Manifold-Manifold Distance and its Application to Face Recognition With Image Sets

In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between tw...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 21; no. 10; pp. 4466 - 4479
Main Authors Wang, Ruiping, Shan, Shiguang, Chen, Xilin, Dai, Qionghai, Gao, Wen
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between two manifolds, called manifold-manifold distance (MMD). Since an image set can come in three pattern levels, point, subspace, and manifold, we systematically study the distance among the three levels and formulate them in a general multilevel MMD framework. Specifically, we express a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrate the distances between pairs of subspaces from one of the involved manifolds. We theoretically and experimentally study several configurations of the ingredients of MMD. The proposed method is applied to the task of face recognition with image sets, where identification is achieved by seeking the minimum MMD from the probe to the gallery of image sets. Our experiments demonstrate that, as a general set similarity measure, MMD consistently outperforms other competing nondiscriminative methods and is also promisingly comparable to the state-of-the-art discriminative methods.
AbstractList In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between two manifolds, called manifold-manifold distance (MMD). Since an image set can come in three pattern levels, point, subspace, and manifold, we systematically study the distance among the three levels and formulate them in a general multilevel MMD framework. Specifically, we express a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrate the distances between pairs of subspaces from one of the involved manifolds. We theoretically and experimentally study several configurations of the ingredients of MMD. The proposed method is applied to the task of face recognition with image sets, where identification is achieved by seeking the minimum MMD from the probe to the gallery of image sets. Our experiments demonstrate that, as a general set similarity measure, MMD consistently outperforms other competing nondiscriminative methods and is also promisingly comparable to the state-of-the-art discriminative methods.
In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between two manifolds, called manifold-manifold distance (MMD). Since an image set can come in three pattern levels, point, subspace, and manifold, we systematically study the distance among the three levels and formulate them in a general multilevel MMD framework. Specifically, we express a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrate the distances between pairs of subspaces from one of the involved manifolds. We theoretically and experimentally study several configurations of the ingredients of MMD. The proposed method is applied to the task of face recognition with image sets, where identification is achieved by seeking the minimum MMD from the probe to the gallery of image sets. Our experiments demonstrate that, as a general set similarity measure, MMD consistently outperforms other competing nondiscriminative methods and is also promisingly comparable to the state-of-the-art discriminative methods.In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between two manifolds, called manifold-manifold distance (MMD). Since an image set can come in three pattern levels, point, subspace, and manifold, we systematically study the distance among the three levels and formulate them in a general multilevel MMD framework. Specifically, we express a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrate the distances between pairs of subspaces from one of the involved manifolds. We theoretically and experimentally study several configurations of the ingredients of MMD. The proposed method is applied to the task of face recognition with image sets, where identification is achieved by seeking the minimum MMD from the probe to the gallery of image sets. Our experiments demonstrate that, as a general set similarity measure, MMD consistently outperforms other competing nondiscriminative methods and is also promisingly comparable to the state-of-the-art discriminative methods.
Author Wen Gao
Shiguang Shan
Xilin Chen
Qionghai Dai
Ruiping Wang
Author_xml – sequence: 1
  givenname: Ruiping
  surname: Wang
  fullname: Wang, Ruiping
  email: rpwang@mail.tsinghua.edu.cn
  organization: Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China. rpwang@mail.tsinghua.edu.cn
– sequence: 2
  givenname: Shiguang
  surname: Shan
  fullname: Shan, Shiguang
– sequence: 3
  givenname: Xilin
  surname: Chen
  fullname: Chen, Xilin
– sequence: 4
  givenname: Qionghai
  surname: Dai
  fullname: Dai, Qionghai
– sequence: 5
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26404330$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22752133$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFTEUxYNU7Jd7QZABEdzM6735nCxLtfqgRakVl0Mmk6kp85LXSd7C_95M32uFLuwql-R3zr2555DshRgcIW8QFoigT66X3xcUkC4oBQlMvyAHqDnWAJzulRqEqhVyvU8OU7oFQC5QviL7lCpBkbEDcnVpgh_i2NcPRfXJp2yCdZUJfeVzqk7X69Fbk30MVY7VuSlvV87Gm-Dv7375_LtarsyNq364nI7Jy8GMyb3enUfk5_nn67Ov9cW3L8uz04vacoRcd4JJPTTaDFRJY7S1Q-NUoxuGrLNCKN4L6HrtjMbeNkpJ7GXHm6HhlkEH7Ih83Pqup3i3cSm3K5-sG0cTXNykFpFJzrRC8TwKUlNQDZ9d3z9Bb-NmCuUjheLIUGk2G77bUZtu5fp2PfmVmf60D4stwIcdYJI14zCVjfr0j5McOGNzO9hydoopTW54RBDaOeO2ZNzOGbe7jItEPpFYn-_TyZPx4_-Eb7dC75x77CNpGUYK9hc4Ma-D
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_patcog_2017_11_006
crossref_primary_10_1109_TCSVT_2017_2669095
crossref_primary_10_1109_TR_2017_2691730
crossref_primary_10_1016_j_neucom_2014_10_113
crossref_primary_10_1007_s11042_017_4491_6
crossref_primary_10_1016_j_neucom_2016_01_113
crossref_primary_10_3233_JIFS_212382
crossref_primary_10_1016_j_patcog_2015_04_003
crossref_primary_10_1016_j_neucom_2015_07_023
crossref_primary_10_1109_TCYB_2021_3069790
crossref_primary_10_1109_TII_2020_3036676
crossref_primary_10_1016_j_ins_2017_11_057
crossref_primary_10_1016_j_patrec_2020_10_015
crossref_primary_10_1007_s40314_021_01482_x
crossref_primary_10_1016_j_neucom_2016_01_126
crossref_primary_10_1109_LGRS_2015_2506659
crossref_primary_10_1109_TIP_2015_2463223
crossref_primary_10_1109_TIP_2016_2520368
crossref_primary_10_1016_j_imavis_2016_04_003
crossref_primary_10_1088_0964_1726_23_6_065019
crossref_primary_10_1109_ACCESS_2019_2935235
crossref_primary_10_1109_ACCESS_2024_3424933
crossref_primary_10_1016_j_neucom_2019_03_010
crossref_primary_10_1016_j_patcog_2017_11_020
crossref_primary_10_1016_j_patcog_2019_01_005
crossref_primary_10_1007_s12559_016_9403_y
crossref_primary_10_1109_TCYB_2021_3062396
crossref_primary_10_1016_j_ijleo_2015_02_020
crossref_primary_10_1016_j_patcog_2016_10_004
crossref_primary_10_1109_TCSVT_2017_2772026
crossref_primary_10_1016_j_eswa_2019_05_025
crossref_primary_10_1016_j_coisb_2017_12_008
crossref_primary_10_1016_j_jvcir_2018_02_004
crossref_primary_10_1049_iet_cvi_2015_0394
crossref_primary_10_1016_j_cviu_2017_04_008
crossref_primary_10_1016_j_knosys_2021_107624
crossref_primary_10_1109_TIFS_2014_2324277
crossref_primary_10_1145_2645862
crossref_primary_10_1016_j_jsv_2016_01_021
crossref_primary_10_1109_TIP_2017_2746993
crossref_primary_10_1016_j_cviu_2017_03_004
crossref_primary_10_1016_j_neucom_2022_10_040
crossref_primary_10_1109_JIOT_2019_2911669
crossref_primary_10_1109_TIP_2018_2862625
crossref_primary_10_1109_THMS_2017_2681425
crossref_primary_10_1109_ACCESS_2017_2733718
crossref_primary_10_1109_TBDATA_2018_2803838
crossref_primary_10_1016_j_knosys_2018_02_027
crossref_primary_10_3390_math9182247
crossref_primary_10_1007_s10255_024_1116_5
crossref_primary_10_1016_j_patcog_2017_02_032
crossref_primary_10_1109_TPAMI_2016_2567386
crossref_primary_10_1109_TCSVT_2014_2309834
crossref_primary_10_1109_ACCESS_2018_2841855
crossref_primary_10_1007_s11425_016_9092_7
crossref_primary_10_1109_TBIOM_2020_2973504
crossref_primary_10_1016_j_neucom_2018_06_077
crossref_primary_10_1109_TCSVT_2014_2367357
crossref_primary_10_3390_ijgi10040246
crossref_primary_10_1016_j_patcog_2015_03_011
crossref_primary_10_1016_j_patcog_2018_07_014
crossref_primary_10_1109_TCSVT_2014_2365655
crossref_primary_10_1088_0964_1726_22_8_085012
crossref_primary_10_1016_j_ins_2019_01_022
crossref_primary_10_1109_TIP_2019_2940683
crossref_primary_10_1038_s41598_025_92509_4
crossref_primary_10_1109_ACCESS_2019_2947548
Cites_doi 10.1109/TPAMI.2007.1037
10.1137/S1064827502419154
10.1016/S1077-3142(03)00080-8
10.1023/A:1008005721484
10.1109/AFGR.1998.670968
10.1109/AFGR.2000.840629
10.1016/j.patrec.2009.06.002
10.1109/CVPR.2003.1211334
10.1007/3-540-49430-8_13
10.1109/TPAMI.2011.39
10.1109/CVPR.1991.139758
10.1126/science.290.5500.2323
10.1162/1532443041827934
10.1090/S0025-5718-1973-0348991-3
10.1145/1390156.1390204
10.1109/CVPR.2005.81
10.1137/S0895479895290954
10.1109/TIP.2009.2038621
10.1109/TPAMI.2008.156
10.1016/j.patcog.2006.12.030
10.1109/AFGR.2004.1301634
10.1023/A:1026543900054
10.1109/CVPR.2005.151
10.1126/science.290.5500.2319
10.1109/TMM.2004.840596
10.1023/B:VISI.0000013087.49260.fb
10.1109/TPAMI.2002.1008382
10.1016/j.patcog.2005.08.015
10.1109/ICPR.1994.576361
10.2307/2333955
10.1109/CVPR.2010.5539965
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2012.2206039
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

MEDLINE
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 4479
ExternalDocumentID 2766909531
22752133
26404330
10_1109_TIP_2012_2206039
6226465
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c410t-b5369f89af276aa9ccf8e7898313bc5574d50bd9ea91dc87761d6b48f84c30b03
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Jul 10 18:34:27 EDT 2025
Fri Jul 11 11:55:06 EDT 2025
Mon Jun 30 06:09:38 EDT 2025
Thu Apr 03 07:07:05 EDT 2025
Mon Jul 21 09:14:34 EDT 2025
Tue Jul 01 02:02:51 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Tue Aug 26 16:57:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Biometrics
Performance evaluation
Discriminant analysis
Automatic classification
State of the art
manifold―manifold distance (MMD)
Multipoint method
Face recognition
Similarity
Image processing
Hierarchical classification
Subspace method
Pattern recognition
Signal classification
Modeling
Linear model
set similarity measure
principal angles
hierarchical divisive clustering
Automatic recognition
Multilevel system
Face recognition with image sets
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-b5369f89af276aa9ccf8e7898313bc5574d50bd9ea91dc87761d6b48f84c30b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 22752133
PQID 1041317935
PQPubID 85429
PageCount 14
ParticipantIDs ieee_primary_6226465
proquest_miscellaneous_1069207840
pubmed_primary_22752133
crossref_primary_10_1109_TIP_2012_2206039
proquest_journals_1041317935
pascalfrancis_primary_26404330
proquest_miscellaneous_1136439715
crossref_citationtrail_10_1109_TIP_2012_2206039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
fan (ref4) 2006
ref31
ref30
ref33
ref32
ref10
gross (ref38) 2001
ref2
shakhnarovich (ref11) 2002
ref1
ref39
ref17
ref16
ref19
ref18
simard (ref37) 1998; lncs 1524
wang (ref26) 2009
ref24
ref23
kim (ref7) 2008
ref20
liu (ref9) 2003
ref21
roweis (ref25) 2000; 290
tenenbaum (ref28) 2000; 290
ref27
ref29
fukui (ref5) 2003
ref3
ref6
ref40
lee (ref8) 2003
wang (ref22) 2008
References_xml – year: 2001
  ident: ref38
  publication-title: The CMU motion of body (MoBo) database
– ident: ref3
  doi: 10.1109/TPAMI.2007.1037
– ident: ref29
  doi: 10.1137/S1064827502419154
– ident: ref13
  doi: 10.1016/S1077-3142(03)00080-8
– ident: ref21
  doi: 10.1023/A:1008005721484
– ident: ref14
  doi: 10.1109/AFGR.1998.670968
– start-page: 313
  year: 2003
  ident: ref8
  article-title: Video-based face recognition using probabilistic appearance manifolds
  publication-title: Proc Conf Comput Vis and Pattern Recog
– ident: ref10
  doi: 10.1109/AFGR.2000.840629
– start-page: 851
  year: 2002
  ident: ref11
  article-title: Face recognition from long-term observations
  publication-title: Proc Eur Conf Comput Vision
– ident: ref12
  doi: 10.1016/j.patrec.2009.06.002
– ident: ref33
  doi: 10.1109/CVPR.2003.1211334
– volume: lncs 1524
  start-page: 239
  year: 1998
  ident: ref37
  article-title: Transformation invariance in pattern recognition-tangent distance and tangent propagation
  publication-title: Neural Netw Tricks Trade
  doi: 10.1007/3-540-49430-8_13
– start-page: 429
  year: 2009
  ident: ref26
  article-title: Manifold discriminant analysis
  publication-title: Proc Conf Comput Vis and Pattern Recog
– ident: ref27
  doi: 10.1109/TPAMI.2011.39
– ident: ref23
  doi: 10.1109/CVPR.1991.139758
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref25
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref16
  doi: 10.1162/1532443041827934
– ident: ref18
  doi: 10.1090/S0025-5718-1973-0348991-3
– start-page: 1
  year: 2008
  ident: ref7
  article-title: Face tracking and recognition with visual constraints in real-world videos
  publication-title: Proc Conf Comput Vis and Pattern Recog
– ident: ref15
  doi: 10.1145/1390156.1390204
– ident: ref34
  doi: 10.1109/CVPR.2005.81
– ident: ref20
  doi: 10.1137/S0895479895290954
– ident: ref6
  doi: 10.1109/TIP.2009.2038621
– start-page: 1384
  year: 2006
  ident: ref4
  article-title: Locally linear models on face appearance manifolds with application to dual-subspace based classification
  publication-title: Proc IEEE Comput Vision Pattern Recog Conf
– ident: ref36
  doi: 10.1109/TPAMI.2008.156
– ident: ref2
  doi: 10.1016/j.patcog.2006.12.030
– ident: ref17
  doi: 10.1109/AFGR.2004.1301634
– ident: ref31
  doi: 10.1023/A:1026543900054
– ident: ref1
  doi: 10.1109/CVPR.2005.151
– start-page: 192
  year: 2003
  ident: ref5
  article-title: Face recognition using multi-viewpoint patterns for robot vision
  publication-title: Proc Int Symp Robot Res
– volume: 290
  start-page: 2319
  year: 2000
  ident: ref28
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– ident: ref35
  doi: 10.1109/TMM.2004.840596
– start-page: 340
  year: 2003
  ident: ref9
  article-title: Video-based face recognition using adaptive hidden Markov models
  publication-title: Proc Conf Comput Vis and Pattern Recog
– ident: ref39
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref30
  doi: 10.1109/TPAMI.2002.1008382
– ident: ref24
  doi: 10.1016/j.patcog.2005.08.015
– ident: ref32
  doi: 10.1109/ICPR.1994.576361
– ident: ref19
  doi: 10.2307/2333955
– ident: ref40
  doi: 10.1109/CVPR.2010.5539965
– start-page: 2940
  year: 2008
  ident: ref22
  article-title: Manifold-manifold distance with application to face recognition based on image set
  publication-title: Proc Conf Comput Vis and Pattern Recog
SSID ssj0014516
Score 2.3950586
Snippet In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4466
SubjectTerms Algorithms
Applied sciences
Biometric Identification - methods
Cluster Analysis
Clustering algorithms
Computational modeling
Data models
Databases, Factual
Exact sciences and technology
Face - anatomy & histology
Face recognition
Face recognition with image sets
hierarchical divisive clustering
Humans
Image processing
Image Processing, Computer-Assisted - methods
Information, signal and communications theory
manifold-manifold distance (MMD)
Manifolds
Mathematical models
Multilevel
Pattern recognition
principal angles
Probes
set similarity measure
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Similarity
Subspaces
Tasks
Telecommunications and information theory
Vectors
Title Manifold-Manifold Distance and its Application to Face Recognition With Image Sets
URI https://ieeexplore.ieee.org/document/6226465
https://www.ncbi.nlm.nih.gov/pubmed/22752133
https://www.proquest.com/docview/1041317935
https://www.proquest.com/docview/1069207840
https://www.proquest.com/docview/1136439715
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuBAoeWxpVRG4oJEdh3b8eNYAasWaREqregtsh1HrCgJItlLfz1jx0kpgoqblRkndmYcf5MZzyD0ShCrTA1mSfBuZlx6kllhAMgR7quaaqXicbHVR3FywT9cFpdb6M10FsZ7H4PP_Dw0oy-_at0m_CpbiHDqUxTbaBsMt-Gs1uQxCAVno2ezkJkE2D-6JIlenJ9-CjFcdE4pEYSFRKGUSti3GLu1G8XyKiE40nTwfuqhsMW_kWfcgZa7aDWOfQg8-Tbf9Hburv9I6_i_k3uIHiQoio8H3XmEtnyzh3YTLMVp0Xd76P5vOQv30dnKNOu6vaqysYHfBQwKvNg0FV73HT6-8YrjvsVLA7SzMVIJrn1Z91_x6Xf4lOHPvu8eo4vl-_O3J1kqzJA5npM-swUTulYahCyFMdq5WnmptGI5s64oJK8KYivtjc4rp6QUeSUsV7XijhFL2BO007SNf4awB5Ktc9ghjeGaKcMktYYWNpg22pAZWowCKl3KWh6KZ1yV0XohugTplkG6ZZLuDL2eevwYMnbcwbsfBDHxJRnM0NEtHZjoQA0J32BUh6NSlGnNd_AQAAThewf9X05kWK3BBWMa324Cj9AUUBknd_DkLMLEHO7zdFC4mwEkvT34-8Cfo3thekOw4SHa6X9u_AsATb09iqvlF-lADbs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOLbRAF0oxEhcksuvE8etYAatd6FaobEVvkZ04YtU2qZrshV_POK9SBBU3KzNO7Mw48zkzngF4K6hVJsdtifduBrF0NLDCIJCjscvySCvVHBdbHIvZafz5jJ9twPvhLIxzrgk-c2PfbHz5WZmu_a-yifCnPgW_B_fR7vOwPa01-Ax8ydnGt8llIBH4905JqifL-VcfxRWNo4gKynyq0CiSaLkYu2WPmgIrPjzSVPiG8ra0xb-xZ2ODptuw6Effhp6cj9e1Hac__0js-L_TewxbHRglh632PIENV-zAdgdMSbfsqx149FvWwl04WZhilZcXWdA3yEePQpGXmCIjq7oihzd-cVKXZGqQdtLHKuG176v6B5lf4seMfHN19RROp5-WH2ZBV5ohSOOQ1oHlTOhcaRSzFMboNM2Vk0orFjKbci7jjFObaWd0mKVKShFmwsYqV3HKqKXsGWwWZeH2gDgk2TxEG2lMrJkyTEbWRNz6zY02dASTXkBJ2uUt9-UzLpJm_0J1gtJNvHSTTrojeDf0uGpzdtzBu-sFMfB1MhjBwS0dGOhI9SnfcFT7vVIk3aqv8CEICfwXD_u_Gci4Xr0TxhSuXHseoSPEZTG9gydkDVAM8T7PW4W7GUCnty_-PvDX8GC2XBwlR_PjLy_hoZ9qG3q4D5v19dq9QghV24Nm5fwCHM8RBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manifold-Manifold+Distance+and+its+Application+to+Face+Recognition+With+Image+Sets&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Ruiping+Wang&rft.au=Shiguang+Shan&rft.au=Xilin+Chen&rft.au=Qionghai+Dai&rft.date=2012-10-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=21&rft.issue=10&rft.spage=4466&rft.epage=4479&rft_id=info:doi/10.1109%2FTIP.2012.2206039&rft_id=info%3Apmid%2F22752133&rft.externalDocID=6226465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon