Coexistence of large out-of-plane and in-plane piezoelectricity in 2D monolayer Li-based ternary chalcogenides LiMX2
•The out-of-plane and in-plane piezoelectricity in 2D Li-based ternary chalcogenides LiMX2 are investigated.•We propose a simple correlation between in-plane piezoelectricity and atomic polarizability.•The out-of-plane piezoelectric coefficients d31 of LiMX2 monolayers are larger than those of most...
Saved in:
Published in | Results in physics Vol. 26; p. 104398 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-3797 2211-3797 |
DOI | 10.1016/j.rinp.2021.104398 |
Cover
Loading…
Abstract | •The out-of-plane and in-plane piezoelectricity in 2D Li-based ternary chalcogenides LiMX2 are investigated.•We propose a simple correlation between in-plane piezoelectricity and atomic polarizability.•The out-of-plane piezoelectric coefficients d31 of LiMX2 monolayers are larger than those of most reported 2D materials.
Two-dimensional (2D) piezoelectric materials that can achieve conversion between mechanical and electrical energy are of notable interest for functional materials. However, most 2D materials have only in-plane piezoelectricity, which limits their applications in vertically integrated nanoelectromechanical systems. Here, we employ first-principles calculations to predict properties of a family of piezoelectric materials—Li-based ternary chalcogenides LiMX2 (M = Al, Ga, and In; X = S, Se, and Te). These materials exhibit the coexistence of intrinsic out-of-plane and in-plane piezoelectricity with coefficients d11 = 1.48–8.66 pm/V and d31 = 0.24–0.83 pm/V, respectively. The out-of-plane piezoelectric coefficients d31 of LiAlSe2, LiGaTe2, and LiAlTe2 in particular are as high as 0.61, 0.70, and 0.83 pm/V, respectively, much larger than those of most reported 2D materials. This enhancement can be attributed to the unique double-buckled stacking structure of these LiMX2 monolayers. It is also found that the in-plane piezoelectricity is highly dependent on the ratio of anion and cation polarizabilities, whereas the out-of-plane piezoelectricity exhibits a complicated variation trend with respect to the order of atomic number. The coexistence of large out-of-plane and in-plane piezoelectricity endows LiMX2 monolayers with potential applications in both directional and nondirectional piezoelectric devices. |
---|---|
AbstractList | Two-dimensional (2D) piezoelectric materials that can achieve conversion between mechanical and electrical energy are of notable interest for functional materials. However, most 2D materials have only in-plane piezoelectricity, which limits their applications in vertically integrated nanoelectromechanical systems. Here, we employ first-principles calculations to predict properties of a family of piezoelectric materials—Li-based ternary chalcogenides LiMX2 (M = Al, Ga, and In; X = S, Se, and Te). These materials exhibit the coexistence of intrinsic out-of-plane and in-plane piezoelectricity with coefficients d11 = 1.48–8.66 pm/V and d31 = 0.24–0.83 pm/V, respectively. The out-of-plane piezoelectric coefficients d31 of LiAlSe2, LiGaTe2, and LiAlTe2 in particular are as high as 0.61, 0.70, and 0.83 pm/V, respectively, much larger than those of most reported 2D materials. This enhancement can be attributed to the unique double-buckled stacking structure of these LiMX2 monolayers. It is also found that the in-plane piezoelectricity is highly dependent on the ratio of anion and cation polarizabilities, whereas the out-of-plane piezoelectricity exhibits a complicated variation trend with respect to the order of atomic number. The coexistence of large out-of-plane and in-plane piezoelectricity endows LiMX2 monolayers with potential applications in both directional and nondirectional piezoelectric devices. •The out-of-plane and in-plane piezoelectricity in 2D Li-based ternary chalcogenides LiMX2 are investigated.•We propose a simple correlation between in-plane piezoelectricity and atomic polarizability.•The out-of-plane piezoelectric coefficients d31 of LiMX2 monolayers are larger than those of most reported 2D materials. Two-dimensional (2D) piezoelectric materials that can achieve conversion between mechanical and electrical energy are of notable interest for functional materials. However, most 2D materials have only in-plane piezoelectricity, which limits their applications in vertically integrated nanoelectromechanical systems. Here, we employ first-principles calculations to predict properties of a family of piezoelectric materials—Li-based ternary chalcogenides LiMX2 (M = Al, Ga, and In; X = S, Se, and Te). These materials exhibit the coexistence of intrinsic out-of-plane and in-plane piezoelectricity with coefficients d11 = 1.48–8.66 pm/V and d31 = 0.24–0.83 pm/V, respectively. The out-of-plane piezoelectric coefficients d31 of LiAlSe2, LiGaTe2, and LiAlTe2 in particular are as high as 0.61, 0.70, and 0.83 pm/V, respectively, much larger than those of most reported 2D materials. This enhancement can be attributed to the unique double-buckled stacking structure of these LiMX2 monolayers. It is also found that the in-plane piezoelectricity is highly dependent on the ratio of anion and cation polarizabilities, whereas the out-of-plane piezoelectricity exhibits a complicated variation trend with respect to the order of atomic number. The coexistence of large out-of-plane and in-plane piezoelectricity endows LiMX2 monolayers with potential applications in both directional and nondirectional piezoelectric devices. |
ArticleNumber | 104398 |
Author | Yin, Huabing Wang, Bing Liu, Siyuan Chen, Weizhen Liu, Chang |
Author_xml | – sequence: 1 givenname: Siyuan surname: Liu fullname: Liu, Siyuan – sequence: 2 givenname: Weizhen surname: Chen fullname: Chen, Weizhen – sequence: 3 givenname: Chang surname: Liu fullname: Liu, Chang email: cliu@vip.henu.edu.cn – sequence: 4 givenname: Bing surname: Wang fullname: Wang, Bing – sequence: 5 givenname: Huabing surname: Yin fullname: Yin, Huabing email: yhb@henu.edu.cn |
BookMark | eNp9kc9qGzEQxkVJoUmaF-hJL7COpJV2LeiluEkacMklhd7ErDRyZTaSkdQQ9-kr1ymEHHKaf_w-ZuY7IycxRSTkE2cLzvhwuV3kEHcLwQRvDdnr5TtyKgTnXT_q8eRF_oFclLJlrFFSKc5PSV0lfAqlYrRIk6cz5E1Lftcu-W43Q0QK0dEQn4tdwD8JZ7Q1Bxvqvk2o-EofUkwz7DHTdegmKOhoxRwh76n9BbNNG4zBYWnj7z_FR_Lew1zw4jmekx_XV_erb9367uZ29WXdWclZ7aZhhNGi71kP2gvrh94qB73TS-20VsPI3OAYV0IpmMQ4cL20KCXApLjlvj8nt0ddl2Brdjk8tIVMgmD-NVLeGMg12BkNCqfHySqGmknp9QRukkoPkg-j4jA1reVRy-ZUSkZv2vlQQ4o1Q5gNZ-ZghtmagxnmYIY5mtFQ8Qr9v8qb0OcjhO1BjwGzKTYcXHIht--3C8Jb-F_f9KYd |
CitedBy_id | crossref_primary_10_1007_s40843_022_2227_3 crossref_primary_10_1002_qua_27117 crossref_primary_10_1088_1361_6528_ac2fe7 crossref_primary_10_1016_j_mtphys_2023_101001 crossref_primary_10_1039_D2CP00918H crossref_primary_10_1016_j_mssp_2024_108895 crossref_primary_10_1016_j_ssc_2024_115640 crossref_primary_10_1039_D3CP01523H crossref_primary_10_1063_5_0063802 crossref_primary_10_3390_ma16083107 crossref_primary_10_1016_j_mssp_2024_109087 crossref_primary_10_1016_j_vacuum_2024_113023 crossref_primary_10_1103_PhysRevMaterials_6_104001 crossref_primary_10_1016_j_cossms_2023_101134 crossref_primary_10_1039_D1NJ05096F crossref_primary_10_1016_j_matt_2023_12_031 crossref_primary_10_1016_j_rinp_2021_104960 crossref_primary_10_3390_cryst14080708 |
Cites_doi | 10.1103/PhysRevB.48.4442 10.1021/jz3012436 10.1021/acsnano.8b02152 10.1016/j.cjph.2017.02.018 10.1016/j.mssp.2014.12.021 10.1088/1361-6463/ab813a 10.1021/acs.jpcc.7b08822 10.1063/1.4981877 10.1103/PhysRevB.47.558 10.1063/5.0021056 10.1016/j.carbon.2018.01.008 10.1016/j.ijleo.2016.01.188 10.1039/C8TA08781D 10.1088/1361-6641/aa5cfb 10.1063/1.4934750 10.1016/j.mssp.2015.05.016 10.1063/1.4862152 10.1007/BF01313055 10.12693/APhysPolA.125.1110 10.1039/D0CP06116F 10.1103/PhysRevB.100.045415 10.1016/j.commatsci.2005.08.005 10.1103/PhysRevB.72.035105 10.1063/1.5097425 10.1038/nature13792 10.1016/j.optmat.2017.01.049 10.1179/095066061790425893 10.1021/acs.jpcc.6b03543 10.1007/s12274-015-0878-8 10.1166/mex.2014.1199 10.1002/adfm.202005158 10.1126/science.1102896 10.1039/C7CP05669A 10.1039/C9TA10466F 10.1002/pssb.201900131 10.1103/PhysRevB.13.5188 10.1002/aelm.201900089 10.1103/PhysRevB.47.1651 10.1007/s40820-020-00439-9 10.1002/pssr.202000321 10.1002/adfm.201606834 10.1016/j.optmat.2019.01.073 10.1103/PhysRevB.90.224104 10.1063/1.5135950 10.1063/1.5134960 10.1063/1.1564060 10.1039/C7NR00455A 10.1021/acsnano.6b03458 10.1063/1.4983781 10.1039/D0RA03280H 10.1038/s41565-017-0035-5 10.1016/j.mssp.2020.105085 10.1103/PhysRevB.85.125428 10.1021/nl501793a 10.1126/science.1157996 10.1021/acsami.9b12187 10.1007/s11664-017-5452-6 10.1021/acsnano.5b03394 10.1002/pssr.201600412 10.1080/00268976.2018.1535143 10.1021/acs.jpclett.9b02340 10.1021/nn204198g 10.1016/j.physb.2013.07.014 10.1016/j.physb.2011.09.127 10.1039/D0MH00183J 10.1063/1.1659428 10.1007/s10948-017-4393-x 10.1016/S0022-3697(99)00273-5 10.1103/PhysRevB.65.104104 10.1038/srep42357 10.1002/anie.201703657 10.1007/s10853-021-05834-0 10.1063/5.0043731 10.1021/acsami.7b13179 10.1103/PhysRevB.59.1758 10.12693/APhysPolA.125.54 10.1007/s12034-019-1978-y 10.1103/PhysRevB.59.7413 10.1021/am403205v 10.1021/nn901805g |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2021.104398 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_e2d97bc50e9044f9badb4596416751ab 10_1016_j_rinp_2021_104398 S2211379721005209 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-b67a7cef303a9f2cf63c5da3d989d995670d6d015255ab276198ce44aab51c1f3 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:32:09 EDT 2025 Tue Jul 01 02:27:40 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Tue Jul 25 20:58:42 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | First-principles calculations In-plane piezoelectricity Out-of-plane piezoelectricity 2D materials Li-based ternary chalcogenides |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-b67a7cef303a9f2cf63c5da3d989d995670d6d015255ab276198ce44aab51c1f3 |
OpenAccessLink | https://doaj.org/article/e2d97bc50e9044f9badb4596416751ab |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2d97bc50e9044f9badb4596416751ab crossref_citationtrail_10_1016_j_rinp_2021_104398 crossref_primary_10_1016_j_rinp_2021_104398 elsevier_sciencedirect_doi_10_1016_j_rinp_2021_104398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Seddik, Khenata, Bouhemadou, Guechi, Sayede, Varshney (b0210) 2013; 428 Wang, Yuan, Li, Shi, Wang (b0065) 2017; 9 Vanderbilt (b0310) 2000; 61 Yin, Liu, Zheng, Wang, Ren (b0080) 2019; 114 Lee, Lee, Park, Hyeon, Jeong, Park (b0135) 2019; 11 J. Zou, S. Wu, Y. Liu, Y. Sun, Y. Cao, J.-P. Hsu, A. T. Shen Wee and J. Jiang, Carbon, 2018, 130, 652-663. Fei, Li, Li, Yang (b0110) 2015; 107 Nye (b0275) 1985 Birkholz (b0380) 1995; 96 Hu, Chang, Fei, Snyder, Wang (b0050) 2010; 4 Guo, Guo, Liu, Quan (b0165) 2020; 127 Wang, Ji, Zhang, Li, Zhang, Wang (b0060) 2017; 110 Bouchenafa, Benmakhlouf, Sidoumou, Bouhemadou, Maabed, Halit (b0175) 2020; 114 Al-Douri, Hashim (b0205) 2014; 6 Blakslee, Proctor, Seldin, Spence, Weng (b0365) 1970; 41 Guo, Zhou, Bai, Zhao (b0160) 2017; 110 Belhachemi, Abid, Al-Douri, Sehil, Bouhemadou, Ameri (b0185) 2017; 55 Wu, Wang, Li, Zhang, Lin, Niu (b0140) 2014; 514 Vanderbilt, King-Smith (b0305) 1993; 48 Yin, Zheng, Gao, Wang, Ma (b0150) 2017; 19 Lee, Wei, Kysar, Hone (b0350) 2008; 321 Gao, Gao (b0130) 2017; 11 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos (b0005) 2004; 306 Xu, Li, He, Li, Ouyang, Zhang (b0125) 2020; 116 Xiao, Luo, Xu (b0400) 2020; 53 Schwerdtfeger, Nagle (b0410) 2019; 117 Tao, Ji, Xu, Islam, Li, Chen (b0045) 2017; 56 Sevik, Çakır, Gülseren, Peeters (b0100) 2016; 120 Benalia, Merabet, Rached, Al-Douri, Abidri, Khenata (b0240) 2015; 31 Mounet, Gibertini, Schwaller, Campi, Merkys, Marrazzo (b0270) 2018; 13 Al-Douri, Ameri, Bouhemadou, Batoo (b0230) 2019; 256 Kresse, Joubert (b0285) 1999; 59 Zhang, Meguid (b0375) 2017; 32 Shi, Yin, Jiang, Chen, Zheng, Ren (b0390) 2021; 23 Tu, Guo, Zhang, Hu, Zhang, Ma (b0415) 2020; 30 Xu, Wang, Zheng, Wu, Xu (b0090) 2019; 10 Jiang, Yin, Li, Liu, Shi, Yan (b0170) 2020; 14 Ong, Reed (b0145) 2012; 6 Song, Li, Zhou, Zhang, Li, Li (b0395) 2021; 118 Li, Ji, Hu, Zhang, Yan, Appl (b0055) 2017; 9 Le Page, Saxe (b0335) 2002; 65 Xue, Zhang, Hu, Hsu, Han, Leung (b0095) 2018; 12 Dimple, Jena, Rawat, Ahammed, Mohanta, De Sarkar (b0405) 2018; 6 Ameri, Mired, Ameri, Al-Douri (b0200) 2014; 4 Chen, Yin, Jiang, Liu, Xu, Wang (b0315) 2021; 56 Al-Douri, Baaziz, Charifi, Reshak (b0215) 2012; 407 King-Smith, Vanderbilt (b0385) 1993; 47 Li, Shen, Wang, Zhang, Qi, Zhang (b0010) 2020; 12 Lavrentyev, Gabrelian, Vu, Ananchenko, Isaenko, Yelisseyev (b0255) 2017; 66 Andrew, Mapasha, Ukpong, Chetty (b0355) 2012; 85 Liu, Yan, Chen, Fan, Sun, Suh (b0360) 2014; 14 Ameri, Mesbah, Al-Douri, Bouhafs, Varshney, Ameri (b0245) 2014; 125 Boucetta, Zegrar (b0320) 2014; 125 Belhachi, Lazreg, Dridi, Al-Douri (b0235) 2018; 31 Badi, Al-Douri, Khasim (b0225) 2019; 89 M. r. Kamel, M. Ameri, I. Ameri, K. Bidai, A. Zaoui, D. Bensaid and Y. Al-Douri, Optik, 2016, 127, 4559-4573. Vu, Lavrentyev, Gabrelian, Vo, Khang, Isaenko (b0250) 2020; 10 Hammer, Hansen, Nørskov (b0290) 1999; 59 Touam, Belghit, Mahdjoubi, Megdoud, Meradji, Khan (b0330) 2020; 43 Ren, Li, Huang, Sang, Qiao, Qi (b0020) 2017; 27 Zheng, Chen, Huang, Zhao, Lu, Chen (b0025) 2013; 5 Al-Douri, Khachai, Khenata (b0195) 2015; 39 Blonsky, Zhuang, Singh, Hennig (b0115) 2015; 9 Du, Zhang, Guo, Chen, Zhu, Hu (b0030) 2017; 7 Isaenko, Yelisseyev, Lobanov, Krinitsin, Petrov, Zondy (b0260) 2006; 352 Yin, Gao, Zheng, Wang, Ma (b0120) 2017; 121 Li, Li (b0105) 2015; 8 Wang, Zhang, Zhang, Yuan, Guo, Dong (b0075) 2020; 7 Yagmurcukardes, Sevik, Peeters (b0155) 2019; 100 Liu, Sun, Singh, Zhang (b0265) 2019; 5 Boudiaf, Bouhemadou, Boudrifa, Haddadi, Saoud, Khenata (b0180) 2017; 46 Benkabou, Bouafia, Sahli, Abidri, Ameri, Hiadsi (b0190) 2016; 54 Mouhat, Coudert (b0345) 2014; 90 Kresse, Hafner (b0280) 1993; 47 Monkhorst, Pack (b0295) 1976; 13 Duerloo, Ong, Reed (b0085) 2012; 3 Rached, Rabah, Benkhettou, Khenata, Soudini, Al-Douri (b0220) 2006; 37 KÖSter, Franz (b0370) 1961; 6 Guo, Xu, Gong, Shen, Lu, Qiu (b0015) 2016; 10 Wu, Vanderbilt, Hamann (b0340) 2005; 72 Fan, Song, Qi, Ma, Zhao (b0040) 2019; 7 Heyd, Scuseria, Ernzerhof (b0300) 2003; 118 Liu, Fu, Yin, Zhang, Dong (b0070) 2020; 117 Boudiaf (10.1016/j.rinp.2021.104398_b0180) 2017; 46 Tao (10.1016/j.rinp.2021.104398_b0045) 2017; 56 Ameri (10.1016/j.rinp.2021.104398_b0245) 2014; 125 10.1016/j.rinp.2021.104398_b0325 Birkholz (10.1016/j.rinp.2021.104398_b0380) 1995; 96 Hu (10.1016/j.rinp.2021.104398_b0050) 2010; 4 Xiao (10.1016/j.rinp.2021.104398_b0400) 2020; 53 Jiang (10.1016/j.rinp.2021.104398_b0170) 2020; 14 Seddik (10.1016/j.rinp.2021.104398_b0210) 2013; 428 Badi (10.1016/j.rinp.2021.104398_b0225) 2019; 89 Guo (10.1016/j.rinp.2021.104398_b0015) 2016; 10 Dimple (10.1016/j.rinp.2021.104398_b0405) 2018; 6 Li (10.1016/j.rinp.2021.104398_b0105) 2015; 8 Tu (10.1016/j.rinp.2021.104398_b0415) 2020; 30 Wu (10.1016/j.rinp.2021.104398_b0340) 2005; 72 Shi (10.1016/j.rinp.2021.104398_b0390) 2021; 23 Du (10.1016/j.rinp.2021.104398_b0030) 2017; 7 Duerloo (10.1016/j.rinp.2021.104398_b0085) 2012; 3 Xu (10.1016/j.rinp.2021.104398_b0090) 2019; 10 Ong (10.1016/j.rinp.2021.104398_b0145) 2012; 6 Monkhorst (10.1016/j.rinp.2021.104398_b0295) 1976; 13 Le Page (10.1016/j.rinp.2021.104398_b0335) 2002; 65 Ameri (10.1016/j.rinp.2021.104398_b0200) 2014; 4 Al-Douri (10.1016/j.rinp.2021.104398_b0205) 2014; 6 Mouhat (10.1016/j.rinp.2021.104398_b0345) 2014; 90 Blonsky (10.1016/j.rinp.2021.104398_b0115) 2015; 9 Yin (10.1016/j.rinp.2021.104398_b0150) 2017; 19 Belhachi (10.1016/j.rinp.2021.104398_b0235) 2018; 31 Song (10.1016/j.rinp.2021.104398_b0395) 2021; 118 Gao (10.1016/j.rinp.2021.104398_b0130) 2017; 11 Benkabou (10.1016/j.rinp.2021.104398_b0190) 2016; 54 Lee (10.1016/j.rinp.2021.104398_b0135) 2019; 11 Zhang (10.1016/j.rinp.2021.104398_b0375) 2017; 32 Guo (10.1016/j.rinp.2021.104398_b0165) 2020; 127 Yin (10.1016/j.rinp.2021.104398_b0080) 2019; 114 Wang (10.1016/j.rinp.2021.104398_b0075) 2020; 7 Hammer (10.1016/j.rinp.2021.104398_b0290) 1999; 59 Isaenko (10.1016/j.rinp.2021.104398_b0260) 2006; 352 Fei (10.1016/j.rinp.2021.104398_b0110) 2015; 107 Al-Douri (10.1016/j.rinp.2021.104398_b0195) 2015; 39 Heyd (10.1016/j.rinp.2021.104398_b0300) 2003; 118 Vu (10.1016/j.rinp.2021.104398_b0250) 2020; 10 Vanderbilt (10.1016/j.rinp.2021.104398_b0310) 2000; 61 Boucetta (10.1016/j.rinp.2021.104398_b0320) 2014; 125 Andrew (10.1016/j.rinp.2021.104398_b0355) 2012; 85 Xue (10.1016/j.rinp.2021.104398_b0095) 2018; 12 Yin (10.1016/j.rinp.2021.104398_b0120) 2017; 121 Lavrentyev (10.1016/j.rinp.2021.104398_b0255) 2017; 66 Schwerdtfeger (10.1016/j.rinp.2021.104398_b0410) 2019; 117 Wang (10.1016/j.rinp.2021.104398_b0065) 2017; 9 Novoselov (10.1016/j.rinp.2021.104398_b0005) 2004; 306 10.1016/j.rinp.2021.104398_b0035 Xu (10.1016/j.rinp.2021.104398_b0125) 2020; 116 Kresse (10.1016/j.rinp.2021.104398_b0285) 1999; 59 Ren (10.1016/j.rinp.2021.104398_b0020) 2017; 27 Chen (10.1016/j.rinp.2021.104398_b0315) 2021; 56 Al-Douri (10.1016/j.rinp.2021.104398_b0215) 2012; 407 Kresse (10.1016/j.rinp.2021.104398_b0280) 1993; 47 Mounet (10.1016/j.rinp.2021.104398_b0270) 2018; 13 Wang (10.1016/j.rinp.2021.104398_b0060) 2017; 110 Liu (10.1016/j.rinp.2021.104398_b0070) 2020; 117 Nye (10.1016/j.rinp.2021.104398_b0275) 1985 Blakslee (10.1016/j.rinp.2021.104398_b0365) 1970; 41 Sevik (10.1016/j.rinp.2021.104398_b0100) 2016; 120 Vanderbilt (10.1016/j.rinp.2021.104398_b0305) 1993; 48 Al-Douri (10.1016/j.rinp.2021.104398_b0230) 2019; 256 Belhachemi (10.1016/j.rinp.2021.104398_b0185) 2017; 55 Liu (10.1016/j.rinp.2021.104398_b0265) 2019; 5 Fan (10.1016/j.rinp.2021.104398_b0040) 2019; 7 Li (10.1016/j.rinp.2021.104398_b0010) 2020; 12 Rached (10.1016/j.rinp.2021.104398_b0220) 2006; 37 Wu (10.1016/j.rinp.2021.104398_b0140) 2014; 514 King-Smith (10.1016/j.rinp.2021.104398_b0385) 1993; 47 Lee (10.1016/j.rinp.2021.104398_b0350) 2008; 321 KÖSter (10.1016/j.rinp.2021.104398_b0370) 1961; 6 Yagmurcukardes (10.1016/j.rinp.2021.104398_b0155) 2019; 100 Guo (10.1016/j.rinp.2021.104398_b0160) 2017; 110 Benalia (10.1016/j.rinp.2021.104398_b0240) 2015; 31 Zheng (10.1016/j.rinp.2021.104398_b0025) 2013; 5 Bouchenafa (10.1016/j.rinp.2021.104398_b0175) 2020; 114 Touam (10.1016/j.rinp.2021.104398_b0330) 2020; 43 Liu (10.1016/j.rinp.2021.104398_b0360) 2014; 14 Li (10.1016/j.rinp.2021.104398_b0055) 2017; 9 |
References_xml | – volume: 6 start-page: 013109 year: 2014 end-page: 013124 ident: b0205 publication-title: J Renew Sustain Energy – volume: 10 start-page: 26843 year: 2020 end-page: 26852 ident: b0250 publication-title: RSC Adv – volume: 118 start-page: 8207 year: 2003 end-page: 8215 ident: b0300 publication-title: J Chem Phys – volume: 9 start-page: 5577 year: 2017 end-page: 5582 ident: b0065 publication-title: Nanoscale – volume: 85 start-page: 125428 year: 2012 end-page: 125436 ident: b0355 publication-title: Phys Rev B – volume: 39 start-page: 276 year: 2015 end-page: 282 ident: b0195 publication-title: Mater Sci Semicond Proc – volume: 53 start-page: 245301 year: 2020 end-page: 245309 ident: b0400 publication-title: J Phys D: Appl Phys – volume: 72 start-page: 035105 year: 2005 end-page: 035117 ident: b0340 publication-title: Phys Rev B – volume: 43 start-page: 22 year: 2020 end-page: 32 ident: b0330 publication-title: Bull Mater Sci – volume: 31 start-page: 1767 year: 2018 end-page: 1771 ident: b0235 publication-title: J Supercond Nov Magn – reference: M. r. Kamel, M. Ameri, I. Ameri, K. Bidai, A. Zaoui, D. Bensaid and Y. Al-Douri, Optik, 2016, 127, 4559-4573. – volume: 31 start-page: 493 year: 2015 end-page: 500 ident: b0240 publication-title: Mater Sci Semicond Proc – volume: 7 start-page: 1623 year: 2020 end-page: 1630 ident: b0075 publication-title: Mater Horizons – volume: 321 start-page: 385 year: 2008 end-page: 388 ident: b0350 publication-title: Science – volume: 10 start-page: 8474 year: 2016 end-page: 8481 ident: b0015 publication-title: ACS Nano – volume: 55 start-page: 1018 year: 2017 end-page: 1031 ident: b0185 publication-title: Chin J Phys – volume: 107 start-page: 173104 year: 2015 end-page: 173108 ident: b0110 publication-title: Appl Phys Lett – volume: 127 start-page: 064302 year: 2020 end-page: 064309 ident: b0165 publication-title: J Appl Phys – volume: 56 start-page: 11896 year: 2017 end-page: 11900 ident: b0045 publication-title: Angew Chem Int Ed – volume: 6 start-page: 1 year: 1961 end-page: 56 ident: b0370 publication-title: Metall Rev – volume: 11 start-page: 37920 year: 2019 end-page: 37926 ident: b0135 publication-title: Mater Interfaces – volume: 90 start-page: 224104 year: 2014 end-page: 224107 ident: b0345 publication-title: Phys Rev B – volume: 12 start-page: 106 year: 2020 end-page: 150 ident: b0010 publication-title: Nano-Micro Lett – volume: 56 start-page: 8024 year: 2021 end-page: 8036 ident: b0315 publication-title: J Mater Sci – volume: 114 start-page: 105085 year: 2020 end-page: 105093 ident: b0175 publication-title: Mater Sci Semicond Proc – volume: 6 start-page: 24885 year: 2018 end-page: 24898 ident: b0405 publication-title: J Mater Chem A – volume: 7 start-page: 42357 year: 2017 end-page: 42366 ident: b0030 publication-title: Sci Rep – volume: 66 start-page: 149 year: 2017 end-page: 159 ident: b0255 publication-title: Opt Mater – volume: 6 start-page: 1387 year: 2012 end-page: 1394 ident: b0145 publication-title: ACS Nano – volume: 110 start-page: 213101 year: 2017 end-page: 213105 ident: b0060 publication-title: Appl Phys Lett – volume: 125 start-page: 1110 year: 2014 end-page: 1117 ident: b0245 publication-title: Acta Phys Pol A – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: b0285 publication-title: Phys Rev B – volume: 48 start-page: 4442 year: 1993 end-page: 4455 ident: b0305 publication-title: Phys Rev B – volume: 27 start-page: 1606834 year: 2017 end-page: 1606841 ident: b0020 publication-title: Adv Funct Mater – volume: 3 start-page: 2871 year: 2012 end-page: 2876 ident: b0085 publication-title: J Phys Chem Lett – volume: 14 start-page: 5097 year: 2014 end-page: 5103 ident: b0360 publication-title: Nano Lett – volume: 514 start-page: 470 year: 2014 end-page: 474 ident: b0140 publication-title: Nature – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: b0295 publication-title: Phys Rev B – volume: 8 start-page: 3796 year: 2015 end-page: 3802 ident: b0105 publication-title: Nano Res – volume: 14 start-page: 2000321 year: 2020 end-page: 2000326 ident: b0170 publication-title: Phys Status Solidi Rapid Res Lett – volume: 352 start-page: 2439 year: 2006 end-page: 2443 ident: b0260 publication-title: Solids – volume: 5 start-page: 1900089 year: 2019 end-page: 1900095 ident: b0265 publication-title: Adv Electron Mater – volume: 5 start-page: 10288 year: 2013 end-page: 10293 ident: b0025 publication-title: Mater Interfaces – volume: 9 start-page: 9885 year: 2015 end-page: 9891 ident: b0115 publication-title: ACS Nano – volume: 121 start-page: 25576 year: 2017 end-page: 25584 ident: b0120 publication-title: J Phys Chem C – volume: 7 start-page: 26123 year: 2019 end-page: 26130 ident: b0040 publication-title: J Mater Chem A – volume: 114 start-page: 192903 year: 2019 end-page: 192907 ident: b0080 publication-title: Appl Phys Lett – reference: J. Zou, S. Wu, Y. Liu, Y. Sun, Y. Cao, J.-P. Hsu, A. T. Shen Wee and J. Jiang, Carbon, 2018, 130, 652-663. – volume: 32 start-page: 043006 year: 2017 end-page: 043025 ident: b0375 publication-title: Semicond Sci Technol – volume: 13 start-page: 246 year: 2018 end-page: 252 ident: b0270 publication-title: Nat Nanotechnol – volume: 118 start-page: 123102 year: 2021 end-page: 123108 ident: b0395 publication-title: Appl Phys Lett – volume: 117 start-page: 103101 year: 2020 end-page: 103105 ident: b0070 publication-title: Appl Phys Lett – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: b0005 publication-title: Science – volume: 428 start-page: 78 year: 2013 end-page: 88 ident: b0210 publication-title: Phys B – volume: 89 start-page: 554 year: 2019 end-page: 558 ident: b0225 publication-title: Opt Mater – volume: 23 start-page: 3637 year: 2021 end-page: 3645 ident: b0390 publication-title: Phys Chem Chem Phys – volume: 96 start-page: 333 year: 1995 end-page: 340 ident: b0380 publication-title: Z Phys B: Condens Matter – volume: 4 start-page: 1234 year: 2010 end-page: 1240 ident: b0050 publication-title: ACS Nano – volume: 10 start-page: 6061 year: 2019 end-page: 6066 ident: b0090 publication-title: J Phys Chem Lett – volume: 46 start-page: 4539 year: 2017 end-page: 4556 ident: b0180 publication-title: J Electron Mater – volume: 256 start-page: 1900131 year: 2019 end-page: 1900134 ident: b0230 publication-title: Phys Status Solidi B – volume: 9 start-page: 41443 year: 2017 end-page: 41453 ident: b0055 publication-title: Mater Interfaces – volume: 65 start-page: 104104 year: 2002 end-page: 104117 ident: b0335 publication-title: Phys Rev B – volume: 110 start-page: 163102 year: 2017 end-page: 163106 ident: b0160 publication-title: Appl Phys Lett – volume: 407 start-page: 286 year: 2012 end-page: 296 ident: b0215 publication-title: Phys B – volume: 37 start-page: 292 year: 2006 end-page: 299 ident: b0220 publication-title: Comput Mater Sci – volume: 19 start-page: 27508 year: 2017 end-page: 27515 ident: b0150 publication-title: Phys Chem Chem Phys – volume: 61 start-page: 147 year: 2000 end-page: 151 ident: b0310 publication-title: J Phys Chem Solids – volume: 12 start-page: 4976 year: 2018 end-page: 4983 ident: b0095 publication-title: ACS Nano – volume: 125 start-page: 54 year: 2014 end-page: 59 ident: b0320 publication-title: Acta Phys Pol A – volume: 100 start-page: 045415 year: 2019 end-page: 045422 ident: b0155 publication-title: Phys Rev B – volume: 11 start-page: 1600412 year: 2017 end-page: 1600416 ident: b0130 publication-title: Phys Status Solidi Rapid Res Lett – volume: 117 start-page: 1200 year: 2019 end-page: 1225 ident: b0410 publication-title: Mol Phys – volume: 47 start-page: 1651 year: 1993 end-page: 1654 ident: b0385 publication-title: Phys Rev B – year: 1985 ident: b0275 article-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: b0280 publication-title: Phys Rev B – volume: 4 start-page: 521 year: 2014 end-page: 532 ident: b0200 publication-title: Mater Express – volume: 116 start-page: 023103 year: 2020 end-page: 023106 ident: b0125 publication-title: Appl Phys Lett – volume: 59 start-page: 7413 year: 1999 end-page: 7421 ident: b0290 publication-title: Phys Rev B – volume: 41 start-page: 3373 year: 1970 end-page: 3382 ident: b0365 publication-title: J Appl Phys – volume: 120 start-page: 13948 year: 2016 end-page: 13953 ident: b0100 publication-title: J Phys Chem C – volume: 30 start-page: 2005158 year: 2020 end-page: 2005188 ident: b0415 publication-title: Adv Funct Mater – volume: 54 start-page: 33 year: 2016 end-page: 41 ident: b0190 article-title: Chinese publication-title: J Phys – volume: 48 start-page: 4442 year: 1993 ident: 10.1016/j.rinp.2021.104398_b0305 publication-title: Phys Rev B doi: 10.1103/PhysRevB.48.4442 – volume: 3 start-page: 2871 year: 2012 ident: 10.1016/j.rinp.2021.104398_b0085 publication-title: J Phys Chem Lett doi: 10.1021/jz3012436 – volume: 12 start-page: 4976 year: 2018 ident: 10.1016/j.rinp.2021.104398_b0095 publication-title: ACS Nano doi: 10.1021/acsnano.8b02152 – volume: 55 start-page: 1018 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0185 publication-title: Chin J Phys doi: 10.1016/j.cjph.2017.02.018 – volume: 31 start-page: 493 year: 2015 ident: 10.1016/j.rinp.2021.104398_b0240 publication-title: Mater Sci Semicond Proc doi: 10.1016/j.mssp.2014.12.021 – volume: 53 start-page: 245301 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0400 publication-title: J Phys D: Appl Phys doi: 10.1088/1361-6463/ab813a – volume: 121 start-page: 25576 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0120 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.7b08822 – volume: 110 start-page: 163102 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0160 publication-title: Appl Phys Lett doi: 10.1063/1.4981877 – volume: 47 start-page: 558 year: 1993 ident: 10.1016/j.rinp.2021.104398_b0280 publication-title: Phys Rev B doi: 10.1103/PhysRevB.47.558 – volume: 117 start-page: 103101 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0070 publication-title: Appl Phys Lett doi: 10.1063/5.0021056 – ident: 10.1016/j.rinp.2021.104398_b0035 doi: 10.1016/j.carbon.2018.01.008 – year: 1985 ident: 10.1016/j.rinp.2021.104398_b0275 – ident: 10.1016/j.rinp.2021.104398_b0325 doi: 10.1016/j.ijleo.2016.01.188 – volume: 6 start-page: 24885 year: 2018 ident: 10.1016/j.rinp.2021.104398_b0405 publication-title: J Mater Chem A doi: 10.1039/C8TA08781D – volume: 32 start-page: 043006 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0375 publication-title: Semicond Sci Technol doi: 10.1088/1361-6641/aa5cfb – volume: 107 start-page: 173104 year: 2015 ident: 10.1016/j.rinp.2021.104398_b0110 publication-title: Appl Phys Lett doi: 10.1063/1.4934750 – volume: 39 start-page: 276 year: 2015 ident: 10.1016/j.rinp.2021.104398_b0195 publication-title: Mater Sci Semicond Proc doi: 10.1016/j.mssp.2015.05.016 – volume: 6 start-page: 013109 year: 2014 ident: 10.1016/j.rinp.2021.104398_b0205 publication-title: J Renew Sustain Energy doi: 10.1063/1.4862152 – volume: 96 start-page: 333 year: 1995 ident: 10.1016/j.rinp.2021.104398_b0380 publication-title: Z Phys B: Condens Matter doi: 10.1007/BF01313055 – volume: 125 start-page: 1110 year: 2014 ident: 10.1016/j.rinp.2021.104398_b0245 publication-title: Acta Phys Pol A doi: 10.12693/APhysPolA.125.1110 – volume: 23 start-page: 3637 year: 2021 ident: 10.1016/j.rinp.2021.104398_b0390 publication-title: Phys Chem Chem Phys doi: 10.1039/D0CP06116F – volume: 100 start-page: 045415 year: 2019 ident: 10.1016/j.rinp.2021.104398_b0155 publication-title: Phys Rev B doi: 10.1103/PhysRevB.100.045415 – volume: 37 start-page: 292 year: 2006 ident: 10.1016/j.rinp.2021.104398_b0220 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2005.08.005 – volume: 72 start-page: 035105 year: 2005 ident: 10.1016/j.rinp.2021.104398_b0340 publication-title: Phys Rev B doi: 10.1103/PhysRevB.72.035105 – volume: 114 start-page: 192903 year: 2019 ident: 10.1016/j.rinp.2021.104398_b0080 publication-title: Appl Phys Lett doi: 10.1063/1.5097425 – volume: 514 start-page: 470 year: 2014 ident: 10.1016/j.rinp.2021.104398_b0140 publication-title: Nature doi: 10.1038/nature13792 – volume: 54 start-page: 33 year: 2016 ident: 10.1016/j.rinp.2021.104398_b0190 article-title: Chinese publication-title: J Phys – volume: 66 start-page: 149 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0255 publication-title: Opt Mater doi: 10.1016/j.optmat.2017.01.049 – volume: 6 start-page: 1 year: 1961 ident: 10.1016/j.rinp.2021.104398_b0370 publication-title: Metall Rev doi: 10.1179/095066061790425893 – volume: 120 start-page: 13948 year: 2016 ident: 10.1016/j.rinp.2021.104398_b0100 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b03543 – volume: 8 start-page: 3796 year: 2015 ident: 10.1016/j.rinp.2021.104398_b0105 publication-title: Nano Res doi: 10.1007/s12274-015-0878-8 – volume: 4 start-page: 521 year: 2014 ident: 10.1016/j.rinp.2021.104398_b0200 publication-title: Mater Express doi: 10.1166/mex.2014.1199 – volume: 30 start-page: 2005158 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0415 publication-title: Adv Funct Mater doi: 10.1002/adfm.202005158 – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.rinp.2021.104398_b0005 publication-title: Science doi: 10.1126/science.1102896 – volume: 19 start-page: 27508 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0150 publication-title: Phys Chem Chem Phys doi: 10.1039/C7CP05669A – volume: 7 start-page: 26123 year: 2019 ident: 10.1016/j.rinp.2021.104398_b0040 publication-title: J Mater Chem A doi: 10.1039/C9TA10466F – volume: 256 start-page: 1900131 year: 2019 ident: 10.1016/j.rinp.2021.104398_b0230 publication-title: Phys Status Solidi B doi: 10.1002/pssb.201900131 – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.rinp.2021.104398_b0295 publication-title: Phys Rev B doi: 10.1103/PhysRevB.13.5188 – volume: 5 start-page: 1900089 year: 2019 ident: 10.1016/j.rinp.2021.104398_b0265 publication-title: Adv Electron Mater doi: 10.1002/aelm.201900089 – volume: 47 start-page: 1651 year: 1993 ident: 10.1016/j.rinp.2021.104398_b0385 publication-title: Phys Rev B doi: 10.1103/PhysRevB.47.1651 – volume: 12 start-page: 106 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0010 publication-title: Nano-Micro Lett doi: 10.1007/s40820-020-00439-9 – volume: 14 start-page: 2000321 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0170 publication-title: Phys Status Solidi Rapid Res Lett doi: 10.1002/pssr.202000321 – volume: 27 start-page: 1606834 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0020 publication-title: Adv Funct Mater doi: 10.1002/adfm.201606834 – volume: 89 start-page: 554 year: 2019 ident: 10.1016/j.rinp.2021.104398_b0225 publication-title: Opt Mater doi: 10.1016/j.optmat.2019.01.073 – volume: 90 start-page: 224104 year: 2014 ident: 10.1016/j.rinp.2021.104398_b0345 publication-title: Phys Rev B doi: 10.1103/PhysRevB.90.224104 – volume: 116 start-page: 023103 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0125 publication-title: Appl Phys Lett doi: 10.1063/1.5135950 – volume: 127 start-page: 064302 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0165 publication-title: J Appl Phys doi: 10.1063/1.5134960 – volume: 118 start-page: 8207 year: 2003 ident: 10.1016/j.rinp.2021.104398_b0300 publication-title: J Chem Phys doi: 10.1063/1.1564060 – volume: 9 start-page: 5577 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0065 publication-title: Nanoscale doi: 10.1039/C7NR00455A – volume: 10 start-page: 8474 year: 2016 ident: 10.1016/j.rinp.2021.104398_b0015 publication-title: ACS Nano doi: 10.1021/acsnano.6b03458 – volume: 110 start-page: 213101 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0060 publication-title: Appl Phys Lett doi: 10.1063/1.4983781 – volume: 10 start-page: 26843 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0250 publication-title: RSC Adv doi: 10.1039/D0RA03280H – volume: 13 start-page: 246 year: 2018 ident: 10.1016/j.rinp.2021.104398_b0270 publication-title: Nat Nanotechnol doi: 10.1038/s41565-017-0035-5 – volume: 114 start-page: 105085 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0175 publication-title: Mater Sci Semicond Proc doi: 10.1016/j.mssp.2020.105085 – volume: 85 start-page: 125428 year: 2012 ident: 10.1016/j.rinp.2021.104398_b0355 publication-title: Phys Rev B doi: 10.1103/PhysRevB.85.125428 – volume: 14 start-page: 5097 year: 2014 ident: 10.1016/j.rinp.2021.104398_b0360 publication-title: Nano Lett doi: 10.1021/nl501793a – volume: 321 start-page: 385 year: 2008 ident: 10.1016/j.rinp.2021.104398_b0350 publication-title: Science doi: 10.1126/science.1157996 – volume: 11 start-page: 37920 year: 2019 ident: 10.1016/j.rinp.2021.104398_b0135 publication-title: Mater Interfaces doi: 10.1021/acsami.9b12187 – volume: 46 start-page: 4539 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0180 publication-title: J Electron Mater doi: 10.1007/s11664-017-5452-6 – volume: 9 start-page: 9885 year: 2015 ident: 10.1016/j.rinp.2021.104398_b0115 publication-title: ACS Nano doi: 10.1021/acsnano.5b03394 – volume: 11 start-page: 1600412 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0130 publication-title: Phys Status Solidi Rapid Res Lett doi: 10.1002/pssr.201600412 – volume: 117 start-page: 1200 year: 2019 ident: 10.1016/j.rinp.2021.104398_b0410 publication-title: Mol Phys doi: 10.1080/00268976.2018.1535143 – volume: 10 start-page: 6061 year: 2019 ident: 10.1016/j.rinp.2021.104398_b0090 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.9b02340 – volume: 6 start-page: 1387 year: 2012 ident: 10.1016/j.rinp.2021.104398_b0145 publication-title: ACS Nano doi: 10.1021/nn204198g – volume: 428 start-page: 78 year: 2013 ident: 10.1016/j.rinp.2021.104398_b0210 publication-title: Phys B doi: 10.1016/j.physb.2013.07.014 – volume: 407 start-page: 286 year: 2012 ident: 10.1016/j.rinp.2021.104398_b0215 publication-title: Phys B doi: 10.1016/j.physb.2011.09.127 – volume: 7 start-page: 1623 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0075 publication-title: Mater Horizons doi: 10.1039/D0MH00183J – volume: 41 start-page: 3373 year: 1970 ident: 10.1016/j.rinp.2021.104398_b0365 publication-title: J Appl Phys doi: 10.1063/1.1659428 – volume: 31 start-page: 1767 year: 2018 ident: 10.1016/j.rinp.2021.104398_b0235 publication-title: J Supercond Nov Magn doi: 10.1007/s10948-017-4393-x – volume: 61 start-page: 147 year: 2000 ident: 10.1016/j.rinp.2021.104398_b0310 publication-title: J Phys Chem Solids doi: 10.1016/S0022-3697(99)00273-5 – volume: 65 start-page: 104104 year: 2002 ident: 10.1016/j.rinp.2021.104398_b0335 publication-title: Phys Rev B doi: 10.1103/PhysRevB.65.104104 – volume: 7 start-page: 42357 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0030 publication-title: Sci Rep doi: 10.1038/srep42357 – volume: 56 start-page: 11896 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0045 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201703657 – volume: 56 start-page: 8024 year: 2021 ident: 10.1016/j.rinp.2021.104398_b0315 publication-title: J Mater Sci doi: 10.1007/s10853-021-05834-0 – volume: 118 start-page: 123102 year: 2021 ident: 10.1016/j.rinp.2021.104398_b0395 publication-title: Appl Phys Lett doi: 10.1063/5.0043731 – volume: 9 start-page: 41443 year: 2017 ident: 10.1016/j.rinp.2021.104398_b0055 publication-title: Mater Interfaces doi: 10.1021/acsami.7b13179 – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.rinp.2021.104398_b0285 publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.1758 – volume: 125 start-page: 54 year: 2014 ident: 10.1016/j.rinp.2021.104398_b0320 publication-title: Acta Phys Pol A doi: 10.12693/APhysPolA.125.54 – volume: 43 start-page: 22 year: 2020 ident: 10.1016/j.rinp.2021.104398_b0330 publication-title: Bull Mater Sci doi: 10.1007/s12034-019-1978-y – volume: 59 start-page: 7413 year: 1999 ident: 10.1016/j.rinp.2021.104398_b0290 publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.7413 – volume: 352 start-page: 2439 year: 2006 ident: 10.1016/j.rinp.2021.104398_b0260 publication-title: Solids – volume: 5 start-page: 10288 year: 2013 ident: 10.1016/j.rinp.2021.104398_b0025 publication-title: Mater Interfaces doi: 10.1021/am403205v – volume: 4 start-page: 1234 year: 2010 ident: 10.1016/j.rinp.2021.104398_b0050 publication-title: ACS Nano doi: 10.1021/nn901805g |
SSID | ssj0001645511 |
Score | 2.3096974 |
Snippet | •The out-of-plane and in-plane piezoelectricity in 2D Li-based ternary chalcogenides LiMX2 are investigated.•We propose a simple correlation between in-plane... Two-dimensional (2D) piezoelectric materials that can achieve conversion between mechanical and electrical energy are of notable interest for functional... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 104398 |
SubjectTerms | 2D materials First-principles calculations In-plane piezoelectricity Li-based ternary chalcogenides Out-of-plane piezoelectricity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvAmxSZNmuboExH1pLC3kuaBlaVddutBf70zTVfWi148tkmTMhk630xnviHkVHMrmVciMYBXE-EylmibGqwCkTKorDAcq5Efn_K7F3E_luOlVl-YExbpgaPgzj13WlVWpl6nQgRdGVcJqXMAEkoyU-HXF2zekjPVR1dyAVAAvS3OkadPaTVUzMTkrlndIFklZ_iPM9PFD6vUk_cvGaclg3O7STYGpEgv4htukRXfbJO1PmPTzndId9Uii2UPeWkb6ARTumn73iVtSKaYwkpN42jdDBfT2n-2selNbQF6wwjl1xS0EJxbwN30AbxkMGmO9iHC2Qe1r2ZiW1Cw2vk5DD-O-S55ub15vrpLhhYKiRUs7ZIqV0ZZH8BQGR24DXlmpTOZ04V2WNSqUpe7FJsgSVNxjGkU1gthTCWZZSHbI6tN2_h9QlOwdyK3BZykFwbQLkjdSZMGyTJsGjMibCHC0g784tjmYlIuEsneShR7iWIvo9hH5Oz7mWlk1_h19iWezPdMZMbub4C-lIO-lH_py4jIxbmWA8iI4AGWqn_Z_OA_Nj8k67hkTPc9Iqvd7N0fA6jpqpNef78AuSnxpg priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQUqVeELRUXV7yobfK2viVxMeygFao20tB2lvk-AFBq2S1hEP76zuTeClcOHD0K4nGo5nPzjczhHwzwmkeCsUs4FWmvOTMuMxiFIjWsZClFRiNvPiVz2_V9VIvd8hsGwuDtMpk-0ebPljr1DNN0pyum2b6W8DZRRaYfWYkc4AdlqocgviW5__vWXIFoADPXTif4YIUOzPSvDZNi2krBce_ndKUr_zTkMb_hZt64Xqu9slewoz0x_hZB2QntJ_Ih4G76R4_k37WYT7LAfzSLtIVkrtp99SzLrI1klmpbT1t2tRYN-FvN5a_aRyAcBih4oKCPsIxFxA4_QnnZXBung6XhZs_1N3bletA1RofHmF4sRSH5Pbq8mY2Z6mYAnOKZz2r88IWLkRwWdZE4WIunfZWelMaj-GtReZzn2E5JG1rgbcbpQtKWVtr7niUX8hu27XhK6EZeD6VuxL2NCgLuBcwh9c2i5pLLB8zIXwrwsqlTONY8GJVbSllDxWKvUKxV6PYJ-T785r1mGfjzdnnuDPPMzFH9tDRbe6qpCRVEN4UtdNZMJlS0dTW10qbHCBoobmtJ0Rv97V6pXLwqOaNlx-9c90x-Yitket7Qnb7zVM4BUTT12eDyv4DbPrxzw priority: 102 providerName: Elsevier |
Title | Coexistence of large out-of-plane and in-plane piezoelectricity in 2D monolayer Li-based ternary chalcogenides LiMX2 |
URI | https://dx.doi.org/10.1016/j.rinp.2021.104398 https://doaj.org/article/e2d97bc50e9044f9badb4596416751ab |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpQqGX0PRBN2mDDr0VF0uWLOsQQpI2pCXbUxf2ZmQ9WofF3ngdSPLrM2Nr0xRCIBeDLFk2MxLzaTwzHyGfNbeSeSUSA3g1ES5jibapwSwQKYPKCsMxG3n6Kz-biZ9zOd8ga7qjKMDVo0c75JOadYuv15c3h7DhD_7FanV1g7UnOcNflpkuXpAtsEwKqRymEe4PPpdcAEDAMxjnWL1PaRXzaB6f5j9bNZT0f2CyHpih09dkO-JHejQqfIds-OYNeTnEcdrVW9KftFjbcgDCtA10gYHetL3qkzYkSwxspaZxtG5iY1n723akwqktAHLoofwbhbUJcgE0Ts_h7AyGztHBcdjdUPvXLGwLy652fgXd0zl_R2an33-fnCWRWCGxgqV9UuXKKOsDmC-jA7chz6x0JnO60A5TXVXqcpciNZI0FUdPR2G9EMZUklkWsvdks2kb_4HQFKygyG0B-vXCAAYG_OGkSYNkGVLJTAhbi7C0seo4kl8synV42UWJYi9R7OUo9gn5cv_Mcqy58eToY9TM_Uislz3caLs_Zdx-pedOq8rK1OtUiKAr4yohdQ5wVElmqgmRa72WEXqMkAKmqp94-e6zPnWPvMLWGO37kWz23ZX_BJimr_YHXwBcf8yP94dFewe0CvOo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSFEW7FOkLdZ8cuhWERYqUxDFxGzitnaUJ4I2g-GhUGJLhKEP763Mn0WmyZMgokScJxwPvO-q7O0K-aOEUD6VkFvAqkz7nTLvMYhaIUrHMKyswG3l5WszP5Y-VWu2R2S4XBmmVae8f9_Rht053pkmb003TTH8JiF3yEqvPjGSOR-QxoIECTftkdfT_oKWQgAow8EIBhhIpeWbkeW2bFutWCo6_O3Nd3XFQQx3_W37qlu85PiDPE2ikh-N3vSB7oX1JngzkTXf5ivSzDgtaDuiXdpGukd1Nu6uedZFtkM1Kbetp06aLTRP-dWP_m8YBCocRKr5RMEiIcwGC0wUEzODdPB1OC7d_qbuwa9eBrTU-XMLwciVek_Pj72ezOUvdFJiTPOtZXZS2dCGCz7I6CheL3Clvc68r7TG_tcx84TPsh6RsLfB4o3JBSmtrxR2P-Ruy33ZteEtoBq5PFq6CRQ3SAvAF0OGVzaLiOfaPmRC-U6FxqdQ4drxYmx2n7I9BtRtUuxnVPiFfb2Q2Y6GNe2cf4crczMQi2cONbvvbJCsxQXhd1k5lQWdSRl1bX0ulC8CgpeK2nhC1W1dzx-bgUc09L3_3QLnP5On8bLkwi5PTn-_JMxwZib8fyH6_vQofAd709afBfK8BsJ_09g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coexistence+of+large+out-of-plane+and+in-plane+piezoelectricity+in+2D+monolayer+Li-based+ternary+chalcogenides+LiMX2&rft.jtitle=Results+in+physics&rft.au=Liu%2C+Siyuan&rft.au=Chen%2C+Weizhen&rft.au=Liu%2C+Chang&rft.au=Wang%2C+Bing&rft.date=2021-07-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=26&rft.spage=104398&rft_id=info:doi/10.1016%2Fj.rinp.2021.104398&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2021_104398 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |