Manifold-Manifold Distance and its Application to Face Recognition With Image Sets
In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between tw...
Saved in:
Published in | IEEE transactions on image processing Vol. 21; no. 10; pp. 4466 - 4479 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.10.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between two manifolds, called manifold-manifold distance (MMD). Since an image set can come in three pattern levels, point, subspace, and manifold, we systematically study the distance among the three levels and formulate them in a general multilevel MMD framework. Specifically, we express a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrate the distances between pairs of subspaces from one of the involved manifolds. We theoretically and experimentally study several configurations of the ingredients of MMD. The proposed method is applied to the task of face recognition with image sets, where identification is achieved by seeking the minimum MMD from the probe to the gallery of image sets. Our experiments demonstrate that, as a general set similarity measure, MMD consistently outperforms other competing nondiscriminative methods and is also promisingly comparable to the state-of-the-art discriminative methods. |
---|---|
AbstractList | In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between two manifolds, called manifold-manifold distance (MMD). Since an image set can come in three pattern levels, point, subspace, and manifold, we systematically study the distance among the three levels and formulate them in a general multilevel MMD framework. Specifically, we express a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrate the distances between pairs of subspaces from one of the involved manifolds. We theoretically and experimentally study several configurations of the ingredients of MMD. The proposed method is applied to the task of face recognition with image sets, where identification is achieved by seeking the minimum MMD from the probe to the gallery of image sets. Our experiments demonstrate that, as a general set similarity measure, MMD consistently outperforms other competing nondiscriminative methods and is also promisingly comparable to the state-of-the-art discriminative methods. In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between two manifolds, called manifold-manifold distance (MMD). Since an image set can come in three pattern levels, point, subspace, and manifold, we systematically study the distance among the three levels and formulate them in a general multilevel MMD framework. Specifically, we express a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrate the distances between pairs of subspaces from one of the involved manifolds. We theoretically and experimentally study several configurations of the ingredients of MMD. The proposed method is applied to the task of face recognition with image sets, where identification is achieved by seeking the minimum MMD from the probe to the gallery of image sets. Our experiments demonstrate that, as a general set similarity measure, MMD consistently outperforms other competing nondiscriminative methods and is also promisingly comparable to the state-of-the-art discriminative methods.In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between two manifolds, called manifold-manifold distance (MMD). Since an image set can come in three pattern levels, point, subspace, and manifold, we systematically study the distance among the three levels and formulate them in a general multilevel MMD framework. Specifically, we express a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrate the distances between pairs of subspaces from one of the involved manifolds. We theoretically and experimentally study several configurations of the ingredients of MMD. The proposed method is applied to the task of face recognition with image sets, where identification is achieved by seeking the minimum MMD from the probe to the gallery of image sets. Our experiments demonstrate that, as a general set similarity measure, MMD consistently outperforms other competing nondiscriminative methods and is also promisingly comparable to the state-of-the-art discriminative methods. |
Author | Wen Gao Shiguang Shan Xilin Chen Qionghai Dai Ruiping Wang |
Author_xml | – sequence: 1 givenname: Ruiping surname: Wang fullname: Wang, Ruiping email: rpwang@mail.tsinghua.edu.cn organization: Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China. rpwang@mail.tsinghua.edu.cn – sequence: 2 givenname: Shiguang surname: Shan fullname: Shan, Shiguang – sequence: 3 givenname: Xilin surname: Chen fullname: Chen, Xilin – sequence: 4 givenname: Qionghai surname: Dai fullname: Dai, Qionghai – sequence: 5 givenname: Wen surname: Gao fullname: Gao, Wen |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26404330$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22752133$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFTEUxYNU7Jd7QZABEdzM6735nCxLtfqgRakVl0Mmk6kp85LXSd7C_95M32uFLuwql-R3zr2555DshRgcIW8QFoigT66X3xcUkC4oBQlMvyAHqDnWAJzulRqEqhVyvU8OU7oFQC5QviL7lCpBkbEDcnVpgh_i2NcPRfXJp2yCdZUJfeVzqk7X69Fbk30MVY7VuSlvV87Gm-Dv7375_LtarsyNq364nI7Jy8GMyb3enUfk5_nn67Ov9cW3L8uz04vacoRcd4JJPTTaDFRJY7S1Q-NUoxuGrLNCKN4L6HrtjMbeNkpJ7GXHm6HhlkEH7Ih83Pqup3i3cSm3K5-sG0cTXNykFpFJzrRC8TwKUlNQDZ9d3z9Bb-NmCuUjheLIUGk2G77bUZtu5fp2PfmVmf60D4stwIcdYJI14zCVjfr0j5McOGNzO9hydoopTW54RBDaOeO2ZNzOGbe7jItEPpFYn-_TyZPx4_-Eb7dC75x77CNpGUYK9hc4Ma-D |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1016_j_patcog_2017_11_006 crossref_primary_10_1109_TCSVT_2017_2669095 crossref_primary_10_1109_TR_2017_2691730 crossref_primary_10_1016_j_neucom_2014_10_113 crossref_primary_10_1007_s11042_017_4491_6 crossref_primary_10_1016_j_neucom_2016_01_113 crossref_primary_10_3233_JIFS_212382 crossref_primary_10_1016_j_patcog_2015_04_003 crossref_primary_10_1016_j_neucom_2015_07_023 crossref_primary_10_1109_TCYB_2021_3069790 crossref_primary_10_1109_TII_2020_3036676 crossref_primary_10_1016_j_ins_2017_11_057 crossref_primary_10_1016_j_patrec_2020_10_015 crossref_primary_10_1007_s40314_021_01482_x crossref_primary_10_1016_j_neucom_2016_01_126 crossref_primary_10_1109_LGRS_2015_2506659 crossref_primary_10_1109_TIP_2015_2463223 crossref_primary_10_1109_TIP_2016_2520368 crossref_primary_10_1016_j_imavis_2016_04_003 crossref_primary_10_1088_0964_1726_23_6_065019 crossref_primary_10_1109_ACCESS_2019_2935235 crossref_primary_10_1109_ACCESS_2024_3424933 crossref_primary_10_1016_j_neucom_2019_03_010 crossref_primary_10_1016_j_patcog_2017_11_020 crossref_primary_10_1016_j_patcog_2019_01_005 crossref_primary_10_1007_s12559_016_9403_y crossref_primary_10_1109_TCYB_2021_3062396 crossref_primary_10_1016_j_ijleo_2015_02_020 crossref_primary_10_1016_j_patcog_2016_10_004 crossref_primary_10_1109_TCSVT_2017_2772026 crossref_primary_10_1016_j_eswa_2019_05_025 crossref_primary_10_1016_j_coisb_2017_12_008 crossref_primary_10_1016_j_jvcir_2018_02_004 crossref_primary_10_1049_iet_cvi_2015_0394 crossref_primary_10_1016_j_cviu_2017_04_008 crossref_primary_10_1016_j_knosys_2021_107624 crossref_primary_10_1109_TIFS_2014_2324277 crossref_primary_10_1145_2645862 crossref_primary_10_1016_j_jsv_2016_01_021 crossref_primary_10_1109_TIP_2017_2746993 crossref_primary_10_1016_j_cviu_2017_03_004 crossref_primary_10_1016_j_neucom_2022_10_040 crossref_primary_10_1109_JIOT_2019_2911669 crossref_primary_10_1109_TIP_2018_2862625 crossref_primary_10_1109_THMS_2017_2681425 crossref_primary_10_1109_ACCESS_2017_2733718 crossref_primary_10_1109_TBDATA_2018_2803838 crossref_primary_10_1016_j_knosys_2018_02_027 crossref_primary_10_3390_math9182247 crossref_primary_10_1007_s10255_024_1116_5 crossref_primary_10_1016_j_patcog_2017_02_032 crossref_primary_10_1109_TPAMI_2016_2567386 crossref_primary_10_1109_TCSVT_2014_2309834 crossref_primary_10_1109_ACCESS_2018_2841855 crossref_primary_10_1007_s11425_016_9092_7 crossref_primary_10_1109_TBIOM_2020_2973504 crossref_primary_10_1016_j_neucom_2018_06_077 crossref_primary_10_1109_TCSVT_2014_2367357 crossref_primary_10_3390_ijgi10040246 crossref_primary_10_1016_j_patcog_2015_03_011 crossref_primary_10_1016_j_patcog_2018_07_014 crossref_primary_10_1109_TCSVT_2014_2365655 crossref_primary_10_1088_0964_1726_22_8_085012 crossref_primary_10_1016_j_ins_2019_01_022 crossref_primary_10_1109_TIP_2019_2940683 crossref_primary_10_1038_s41598_025_92509_4 crossref_primary_10_1109_ACCESS_2019_2947548 |
Cites_doi | 10.1109/TPAMI.2007.1037 10.1137/S1064827502419154 10.1016/S1077-3142(03)00080-8 10.1023/A:1008005721484 10.1109/AFGR.1998.670968 10.1109/AFGR.2000.840629 10.1016/j.patrec.2009.06.002 10.1109/CVPR.2003.1211334 10.1007/3-540-49430-8_13 10.1109/TPAMI.2011.39 10.1109/CVPR.1991.139758 10.1126/science.290.5500.2323 10.1162/1532443041827934 10.1090/S0025-5718-1973-0348991-3 10.1145/1390156.1390204 10.1109/CVPR.2005.81 10.1137/S0895479895290954 10.1109/TIP.2009.2038621 10.1109/TPAMI.2008.156 10.1016/j.patcog.2006.12.030 10.1109/AFGR.2004.1301634 10.1023/A:1026543900054 10.1109/CVPR.2005.151 10.1126/science.290.5500.2319 10.1109/TMM.2004.840596 10.1023/B:VISI.0000013087.49260.fb 10.1109/TPAMI.2002.1008382 10.1016/j.patcog.2005.08.015 10.1109/ICPR.1994.576361 10.2307/2333955 10.1109/CVPR.2010.5539965 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TIP.2012.2206039 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 4479 |
ExternalDocumentID | 2766909531 22752133 26404330 10_1109_TIP_2012_2206039 6226465 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c410t-b5369f89af276aa9ccf8e7898313bc5574d50bd9ea91dc87761d6b48f84c30b03 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Thu Jul 10 18:34:27 EDT 2025 Fri Jul 11 11:55:06 EDT 2025 Mon Jun 30 06:09:38 EDT 2025 Thu Apr 03 07:07:05 EDT 2025 Mon Jul 21 09:14:34 EDT 2025 Tue Jul 01 02:02:51 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Tue Aug 26 16:57:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Biometrics Performance evaluation Discriminant analysis Automatic classification State of the art manifold―manifold distance (MMD) Multipoint method Face recognition Similarity Image processing Hierarchical classification Subspace method Pattern recognition Signal classification Modeling Linear model set similarity measure principal angles hierarchical divisive clustering Automatic recognition Multilevel system Face recognition with image sets |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-b5369f89af276aa9ccf8e7898313bc5574d50bd9ea91dc87761d6b48f84c30b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 22752133 |
PQID | 1041317935 |
PQPubID | 85429 |
PageCount | 14 |
ParticipantIDs | ieee_primary_6226465 proquest_miscellaneous_1069207840 pubmed_primary_22752133 crossref_primary_10_1109_TIP_2012_2206039 proquest_journals_1041317935 pascalfrancis_primary_26404330 proquest_miscellaneous_1136439715 crossref_citationtrail_10_1109_TIP_2012_2206039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-01 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2012 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 fan (ref4) 2006 ref31 ref30 ref33 ref32 ref10 gross (ref38) 2001 ref2 shakhnarovich (ref11) 2002 ref1 ref39 ref17 ref16 ref19 ref18 simard (ref37) 1998; lncs 1524 wang (ref26) 2009 ref24 ref23 kim (ref7) 2008 ref20 liu (ref9) 2003 ref21 roweis (ref25) 2000; 290 tenenbaum (ref28) 2000; 290 ref27 ref29 fukui (ref5) 2003 ref3 ref6 ref40 lee (ref8) 2003 wang (ref22) 2008 |
References_xml | – year: 2001 ident: ref38 publication-title: The CMU motion of body (MoBo) database – ident: ref3 doi: 10.1109/TPAMI.2007.1037 – ident: ref29 doi: 10.1137/S1064827502419154 – ident: ref13 doi: 10.1016/S1077-3142(03)00080-8 – ident: ref21 doi: 10.1023/A:1008005721484 – ident: ref14 doi: 10.1109/AFGR.1998.670968 – start-page: 313 year: 2003 ident: ref8 article-title: Video-based face recognition using probabilistic appearance manifolds publication-title: Proc Conf Comput Vis and Pattern Recog – ident: ref10 doi: 10.1109/AFGR.2000.840629 – start-page: 851 year: 2002 ident: ref11 article-title: Face recognition from long-term observations publication-title: Proc Eur Conf Comput Vision – ident: ref12 doi: 10.1016/j.patrec.2009.06.002 – ident: ref33 doi: 10.1109/CVPR.2003.1211334 – volume: lncs 1524 start-page: 239 year: 1998 ident: ref37 article-title: Transformation invariance in pattern recognition-tangent distance and tangent propagation publication-title: Neural Netw Tricks Trade doi: 10.1007/3-540-49430-8_13 – start-page: 429 year: 2009 ident: ref26 article-title: Manifold discriminant analysis publication-title: Proc Conf Comput Vis and Pattern Recog – ident: ref27 doi: 10.1109/TPAMI.2011.39 – ident: ref23 doi: 10.1109/CVPR.1991.139758 – volume: 290 start-page: 2323 year: 2000 ident: ref25 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: ref16 doi: 10.1162/1532443041827934 – ident: ref18 doi: 10.1090/S0025-5718-1973-0348991-3 – start-page: 1 year: 2008 ident: ref7 article-title: Face tracking and recognition with visual constraints in real-world videos publication-title: Proc Conf Comput Vis and Pattern Recog – ident: ref15 doi: 10.1145/1390156.1390204 – ident: ref34 doi: 10.1109/CVPR.2005.81 – ident: ref20 doi: 10.1137/S0895479895290954 – ident: ref6 doi: 10.1109/TIP.2009.2038621 – start-page: 1384 year: 2006 ident: ref4 article-title: Locally linear models on face appearance manifolds with application to dual-subspace based classification publication-title: Proc IEEE Comput Vision Pattern Recog Conf – ident: ref36 doi: 10.1109/TPAMI.2008.156 – ident: ref2 doi: 10.1016/j.patcog.2006.12.030 – ident: ref17 doi: 10.1109/AFGR.2004.1301634 – ident: ref31 doi: 10.1023/A:1026543900054 – ident: ref1 doi: 10.1109/CVPR.2005.151 – start-page: 192 year: 2003 ident: ref5 article-title: Face recognition using multi-viewpoint patterns for robot vision publication-title: Proc Int Symp Robot Res – volume: 290 start-page: 2319 year: 2000 ident: ref28 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – ident: ref35 doi: 10.1109/TMM.2004.840596 – start-page: 340 year: 2003 ident: ref9 article-title: Video-based face recognition using adaptive hidden Markov models publication-title: Proc Conf Comput Vis and Pattern Recog – ident: ref39 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref30 doi: 10.1109/TPAMI.2002.1008382 – ident: ref24 doi: 10.1016/j.patcog.2005.08.015 – ident: ref32 doi: 10.1109/ICPR.1994.576361 – ident: ref19 doi: 10.2307/2333955 – ident: ref40 doi: 10.1109/CVPR.2010.5539965 – start-page: 2940 year: 2008 ident: ref22 article-title: Manifold-manifold distance with application to face recognition based on image set publication-title: Proc Conf Comput Vis and Pattern Recog |
SSID | ssj0014516 |
Score | 2.3950586 |
Snippet | In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4466 |
SubjectTerms | Algorithms Applied sciences Biometric Identification - methods Cluster Analysis Clustering algorithms Computational modeling Data models Databases, Factual Exact sciences and technology Face - anatomy & histology Face recognition Face recognition with image sets hierarchical divisive clustering Humans Image processing Image Processing, Computer-Assisted - methods Information, signal and communications theory manifold-manifold distance (MMD) Manifolds Mathematical models Multilevel Pattern recognition principal angles Probes set similarity measure Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Similarity Subspaces Tasks Telecommunications and information theory Vectors |
Title | Manifold-Manifold Distance and its Application to Face Recognition With Image Sets |
URI | https://ieeexplore.ieee.org/document/6226465 https://www.ncbi.nlm.nih.gov/pubmed/22752133 https://www.proquest.com/docview/1041317935 https://www.proquest.com/docview/1069207840 https://www.proquest.com/docview/1136439715 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuBAoeWxpVRG4oJEdh3b8eNYAasWaREqregtsh1HrCgJItlLfz1jx0kpgoqblRkndmYcf5MZzyD0ShCrTA1mSfBuZlx6kllhAMgR7quaaqXicbHVR3FywT9cFpdb6M10FsZ7H4PP_Dw0oy-_at0m_CpbiHDqUxTbaBsMt-Gs1uQxCAVno2ezkJkE2D-6JIlenJ9-CjFcdE4pEYSFRKGUSti3GLu1G8XyKiE40nTwfuqhsMW_kWfcgZa7aDWOfQg8-Tbf9Hburv9I6_i_k3uIHiQoio8H3XmEtnyzh3YTLMVp0Xd76P5vOQv30dnKNOu6vaqysYHfBQwKvNg0FV73HT6-8YrjvsVLA7SzMVIJrn1Z91_x6Xf4lOHPvu8eo4vl-_O3J1kqzJA5npM-swUTulYahCyFMdq5WnmptGI5s64oJK8KYivtjc4rp6QUeSUsV7XijhFL2BO007SNf4awB5Ktc9ghjeGaKcMktYYWNpg22pAZWowCKl3KWh6KZ1yV0XohugTplkG6ZZLuDL2eevwYMnbcwbsfBDHxJRnM0NEtHZjoQA0J32BUh6NSlGnNd_AQAAThewf9X05kWK3BBWMa324Cj9AUUBknd_DkLMLEHO7zdFC4mwEkvT34-8Cfo3thekOw4SHa6X9u_AsATb09iqvlF-lADbs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOLbRAF0oxEhcksuvE8etYAatd6FaobEVvkZ04YtU2qZrshV_POK9SBBU3KzNO7Mw48zkzngF4K6hVJsdtifduBrF0NLDCIJCjscvySCvVHBdbHIvZafz5jJ9twPvhLIxzrgk-c2PfbHz5WZmu_a-yifCnPgW_B_fR7vOwPa01-Ax8ydnGt8llIBH4905JqifL-VcfxRWNo4gKynyq0CiSaLkYu2WPmgIrPjzSVPiG8ra0xb-xZ2ODptuw6Effhp6cj9e1Hac__0js-L_TewxbHRglh632PIENV-zAdgdMSbfsqx149FvWwl04WZhilZcXWdA3yEePQpGXmCIjq7oihzd-cVKXZGqQdtLHKuG176v6B5lf4seMfHN19RROp5-WH2ZBV5ohSOOQ1oHlTOhcaRSzFMboNM2Vk0orFjKbci7jjFObaWd0mKVKShFmwsYqV3HKqKXsGWwWZeH2gDgk2TxEG2lMrJkyTEbWRNz6zY02dASTXkBJ2uUt9-UzLpJm_0J1gtJNvHSTTrojeDf0uGpzdtzBu-sFMfB1MhjBwS0dGOhI9SnfcFT7vVIk3aqv8CEICfwXD_u_Gci4Xr0TxhSuXHseoSPEZTG9gydkDVAM8T7PW4W7GUCnty_-PvDX8GC2XBwlR_PjLy_hoZ9qG3q4D5v19dq9QghV24Nm5fwCHM8RBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manifold-Manifold+Distance+and+its+Application+to+Face+Recognition+With+Image+Sets&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Ruiping+Wang&rft.au=Shiguang+Shan&rft.au=Xilin+Chen&rft.au=Qionghai+Dai&rft.date=2012-10-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=21&rft.issue=10&rft.spage=4466&rft.epage=4479&rft_id=info:doi/10.1109%2FTIP.2012.2206039&rft_id=info%3Apmid%2F22752133&rft.externalDocID=6226465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |