Coexistence of large out-of-plane and in-plane piezoelectricity in 2D monolayer Li-based ternary chalcogenides LiMX2

•The out-of-plane and in-plane piezoelectricity in 2D Li-based ternary chalcogenides LiMX2 are investigated.•We propose a simple correlation between in-plane piezoelectricity and atomic polarizability.•The out-of-plane piezoelectric coefficients d31 of LiMX2 monolayers are larger than those of most...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 26; p. 104398
Main Authors Liu, Siyuan, Chen, Weizhen, Liu, Chang, Wang, Bing, Yin, Huabing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2211-3797
2211-3797
DOI10.1016/j.rinp.2021.104398

Cover

Loading…
Abstract •The out-of-plane and in-plane piezoelectricity in 2D Li-based ternary chalcogenides LiMX2 are investigated.•We propose a simple correlation between in-plane piezoelectricity and atomic polarizability.•The out-of-plane piezoelectric coefficients d31 of LiMX2 monolayers are larger than those of most reported 2D materials. Two-dimensional (2D) piezoelectric materials that can achieve conversion between mechanical and electrical energy are of notable interest for functional materials. However, most 2D materials have only in-plane piezoelectricity, which limits their applications in vertically integrated nanoelectromechanical systems. Here, we employ first-principles calculations to predict properties of a family of piezoelectric materials—Li-based ternary chalcogenides LiMX2 (M = Al, Ga, and In; X = S, Se, and Te). These materials exhibit the coexistence of intrinsic out-of-plane and in-plane piezoelectricity with coefficients d11 = 1.48–8.66 pm/V and d31 = 0.24–0.83 pm/V, respectively. The out-of-plane piezoelectric coefficients d31 of LiAlSe2, LiGaTe2, and LiAlTe2 in particular are as high as 0.61, 0.70, and 0.83 pm/V, respectively, much larger than those of most reported 2D materials. This enhancement can be attributed to the unique double-buckled stacking structure of these LiMX2 monolayers. It is also found that the in-plane piezoelectricity is highly dependent on the ratio of anion and cation polarizabilities, whereas the out-of-plane piezoelectricity exhibits a complicated variation trend with respect to the order of atomic number. The coexistence of large out-of-plane and in-plane piezoelectricity endows LiMX2 monolayers with potential applications in both directional and nondirectional piezoelectric devices.
AbstractList Two-dimensional (2D) piezoelectric materials that can achieve conversion between mechanical and electrical energy are of notable interest for functional materials. However, most 2D materials have only in-plane piezoelectricity, which limits their applications in vertically integrated nanoelectromechanical systems. Here, we employ first-principles calculations to predict properties of a family of piezoelectric materials—Li-based ternary chalcogenides LiMX2 (M = Al, Ga, and In; X = S, Se, and Te). These materials exhibit the coexistence of intrinsic out-of-plane and in-plane piezoelectricity with coefficients d11 = 1.48–8.66 pm/V and d31 = 0.24–0.83 pm/V, respectively. The out-of-plane piezoelectric coefficients d31 of LiAlSe2, LiGaTe2, and LiAlTe2 in particular are as high as 0.61, 0.70, and 0.83 pm/V, respectively, much larger than those of most reported 2D materials. This enhancement can be attributed to the unique double-buckled stacking structure of these LiMX2 monolayers. It is also found that the in-plane piezoelectricity is highly dependent on the ratio of anion and cation polarizabilities, whereas the out-of-plane piezoelectricity exhibits a complicated variation trend with respect to the order of atomic number. The coexistence of large out-of-plane and in-plane piezoelectricity endows LiMX2 monolayers with potential applications in both directional and nondirectional piezoelectric devices.
•The out-of-plane and in-plane piezoelectricity in 2D Li-based ternary chalcogenides LiMX2 are investigated.•We propose a simple correlation between in-plane piezoelectricity and atomic polarizability.•The out-of-plane piezoelectric coefficients d31 of LiMX2 monolayers are larger than those of most reported 2D materials. Two-dimensional (2D) piezoelectric materials that can achieve conversion between mechanical and electrical energy are of notable interest for functional materials. However, most 2D materials have only in-plane piezoelectricity, which limits their applications in vertically integrated nanoelectromechanical systems. Here, we employ first-principles calculations to predict properties of a family of piezoelectric materials—Li-based ternary chalcogenides LiMX2 (M = Al, Ga, and In; X = S, Se, and Te). These materials exhibit the coexistence of intrinsic out-of-plane and in-plane piezoelectricity with coefficients d11 = 1.48–8.66 pm/V and d31 = 0.24–0.83 pm/V, respectively. The out-of-plane piezoelectric coefficients d31 of LiAlSe2, LiGaTe2, and LiAlTe2 in particular are as high as 0.61, 0.70, and 0.83 pm/V, respectively, much larger than those of most reported 2D materials. This enhancement can be attributed to the unique double-buckled stacking structure of these LiMX2 monolayers. It is also found that the in-plane piezoelectricity is highly dependent on the ratio of anion and cation polarizabilities, whereas the out-of-plane piezoelectricity exhibits a complicated variation trend with respect to the order of atomic number. The coexistence of large out-of-plane and in-plane piezoelectricity endows LiMX2 monolayers with potential applications in both directional and nondirectional piezoelectric devices.
ArticleNumber 104398
Author Yin, Huabing
Wang, Bing
Liu, Siyuan
Chen, Weizhen
Liu, Chang
Author_xml – sequence: 1
  givenname: Siyuan
  surname: Liu
  fullname: Liu, Siyuan
– sequence: 2
  givenname: Weizhen
  surname: Chen
  fullname: Chen, Weizhen
– sequence: 3
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  email: cliu@vip.henu.edu.cn
– sequence: 4
  givenname: Bing
  surname: Wang
  fullname: Wang, Bing
– sequence: 5
  givenname: Huabing
  surname: Yin
  fullname: Yin, Huabing
  email: yhb@henu.edu.cn
BookMark eNp9kc9qGzEQxkVJoUmaF-hJL7COpJV2LeiluEkacMklhd7ErDRyZTaSkdQQ9-kr1ymEHHKaf_w-ZuY7IycxRSTkE2cLzvhwuV3kEHcLwQRvDdnr5TtyKgTnXT_q8eRF_oFclLJlrFFSKc5PSV0lfAqlYrRIk6cz5E1Lftcu-W43Q0QK0dEQn4tdwD8JZ7Q1Bxvqvk2o-EofUkwz7DHTdegmKOhoxRwh76n9BbNNG4zBYWnj7z_FR_Lew1zw4jmekx_XV_erb9367uZ29WXdWclZ7aZhhNGi71kP2gvrh94qB73TS-20VsPI3OAYV0IpmMQ4cL20KCXApLjlvj8nt0ddl2Brdjk8tIVMgmD-NVLeGMg12BkNCqfHySqGmknp9QRukkoPkg-j4jA1reVRy-ZUSkZv2vlQQ4o1Q5gNZ-ZghtmagxnmYIY5mtFQ8Qr9v8qb0OcjhO1BjwGzKTYcXHIht--3C8Jb-F_f9KYd
CitedBy_id crossref_primary_10_1007_s40843_022_2227_3
crossref_primary_10_1002_qua_27117
crossref_primary_10_1088_1361_6528_ac2fe7
crossref_primary_10_1016_j_mtphys_2023_101001
crossref_primary_10_1039_D2CP00918H
crossref_primary_10_1016_j_mssp_2024_108895
crossref_primary_10_1016_j_ssc_2024_115640
crossref_primary_10_1039_D3CP01523H
crossref_primary_10_1063_5_0063802
crossref_primary_10_3390_ma16083107
crossref_primary_10_1016_j_mssp_2024_109087
crossref_primary_10_1016_j_vacuum_2024_113023
crossref_primary_10_1103_PhysRevMaterials_6_104001
crossref_primary_10_1016_j_cossms_2023_101134
crossref_primary_10_1039_D1NJ05096F
crossref_primary_10_1016_j_matt_2023_12_031
crossref_primary_10_1016_j_rinp_2021_104960
crossref_primary_10_3390_cryst14080708
Cites_doi 10.1103/PhysRevB.48.4442
10.1021/jz3012436
10.1021/acsnano.8b02152
10.1016/j.cjph.2017.02.018
10.1016/j.mssp.2014.12.021
10.1088/1361-6463/ab813a
10.1021/acs.jpcc.7b08822
10.1063/1.4981877
10.1103/PhysRevB.47.558
10.1063/5.0021056
10.1016/j.carbon.2018.01.008
10.1016/j.ijleo.2016.01.188
10.1039/C8TA08781D
10.1088/1361-6641/aa5cfb
10.1063/1.4934750
10.1016/j.mssp.2015.05.016
10.1063/1.4862152
10.1007/BF01313055
10.12693/APhysPolA.125.1110
10.1039/D0CP06116F
10.1103/PhysRevB.100.045415
10.1016/j.commatsci.2005.08.005
10.1103/PhysRevB.72.035105
10.1063/1.5097425
10.1038/nature13792
10.1016/j.optmat.2017.01.049
10.1179/095066061790425893
10.1021/acs.jpcc.6b03543
10.1007/s12274-015-0878-8
10.1166/mex.2014.1199
10.1002/adfm.202005158
10.1126/science.1102896
10.1039/C7CP05669A
10.1039/C9TA10466F
10.1002/pssb.201900131
10.1103/PhysRevB.13.5188
10.1002/aelm.201900089
10.1103/PhysRevB.47.1651
10.1007/s40820-020-00439-9
10.1002/pssr.202000321
10.1002/adfm.201606834
10.1016/j.optmat.2019.01.073
10.1103/PhysRevB.90.224104
10.1063/1.5135950
10.1063/1.5134960
10.1063/1.1564060
10.1039/C7NR00455A
10.1021/acsnano.6b03458
10.1063/1.4983781
10.1039/D0RA03280H
10.1038/s41565-017-0035-5
10.1016/j.mssp.2020.105085
10.1103/PhysRevB.85.125428
10.1021/nl501793a
10.1126/science.1157996
10.1021/acsami.9b12187
10.1007/s11664-017-5452-6
10.1021/acsnano.5b03394
10.1002/pssr.201600412
10.1080/00268976.2018.1535143
10.1021/acs.jpclett.9b02340
10.1021/nn204198g
10.1016/j.physb.2013.07.014
10.1016/j.physb.2011.09.127
10.1039/D0MH00183J
10.1063/1.1659428
10.1007/s10948-017-4393-x
10.1016/S0022-3697(99)00273-5
10.1103/PhysRevB.65.104104
10.1038/srep42357
10.1002/anie.201703657
10.1007/s10853-021-05834-0
10.1063/5.0043731
10.1021/acsami.7b13179
10.1103/PhysRevB.59.1758
10.12693/APhysPolA.125.54
10.1007/s12034-019-1978-y
10.1103/PhysRevB.59.7413
10.1021/am403205v
10.1021/nn901805g
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2021.104398
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_e2d97bc50e9044f9badb4596416751ab
10_1016_j_rinp_2021_104398
S2211379721005209
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-b67a7cef303a9f2cf63c5da3d989d995670d6d015255ab276198ce44aab51c1f3
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:32:09 EDT 2025
Tue Jul 01 02:27:40 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Tue Jul 25 20:58:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords First-principles calculations
In-plane piezoelectricity
Out-of-plane piezoelectricity
2D materials
Li-based ternary chalcogenides
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-b67a7cef303a9f2cf63c5da3d989d995670d6d015255ab276198ce44aab51c1f3
OpenAccessLink https://doaj.org/article/e2d97bc50e9044f9badb4596416751ab
ParticipantIDs doaj_primary_oai_doaj_org_article_e2d97bc50e9044f9badb4596416751ab
crossref_citationtrail_10_1016_j_rinp_2021_104398
crossref_primary_10_1016_j_rinp_2021_104398
elsevier_sciencedirect_doi_10_1016_j_rinp_2021_104398
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Seddik, Khenata, Bouhemadou, Guechi, Sayede, Varshney (b0210) 2013; 428
Wang, Yuan, Li, Shi, Wang (b0065) 2017; 9
Vanderbilt (b0310) 2000; 61
Yin, Liu, Zheng, Wang, Ren (b0080) 2019; 114
Lee, Lee, Park, Hyeon, Jeong, Park (b0135) 2019; 11
J. Zou, S. Wu, Y. Liu, Y. Sun, Y. Cao, J.-P. Hsu, A. T. Shen Wee and J. Jiang, Carbon, 2018, 130, 652-663.
Fei, Li, Li, Yang (b0110) 2015; 107
Nye (b0275) 1985
Birkholz (b0380) 1995; 96
Hu, Chang, Fei, Snyder, Wang (b0050) 2010; 4
Guo, Guo, Liu, Quan (b0165) 2020; 127
Wang, Ji, Zhang, Li, Zhang, Wang (b0060) 2017; 110
Bouchenafa, Benmakhlouf, Sidoumou, Bouhemadou, Maabed, Halit (b0175) 2020; 114
Al-Douri, Hashim (b0205) 2014; 6
Blakslee, Proctor, Seldin, Spence, Weng (b0365) 1970; 41
Guo, Zhou, Bai, Zhao (b0160) 2017; 110
Belhachemi, Abid, Al-Douri, Sehil, Bouhemadou, Ameri (b0185) 2017; 55
Wu, Wang, Li, Zhang, Lin, Niu (b0140) 2014; 514
Vanderbilt, King-Smith (b0305) 1993; 48
Yin, Zheng, Gao, Wang, Ma (b0150) 2017; 19
Lee, Wei, Kysar, Hone (b0350) 2008; 321
Gao, Gao (b0130) 2017; 11
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos (b0005) 2004; 306
Xu, Li, He, Li, Ouyang, Zhang (b0125) 2020; 116
Xiao, Luo, Xu (b0400) 2020; 53
Schwerdtfeger, Nagle (b0410) 2019; 117
Tao, Ji, Xu, Islam, Li, Chen (b0045) 2017; 56
Sevik, Çakır, Gülseren, Peeters (b0100) 2016; 120
Benalia, Merabet, Rached, Al-Douri, Abidri, Khenata (b0240) 2015; 31
Mounet, Gibertini, Schwaller, Campi, Merkys, Marrazzo (b0270) 2018; 13
Al-Douri, Ameri, Bouhemadou, Batoo (b0230) 2019; 256
Kresse, Joubert (b0285) 1999; 59
Zhang, Meguid (b0375) 2017; 32
Shi, Yin, Jiang, Chen, Zheng, Ren (b0390) 2021; 23
Tu, Guo, Zhang, Hu, Zhang, Ma (b0415) 2020; 30
Xu, Wang, Zheng, Wu, Xu (b0090) 2019; 10
Jiang, Yin, Li, Liu, Shi, Yan (b0170) 2020; 14
Ong, Reed (b0145) 2012; 6
Song, Li, Zhou, Zhang, Li, Li (b0395) 2021; 118
Li, Ji, Hu, Zhang, Yan, Appl (b0055) 2017; 9
Le Page, Saxe (b0335) 2002; 65
Xue, Zhang, Hu, Hsu, Han, Leung (b0095) 2018; 12
Dimple, Jena, Rawat, Ahammed, Mohanta, De Sarkar (b0405) 2018; 6
Ameri, Mired, Ameri, Al-Douri (b0200) 2014; 4
Chen, Yin, Jiang, Liu, Xu, Wang (b0315) 2021; 56
Al-Douri, Baaziz, Charifi, Reshak (b0215) 2012; 407
King-Smith, Vanderbilt (b0385) 1993; 47
Li, Shen, Wang, Zhang, Qi, Zhang (b0010) 2020; 12
Lavrentyev, Gabrelian, Vu, Ananchenko, Isaenko, Yelisseyev (b0255) 2017; 66
Andrew, Mapasha, Ukpong, Chetty (b0355) 2012; 85
Liu, Yan, Chen, Fan, Sun, Suh (b0360) 2014; 14
Ameri, Mesbah, Al-Douri, Bouhafs, Varshney, Ameri (b0245) 2014; 125
Boucetta, Zegrar (b0320) 2014; 125
Belhachi, Lazreg, Dridi, Al-Douri (b0235) 2018; 31
Badi, Al-Douri, Khasim (b0225) 2019; 89
M. r. Kamel, M. Ameri, I. Ameri, K. Bidai, A. Zaoui, D. Bensaid and Y. Al-Douri, Optik, 2016, 127, 4559-4573.
Vu, Lavrentyev, Gabrelian, Vo, Khang, Isaenko (b0250) 2020; 10
Hammer, Hansen, Nørskov (b0290) 1999; 59
Touam, Belghit, Mahdjoubi, Megdoud, Meradji, Khan (b0330) 2020; 43
Ren, Li, Huang, Sang, Qiao, Qi (b0020) 2017; 27
Zheng, Chen, Huang, Zhao, Lu, Chen (b0025) 2013; 5
Al-Douri, Khachai, Khenata (b0195) 2015; 39
Blonsky, Zhuang, Singh, Hennig (b0115) 2015; 9
Du, Zhang, Guo, Chen, Zhu, Hu (b0030) 2017; 7
Isaenko, Yelisseyev, Lobanov, Krinitsin, Petrov, Zondy (b0260) 2006; 352
Yin, Gao, Zheng, Wang, Ma (b0120) 2017; 121
Li, Li (b0105) 2015; 8
Wang, Zhang, Zhang, Yuan, Guo, Dong (b0075) 2020; 7
Yagmurcukardes, Sevik, Peeters (b0155) 2019; 100
Liu, Sun, Singh, Zhang (b0265) 2019; 5
Boudiaf, Bouhemadou, Boudrifa, Haddadi, Saoud, Khenata (b0180) 2017; 46
Benkabou, Bouafia, Sahli, Abidri, Ameri, Hiadsi (b0190) 2016; 54
Mouhat, Coudert (b0345) 2014; 90
Kresse, Hafner (b0280) 1993; 47
Monkhorst, Pack (b0295) 1976; 13
Duerloo, Ong, Reed (b0085) 2012; 3
Rached, Rabah, Benkhettou, Khenata, Soudini, Al-Douri (b0220) 2006; 37
KÖSter, Franz (b0370) 1961; 6
Guo, Xu, Gong, Shen, Lu, Qiu (b0015) 2016; 10
Wu, Vanderbilt, Hamann (b0340) 2005; 72
Fan, Song, Qi, Ma, Zhao (b0040) 2019; 7
Heyd, Scuseria, Ernzerhof (b0300) 2003; 118
Liu, Fu, Yin, Zhang, Dong (b0070) 2020; 117
Boudiaf (10.1016/j.rinp.2021.104398_b0180) 2017; 46
Tao (10.1016/j.rinp.2021.104398_b0045) 2017; 56
Ameri (10.1016/j.rinp.2021.104398_b0245) 2014; 125
10.1016/j.rinp.2021.104398_b0325
Birkholz (10.1016/j.rinp.2021.104398_b0380) 1995; 96
Hu (10.1016/j.rinp.2021.104398_b0050) 2010; 4
Xiao (10.1016/j.rinp.2021.104398_b0400) 2020; 53
Jiang (10.1016/j.rinp.2021.104398_b0170) 2020; 14
Seddik (10.1016/j.rinp.2021.104398_b0210) 2013; 428
Badi (10.1016/j.rinp.2021.104398_b0225) 2019; 89
Guo (10.1016/j.rinp.2021.104398_b0015) 2016; 10
Dimple (10.1016/j.rinp.2021.104398_b0405) 2018; 6
Li (10.1016/j.rinp.2021.104398_b0105) 2015; 8
Tu (10.1016/j.rinp.2021.104398_b0415) 2020; 30
Wu (10.1016/j.rinp.2021.104398_b0340) 2005; 72
Shi (10.1016/j.rinp.2021.104398_b0390) 2021; 23
Du (10.1016/j.rinp.2021.104398_b0030) 2017; 7
Duerloo (10.1016/j.rinp.2021.104398_b0085) 2012; 3
Xu (10.1016/j.rinp.2021.104398_b0090) 2019; 10
Ong (10.1016/j.rinp.2021.104398_b0145) 2012; 6
Monkhorst (10.1016/j.rinp.2021.104398_b0295) 1976; 13
Le Page (10.1016/j.rinp.2021.104398_b0335) 2002; 65
Ameri (10.1016/j.rinp.2021.104398_b0200) 2014; 4
Al-Douri (10.1016/j.rinp.2021.104398_b0205) 2014; 6
Mouhat (10.1016/j.rinp.2021.104398_b0345) 2014; 90
Blonsky (10.1016/j.rinp.2021.104398_b0115) 2015; 9
Yin (10.1016/j.rinp.2021.104398_b0150) 2017; 19
Belhachi (10.1016/j.rinp.2021.104398_b0235) 2018; 31
Song (10.1016/j.rinp.2021.104398_b0395) 2021; 118
Gao (10.1016/j.rinp.2021.104398_b0130) 2017; 11
Benkabou (10.1016/j.rinp.2021.104398_b0190) 2016; 54
Lee (10.1016/j.rinp.2021.104398_b0135) 2019; 11
Zhang (10.1016/j.rinp.2021.104398_b0375) 2017; 32
Guo (10.1016/j.rinp.2021.104398_b0165) 2020; 127
Yin (10.1016/j.rinp.2021.104398_b0080) 2019; 114
Wang (10.1016/j.rinp.2021.104398_b0075) 2020; 7
Hammer (10.1016/j.rinp.2021.104398_b0290) 1999; 59
Isaenko (10.1016/j.rinp.2021.104398_b0260) 2006; 352
Fei (10.1016/j.rinp.2021.104398_b0110) 2015; 107
Al-Douri (10.1016/j.rinp.2021.104398_b0195) 2015; 39
Heyd (10.1016/j.rinp.2021.104398_b0300) 2003; 118
Vu (10.1016/j.rinp.2021.104398_b0250) 2020; 10
Vanderbilt (10.1016/j.rinp.2021.104398_b0310) 2000; 61
Boucetta (10.1016/j.rinp.2021.104398_b0320) 2014; 125
Andrew (10.1016/j.rinp.2021.104398_b0355) 2012; 85
Xue (10.1016/j.rinp.2021.104398_b0095) 2018; 12
Yin (10.1016/j.rinp.2021.104398_b0120) 2017; 121
Lavrentyev (10.1016/j.rinp.2021.104398_b0255) 2017; 66
Schwerdtfeger (10.1016/j.rinp.2021.104398_b0410) 2019; 117
Wang (10.1016/j.rinp.2021.104398_b0065) 2017; 9
Novoselov (10.1016/j.rinp.2021.104398_b0005) 2004; 306
10.1016/j.rinp.2021.104398_b0035
Xu (10.1016/j.rinp.2021.104398_b0125) 2020; 116
Kresse (10.1016/j.rinp.2021.104398_b0285) 1999; 59
Ren (10.1016/j.rinp.2021.104398_b0020) 2017; 27
Chen (10.1016/j.rinp.2021.104398_b0315) 2021; 56
Al-Douri (10.1016/j.rinp.2021.104398_b0215) 2012; 407
Kresse (10.1016/j.rinp.2021.104398_b0280) 1993; 47
Mounet (10.1016/j.rinp.2021.104398_b0270) 2018; 13
Wang (10.1016/j.rinp.2021.104398_b0060) 2017; 110
Liu (10.1016/j.rinp.2021.104398_b0070) 2020; 117
Nye (10.1016/j.rinp.2021.104398_b0275) 1985
Blakslee (10.1016/j.rinp.2021.104398_b0365) 1970; 41
Sevik (10.1016/j.rinp.2021.104398_b0100) 2016; 120
Vanderbilt (10.1016/j.rinp.2021.104398_b0305) 1993; 48
Al-Douri (10.1016/j.rinp.2021.104398_b0230) 2019; 256
Belhachemi (10.1016/j.rinp.2021.104398_b0185) 2017; 55
Liu (10.1016/j.rinp.2021.104398_b0265) 2019; 5
Fan (10.1016/j.rinp.2021.104398_b0040) 2019; 7
Li (10.1016/j.rinp.2021.104398_b0010) 2020; 12
Rached (10.1016/j.rinp.2021.104398_b0220) 2006; 37
Wu (10.1016/j.rinp.2021.104398_b0140) 2014; 514
King-Smith (10.1016/j.rinp.2021.104398_b0385) 1993; 47
Lee (10.1016/j.rinp.2021.104398_b0350) 2008; 321
KÖSter (10.1016/j.rinp.2021.104398_b0370) 1961; 6
Yagmurcukardes (10.1016/j.rinp.2021.104398_b0155) 2019; 100
Guo (10.1016/j.rinp.2021.104398_b0160) 2017; 110
Benalia (10.1016/j.rinp.2021.104398_b0240) 2015; 31
Zheng (10.1016/j.rinp.2021.104398_b0025) 2013; 5
Bouchenafa (10.1016/j.rinp.2021.104398_b0175) 2020; 114
Touam (10.1016/j.rinp.2021.104398_b0330) 2020; 43
Liu (10.1016/j.rinp.2021.104398_b0360) 2014; 14
Li (10.1016/j.rinp.2021.104398_b0055) 2017; 9
References_xml – volume: 6
  start-page: 013109
  year: 2014
  end-page: 013124
  ident: b0205
  publication-title: J Renew Sustain Energy
– volume: 10
  start-page: 26843
  year: 2020
  end-page: 26852
  ident: b0250
  publication-title: RSC Adv
– volume: 118
  start-page: 8207
  year: 2003
  end-page: 8215
  ident: b0300
  publication-title: J Chem Phys
– volume: 9
  start-page: 5577
  year: 2017
  end-page: 5582
  ident: b0065
  publication-title: Nanoscale
– volume: 85
  start-page: 125428
  year: 2012
  end-page: 125436
  ident: b0355
  publication-title: Phys Rev B
– volume: 39
  start-page: 276
  year: 2015
  end-page: 282
  ident: b0195
  publication-title: Mater Sci Semicond Proc
– volume: 53
  start-page: 245301
  year: 2020
  end-page: 245309
  ident: b0400
  publication-title: J Phys D: Appl Phys
– volume: 72
  start-page: 035105
  year: 2005
  end-page: 035117
  ident: b0340
  publication-title: Phys Rev B
– volume: 43
  start-page: 22
  year: 2020
  end-page: 32
  ident: b0330
  publication-title: Bull Mater Sci
– volume: 31
  start-page: 1767
  year: 2018
  end-page: 1771
  ident: b0235
  publication-title: J Supercond Nov Magn
– reference: M. r. Kamel, M. Ameri, I. Ameri, K. Bidai, A. Zaoui, D. Bensaid and Y. Al-Douri, Optik, 2016, 127, 4559-4573.
– volume: 31
  start-page: 493
  year: 2015
  end-page: 500
  ident: b0240
  publication-title: Mater Sci Semicond Proc
– volume: 7
  start-page: 1623
  year: 2020
  end-page: 1630
  ident: b0075
  publication-title: Mater Horizons
– volume: 321
  start-page: 385
  year: 2008
  end-page: 388
  ident: b0350
  publication-title: Science
– volume: 10
  start-page: 8474
  year: 2016
  end-page: 8481
  ident: b0015
  publication-title: ACS Nano
– volume: 55
  start-page: 1018
  year: 2017
  end-page: 1031
  ident: b0185
  publication-title: Chin J Phys
– volume: 107
  start-page: 173104
  year: 2015
  end-page: 173108
  ident: b0110
  publication-title: Appl Phys Lett
– volume: 127
  start-page: 064302
  year: 2020
  end-page: 064309
  ident: b0165
  publication-title: J Appl Phys
– volume: 56
  start-page: 11896
  year: 2017
  end-page: 11900
  ident: b0045
  publication-title: Angew Chem Int Ed
– volume: 6
  start-page: 1
  year: 1961
  end-page: 56
  ident: b0370
  publication-title: Metall Rev
– volume: 11
  start-page: 37920
  year: 2019
  end-page: 37926
  ident: b0135
  publication-title: Mater Interfaces
– volume: 90
  start-page: 224104
  year: 2014
  end-page: 224107
  ident: b0345
  publication-title: Phys Rev B
– volume: 12
  start-page: 106
  year: 2020
  end-page: 150
  ident: b0010
  publication-title: Nano-Micro Lett
– volume: 56
  start-page: 8024
  year: 2021
  end-page: 8036
  ident: b0315
  publication-title: J Mater Sci
– volume: 114
  start-page: 105085
  year: 2020
  end-page: 105093
  ident: b0175
  publication-title: Mater Sci Semicond Proc
– volume: 6
  start-page: 24885
  year: 2018
  end-page: 24898
  ident: b0405
  publication-title: J Mater Chem A
– volume: 7
  start-page: 42357
  year: 2017
  end-page: 42366
  ident: b0030
  publication-title: Sci Rep
– volume: 66
  start-page: 149
  year: 2017
  end-page: 159
  ident: b0255
  publication-title: Opt Mater
– volume: 6
  start-page: 1387
  year: 2012
  end-page: 1394
  ident: b0145
  publication-title: ACS Nano
– volume: 110
  start-page: 213101
  year: 2017
  end-page: 213105
  ident: b0060
  publication-title: Appl Phys Lett
– volume: 125
  start-page: 1110
  year: 2014
  end-page: 1117
  ident: b0245
  publication-title: Acta Phys Pol A
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: b0285
  publication-title: Phys Rev B
– volume: 48
  start-page: 4442
  year: 1993
  end-page: 4455
  ident: b0305
  publication-title: Phys Rev B
– volume: 27
  start-page: 1606834
  year: 2017
  end-page: 1606841
  ident: b0020
  publication-title: Adv Funct Mater
– volume: 3
  start-page: 2871
  year: 2012
  end-page: 2876
  ident: b0085
  publication-title: J Phys Chem Lett
– volume: 14
  start-page: 5097
  year: 2014
  end-page: 5103
  ident: b0360
  publication-title: Nano Lett
– volume: 514
  start-page: 470
  year: 2014
  end-page: 474
  ident: b0140
  publication-title: Nature
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: b0295
  publication-title: Phys Rev B
– volume: 8
  start-page: 3796
  year: 2015
  end-page: 3802
  ident: b0105
  publication-title: Nano Res
– volume: 14
  start-page: 2000321
  year: 2020
  end-page: 2000326
  ident: b0170
  publication-title: Phys Status Solidi Rapid Res Lett
– volume: 352
  start-page: 2439
  year: 2006
  end-page: 2443
  ident: b0260
  publication-title: Solids
– volume: 5
  start-page: 1900089
  year: 2019
  end-page: 1900095
  ident: b0265
  publication-title: Adv Electron Mater
– volume: 5
  start-page: 10288
  year: 2013
  end-page: 10293
  ident: b0025
  publication-title: Mater Interfaces
– volume: 9
  start-page: 9885
  year: 2015
  end-page: 9891
  ident: b0115
  publication-title: ACS Nano
– volume: 121
  start-page: 25576
  year: 2017
  end-page: 25584
  ident: b0120
  publication-title: J Phys Chem C
– volume: 7
  start-page: 26123
  year: 2019
  end-page: 26130
  ident: b0040
  publication-title: J Mater Chem A
– volume: 114
  start-page: 192903
  year: 2019
  end-page: 192907
  ident: b0080
  publication-title: Appl Phys Lett
– reference: J. Zou, S. Wu, Y. Liu, Y. Sun, Y. Cao, J.-P. Hsu, A. T. Shen Wee and J. Jiang, Carbon, 2018, 130, 652-663.
– volume: 32
  start-page: 043006
  year: 2017
  end-page: 043025
  ident: b0375
  publication-title: Semicond Sci Technol
– volume: 13
  start-page: 246
  year: 2018
  end-page: 252
  ident: b0270
  publication-title: Nat Nanotechnol
– volume: 118
  start-page: 123102
  year: 2021
  end-page: 123108
  ident: b0395
  publication-title: Appl Phys Lett
– volume: 117
  start-page: 103101
  year: 2020
  end-page: 103105
  ident: b0070
  publication-title: Appl Phys Lett
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: b0005
  publication-title: Science
– volume: 428
  start-page: 78
  year: 2013
  end-page: 88
  ident: b0210
  publication-title: Phys B
– volume: 89
  start-page: 554
  year: 2019
  end-page: 558
  ident: b0225
  publication-title: Opt Mater
– volume: 23
  start-page: 3637
  year: 2021
  end-page: 3645
  ident: b0390
  publication-title: Phys Chem Chem Phys
– volume: 96
  start-page: 333
  year: 1995
  end-page: 340
  ident: b0380
  publication-title: Z Phys B: Condens Matter
– volume: 4
  start-page: 1234
  year: 2010
  end-page: 1240
  ident: b0050
  publication-title: ACS Nano
– volume: 10
  start-page: 6061
  year: 2019
  end-page: 6066
  ident: b0090
  publication-title: J Phys Chem Lett
– volume: 46
  start-page: 4539
  year: 2017
  end-page: 4556
  ident: b0180
  publication-title: J Electron Mater
– volume: 256
  start-page: 1900131
  year: 2019
  end-page: 1900134
  ident: b0230
  publication-title: Phys Status Solidi B
– volume: 9
  start-page: 41443
  year: 2017
  end-page: 41453
  ident: b0055
  publication-title: Mater Interfaces
– volume: 65
  start-page: 104104
  year: 2002
  end-page: 104117
  ident: b0335
  publication-title: Phys Rev B
– volume: 110
  start-page: 163102
  year: 2017
  end-page: 163106
  ident: b0160
  publication-title: Appl Phys Lett
– volume: 407
  start-page: 286
  year: 2012
  end-page: 296
  ident: b0215
  publication-title: Phys B
– volume: 37
  start-page: 292
  year: 2006
  end-page: 299
  ident: b0220
  publication-title: Comput Mater Sci
– volume: 19
  start-page: 27508
  year: 2017
  end-page: 27515
  ident: b0150
  publication-title: Phys Chem Chem Phys
– volume: 61
  start-page: 147
  year: 2000
  end-page: 151
  ident: b0310
  publication-title: J Phys Chem Solids
– volume: 12
  start-page: 4976
  year: 2018
  end-page: 4983
  ident: b0095
  publication-title: ACS Nano
– volume: 125
  start-page: 54
  year: 2014
  end-page: 59
  ident: b0320
  publication-title: Acta Phys Pol A
– volume: 100
  start-page: 045415
  year: 2019
  end-page: 045422
  ident: b0155
  publication-title: Phys Rev B
– volume: 11
  start-page: 1600412
  year: 2017
  end-page: 1600416
  ident: b0130
  publication-title: Phys Status Solidi Rapid Res Lett
– volume: 117
  start-page: 1200
  year: 2019
  end-page: 1225
  ident: b0410
  publication-title: Mol Phys
– volume: 47
  start-page: 1651
  year: 1993
  end-page: 1654
  ident: b0385
  publication-title: Phys Rev B
– year: 1985
  ident: b0275
  article-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: b0280
  publication-title: Phys Rev B
– volume: 4
  start-page: 521
  year: 2014
  end-page: 532
  ident: b0200
  publication-title: Mater Express
– volume: 116
  start-page: 023103
  year: 2020
  end-page: 023106
  ident: b0125
  publication-title: Appl Phys Lett
– volume: 59
  start-page: 7413
  year: 1999
  end-page: 7421
  ident: b0290
  publication-title: Phys Rev B
– volume: 41
  start-page: 3373
  year: 1970
  end-page: 3382
  ident: b0365
  publication-title: J Appl Phys
– volume: 120
  start-page: 13948
  year: 2016
  end-page: 13953
  ident: b0100
  publication-title: J Phys Chem C
– volume: 30
  start-page: 2005158
  year: 2020
  end-page: 2005188
  ident: b0415
  publication-title: Adv Funct Mater
– volume: 54
  start-page: 33
  year: 2016
  end-page: 41
  ident: b0190
  article-title: Chinese
  publication-title: J Phys
– volume: 48
  start-page: 4442
  year: 1993
  ident: 10.1016/j.rinp.2021.104398_b0305
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.48.4442
– volume: 3
  start-page: 2871
  year: 2012
  ident: 10.1016/j.rinp.2021.104398_b0085
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz3012436
– volume: 12
  start-page: 4976
  year: 2018
  ident: 10.1016/j.rinp.2021.104398_b0095
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02152
– volume: 55
  start-page: 1018
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0185
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2017.02.018
– volume: 31
  start-page: 493
  year: 2015
  ident: 10.1016/j.rinp.2021.104398_b0240
  publication-title: Mater Sci Semicond Proc
  doi: 10.1016/j.mssp.2014.12.021
– volume: 53
  start-page: 245301
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0400
  publication-title: J Phys D: Appl Phys
  doi: 10.1088/1361-6463/ab813a
– volume: 121
  start-page: 25576
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0120
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.7b08822
– volume: 110
  start-page: 163102
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0160
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4981877
– volume: 47
  start-page: 558
  year: 1993
  ident: 10.1016/j.rinp.2021.104398_b0280
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.47.558
– volume: 117
  start-page: 103101
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0070
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0021056
– ident: 10.1016/j.rinp.2021.104398_b0035
  doi: 10.1016/j.carbon.2018.01.008
– year: 1985
  ident: 10.1016/j.rinp.2021.104398_b0275
– ident: 10.1016/j.rinp.2021.104398_b0325
  doi: 10.1016/j.ijleo.2016.01.188
– volume: 6
  start-page: 24885
  year: 2018
  ident: 10.1016/j.rinp.2021.104398_b0405
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA08781D
– volume: 32
  start-page: 043006
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0375
  publication-title: Semicond Sci Technol
  doi: 10.1088/1361-6641/aa5cfb
– volume: 107
  start-page: 173104
  year: 2015
  ident: 10.1016/j.rinp.2021.104398_b0110
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4934750
– volume: 39
  start-page: 276
  year: 2015
  ident: 10.1016/j.rinp.2021.104398_b0195
  publication-title: Mater Sci Semicond Proc
  doi: 10.1016/j.mssp.2015.05.016
– volume: 6
  start-page: 013109
  year: 2014
  ident: 10.1016/j.rinp.2021.104398_b0205
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.4862152
– volume: 96
  start-page: 333
  year: 1995
  ident: 10.1016/j.rinp.2021.104398_b0380
  publication-title: Z Phys B: Condens Matter
  doi: 10.1007/BF01313055
– volume: 125
  start-page: 1110
  year: 2014
  ident: 10.1016/j.rinp.2021.104398_b0245
  publication-title: Acta Phys Pol A
  doi: 10.12693/APhysPolA.125.1110
– volume: 23
  start-page: 3637
  year: 2021
  ident: 10.1016/j.rinp.2021.104398_b0390
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D0CP06116F
– volume: 100
  start-page: 045415
  year: 2019
  ident: 10.1016/j.rinp.2021.104398_b0155
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.100.045415
– volume: 37
  start-page: 292
  year: 2006
  ident: 10.1016/j.rinp.2021.104398_b0220
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2005.08.005
– volume: 72
  start-page: 035105
  year: 2005
  ident: 10.1016/j.rinp.2021.104398_b0340
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.72.035105
– volume: 114
  start-page: 192903
  year: 2019
  ident: 10.1016/j.rinp.2021.104398_b0080
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5097425
– volume: 514
  start-page: 470
  year: 2014
  ident: 10.1016/j.rinp.2021.104398_b0140
  publication-title: Nature
  doi: 10.1038/nature13792
– volume: 54
  start-page: 33
  year: 2016
  ident: 10.1016/j.rinp.2021.104398_b0190
  article-title: Chinese
  publication-title: J Phys
– volume: 66
  start-page: 149
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0255
  publication-title: Opt Mater
  doi: 10.1016/j.optmat.2017.01.049
– volume: 6
  start-page: 1
  year: 1961
  ident: 10.1016/j.rinp.2021.104398_b0370
  publication-title: Metall Rev
  doi: 10.1179/095066061790425893
– volume: 120
  start-page: 13948
  year: 2016
  ident: 10.1016/j.rinp.2021.104398_b0100
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b03543
– volume: 8
  start-page: 3796
  year: 2015
  ident: 10.1016/j.rinp.2021.104398_b0105
  publication-title: Nano Res
  doi: 10.1007/s12274-015-0878-8
– volume: 4
  start-page: 521
  year: 2014
  ident: 10.1016/j.rinp.2021.104398_b0200
  publication-title: Mater Express
  doi: 10.1166/mex.2014.1199
– volume: 30
  start-page: 2005158
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0415
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202005158
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.rinp.2021.104398_b0005
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 19
  start-page: 27508
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0150
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C7CP05669A
– volume: 7
  start-page: 26123
  year: 2019
  ident: 10.1016/j.rinp.2021.104398_b0040
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA10466F
– volume: 256
  start-page: 1900131
  year: 2019
  ident: 10.1016/j.rinp.2021.104398_b0230
  publication-title: Phys Status Solidi B
  doi: 10.1002/pssb.201900131
– volume: 13
  start-page: 5188
  year: 1976
  ident: 10.1016/j.rinp.2021.104398_b0295
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.13.5188
– volume: 5
  start-page: 1900089
  year: 2019
  ident: 10.1016/j.rinp.2021.104398_b0265
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.201900089
– volume: 47
  start-page: 1651
  year: 1993
  ident: 10.1016/j.rinp.2021.104398_b0385
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.47.1651
– volume: 12
  start-page: 106
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0010
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-020-00439-9
– volume: 14
  start-page: 2000321
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0170
  publication-title: Phys Status Solidi Rapid Res Lett
  doi: 10.1002/pssr.202000321
– volume: 27
  start-page: 1606834
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0020
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201606834
– volume: 89
  start-page: 554
  year: 2019
  ident: 10.1016/j.rinp.2021.104398_b0225
  publication-title: Opt Mater
  doi: 10.1016/j.optmat.2019.01.073
– volume: 90
  start-page: 224104
  year: 2014
  ident: 10.1016/j.rinp.2021.104398_b0345
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.90.224104
– volume: 116
  start-page: 023103
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0125
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5135950
– volume: 127
  start-page: 064302
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0165
  publication-title: J Appl Phys
  doi: 10.1063/1.5134960
– volume: 118
  start-page: 8207
  year: 2003
  ident: 10.1016/j.rinp.2021.104398_b0300
  publication-title: J Chem Phys
  doi: 10.1063/1.1564060
– volume: 9
  start-page: 5577
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0065
  publication-title: Nanoscale
  doi: 10.1039/C7NR00455A
– volume: 10
  start-page: 8474
  year: 2016
  ident: 10.1016/j.rinp.2021.104398_b0015
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03458
– volume: 110
  start-page: 213101
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0060
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4983781
– volume: 10
  start-page: 26843
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0250
  publication-title: RSC Adv
  doi: 10.1039/D0RA03280H
– volume: 13
  start-page: 246
  year: 2018
  ident: 10.1016/j.rinp.2021.104398_b0270
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-017-0035-5
– volume: 114
  start-page: 105085
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0175
  publication-title: Mater Sci Semicond Proc
  doi: 10.1016/j.mssp.2020.105085
– volume: 85
  start-page: 125428
  year: 2012
  ident: 10.1016/j.rinp.2021.104398_b0355
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.85.125428
– volume: 14
  start-page: 5097
  year: 2014
  ident: 10.1016/j.rinp.2021.104398_b0360
  publication-title: Nano Lett
  doi: 10.1021/nl501793a
– volume: 321
  start-page: 385
  year: 2008
  ident: 10.1016/j.rinp.2021.104398_b0350
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 11
  start-page: 37920
  year: 2019
  ident: 10.1016/j.rinp.2021.104398_b0135
  publication-title: Mater Interfaces
  doi: 10.1021/acsami.9b12187
– volume: 46
  start-page: 4539
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0180
  publication-title: J Electron Mater
  doi: 10.1007/s11664-017-5452-6
– volume: 9
  start-page: 9885
  year: 2015
  ident: 10.1016/j.rinp.2021.104398_b0115
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03394
– volume: 11
  start-page: 1600412
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0130
  publication-title: Phys Status Solidi Rapid Res Lett
  doi: 10.1002/pssr.201600412
– volume: 117
  start-page: 1200
  year: 2019
  ident: 10.1016/j.rinp.2021.104398_b0410
  publication-title: Mol Phys
  doi: 10.1080/00268976.2018.1535143
– volume: 10
  start-page: 6061
  year: 2019
  ident: 10.1016/j.rinp.2021.104398_b0090
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.9b02340
– volume: 6
  start-page: 1387
  year: 2012
  ident: 10.1016/j.rinp.2021.104398_b0145
  publication-title: ACS Nano
  doi: 10.1021/nn204198g
– volume: 428
  start-page: 78
  year: 2013
  ident: 10.1016/j.rinp.2021.104398_b0210
  publication-title: Phys B
  doi: 10.1016/j.physb.2013.07.014
– volume: 407
  start-page: 286
  year: 2012
  ident: 10.1016/j.rinp.2021.104398_b0215
  publication-title: Phys B
  doi: 10.1016/j.physb.2011.09.127
– volume: 7
  start-page: 1623
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0075
  publication-title: Mater Horizons
  doi: 10.1039/D0MH00183J
– volume: 41
  start-page: 3373
  year: 1970
  ident: 10.1016/j.rinp.2021.104398_b0365
  publication-title: J Appl Phys
  doi: 10.1063/1.1659428
– volume: 31
  start-page: 1767
  year: 2018
  ident: 10.1016/j.rinp.2021.104398_b0235
  publication-title: J Supercond Nov Magn
  doi: 10.1007/s10948-017-4393-x
– volume: 61
  start-page: 147
  year: 2000
  ident: 10.1016/j.rinp.2021.104398_b0310
  publication-title: J Phys Chem Solids
  doi: 10.1016/S0022-3697(99)00273-5
– volume: 65
  start-page: 104104
  year: 2002
  ident: 10.1016/j.rinp.2021.104398_b0335
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.65.104104
– volume: 7
  start-page: 42357
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0030
  publication-title: Sci Rep
  doi: 10.1038/srep42357
– volume: 56
  start-page: 11896
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0045
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201703657
– volume: 56
  start-page: 8024
  year: 2021
  ident: 10.1016/j.rinp.2021.104398_b0315
  publication-title: J Mater Sci
  doi: 10.1007/s10853-021-05834-0
– volume: 118
  start-page: 123102
  year: 2021
  ident: 10.1016/j.rinp.2021.104398_b0395
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0043731
– volume: 9
  start-page: 41443
  year: 2017
  ident: 10.1016/j.rinp.2021.104398_b0055
  publication-title: Mater Interfaces
  doi: 10.1021/acsami.7b13179
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.rinp.2021.104398_b0285
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.59.1758
– volume: 125
  start-page: 54
  year: 2014
  ident: 10.1016/j.rinp.2021.104398_b0320
  publication-title: Acta Phys Pol A
  doi: 10.12693/APhysPolA.125.54
– volume: 43
  start-page: 22
  year: 2020
  ident: 10.1016/j.rinp.2021.104398_b0330
  publication-title: Bull Mater Sci
  doi: 10.1007/s12034-019-1978-y
– volume: 59
  start-page: 7413
  year: 1999
  ident: 10.1016/j.rinp.2021.104398_b0290
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.59.7413
– volume: 352
  start-page: 2439
  year: 2006
  ident: 10.1016/j.rinp.2021.104398_b0260
  publication-title: Solids
– volume: 5
  start-page: 10288
  year: 2013
  ident: 10.1016/j.rinp.2021.104398_b0025
  publication-title: Mater Interfaces
  doi: 10.1021/am403205v
– volume: 4
  start-page: 1234
  year: 2010
  ident: 10.1016/j.rinp.2021.104398_b0050
  publication-title: ACS Nano
  doi: 10.1021/nn901805g
SSID ssj0001645511
Score 2.3096974
Snippet •The out-of-plane and in-plane piezoelectricity in 2D Li-based ternary chalcogenides LiMX2 are investigated.•We propose a simple correlation between in-plane...
Two-dimensional (2D) piezoelectric materials that can achieve conversion between mechanical and electrical energy are of notable interest for functional...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 104398
SubjectTerms 2D materials
First-principles calculations
In-plane piezoelectricity
Li-based ternary chalcogenides
Out-of-plane piezoelectricity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvAmxSZNmuboExH1pLC3kuaBlaVddutBf70zTVfWi148tkmTMhk630xnviHkVHMrmVciMYBXE-EylmibGqwCkTKorDAcq5Efn_K7F3E_luOlVl-YExbpgaPgzj13WlVWpl6nQgRdGVcJqXMAEkoyU-HXF2zekjPVR1dyAVAAvS3OkadPaTVUzMTkrlndIFklZ_iPM9PFD6vUk_cvGaclg3O7STYGpEgv4htukRXfbJO1PmPTzndId9Uii2UPeWkb6ARTumn73iVtSKaYwkpN42jdDBfT2n-2selNbQF6wwjl1xS0EJxbwN30AbxkMGmO9iHC2Qe1r2ZiW1Cw2vk5DD-O-S55ub15vrpLhhYKiRUs7ZIqV0ZZH8BQGR24DXlmpTOZ04V2WNSqUpe7FJsgSVNxjGkU1gthTCWZZSHbI6tN2_h9QlOwdyK3BZykFwbQLkjdSZMGyTJsGjMibCHC0g784tjmYlIuEsneShR7iWIvo9hH5Oz7mWlk1_h19iWezPdMZMbub4C-lIO-lH_py4jIxbmWA8iI4AGWqn_Z_OA_Nj8k67hkTPc9Iqvd7N0fA6jpqpNef78AuSnxpg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQUqVeELRUXV7yobfK2viVxMeygFao20tB2lvk-AFBq2S1hEP76zuTeClcOHD0K4nGo5nPzjczhHwzwmkeCsUs4FWmvOTMuMxiFIjWsZClFRiNvPiVz2_V9VIvd8hsGwuDtMpk-0ebPljr1DNN0pyum2b6W8DZRRaYfWYkc4AdlqocgviW5__vWXIFoADPXTif4YIUOzPSvDZNi2krBce_ndKUr_zTkMb_hZt64Xqu9slewoz0x_hZB2QntJ_Ih4G76R4_k37WYT7LAfzSLtIVkrtp99SzLrI1klmpbT1t2tRYN-FvN5a_aRyAcBih4oKCPsIxFxA4_QnnZXBung6XhZs_1N3bletA1RofHmF4sRSH5Pbq8mY2Z6mYAnOKZz2r88IWLkRwWdZE4WIunfZWelMaj-GtReZzn2E5JG1rgbcbpQtKWVtr7niUX8hu27XhK6EZeD6VuxL2NCgLuBcwh9c2i5pLLB8zIXwrwsqlTONY8GJVbSllDxWKvUKxV6PYJ-T785r1mGfjzdnnuDPPMzFH9tDRbe6qpCRVEN4UtdNZMJlS0dTW10qbHCBoobmtJ0Rv97V6pXLwqOaNlx-9c90x-Yitket7Qnb7zVM4BUTT12eDyv4DbPrxzw
  priority: 102
  providerName: Elsevier
Title Coexistence of large out-of-plane and in-plane piezoelectricity in 2D monolayer Li-based ternary chalcogenides LiMX2
URI https://dx.doi.org/10.1016/j.rinp.2021.104398
https://doaj.org/article/e2d97bc50e9044f9badb4596416751ab
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpQqGX0PRBN2mDDr0VF0uWLOsQQpI2pCXbUxf2ZmQ9WofF3ngdSPLrM2Nr0xRCIBeDLFk2MxLzaTwzHyGfNbeSeSUSA3g1ES5jibapwSwQKYPKCsMxG3n6Kz-biZ9zOd8ga7qjKMDVo0c75JOadYuv15c3h7DhD_7FanV1g7UnOcNflpkuXpAtsEwKqRymEe4PPpdcAEDAMxjnWL1PaRXzaB6f5j9bNZT0f2CyHpih09dkO-JHejQqfIds-OYNeTnEcdrVW9KftFjbcgDCtA10gYHetL3qkzYkSwxspaZxtG5iY1n723akwqktAHLoofwbhbUJcgE0Ts_h7AyGztHBcdjdUPvXLGwLy652fgXd0zl_R2an33-fnCWRWCGxgqV9UuXKKOsDmC-jA7chz6x0JnO60A5TXVXqcpciNZI0FUdPR2G9EMZUklkWsvdks2kb_4HQFKygyG0B-vXCAAYG_OGkSYNkGVLJTAhbi7C0seo4kl8synV42UWJYi9R7OUo9gn5cv_Mcqy58eToY9TM_Uislz3caLs_Zdx-pedOq8rK1OtUiKAr4yohdQ5wVElmqgmRa72WEXqMkAKmqp94-e6zPnWPvMLWGO37kWz23ZX_BJimr_YHXwBcf8yP94dFewe0CvOo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSFEW7FOkLdZ8cuhWERYqUxDFxGzitnaUJ4I2g-GhUGJLhKEP763Mn0WmyZMgokScJxwPvO-q7O0K-aOEUD6VkFvAqkz7nTLvMYhaIUrHMKyswG3l5WszP5Y-VWu2R2S4XBmmVae8f9_Rht053pkmb003TTH8JiF3yEqvPjGSOR-QxoIECTftkdfT_oKWQgAow8EIBhhIpeWbkeW2bFutWCo6_O3Nd3XFQQx3_W37qlu85PiDPE2ikh-N3vSB7oX1JngzkTXf5ivSzDgtaDuiXdpGukd1Nu6uedZFtkM1Kbetp06aLTRP-dWP_m8YBCocRKr5RMEiIcwGC0wUEzODdPB1OC7d_qbuwa9eBrTU-XMLwciVek_Pj72ezOUvdFJiTPOtZXZS2dCGCz7I6CheL3Clvc68r7TG_tcx84TPsh6RsLfB4o3JBSmtrxR2P-Ruy33ZteEtoBq5PFq6CRQ3SAvAF0OGVzaLiOfaPmRC-U6FxqdQ4drxYmx2n7I9BtRtUuxnVPiFfb2Q2Y6GNe2cf4crczMQi2cONbvvbJCsxQXhd1k5lQWdSRl1bX0ulC8CgpeK2nhC1W1dzx-bgUc09L3_3QLnP5On8bLkwi5PTn-_JMxwZib8fyH6_vQofAd709afBfK8BsJ_09g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coexistence+of+large+out-of-plane+and+in-plane+piezoelectricity+in+2D+monolayer+Li-based+ternary+chalcogenides+LiMX2&rft.jtitle=Results+in+physics&rft.au=Liu%2C+Siyuan&rft.au=Chen%2C+Weizhen&rft.au=Liu%2C+Chang&rft.au=Wang%2C+Bing&rft.date=2021-07-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=26&rft.spage=104398&rft_id=info:doi/10.1016%2Fj.rinp.2021.104398&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2021_104398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon