Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems

Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g−1) of Cd2+ and Ni2+ on RB400 and RB700 were in the ord...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 218; pp. 308 - 318
Main Authors Deng, Yiyi, Huang, Shuang, Laird, David A., Wang, Xiugui, Meng, Zhuowen
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g−1) of Cd2+ and Ni2+ on RB400 and RB700 were in the order of Cd2+ (37.24 and 65.40) > Ni2+ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni2+ (25.20 and 32.28) > Cd2+ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd2+ competed with Ni2+ for binding sites at initial metal concentrations >10 mg L−1 for RB400 and > 20 mg L−1 for RB700. The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped, and the binding of Cd2+ and Ni2+ to these sites was affected by the occupation sequence of these metals. For Cd2+ and Ni2+ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars. [Display omitted] •The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped.•Rice straw biochars exhibited adsorption preferences for Ni2+ over Cd2+ when coexisted.•Competition occurred once the concentrations of Cd2+ and Ni2+ exceeded the threshold values.•Competition between Cd2+ and Ni2+ decreased the adsorption amounts but increased the mobility.•Competition between Cd2+ and Ni2+ decreased the contribution of cation exchange mechanism.
AbstractList Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g−1) of Cd2+ and Ni2+ on RB400 and RB700 were in the order of Cd2+ (37.24 and 65.40) > Ni2+ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni2+ (25.20 and 32.28) > Cd2+ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd2+ competed with Ni2+ for binding sites at initial metal concentrations >10 mg L−1 for RB400 and > 20 mg L−1 for RB700. The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped, and the binding of Cd2+ and Ni2+ to these sites was affected by the occupation sequence of these metals. For Cd2+ and Ni2+ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars. [Display omitted] •The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped.•Rice straw biochars exhibited adsorption preferences for Ni2+ over Cd2+ when coexisted.•Competition occurred once the concentrations of Cd2+ and Ni2+ exceeded the threshold values.•Competition between Cd2+ and Ni2+ decreased the adsorption amounts but increased the mobility.•Competition between Cd2+ and Ni2+ decreased the contribution of cation exchange mechanism.
Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g-1) of Cd2+ and Ni2+ on RB400 and RB700 were in the order of Cd2+ (37.24 and 65.40) > Ni2+ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni2+ (25.20 and 32.28) > Cd2+ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd2+ competed with Ni2+ for binding sites at initial metal concentrations >10 mg L-1 for RB400 and > 20 mg L-1 for RB700. The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped, and the binding of Cd2+ and Ni2+ to these sites was affected by the occupation sequence of these metals. For Cd2+ and Ni2+ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars.Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g-1) of Cd2+ and Ni2+ on RB400 and RB700 were in the order of Cd2+ (37.24 and 65.40) > Ni2+ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni2+ (25.20 and 32.28) > Cd2+ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd2+ competed with Ni2+ for binding sites at initial metal concentrations >10 mg L-1 for RB400 and > 20 mg L-1 for RB700. The adsorption sites for Cd2+ and Ni2+ on the biochars largely overlapped, and the binding of Cd2+ and Ni2+ to these sites was affected by the occupation sequence of these metals. For Cd2+ and Ni2+ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars.
Adsorption mechanisms and competition between Cd²⁺ and Ni²⁺ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g⁻¹) of Cd²⁺ and Ni²⁺ on RB400 and RB700 were in the order of Cd²⁺ (37.24 and 65.40) > Ni²⁺ (27.31 and 54.60) in the single-metal adsorption isotherms and Ni²⁺ (25.20 and 32.28) > Cd²⁺ (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd²⁺ competed with Ni²⁺ for binding sites at initial metal concentrations >10 mg L⁻¹ for RB400 and > 20 mg L⁻¹ for RB700. The adsorption sites for Cd²⁺ and Ni²⁺ on the biochars largely overlapped, and the binding of Cd²⁺ and Ni²⁺ to these sites was affected by the occupation sequence of these metals. For Cd²⁺ and Ni²⁺ adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars.
Adsorption mechanisms and competition between Cd and Ni for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated in this study. Based on the Langmuir model, the maximum adsorption capacities (mg g ) of Cd and Ni on RB400 and RB700 were in the order of Cd (37.24 and 65.40) > Ni (27.31 and 54.60) in the single-metal adsorption isotherms and Ni (25.20 and 32.28) > Cd (24.22 and 26.78) in the binary-metal adsorption isotherms. Cd competed with Ni for binding sites at initial metal concentrations >10 mg L for RB400 and > 20 mg L for RB700. The adsorption sites for Cd and Ni on the biochars largely overlapped, and the binding of Cd and Ni to these sites was affected by the occupation sequence of these metals. For Cd and Ni adsorption in the binary system, cation exchange and precipitation were the dominant adsorption mechanisms on RB400 and RB700, respectively, accounting for approximately 36% and 60% of the adsorption capacity. Competition decreased the contribution of cation exchange but increased that of precipitation and other potential mechanisms. Results from this study suggest that types and concentrations of metal ions should be taken into account when removing metal contaminants from water or soil using biochars.
Author Deng, Yiyi
Laird, David A.
Meng, Zhuowen
Wang, Xiugui
Huang, Shuang
Author_xml – sequence: 1
  givenname: Yiyi
  orcidid: 0000-0001-5395-4842
  surname: Deng
  fullname: Deng, Yiyi
  email: dyy7076@whu.edu.cn
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
– sequence: 2
  givenname: Shuang
  orcidid: 0000-0002-0071-6055
  surname: Huang
  fullname: Huang, Shuang
  email: hsh5527@whu.edu.cn
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
– sequence: 3
  givenname: David A.
  surname: Laird
  fullname: Laird, David A.
  organization: Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
– sequence: 4
  givenname: Xiugui
  surname: Wang
  fullname: Wang, Xiugui
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
– sequence: 5
  givenname: Zhuowen
  surname: Meng
  fullname: Meng, Zhuowen
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30476762$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAYRS1URKeFV0BmxybBP7ETr1A14k-qxAbWlu18YTzE9mAnrfr2eDoFIVaz8uI790q-5wpdxBQBoTeUtJRQ-W7fuh2EVA47yNAyQoeW0pYM9Bna0KFXDWVquEAbQjrRSMHFJboqZU9IDQv1Al1y0vWyl2yDlpuxpHxYfIrYws7c-bRmbOKIA7idib6EgtOEnRmDX8PjJXr3E2ZcE9k7wGXJ5h5bnyqfC_YRFx9_zNA8wtZHkx-aAIuZcXkoC4TyEj2fzFzg1dN7jb5__PBt-7m5_frpy_bmtnEdJUtje2kHyZw0HLqhZyC5moRyEoglIBxVnbXMjoINTljXT1yBVXKk3DnJKOfX6O2p95DTrxXKooMvDubZREhr0YwOSjBGSH8GygfZ9ZzTir5-QlcbYNSH7EP9ov4zagXUCXA5lZJh-otQoo8C9V7_I1AfBWpKdRVYs-__yzq_mKOeurKfz2rYnhqgLnvnIeviPEQHo8_gFj0mf0bLb4oEwGk
CitedBy_id crossref_primary_10_1080_21622515_2024_2409397
crossref_primary_10_1016_j_envpol_2020_114449
crossref_primary_10_1049_mna2_12052
crossref_primary_10_1016_j_jwpe_2024_105769
crossref_primary_10_1016_j_scitotenv_2023_169524
crossref_primary_10_1007_s00289_022_04568_6
crossref_primary_10_1016_j_jclepro_2024_143790
crossref_primary_10_1016_j_biortech_2020_122853
crossref_primary_10_1016_j_jwpe_2020_101561
crossref_primary_10_1007_s12155_022_10560_9
crossref_primary_10_1016_j_biortech_2023_129657
crossref_primary_10_1080_00986445_2024_2316610
crossref_primary_10_1021_acsomega_1c02126
crossref_primary_10_3390_ijerph182111413
crossref_primary_10_5004_dwt_2020_26260
crossref_primary_10_1016_j_ecoenv_2022_113524
crossref_primary_10_1016_j_envres_2020_110594
crossref_primary_10_1039_D1RA05636K
crossref_primary_10_1016_j_agee_2021_107446
crossref_primary_10_1177_0734242X241231394
crossref_primary_10_1016_j_sjbs_2021_09_035
crossref_primary_10_3390_toxics12080535
crossref_primary_10_1016_j_scitotenv_2020_137535
crossref_primary_10_1007_s11783_023_1672_6
crossref_primary_10_1016_j_jhazmat_2020_124291
crossref_primary_10_1016_j_cep_2021_108766
crossref_primary_10_1016_j_scitotenv_2021_152876
crossref_primary_10_1016_j_jece_2022_108636
crossref_primary_10_1016_j_jhazmat_2020_122391
crossref_primary_10_1007_s10311_022_01424_x
crossref_primary_10_1016_j_jhazmat_2021_126468
crossref_primary_10_1016_j_chemosphere_2020_128833
crossref_primary_10_1016_j_jclepro_2020_122743
crossref_primary_10_1016_j_scitotenv_2022_154018
crossref_primary_10_1016_j_chemosphere_2020_127505
crossref_primary_10_1016_j_jaap_2023_105881
crossref_primary_10_1016_j_envres_2024_118220
crossref_primary_10_1016_j_jwpe_2023_103612
crossref_primary_10_3390_ma14206134
crossref_primary_10_1016_j_envpol_2023_122186
crossref_primary_10_1016_j_envres_2020_109809
crossref_primary_10_1016_j_sciaf_2021_e00934
crossref_primary_10_1016_j_jaap_2021_105081
crossref_primary_10_1016_j_jenvman_2021_114270
crossref_primary_10_1016_j_scitotenv_2019_136395
crossref_primary_10_1016_j_jenvman_2024_123705
crossref_primary_10_1080_09593330_2022_2148572
crossref_primary_10_3390_su14127250
crossref_primary_10_1016_j_matpr_2020_12_953
crossref_primary_10_1016_j_scitotenv_2022_157393
crossref_primary_10_1016_j_chemosphere_2023_138804
crossref_primary_10_1016_j_envpol_2022_120335
crossref_primary_10_1016_j_scitotenv_2020_144058
crossref_primary_10_1016_j_envpol_2024_123969
crossref_primary_10_1016_j_jtice_2019_05_002
crossref_primary_10_1007_s11356_024_33807_8
crossref_primary_10_1016_j_arabjc_2023_104962
crossref_primary_10_1016_j_scitotenv_2025_178898
crossref_primary_10_1016_j_cej_2021_132227
crossref_primary_10_3389_fmicb_2024_1384639
crossref_primary_10_1016_j_indcrop_2022_115122
crossref_primary_10_1016_j_jece_2020_103975
crossref_primary_10_1177_0734242X20904426
crossref_primary_10_1016_j_jhazmat_2020_124581
crossref_primary_10_1016_j_chemosphere_2021_130361
crossref_primary_10_1016_j_chemosphere_2021_131438
crossref_primary_10_1021_acsenvironau_1c00018
crossref_primary_10_1021_acsomega_2c00014
crossref_primary_10_1007_s11356_024_32308_y
crossref_primary_10_1016_j_chemosphere_2022_133621
crossref_primary_10_1016_j_ces_2024_120906
crossref_primary_10_3390_microorganisms12071406
crossref_primary_10_4236_gep_2021_99004
crossref_primary_10_1016_j_envres_2022_113723
crossref_primary_10_5004_dwt_2021_27558
crossref_primary_10_1016_j_scenv_2024_100174
crossref_primary_10_1007_s11270_024_07653_w
crossref_primary_10_1002_eem2_12074
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_2166_wst_2022_032
crossref_primary_10_1016_j_eti_2020_101143
crossref_primary_10_1016_j_scitotenv_2022_154599
crossref_primary_10_1016_j_envres_2023_116723
crossref_primary_10_14233_ajchem_2023_27804
crossref_primary_10_3390_toxics13020069
crossref_primary_10_1038_s41598_019_54105_1
crossref_primary_10_1021_acsomega_9b04356
crossref_primary_10_1080_03067319_2020_1772768
crossref_primary_10_1016_j_chemosphere_2024_142262
crossref_primary_10_1016_j_jwpe_2019_100942
crossref_primary_10_1016_j_scitotenv_2020_139163
crossref_primary_10_1016_j_mtcomm_2024_108647
crossref_primary_10_1016_j_heliyon_2024_e31967
crossref_primary_10_1016_j_envpol_2021_117094
crossref_primary_10_20517_wecn_2024_60
crossref_primary_10_1016_j_chemosphere_2019_125182
crossref_primary_10_1016_j_chemosphere_2021_131312
crossref_primary_10_1016_j_scitotenv_2020_137822
crossref_primary_10_1007_s00128_021_03259_8
crossref_primary_10_1007_s11696_024_03726_6
crossref_primary_10_1016_j_chemosphere_2020_126745
crossref_primary_10_1016_j_scitotenv_2024_170398
crossref_primary_10_1088_1755_1315_687_1_012023
crossref_primary_10_1016_j_envres_2023_116098
crossref_primary_10_1016_j_scp_2020_100299
crossref_primary_10_5004_dwt_2021_27130
crossref_primary_10_1016_j_fuel_2022_125243
crossref_primary_10_1007_s11356_023_26092_4
crossref_primary_10_3390_ijerph191912381
crossref_primary_10_1007_s12665_024_12069_0
crossref_primary_10_1016_j_fuel_2023_130679
crossref_primary_10_1016_j_jece_2020_104232
crossref_primary_10_1016_j_jenvman_2019_109959
crossref_primary_10_3390_ma13020261
crossref_primary_10_1080_03067319_2019_1679803
crossref_primary_10_17533_udea_redin_20200691
crossref_primary_10_1016_j_jconhyd_2024_104442
crossref_primary_10_1016_j_jhazmat_2024_133938
crossref_primary_10_1080_03067319_2021_1958324
crossref_primary_10_1016_j_jhazmat_2022_128903
crossref_primary_10_1016_j_jhazmat_2022_128746
crossref_primary_10_1007_s11356_023_27137_4
crossref_primary_10_1016_j_jhazmat_2021_126421
crossref_primary_10_1016_j_chemosphere_2021_130830
crossref_primary_10_1016_j_heliyon_2021_e06315
crossref_primary_10_14710_jvsar_v4i2_14749
crossref_primary_10_1016_j_envadv_2022_100256
crossref_primary_10_3390_jcs7020059
crossref_primary_10_1016_j_chemosphere_2022_134942
crossref_primary_10_1016_j_clema_2024_100262
crossref_primary_10_1016_j_ijbiomac_2025_140356
crossref_primary_10_1007_s13762_023_05161_8
crossref_primary_10_2139_ssrn_3967449
crossref_primary_10_1016_j_colsurfa_2021_127198
crossref_primary_10_1007_s11356_023_31119_x
crossref_primary_10_1038_s41598_022_17901_w
crossref_primary_10_1016_j_envres_2024_119423
crossref_primary_10_1007_s11270_021_05130_2
crossref_primary_10_1007_s13399_021_01866_3
crossref_primary_10_1016_j_rser_2021_111791
crossref_primary_10_1038_s41598_022_15494_y
crossref_primary_10_1038_s41598_023_46913_3
crossref_primary_10_1007_s11356_022_18637_w
crossref_primary_10_1021_acs_langmuir_2c02693
crossref_primary_10_1016_j_cartre_2024_100441
crossref_primary_10_1039_D0MA00087F
crossref_primary_10_1007_s42452_020_3088_2
crossref_primary_10_1007_s11356_024_35151_3
crossref_primary_10_1016_j_jwpe_2020_101339
crossref_primary_10_1016_j_indcrop_2023_117234
crossref_primary_10_1007_s13762_024_05819_x
crossref_primary_10_1016_j_chemosphere_2024_143936
crossref_primary_10_26565_2312_4334_2024_3_59
crossref_primary_10_1016_j_jclepro_2023_138896
crossref_primary_10_1007_s11356_024_31889_y
crossref_primary_10_1016_j_jclepro_2021_130296
crossref_primary_10_1016_j_cej_2022_139809
crossref_primary_10_1007_s11356_019_05610_3
crossref_primary_10_1007_s10668_024_05238_5
crossref_primary_10_1016_j_jclepro_2021_126229
crossref_primary_10_1016_j_sajb_2024_10_014
crossref_primary_10_1016_j_jhazmat_2019_06_004
crossref_primary_10_1038_s41598_022_05652_7
crossref_primary_10_1016_j_molliq_2023_121386
crossref_primary_10_5004_dwt_2020_25187
crossref_primary_10_1016_j_jwpe_2021_102221
crossref_primary_10_3390_land12040866
crossref_primary_10_1016_j_jece_2023_111706
crossref_primary_10_1371_journal_pone_0278315
crossref_primary_10_1016_j_seppur_2024_128311
crossref_primary_10_5004_dwt_2022_28421
crossref_primary_10_1016_j_jhazmat_2023_131106
crossref_primary_10_5194_soil_10_487_2024
crossref_primary_10_2166_wst_2022_067
Cites_doi 10.1016/j.scitotenv.2016.03.248
10.1016/j.chemosphere.2013.10.071
10.1016/j.jhazmat.2006.11.028
10.1016/j.biortech.2014.11.077
10.1016/j.chemosphere.2013.03.009
10.1016/j.watres.2011.11.058
10.1016/j.biortech.2012.05.042
10.1016/j.watres.2017.04.014
10.1016/j.jiec.2015.10.007
10.1007/s11270-014-2275-4
10.1021/cr9603744
10.1016/S0960-8524(03)00147-0
10.1021/jf9044217
10.1021/es9031419
10.1016/j.biortech.2012.04.094
10.1080/10934529.2015.1047680
10.1016/j.jcis.2017.07.069
10.1002/etc.3023
10.1016/j.envpol.2011.07.023
10.1016/j.cej.2012.05.025
10.1016/j.jhazmat.2011.03.063
10.1080/19443994.2015.1095129
10.1016/j.jaap.2017.07.015
10.1177/0734242X15615698
10.1016/j.envpol.2017.07.004
10.1016/j.biortech.2018.04.032
10.1016/j.chemosphere.2015.06.079
10.1016/j.jcis.2015.05.043
10.1016/j.biortech.2010.02.052
10.1016/j.chemosphere.2015.05.093
10.1016/j.geoderma.2010.05.013
10.1007/s11356-017-1189-2
10.1007/s13399-013-0076-4
10.1016/j.biortech.2011.06.078
10.1021/es803092k
10.1016/j.chemosphere.2014.04.043
10.1016/j.biortech.2013.03.186
10.1016/j.jhazmat.2009.04.020
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2018.11.081
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 318
ExternalDocumentID 30476762
10_1016_j_chemosphere_2018_11_081
S004565351832188X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c410t-b76b862c6a3e4872e639f59c6e0b0e5c194bb2bd528c5bc7f39eb96d13cc62133
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Fri Jul 11 10:30:40 EDT 2025
Fri Jul 11 02:41:57 EDT 2025
Wed Feb 19 02:35:56 EST 2025
Thu Apr 24 22:54:16 EDT 2025
Tue Jul 01 02:33:34 EDT 2025
Fri Feb 23 02:48:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Competition
Cadmium
Nickel
Biochar
Mechanism
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-b76b862c6a3e4872e639f59c6e0b0e5c194bb2bd528c5bc7f39eb96d13cc62133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5395-4842
0000-0002-0071-6055
PMID 30476762
PQID 2138647331
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2189522007
proquest_miscellaneous_2138647331
pubmed_primary_30476762
crossref_primary_10_1016_j_chemosphere_2018_11_081
crossref_citationtrail_10_1016_j_chemosphere_2018_11_081
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_11_081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
2019-Mar
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Wang, Huang, Yan, Yang, Xiao, Li (bib21) 2015; 455
Cao, Ma, Gao, Harris (bib100) 2009; 43
Tran, You, Chao (bib36) 2016; 34
Lee, Park, Ahn, Chung (bib20) 2015; 226
Park, Ok, Kim, Cho, Heo, Delaune, Seo (bib30) 2016; 142
Uchimiya, Lima, Thomas Klasson, Chang, Wartelle, Rodgers (bib39) 2010; 58
Fu, Wang (bib11) 2011; 92
Sinha, Kumar, Singh (bib34) 2013; 3
Xu, Zhao, Sun, Gao, Wang, Jin, Zhang, Wang, Yan, Liu, Wu (bib43) 2014; 111
Kołodyńska, Wnętrzak, Leahy, Hayes, Kwapiński, Hubicki (bib18) 2012; 197
Keiluweit, Nico, Johnson, Kleber (bib15) 2010; 44
Xu, Cao, Zhao (bib44) 2013; 92
Kim, Shim, Kim, Hyun, Ryu, Park, Jung (bib17) 2013; 138
Shi, Jia, Chen, Wen, Du, Guo, Wang (bib32) 2009; 169
Jiang, Huang, Nguyen, Ok, Rudolph, Yang, Zhang (bib14) 2016; 142
Lima, Cestari, Adebayo (bib22) 2016; 57
Ding, Hu, Wan, Wang, Gao (bib10) 2016; 33
Liu, Fan (bib24) 2018; 25
Zhang, Wang, Yin, Peng, Tan, Liu, Tan, Wu (bib46) 2015; 153
Beesley, Morenojimenez, Gomezeyles, Harris, Robinson, Sizmur (bib3) 2011; 159
Cui, Fang, Yao, Li, Ni, Yang, He (bib6) 2016; 562
Ahmad, Lee, Dou, Mohan, Sung, Yang, Ok (bib1) 2012; 118
Han, Boateng, Qi, Lima, Chang (bib12) 2013; 118
Vilvanathan, Shanthakumar (bib40) 2017; 10
Ho, Mckay (bib13) 1998; 76B
Tran, You, Hosseini-Bandegharaei, Chao (bib37) 2017; 120
Uchimiya, Chang, Klasson (bib38) 2011; 190
Ma, Dougherty (bib26) 1997; 97
Tan, Liu, Gu, Zeng, Hu, Wang, Guo, Zeng, Sun (bib35) 2015; 34
Di Natale, Lancia, Molino, Musmarra (bib9) 2007; 145
Ma, Yang, Ma, Zhou, Luo, Liu, Wang (bib27) 2017; 127
Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib2) 2014; 99
Laird, Fleming, Davis, Horton, Wang, Karlen (bib19) 2010; 158
Mahdi, Yu, El Hanandeh (bib28) 2018; 6
Lu, Zhang, Yang, Huang, Wang, Qiu (bib25) 2012; 46
Wang, Huang, Liu, Zhang, Lai, Zeng, Cheng, Gong, Wan, Luo (bib41) 2018; 261
Kim, Kim, Cho, Choi (bib16) 2012; 118
Peng, Gao, Chu, Pan, Peng, Xing (bib31) 2017; 229
Shinogi, Kanri (bib33) 2003; 90
Cao, Harris (bib4) 2010; 101
Lima, Adebayo, Machado (bib23) 2015
Wang, Liu, Zheng, Li, Ngo, Guo, Liu, Chen, Xing (bib42) 2015; 177
Deng, Liu, Liu, Zeng, Tan, Huang, Tang, Wang, Hua, Yan (bib8) 2017; 506
Chen, Chen, Chen, Chen, Lehmann, McBride, Hay (bib5) 2011; 102
Park, Cho, Ok, Kim, Kang, Choi, Heo, DeLaune, Seo (bib29) 2015; 50
Wang (10.1016/j.chemosphere.2018.11.081_bib42) 2015; 177
Tran (10.1016/j.chemosphere.2018.11.081_bib36) 2016; 34
Shinogi (10.1016/j.chemosphere.2018.11.081_bib33) 2003; 90
Lima (10.1016/j.chemosphere.2018.11.081_bib23) 2015
Lu (10.1016/j.chemosphere.2018.11.081_bib25) 2012; 46
Ma (10.1016/j.chemosphere.2018.11.081_bib26) 1997; 97
Jiang (10.1016/j.chemosphere.2018.11.081_bib14) 2016; 142
Ma (10.1016/j.chemosphere.2018.11.081_bib27) 2017; 127
Zhang (10.1016/j.chemosphere.2018.11.081_bib46) 2015; 153
Deng (10.1016/j.chemosphere.2018.11.081_bib8) 2017; 506
Mahdi (10.1016/j.chemosphere.2018.11.081_bib28) 2018; 6
Park (10.1016/j.chemosphere.2018.11.081_bib30) 2016; 142
Kim (10.1016/j.chemosphere.2018.11.081_bib17) 2013; 138
Vilvanathan (10.1016/j.chemosphere.2018.11.081_bib40) 2017; 10
Cui (10.1016/j.chemosphere.2018.11.081_bib6) 2016; 562
Kim (10.1016/j.chemosphere.2018.11.081_bib16) 2012; 118
Xu (10.1016/j.chemosphere.2018.11.081_bib43) 2014; 111
Xu (10.1016/j.chemosphere.2018.11.081_bib44) 2013; 92
Tran (10.1016/j.chemosphere.2018.11.081_bib37) 2017; 120
Ahmad (10.1016/j.chemosphere.2018.11.081_bib2) 2014; 99
Han (10.1016/j.chemosphere.2018.11.081_bib12) 2013; 118
Keiluweit (10.1016/j.chemosphere.2018.11.081_bib15) 2010; 44
Ahmad (10.1016/j.chemosphere.2018.11.081_bib1) 2012; 118
Chen (10.1016/j.chemosphere.2018.11.081_bib5) 2011; 102
Fu (10.1016/j.chemosphere.2018.11.081_bib11) 2011; 92
Tan (10.1016/j.chemosphere.2018.11.081_bib35) 2015; 34
Uchimiya (10.1016/j.chemosphere.2018.11.081_bib39) 2010; 58
Uchimiya (10.1016/j.chemosphere.2018.11.081_bib38) 2011; 190
Cao (10.1016/j.chemosphere.2018.11.081_bib4) 2010; 101
Shi (10.1016/j.chemosphere.2018.11.081_bib32) 2009; 169
Di Natale (10.1016/j.chemosphere.2018.11.081_bib9) 2007; 145
Lee (10.1016/j.chemosphere.2018.11.081_bib20) 2015; 226
Sinha (10.1016/j.chemosphere.2018.11.081_bib34) 2013; 3
Li (10.1016/j.chemosphere.2018.11.081_bib21) 2015; 455
Wang (10.1016/j.chemosphere.2018.11.081_bib41) 2018; 261
Liu (10.1016/j.chemosphere.2018.11.081_bib24) 2018; 25
Park (10.1016/j.chemosphere.2018.11.081_bib29) 2015; 50
Cao (10.1016/j.chemosphere.2018.11.081_bib100) 2009; 43
Peng (10.1016/j.chemosphere.2018.11.081_bib31) 2017; 229
Laird (10.1016/j.chemosphere.2018.11.081_bib19) 2010; 158
Ding (10.1016/j.chemosphere.2018.11.081_bib10) 2016; 33
Beesley (10.1016/j.chemosphere.2018.11.081_bib3) 2011; 159
Lima (10.1016/j.chemosphere.2018.11.081_bib22) 2016; 57
Ho (10.1016/j.chemosphere.2018.11.081_bib13) 1998; 76B
Kołodyńska (10.1016/j.chemosphere.2018.11.081_bib18) 2012; 197
References_xml – volume: 101
  start-page: 5222
  year: 2010
  end-page: 5228
  ident: bib4
  article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation
  publication-title: Bioresour. Technol.
– volume: 145
  start-page: 381
  year: 2007
  end-page: 390
  ident: bib9
  article-title: Removal of chromium ionsform aqueous solutions by adsorption on activated carbon and char
  publication-title: J. Hazard.Mater.
– volume: 50
  start-page: 1194
  year: 2015
  end-page: 1204
  ident: bib29
  article-title: Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: batch and column experiment
  publication-title: J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng.
– volume: 120
  start-page: 88
  year: 2017
  end-page: 116
  ident: bib37
  article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review
  publication-title: Water Res.
– volume: 57
  start-page: 19566
  year: 2016
  end-page: 19571
  ident: bib22
  article-title: Comments on the paper: a critical review of the applicability of Avrami fractional kinetic equation in adsorption-based water treatment studies
  publication-title: Desalin. Water Treat.
– volume: 261
  start-page: 265
  year: 2018
  end-page: 271
  ident: bib41
  article-title: Investigating the adsorption behavior and the relative distribution of Cd(2+) sorption mechanisms on biochars by different feedstock
  publication-title: Bioresour. Technol.
– volume: 118
  start-page: 536
  year: 2012
  end-page: 544
  ident: bib1
  article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water
  publication-title: Bioresour. Technol.
– volume: 76B
  start-page: 332
  year: 1998
  end-page: 340
  ident: bib13
  article-title: A comparison of chemisorption kinetic models applied to pollutant removal on various sorben
  publication-title: Trans. Inst. Chem. Eng.
– volume: 455
  start-page: 261
  year: 2015
  end-page: 270
  ident: bib21
  article-title: Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 1171
  year: 2018
  end-page: 1181
  ident: bib28
  article-title: Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar
  publication-title: J. Environ. Chem. Eng.
– volume: 3
  start-page: 327
  year: 2013
  end-page: 335
  ident: bib34
  article-title: Production of biofuel and biochar by thermal pyrolysis of linseed seed
  publication-title: Biomass Convers. Biorefin.
– volume: 190
  start-page: 432
  year: 2011
  end-page: 441
  ident: bib38
  article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups
  publication-title: J. Hazard. Mater.
– volume: 158
  start-page: 443
  year: 2010
  end-page: 449
  ident: bib19
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
– volume: 58
  start-page: 5538
  year: 2010
  end-page: 5544
  ident: bib39
  article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil
  publication-title: J. Agric. Food Chem.
– volume: 153
  start-page: 68
  year: 2015
  end-page: 73
  ident: bib46
  article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)
  publication-title: J. Environ. Manag.
– volume: 226
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib20
  article-title: Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions
  publication-title: Water Air Soil Pollut.
– volume: 118
  start-page: 158
  year: 2012
  end-page: 162
  ident: bib16
  article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)
  publication-title: Bioresour. Technol.
– volume: 159
  start-page: 3269
  year: 2011
  end-page: 3282
  ident: bib3
  article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
– volume: 142
  start-page: 64
  year: 2016
  end-page: 71
  ident: bib14
  article-title: Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions
  publication-title: Chemosphere
– volume: 169
  start-page: 838
  year: 2009
  end-page: 846
  ident: bib32
  article-title: Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution
  publication-title: J. Hazard. Mater.
– volume: 99
  start-page: 19
  year: 2014
  end-page: 33
  ident: bib2
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
– volume: 138
  start-page: 266
  year: 2013
  end-page: 270
  ident: bib17
  article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures
  publication-title: Bioresour. Technol.
– start-page: 33
  year: 2015
  end-page: 69
  ident: bib23
  article-title: Kinetic and equilibrium models of adsorption
  publication-title: Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications
– volume: 562
  start-page: 517
  year: 2016
  end-page: 525
  ident: bib6
  article-title: Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar
  publication-title: Sci. Total Environ.
– volume: 34
  start-page: 129
  year: 2016
  end-page: 138
  ident: bib36
  article-title: Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar
  publication-title: Waste Manag. Res.
– volume: 92
  start-page: 407
  year: 2011
  end-page: 418
  ident: bib11
  article-title: Removal of heavy metal ions from wastewaters: a review
  publication-title: J. Environ. Manag.
– volume: 97
  start-page: 1
  year: 1997
  end-page: 22
  ident: bib26
  article-title: The cation-π interaction
  publication-title: Chem. Rev.
– volume: 177
  start-page: 308
  year: 2015
  end-page: 317
  ident: bib42
  article-title: Investigating the mechanisms of biochar's removal of lead from solution
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 3285
  year: 2009
  end-page: 3291
  ident: bib100
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
– volume: 118
  start-page: 196
  year: 2013
  end-page: 204
  ident: bib12
  article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties
  publication-title: J. Environ. Manag.
– volume: 46
  start-page: 854
  year: 2012
  end-page: 862
  ident: bib25
  article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar
  publication-title: Water Res.
– volume: 229
  start-page: 846
  year: 2017
  end-page: 853
  ident: bib31
  article-title: Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars
  publication-title: Environ. Pollut.
– volume: 34
  start-page: 1962
  year: 2015
  end-page: 1968
  ident: bib35
  article-title: Biochar amendment to lead-contaminated soil: effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice
  publication-title: Environ. Toxicol. Chem.
– volume: 92
  start-page: 955
  year: 2013
  end-page: 961
  ident: bib44
  article-title: Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars
  publication-title: Chemosphere
– volume: 142
  start-page: 77
  year: 2016
  end-page: 83
  ident: bib30
  article-title: Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions
  publication-title: Chemosphere
– volume: 102
  start-page: 8877
  year: 2011
  end-page: 8884
  ident: bib5
  article-title: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution
  publication-title: Bioresour. Technol.
– volume: 10
  start-page: 1
  year: 2017
  end-page: 15
  ident: bib40
  article-title: Ni(2+) and Co(2+) adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies
  publication-title: Environ. Technol.
– volume: 111
  start-page: 320
  year: 2014
  end-page: 326
  ident: bib43
  article-title: Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties
  publication-title: Chemosphere
– volume: 127
  start-page: 350
  year: 2017
  end-page: 359
  ident: bib27
  article-title: Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 90
  start-page: 241
  year: 2003
  end-page: 247
  ident: bib33
  article-title: Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products
  publication-title: Bioresour. Technol.
– volume: 44
  start-page: 1247
  year: 2010
  end-page: 1253
  ident: bib15
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 25
  start-page: 8688
  year: 2018
  end-page: 8700
  ident: bib24
  article-title: Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 506
  start-page: 355
  year: 2017
  end-page: 364
  ident: bib8
  article-title: Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar
  publication-title: J. Colloid Interface Sci.
– volume: 33
  start-page: 239
  year: 2016
  end-page: 245
  ident: bib10
  article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests
  publication-title: J. Ind. Eng. Chem.
– volume: 197
  start-page: 295
  year: 2012
  end-page: 305
  ident: bib18
  article-title: Kinetic and adsorptive characterization of biochar in metal ions removal
  publication-title: Chem. Eng. J.
– volume: 562
  start-page: 517
  year: 2016
  ident: 10.1016/j.chemosphere.2018.11.081_bib6
  article-title: Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.03.248
– volume: 76B
  start-page: 332
  year: 1998
  ident: 10.1016/j.chemosphere.2018.11.081_bib13
  article-title: A comparison of chemisorption kinetic models applied to pollutant removal on various sorben
  publication-title: Trans. Inst. Chem. Eng.
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.chemosphere.2018.11.081_bib2
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 145
  start-page: 381
  year: 2007
  ident: 10.1016/j.chemosphere.2018.11.081_bib9
  article-title: Removal of chromium ionsform aqueous solutions by adsorption on activated carbon and char
  publication-title: J. Hazard.Mater.
  doi: 10.1016/j.jhazmat.2006.11.028
– volume: 177
  start-page: 308
  year: 2015
  ident: 10.1016/j.chemosphere.2018.11.081_bib42
  article-title: Investigating the mechanisms of biochar's removal of lead from solution
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.11.077
– volume: 92
  start-page: 955
  year: 2013
  ident: 10.1016/j.chemosphere.2018.11.081_bib44
  article-title: Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.03.009
– volume: 46
  start-page: 854
  year: 2012
  ident: 10.1016/j.chemosphere.2018.11.081_bib25
  article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.11.058
– volume: 118
  start-page: 536
  year: 2012
  ident: 10.1016/j.chemosphere.2018.11.081_bib1
  article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.05.042
– volume: 120
  start-page: 88
  year: 2017
  ident: 10.1016/j.chemosphere.2018.11.081_bib37
  article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.04.014
– volume: 153
  start-page: 68
  year: 2015
  ident: 10.1016/j.chemosphere.2018.11.081_bib46
  article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)
  publication-title: J. Environ. Manag.
– volume: 33
  start-page: 239
  year: 2016
  ident: 10.1016/j.chemosphere.2018.11.081_bib10
  article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.10.007
– volume: 226
  start-page: 1
  year: 2015
  ident: 10.1016/j.chemosphere.2018.11.081_bib20
  article-title: Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-014-2275-4
– volume: 97
  start-page: 1
  year: 1997
  ident: 10.1016/j.chemosphere.2018.11.081_bib26
  article-title: The cation-π interaction
  publication-title: Chem. Rev.
  doi: 10.1021/cr9603744
– volume: 90
  start-page: 241
  year: 2003
  ident: 10.1016/j.chemosphere.2018.11.081_bib33
  article-title: Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(03)00147-0
– volume: 58
  start-page: 5538
  year: 2010
  ident: 10.1016/j.chemosphere.2018.11.081_bib39
  article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9044217
– volume: 44
  start-page: 1247
  year: 2010
  ident: 10.1016/j.chemosphere.2018.11.081_bib15
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 118
  start-page: 158
  year: 2012
  ident: 10.1016/j.chemosphere.2018.11.081_bib16
  article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.04.094
– volume: 50
  start-page: 1194
  year: 2015
  ident: 10.1016/j.chemosphere.2018.11.081_bib29
  article-title: Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: batch and column experiment
  publication-title: J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng.
  doi: 10.1080/10934529.2015.1047680
– volume: 506
  start-page: 355
  year: 2017
  ident: 10.1016/j.chemosphere.2018.11.081_bib8
  article-title: Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.07.069
– volume: 34
  start-page: 1962
  year: 2015
  ident: 10.1016/j.chemosphere.2018.11.081_bib35
  article-title: Biochar amendment to lead-contaminated soil: effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.3023
– volume: 159
  start-page: 3269
  year: 2011
  ident: 10.1016/j.chemosphere.2018.11.081_bib3
  article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.07.023
– volume: 197
  start-page: 295
  year: 2012
  ident: 10.1016/j.chemosphere.2018.11.081_bib18
  article-title: Kinetic and adsorptive characterization of biochar in metal ions removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.05.025
– volume: 190
  start-page: 432
  year: 2011
  ident: 10.1016/j.chemosphere.2018.11.081_bib38
  article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.03.063
– volume: 57
  start-page: 19566
  year: 2016
  ident: 10.1016/j.chemosphere.2018.11.081_bib22
  article-title: Comments on the paper: a critical review of the applicability of Avrami fractional kinetic equation in adsorption-based water treatment studies
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2015.1095129
– volume: 127
  start-page: 350
  year: 2017
  ident: 10.1016/j.chemosphere.2018.11.081_bib27
  article-title: Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2017.07.015
– volume: 6
  start-page: 1171
  year: 2018
  ident: 10.1016/j.chemosphere.2018.11.081_bib28
  article-title: Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar
  publication-title: J. Environ. Chem. Eng.
– volume: 34
  start-page: 129
  year: 2016
  ident: 10.1016/j.chemosphere.2018.11.081_bib36
  article-title: Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar
  publication-title: Waste Manag. Res.
  doi: 10.1177/0734242X15615698
– volume: 229
  start-page: 846
  year: 2017
  ident: 10.1016/j.chemosphere.2018.11.081_bib31
  article-title: Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.07.004
– volume: 261
  start-page: 265
  year: 2018
  ident: 10.1016/j.chemosphere.2018.11.081_bib41
  article-title: Investigating the adsorption behavior and the relative distribution of Cd(2+) sorption mechanisms on biochars by different feedstock
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.04.032
– volume: 142
  start-page: 64
  year: 2016
  ident: 10.1016/j.chemosphere.2018.11.081_bib14
  article-title: Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.06.079
– volume: 455
  start-page: 261
  year: 2015
  ident: 10.1016/j.chemosphere.2018.11.081_bib21
  article-title: Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.05.043
– volume: 101
  start-page: 5222
  year: 2010
  ident: 10.1016/j.chemosphere.2018.11.081_bib4
  article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.052
– volume: 142
  start-page: 77
  year: 2016
  ident: 10.1016/j.chemosphere.2018.11.081_bib30
  article-title: Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.093
– volume: 158
  start-page: 443
  year: 2010
  ident: 10.1016/j.chemosphere.2018.11.081_bib19
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.013
– volume: 25
  start-page: 8688
  year: 2018
  ident: 10.1016/j.chemosphere.2018.11.081_bib24
  article-title: Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-017-1189-2
– volume: 3
  start-page: 327
  year: 2013
  ident: 10.1016/j.chemosphere.2018.11.081_bib34
  article-title: Production of biofuel and biochar by thermal pyrolysis of linseed seed
  publication-title: Biomass Convers. Biorefin.
  doi: 10.1007/s13399-013-0076-4
– volume: 102
  start-page: 8877
  year: 2011
  ident: 10.1016/j.chemosphere.2018.11.081_bib5
  article-title: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.06.078
– volume: 118
  start-page: 196
  year: 2013
  ident: 10.1016/j.chemosphere.2018.11.081_bib12
  article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties
  publication-title: J. Environ. Manag.
– volume: 43
  start-page: 3285
  year: 2009
  ident: 10.1016/j.chemosphere.2018.11.081_bib100
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803092k
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2018.11.081_bib40
  article-title: Ni(2+) and Co(2+) adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies
  publication-title: Environ. Technol.
– volume: 111
  start-page: 320
  year: 2014
  ident: 10.1016/j.chemosphere.2018.11.081_bib43
  article-title: Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.04.043
– volume: 138
  start-page: 266
  year: 2013
  ident: 10.1016/j.chemosphere.2018.11.081_bib17
  article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.186
– start-page: 33
  year: 2015
  ident: 10.1016/j.chemosphere.2018.11.081_bib23
  article-title: Kinetic and equilibrium models of adsorption
– volume: 92
  start-page: 407
  year: 2011
  ident: 10.1016/j.chemosphere.2018.11.081_bib11
  article-title: Removal of heavy metal ions from wastewaters: a review
  publication-title: J. Environ. Manag.
– volume: 169
  start-page: 838
  year: 2009
  ident: 10.1016/j.chemosphere.2018.11.081_bib32
  article-title: Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.04.020
SSID ssj0001659
Score 2.6196077
Snippet Adsorption mechanisms and competition between Cd2+ and Ni2+ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were...
Adsorption mechanisms and competition between Cd and Ni for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were investigated...
Adsorption mechanisms and competition between Cd²⁺ and Ni²⁺ for adsorption by rice straw biochars prepared at 400 °C (RB400) and 700 °C (RB700) were...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 308
SubjectTerms Adsorption
binding sites
Biochar
Cadmium
Cadmium - chemistry
Cadmium - isolation & purification
cation exchange
Charcoal - chemistry
Competition
Mechanism
metal ions
Nickel
Nickel - chemistry
Nickel - isolation & purification
Oryza - chemistry
Plant Stems - chemistry
rice straw
soil
sorption isotherms
Water Pollutants, Chemical - chemistry
Water Pollutants, Chemical - isolation & purification
Title Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems
URI https://dx.doi.org/10.1016/j.chemosphere.2018.11.081
https://www.ncbi.nlm.nih.gov/pubmed/30476762
https://www.proquest.com/docview/2138647331
https://www.proquest.com/docview/2189522007
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhpY9LadM23T6CAr0qsWxJlqCXZUnYtjSnBvZmJFkGl7Ud1ruEXPrbOyPbSXtICfRoWwOyZjTzjTQPQj45ncjKaQtbXGdMpLllNqsCs7YyldFe2Hg08P1CLS_F15Vc7ZHFlAuDYZWj7h90etTW45vTcTVPr-oac3wRjWQShZJrvcIMdpGjlJ_8ugvz4EoOEFhIhqOfkOO7GC9Yl6brMX8fK2ZyfRILevL7bNR9GDTaovMX5PkIIul8mOdLshfaA_J0MfVuOyCPz2Ix6ptXZDsv-24T9QIdU_J3G2rbkjYBk37rvulpV1Fvy6beNfFLW8PWXlOgwIpDFA9DrqmrO8zQ6mndUjxfWAcWB7uY0MuaACieDnWh-9fk8vzsx2LJxk4LzAuebJnLlQPXxiubBfBg0gC4pZLGq5C4JEjPjXAudaVMtZfO51VmgjOq5Jn3KgU39w3Zb7s2vCXUJroMwvHM5pVIg3SW-1T4UpmS5yovZ0RPa1v4sQw5dsNYF1O82c_iD7YUyBZwUwpgy4ykt6RXQy2OhxB9nhhY_CVYBdiMh5AfT0wvgId4m2Lb0O36An5bK4EtL_81RhsAuIDDZuRwkJjbmeN9pwJT9O7_JviePIMnM4TFfSD7280ufASctHVHcSMckUfzL9-WF78BEOsVzw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUQqKUXRGlLt6WtkdpjIHZsx5HggChoKR8nkPbm2o4jpdokaLMrxKV_qn-wYyeB9kCFVHGNPZLjsWee7Zk3CH02MuaFkRq2uEwiRlMd6aRwkdZFVmTSMh2uBs4vxPiKfZvwyRL6NeTC-LDK3vZ3Nj1Y6_7Lbj-bu9dl6XN8PRpJuF-URMpJH1l56m5v4NzW7p98BSV_ofT46PJwHPWlBSLLSDyPTCoMYHkrdOIAslMHjrrgmRUuNrHjFo72xlCTcyotNzYtksyZTOQksVZQ4m9Bwe6vMDAXvmzCzs_7uBIieIe5GY_88J6j7fugMlBE1bSeMMBTdBK5ExhEyUNO8SHQG5zf8Tpa61ErPugm5iVacvUGWj0cisVtoGdHgf369hWaH-RtMwuGCPccAIsZ1nWOK-ezjMu2anFTYKvzqlxUoaUuwZZMMUh4iiPsb19usCkbnxLW4rLG_kJj6qLQ2YQM4qhycGzAHRF1-xpdPcn8v0HLdVO7twjrWOaOGZLotGDUcaOJpczmIstJKtJ8hOQwt8r2vOe-_MZUDQFuP9QfalFeLXAuUqCWEaJ3otcd-cdjhPYGBaq_VrICJ_UY8e1B6Qp06J9vdO2aRavgt6Vgvsbmv_rIDBA1AL8R2uxWzN3I_QOrAN_37v8G-Amtji_Pz9TZycXpe_QCWrIuJm8LLc9nC_cBQNrcfAybAqPvT70LfwMcl1Gb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+behaviour+and+mechanisms+of+cadmium+and+nickel+on+rice+straw+biochars+in+single-+and+binary-metal+systems&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Deng%2C+Yiyi&rft.au=Huang%2C+Shuang&rft.au=Laird%2C+David+A&rft.au=Wang%2C+Xiugui&rft.date=2019-03-01&rft.issn=1879-1298&rft.eissn=1879-1298&rft.volume=218&rft.spage=308&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.11.081&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon