresour. Technol. – volume: 145 start-page: 381 year: 2007 end-page: 390 ident: bib9 article-title: Removal of chromium ionsform aqueous solutions by adsorption on activated carbon and char publication-title: J. Hazard.Mater. – volume: 50 start-page: 1194 year: 2015 end-page: 1204 ident: bib29 article-title: Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: batch and column experiment publication-title: J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. – volume: 120 start-page: 88 year: 2017 end-page: 116 ident: bib37 article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review publication-title: Water Res. – volume: 57 start-page: 19566 year: 2016 end-page: 19571 ident: bib22 article-title: Comments on the paper: a critical review of the applicability of Avrami fractional kinetic equation in adsorption-based water treatment studies publication-title: Desalin. Water Treat. – volume: 261 start-page: 265 year: 2018 end-page: 271 ident: bib41 article-title: Investigating the adsorption behavior and the relative distribution of Cd(2+) sorption mechanisms on biochars by different feedstock publication-title: Bioresour. Technol. – volume: 118 start-page: 536 year: 2012 end-page: 544 ident: bib1 article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water publication-title: Bioresour. Technol. – volume: 76B start-page: 332 year: 1998 end-page: 340 ident: bib13 article-title: A comparison of chemisorption kinetic models applied to pollutant removal on various sorben publication-title: Trans. Inst. Chem. Eng. – volume: 455 start-page: 261 year: 2015 end-page: 270 ident: bib21 article-title: Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 1171 year: 2018 end-page: 1181 ident: bib28 article-title: Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar publication-title: J. Environ. Chem. Eng. – volume: 3 start-page: 327 year: 2013 end-page: 335 ident: bib34 article-title: Production of biofuel and biochar by thermal pyrolysis of linseed seed publication-title: Biomass Convers. Biorefin. – volume: 190 start-page: 432 year: 2011 end-page: 441 ident: bib38 article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups publication-title: J. Hazard. Mater. – volume: 158 start-page: 443 year: 2010 end-page: 449 ident: bib19 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma – volume: 58 start-page: 5538 year: 2010 end-page: 5544 ident: bib39 article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil publication-title: J. Agric. Food Chem. – volume: 153 start-page: 68 year: 2015 end-page: 73 ident: bib46 article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) publication-title: J. Environ. Manag. – volume: 226 start-page: 1 year: 2015 end-page: 11 ident: bib20 article-title: Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions publication-title: Water Air Soil Pollut. – volume: 118 start-page: 158 year: 2012 end-page: 162 ident: bib16 article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida) publication-title: Bioresour. Technol. – volume: 159 start-page: 3269 year: 2011 end-page: 3282 ident: bib3 article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. – volume: 142 start-page: 64 year: 2016 end-page: 71 ident: bib14 article-title: Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions publication-title: Chemosphere – volume: 169 start-page: 838 year: 2009 end-page: 846 ident: bib32 article-title: Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution publication-title: J. Hazard. Mater. – volume: 99 start-page: 19 year: 2014 end-page: 33 ident: bib2 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere – volume: 138 start-page: 266 year: 2013 end-page: 270 ident: bib17 article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures publication-title: Bioresour. Technol. – start-page: 33 year: 2015 end-page: 69 ident: bib23 article-title: Kinetic and equilibrium models of adsorption publication-title: Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications – volume: 562 start-page: 517 year: 2016 end-page: 525 ident: bib6 article-title: Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar publication-title: Sci. Total Environ. – volume: 34 start-page: 129 year: 2016 end-page: 138 ident: bib36 article-title: Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar publication-title: Waste Manag. Res. – volume: 92 start-page: 407 year: 2011 end-page: 418 ident: bib11 article-title: Removal of heavy metal ions from wastewaters: a review publication-title: J. Environ. Manag. – volume: 97 start-page: 1 year: 1997 end-page: 22 ident: bib26 article-title: The cation-π interaction publication-title: Chem. Rev. – volume: 177 start-page: 308 year: 2015 end-page: 317 ident: bib42 article-title: Investigating the mechanisms of biochar's removal of lead from solution publication-title: Bioresour. Technol. – volume: 43 start-page: 3285 year: 2009 end-page: 3291 ident: bib100 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. – volume: 118 start-page: 196 year: 2013 end-page: 204 ident: bib12 article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties publication-title: J. Environ. Manag. – volume: 46 start-page: 854 year: 2012 end-page: 862 ident: bib25 article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar publication-title: Water Res. – volume: 229 start-page: 846 year: 2017 end-page: 853 ident: bib31 article-title: Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars publication-title: Environ. Pollut. – volume: 34 start-page: 1962 year: 2015 end-page: 1968 ident: bib35 article-title: Biochar amendment to lead-contaminated soil: effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice publication-title: Environ. Toxicol. Chem. – volume: 92 start-page: 955 year: 2013 end-page: 961 ident: bib44 article-title: Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars publication-title: Chemosphere – volume: 142 start-page: 77 year: 2016 end-page: 83 ident: bib30 article-title: Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions publication-title: Chemosphere – volume: 102 start-page: 8877 year: 2011 end-page: 8884 ident: bib5 article-title: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution publication-title: Bioresour. Technol. – volume: 10 start-page: 1 year: 2017 end-page: 15 ident: bib40 article-title: Ni(2+) and Co(2+) adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies publication-title: Environ. Technol. – volume: 111 start-page: 320 year: 2014 end-page: 326 ident: bib43 article-title: Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties publication-title: Chemosphere – volume: 127 start-page: 350 year: 2017 end-page: 359 ident: bib27 article-title: Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures publication-title: J. Anal. Appl. Pyrolysis – volume: 90 start-page: 241 year: 2003 end-page: 247 ident: bib33 article-title: Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products publication-title: Bioresour. Technol. – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: bib15 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 25 start-page: 8688 year: 2018 end-page: 8700 ident: bib24 article-title: Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism publication-title: Environ. Sci. Pollut. Res. Int. – volume: 506 start-page: 355 year: 2017 end-page: 364 ident: bib8 article-title: Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar publication-title: J. Colloid Interface Sci. – volume: 33 start-page: 239 year: 2016 end-page: 245 ident: bib10 article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests publication-title: J. Ind. Eng. Chem. – volume: 197 start-page: 295 year: 2012 end-page: 305 ident: bib18 article-title: Kinetic and adsorptive characterization of biochar in metal ions removal publication-title: Chem. Eng. J. – volume: 562 start-page: 517 year: 2016 ident: 10.1016/j.chemosphere.2018.11.081_bib6 article-title: Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.03.248 – volume: 76B start-page: 332 year: 1998 ident: 10.1016/j.chemosphere.2018.11.081_bib13 article-title: A comparison of chemisorption kinetic models applied to pollutant removal on various sorben publication-title: Trans. Inst. Chem. Eng. – volume: 99 start-page: 19 year: 2014 ident: 10.1016/j.chemosphere.2018.11.081_bib2 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 145 start-page: 381 year: 2007 ident: 10.1016/j.chemosphere.2018.11.081_bib9 article-title: Removal of chromium ionsform aqueous solutions by adsorption on activated carbon and char publication-title: J. Hazard.Mater. doi: 10.1016/j.jhazmat.2006.11.028 – volume: 177 start-page: 308 year: 2015 ident: 10.1016/j.chemosphere.2018.11.081_bib42 article-title: Investigating the mechanisms of biochar's removal of lead from solution publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.077 – volume: 92 start-page: 955 year: 2013 ident: 10.1016/j.chemosphere.2018.11.081_bib44 article-title: Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.03.009 – volume: 46 start-page: 854 year: 2012 ident: 10.1016/j.chemosphere.2018.11.081_bib25 article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar publication-title: Water Res. doi: 10.1016/j.watres.2011.11.058 – volume: 118 start-page: 536 year: 2012 ident: 10.1016/j.chemosphere.2018.11.081_bib1 article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.05.042 – volume: 120 start-page: 88 year: 2017 ident: 10.1016/j.chemosphere.2018.11.081_bib37 article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2017.04.014 – volume: 153 start-page: 68 year: 2015 ident: 10.1016/j.chemosphere.2018.11.081_bib46 article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) publication-title: J. Environ. Manag. – volume: 33 start-page: 239 year: 2016 ident: 10.1016/j.chemosphere.2018.11.081_bib10 article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.10.007 – volume: 226 start-page: 1 year: 2015 ident: 10.1016/j.chemosphere.2018.11.081_bib20 article-title: Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-014-2275-4 – volume: 97 start-page: 1 year: 1997 ident: 10.1016/j.chemosphere.2018.11.081_bib26 article-title: The cation-π interaction publication-title: Chem. Rev. doi: 10.1021/cr9603744 – volume: 90 start-page: 241 year: 2003 ident: 10.1016/j.chemosphere.2018.11.081_bib33 article-title: Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(03)00147-0 – volume: 58 start-page: 5538 year: 2010 ident: 10.1016/j.chemosphere.2018.11.081_bib39 article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil publication-title: J. Agric. Food Chem. doi: 10.1021/jf9044217 – volume: 44 start-page: 1247 year: 2010 ident: 10.1016/j.chemosphere.2018.11.081_bib15 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 118 start-page: 158 year: 2012 ident: 10.1016/j.chemosphere.2018.11.081_bib16 article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.04.094 – volume: 50 start-page: 1194 year: 2015 ident: 10.1016/j.chemosphere.2018.11.081_bib29 article-title: Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: batch and column experiment publication-title: J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. doi: 10.1080/10934529.2015.1047680 – volume: 506 start-page: 355 year: 2017 ident: 10.1016/j.chemosphere.2018.11.081_bib8 article-title: Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.07.069 – volume: 34 start-page: 1962 year: 2015 ident: 10.1016/j.chemosphere.2018.11.081_bib35 article-title: Biochar amendment to lead-contaminated soil: effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3023 – volume: 159 start-page: 3269 year: 2011 ident: 10.1016/j.chemosphere.2018.11.081_bib3 article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.07.023 – volume: 197 start-page: 295 year: 2012 ident: 10.1016/j.chemosphere.2018.11.081_bib18 article-title: Kinetic and adsorptive characterization of biochar in metal ions removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.05.025 – volume: 190 start-page: 432 year: 2011 ident: 10.1016/j.chemosphere.2018.11.081_bib38 article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.03.063 – volume: 57 start-page: 19566 year: 2016 ident: 10.1016/j.chemosphere.2018.11.081_bib22 article-title: Comments on the paper: a critical review of the applicability of Avrami fractional kinetic equation in adsorption-based water treatment studies publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2015.1095129 – volume: 127 start-page: 350 year: 2017 ident: 10.1016/j.chemosphere.2018.11.081_bib27 article-title: Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2017.07.015 – volume: 6 start-page: 1171 year: 2018 ident: 10.1016/j.chemosphere.2018.11.081_bib28 article-title: Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar publication-title: J. Environ. Chem. Eng. – volume: 34 start-page: 129 year: 2016 ident: 10.1016/j.chemosphere.2018.11.081_bib36 article-title: Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar publication-title: Waste Manag. Res. doi: 10.1177/0734242X15615698 – volume: 229 start-page: 846 year: 2017 ident: 10.1016/j.chemosphere.2018.11.081_bib31 article-title: Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.07.004 – volume: 261 start-page: 265 year: 2018 ident: 10.1016/j.chemosphere.2018.11.081_bib41 article-title: Investigating the adsorption behavior and the relative distribution of Cd(2+) sorption mechanisms on biochars by different feedstock publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.04.032 – volume: 142 start-page: 64 year: 2016 ident: 10.1016/j.chemosphere.2018.11.081_bib14 article-title: Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.079 – volume: 455 start-page: 261 year: 2015 ident: 10.1016/j.chemosphere.2018.11.081_bib21 article-title: Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.05.043 – volume: 101 start-page: 5222 year: 2010 ident: 10.1016/j.chemosphere.2018.11.081_bib4 article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.02.052 – volume: 142 start-page: 77 year: 2016 ident: 10.1016/j.chemosphere.2018.11.081_bib30 article-title: Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.093 – volume: 158 start-page: 443 year: 2010 ident: 10.1016/j.chemosphere.2018.11.081_bib19 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.013 – volume: 25 start-page: 8688 year: 2018 ident: 10.1016/j.chemosphere.2018.11.081_bib24 article-title: Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-017-1189-2 – volume: 3 start-page: 327 year: 2013 ident: 10.1016/j.chemosphere.2018.11.081_bib34 article-title: Production of biofuel and biochar by thermal pyrolysis of linseed seed publication-title: Biomass Convers. Biorefin. doi: 10.1007/s13399-013-0076-4 – volume: 102 start-page: 8877 year: 2011 ident: 10.1016/j.chemosphere.2018.11.081_bib5 article-title: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.06.078 – volume: 118 start-page: 196 year: 2013 ident: 10.1016/j.chemosphere.2018.11.081_bib12 article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties publication-title: J. Environ. Manag. – volume: 43 start-page: 3285 year: 2009 ident: 10.1016/j.chemosphere.2018.11.081_bib100 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. doi: 10.1021/es803092k – volume: 10 start-page: 1 year: 2017 ident: 10.1016/j.chemosphere.2018.11.081_bib40 article-title: Ni(2+) and Co(2+) adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies publication-title: Environ. Technol. – volume: 111 start-page: 320 year: 2014 ident: 10.1016/j.chemosphere.2018.11.081_bib43 article-title: Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.04.043 – volume: 138 start-page: 266 year: 2013 ident: 10.1016/j.chemosphere.2018.11.081_bib17 article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.186 – start-page: 33 year: 2015 ident: 10.1016/j.chemosphere.2018.11.081_bib23 article-title: Kinetic and equilibrium models of adsorption – volume: 92 start-page: 407 year: 2011 ident: 10.1016/j.chemosphere.2018.11.081_bib11 article-title: Removal of heavy metal ions from wastewaters: a review publication-title: J. Environ. Manag. – volume: 169 start-page: 838 year: 2009 ident: 10.1016/j.chemosphere.2018.11.081_bib32 article-title: Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.04.020 |
SSID | ssj0001659 |
Score | 2.6196077 |
Snippet | Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were... Adsorption mechanisms and competition between Cd and Ni for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated... Adsorption mechanisms and competition between Cd²⁺ and Ni²⁺ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 308 |
SubjectTerms | Adsorption binding sites Biochar Cadmium Cadmium - chemistry Cadmium - isolation & purification cation exchange Charcoal - chemistry Competition Mechanism metal ions Nickel Nickel - chemistry Nickel - isolation & purification Oryza - chemistry Plant Stems - chemistry rice straw soil sorption isotherms Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - isolation & purification |
Title | Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems |
URI | https://dx.doi.org/10.1016/j.chemosphere.2018.11.081 https://www.ncbi.nlm.nih.gov/pubmed/30476762 https://www.proquest.com/docview/2138647331 https://www.proquest.com/docview/2189522007 |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhpY9LadM23T6CAr0qsWxJlqCXZUnYtjSnBvZmJFkGl7Ud1ruEXPrbOyPbSXtICfRoWwOyZjTzjTQPQj45ncjKaQtbXGdMpLllNqsCs7YyldFe2Hg08P1CLS_F15Vc7ZHFlAuDYZWj7h90etTW45vTcTVPr-oac3wRjWQShZJrvcIMdpGjlJ_8ugvz4EoOEFhIhqOfkOO7GC9Yl6brMX8fK2ZyfRILevL7bNR9GDTaovMX5PkIIul8mOdLshfaA_J0MfVuOyCPz2Ix6ptXZDsv-24T9QIdU_J3G2rbkjYBk37rvulpV1Fvy6beNfFLW8PWXlOgwIpDFA9DrqmrO8zQ6mndUjxfWAcWB7uY0MuaACieDnWh-9fk8vzsx2LJxk4LzAuebJnLlQPXxiubBfBg0gC4pZLGq5C4JEjPjXAudaVMtZfO51VmgjOq5Jn3KgU39w3Zb7s2vCXUJroMwvHM5pVIg3SW-1T4UpmS5yovZ0RPa1v4sQw5dsNYF1O82c_iD7YUyBZwUwpgy4ykt6RXQy2OhxB9nhhY_CVYBdiMh5AfT0wvgId4m2Lb0O36An5bK4EtL_81RhsAuIDDZuRwkJjbmeN9pwJT9O7_JviePIMnM4TFfSD7280ufASctHVHcSMckUfzL9-WF78BEOsVzw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUQqKUXRGlLt6WtkdpjIHZsx5HggChoKR8nkPbm2o4jpdokaLMrxKV_qn-wYyeB9kCFVHGNPZLjsWee7Zk3CH02MuaFkRq2uEwiRlMd6aRwkdZFVmTSMh2uBs4vxPiKfZvwyRL6NeTC-LDK3vZ3Nj1Y6_7Lbj-bu9dl6XN8PRpJuF-URMpJH1l56m5v4NzW7p98BSV_ofT46PJwHPWlBSLLSDyPTCoMYHkrdOIAslMHjrrgmRUuNrHjFo72xlCTcyotNzYtksyZTOQksVZQ4m9Bwe6vMDAXvmzCzs_7uBIieIe5GY_88J6j7fugMlBE1bSeMMBTdBK5ExhEyUNO8SHQG5zf8Tpa61ErPugm5iVacvUGWj0cisVtoGdHgf369hWaH-RtMwuGCPccAIsZ1nWOK-ezjMu2anFTYKvzqlxUoaUuwZZMMUh4iiPsb19usCkbnxLW4rLG_kJj6qLQ2YQM4qhycGzAHRF1-xpdPcn8v0HLdVO7twjrWOaOGZLotGDUcaOJpczmIstJKtJ8hOQwt8r2vOe-_MZUDQFuP9QfalFeLXAuUqCWEaJ3otcd-cdjhPYGBaq_VrICJ_UY8e1B6Qp06J9vdO2aRavgt6Vgvsbmv_rIDBA1AL8R2uxWzN3I_QOrAN_37v8G-Amtji_Pz9TZycXpe_QCWrIuJm8LLc9nC_cBQNrcfAybAqPvT70LfwMcl1Gb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+behaviour+and+mechanisms+of+cadmium+and+nickel+on+rice+straw+biochars+in+single-+and+binary-metal+systems&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Deng%2C+Yiyi&rft.au=Huang%2C+Shuang&rft.au=Laird%2C+David+A&rft.au=Wang%2C+Xiugui&rft.date=2019-03-01&rft.issn=1879-1298&rft.eissn=1879-1298&rft.volume=218&rft.spage=308&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.11.081&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |