Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead
This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulti...
Saved in:
Published in | Bioresource technology Vol. 181; pp. 13 - 17 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91 g/kg) and BPB (0.91 and 47.05 g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35 g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles. |
---|---|
AbstractList | This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91 g/kg) and BPB (0.91 and 47.05 g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35 g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles.This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91 g/kg) and BPB (0.91 and 47.05 g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35 g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles. This work explored two modification methods to improve biochar’s ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91g/kg) and BPB (0.91 and 47.05g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles. This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91 g/kg) and BPB (0.91 and 47.05 g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35 g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles. |
Author | Mosa, Ahmed Zimmerman, Andrew R. Wang, Shengsen Harris, Willie G. Gao, Bin Li, Yuncong Ma, Lena Q. Migliaccio, Kati W. |
Author_xml | – sequence: 1 givenname: Shengsen surname: Wang fullname: Wang, Shengsen – sequence: 2 givenname: Bin surname: Gao fullname: Gao, Bin – sequence: 3 givenname: Yuncong surname: Li fullname: Li, Yuncong – sequence: 4 givenname: Ahmed surname: Mosa fullname: Mosa, Ahmed – sequence: 5 givenname: Andrew R. surname: Zimmerman fullname: Zimmerman, Andrew R. – sequence: 6 givenname: Lena Q. surname: Ma fullname: Ma, Lena Q. – sequence: 7 givenname: Willie G. surname: Harris fullname: Harris, Willie G. – sequence: 8 givenname: Kati W. surname: Migliaccio fullname: Migliaccio, Kati W. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25625462$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctOwzAQRS0EgvL4BZQlCxL8SOwEsUGIlwSCBaytqT0BV2lc7FQCvh6XtizYwMKyPD53RnPvLtnsfY-EHDJaMMrkyaQYOx8GNK8Fp6wqKCtoWW6QEauVyHmj5CYZ0UbSvK54uUN2Y5xQSgVTfJvs8EryqpR8RMw99C_QY8TMvzuL-dRb1zq0WepvXiHE0-wx4AwCDM73x9miBmbA4D5XFehtFn2YLV6Zb7OkwR4G_P7oEOw-2Wqhi3iwuvfI89Xl08VNfvdwfXtxfpebktEhH3PTCAV1TS0HEIryxipWoWm4hZqD4kpAVZe2QtakwxGNassGSwQ0IMQeOVr2nQX_Nsc46KmLBrsu7efnUbNaSMmFEv9AZRqUvBI8oYcrdD6eotWz4KYQPvTawwTIJWCCjzFg-4Mwqhdh6Yleh6UXYWnKdAorCc9-CY0bvk0dArjuL_kXBLqfJA |
CitedBy_id | crossref_primary_10_1002_jctb_5283 crossref_primary_10_1016_j_ecoenv_2017_07_061 crossref_primary_10_2139_ssrn_4126026 crossref_primary_10_1016_j_biortech_2017_06_084 crossref_primary_10_1002_ep_12583 crossref_primary_10_1007_s10311_021_01207_w crossref_primary_10_1007_s10668_024_05220_1 crossref_primary_10_3390_ma15144909 crossref_primary_10_1007_s13399_020_00870_3 crossref_primary_10_1002_etc_4542 crossref_primary_10_1007_s11356_018_2521_1 crossref_primary_10_3389_fenvs_2023_1220325 crossref_primary_10_1016_j_biortech_2015_08_132 crossref_primary_10_1080_01932691_2016_1203333 crossref_primary_10_1007_s42729_022_01066_6 crossref_primary_10_1016_j_jclepro_2022_135527 crossref_primary_10_1007_s42773_019_00006_5 crossref_primary_10_3390_ijerph20031679 crossref_primary_10_3390_ma13225124 crossref_primary_10_2134_jeq2016_02_0073 crossref_primary_10_1007_s11356_017_1145_1 crossref_primary_10_1016_j_mineng_2018_05_021 crossref_primary_10_1007_s13201_017_0604_7 crossref_primary_10_1016_j_biortech_2015_09_068 crossref_primary_10_1016_j_jenvman_2021_113340 crossref_primary_10_1080_09593330_2022_2135028 crossref_primary_10_1080_09506608_2018_1473096 crossref_primary_10_1016_j_cej_2020_124833 crossref_primary_10_1016_j_eti_2021_102114 crossref_primary_10_1021_acsestwater_1c00031 crossref_primary_10_3390_ijerph18094461 crossref_primary_10_1016_j_gsd_2022_100740 crossref_primary_10_1016_j_cej_2016_09_122 crossref_primary_10_1007_s00128_021_03374_6 crossref_primary_10_1016_j_jtice_2016_07_010 crossref_primary_10_1016_j_envint_2019_03_012 crossref_primary_10_1080_09542299_2017_1395712 crossref_primary_10_1016_j_chemosphere_2020_126529 crossref_primary_10_1016_j_jece_2021_106502 crossref_primary_10_1007_s11356_017_9466_7 crossref_primary_10_1016_j_biortech_2018_12_056 crossref_primary_10_1016_j_scitotenv_2019_03_300 crossref_primary_10_1080_09542299_2018_1487775 crossref_primary_10_1016_j_biombioe_2024_107201 crossref_primary_10_1016_j_cej_2020_126926 crossref_primary_10_1007_s13762_024_05460_8 crossref_primary_10_1016_j_jece_2022_108292 crossref_primary_10_1016_j_energy_2024_133549 crossref_primary_10_2139_ssrn_4116007 crossref_primary_10_1016_j_envres_2021_111988 crossref_primary_10_3389_frwa_2024_1301648 crossref_primary_10_1002_cjce_23998 crossref_primary_10_1016_j_jenvman_2018_04_108 crossref_primary_10_1016_j_jclepro_2020_125390 crossref_primary_10_1016_j_seppur_2019_115882 crossref_primary_10_1016_j_jcis_2022_12_008 crossref_primary_10_1021_acs_est_6b00685 crossref_primary_10_1021_acssuschemeng_7b00434 crossref_primary_10_3389_fenvs_2022_925205 crossref_primary_10_1007_s13399_023_04893_4 crossref_primary_10_3390_w14111691 crossref_primary_10_1016_j_chemosphere_2024_142262 crossref_primary_10_7717_peerj_10311 crossref_primary_10_1007_s13762_022_03920_7 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000381 crossref_primary_10_1007_s11356_021_14563_5 crossref_primary_10_1080_21622515_2019_1631393 crossref_primary_10_1007_s40726_023_00260_z crossref_primary_10_1016_j_jiec_2016_03_048 crossref_primary_10_1007_s11270_021_05378_8 crossref_primary_10_1039_D0RA08987G crossref_primary_10_1016_j_biortech_2021_126581 crossref_primary_10_1515_tvsbses_2017_0012 crossref_primary_10_2139_ssrn_4059780 crossref_primary_10_1016_j_sajb_2023_10_049 crossref_primary_10_1007_s13762_020_03116_x crossref_primary_10_1016_j_chemosphere_2017_03_072 crossref_primary_10_1016_j_jece_2023_111840 crossref_primary_10_1080_10643389_2019_1642832 crossref_primary_10_1007_s42773_020_00077_9 crossref_primary_10_1016_j_carbon_2017_12_070 crossref_primary_10_1016_j_biortech_2017_03_109 crossref_primary_10_1007_s00128_022_03536_0 crossref_primary_10_1007_s10653_017_9984_8 crossref_primary_10_1016_j_jece_2020_104196 crossref_primary_10_1016_j_jenvman_2022_114758 crossref_primary_10_1016_j_scitotenv_2019_134847 crossref_primary_10_1016_j_seppur_2023_125074 crossref_primary_10_1016_j_scitotenv_2020_137299 crossref_primary_10_1021_acsami_7b07882 crossref_primary_10_1088_2053_1591_ab2fbc crossref_primary_10_1016_j_jenvman_2019_03_110 crossref_primary_10_3390_w12102720 crossref_primary_10_1016_j_envc_2021_100353 crossref_primary_10_1016_j_envres_2020_109152 crossref_primary_10_1016_j_cej_2020_126021 crossref_primary_10_3390_app10217810 crossref_primary_10_1038_s41598_020_63000_z crossref_primary_10_1007_s11356_021_18276_7 crossref_primary_10_1016_j_envpol_2023_122262 crossref_primary_10_1016_j_jafr_2021_100191 crossref_primary_10_1016_j_molstruc_2021_130143 crossref_primary_10_1155_2019_4506314 crossref_primary_10_1007_s10098_016_1218_8 crossref_primary_10_1016_j_scitotenv_2017_10_188 crossref_primary_10_1134_S2635167624602109 crossref_primary_10_1016_j_bej_2022_108332 crossref_primary_10_1061_JHTRBP_HZENG_1304 crossref_primary_10_1016_j_biortech_2016_02_032 crossref_primary_10_1016_j_biortech_2022_128262 crossref_primary_10_3389_fbioe_2021_769667 crossref_primary_10_1016_j_chemosphere_2016_01_043 crossref_primary_10_1016_j_biortech_2016_04_093 crossref_primary_10_1016_j_apsusc_2017_12_139 crossref_primary_10_1016_j_scitotenv_2019_134262 crossref_primary_10_1007_s10853_017_0749_7 crossref_primary_10_1021_acsami_6b08059 crossref_primary_10_3390_su152316161 crossref_primary_10_1016_j_jece_2024_113645 crossref_primary_10_1016_j_jece_2023_109989 crossref_primary_10_1016_j_jenvman_2021_113128 crossref_primary_10_1007_s42773_022_00189_4 crossref_primary_10_1016_j_scitotenv_2017_09_082 crossref_primary_10_1016_j_jenvman_2021_112397 crossref_primary_10_4028_p_1rt2Ck crossref_primary_10_1002_jctb_6759 crossref_primary_10_1007_s13399_023_04013_2 crossref_primary_10_1016_j_cej_2020_125195 crossref_primary_10_1002_jctb_5428 crossref_primary_10_1016_j_gee_2019_05_002 crossref_primary_10_3390_molecules25235730 crossref_primary_10_3390_molecules27165340 crossref_primary_10_1016_j_eti_2021_101767 crossref_primary_10_1016_j_scitotenv_2024_170269 crossref_primary_10_1007_s11368_018_2000_9 crossref_primary_10_1002_wer_1123 crossref_primary_10_1016_j_psep_2024_09_115 crossref_primary_10_1016_j_scitotenv_2019_135122 crossref_primary_10_1016_j_chemosphere_2022_137238 crossref_primary_10_1080_10643389_2017_1418580 crossref_primary_10_1039_C8RA04600J crossref_primary_10_1080_09542299_2017_1403294 crossref_primary_10_1016_j_scitotenv_2020_136532 crossref_primary_10_15415_jce_2019_52003 crossref_primary_10_1016_j_biortech_2019_122030 crossref_primary_10_1007_s13399_020_00649_6 crossref_primary_10_3390_molecules22010173 crossref_primary_10_1016_j_jclepro_2020_120672 crossref_primary_10_1007_s11356_019_04158_6 crossref_primary_10_1016_j_jwpe_2024_106051 crossref_primary_10_1016_j_wasman_2018_08_035 crossref_primary_10_1039_C5RA12137J crossref_primary_10_1016_j_biortech_2018_01_145 crossref_primary_10_1016_j_biortech_2018_10_068 crossref_primary_10_1021_acs_est_7b06487 crossref_primary_10_1016_j_cej_2017_10_035 crossref_primary_10_1016_j_psep_2022_02_061 crossref_primary_10_1016_j_jiec_2015_10_007 crossref_primary_10_1007_s13399_022_02879_2 crossref_primary_10_1016_j_rser_2016_09_057 crossref_primary_10_1038_s41598_024_79446_4 crossref_primary_10_1016_j_jenvman_2020_110511 crossref_primary_10_1007_s42773_019_00002_9 crossref_primary_10_1016_j_envres_2020_109195 crossref_primary_10_1016_j_jhazmat_2022_129464 crossref_primary_10_1016_j_indcrop_2023_117496 crossref_primary_10_1016_j_scitotenv_2018_07_099 crossref_primary_10_1016_j_biortech_2017_02_103 crossref_primary_10_1016_j_jece_2022_107825 crossref_primary_10_3389_fenvs_2016_00026 crossref_primary_10_3390_agriculture13102003 crossref_primary_10_1016_j_jwpe_2018_10_018 crossref_primary_10_1557_jmr_2018_325 crossref_primary_10_1016_j_surfin_2022_102323 crossref_primary_10_1016_j_scitotenv_2019_134893 crossref_primary_10_1080_01932691_2024_2369881 crossref_primary_10_1007_s11356_017_0933_y crossref_primary_10_1080_02757540_2019_1699537 crossref_primary_10_1021_acs_est_6b00627 crossref_primary_10_1016_j_scitotenv_2019_136154 crossref_primary_10_1016_j_watres_2024_121526 crossref_primary_10_1016_j_jaap_2021_105081 crossref_primary_10_1016_j_chemosphere_2017_12_193 crossref_primary_10_1016_j_jhazmat_2019_03_080 crossref_primary_10_1007_s42773_022_00172_z crossref_primary_10_1007_s11356_017_1175_8 crossref_primary_10_2166_wst_2020_093 crossref_primary_10_1007_s11356_018_1594_1 crossref_primary_10_5004_dwt_2016_0059 crossref_primary_10_1016_j_jaap_2020_104962 crossref_primary_10_1039_C5RA17490B crossref_primary_10_1016_j_scitotenv_2017_07_020 crossref_primary_10_1016_j_jes_2019_06_004 crossref_primary_10_1016_j_scitotenv_2022_153956 crossref_primary_10_1016_j_jhazmat_2021_126457 crossref_primary_10_1016_j_molliq_2018_07_072 crossref_primary_10_1039_D1EW00385B crossref_primary_10_1016_j_cej_2020_124465 crossref_primary_10_1080_00032719_2020_1786696 crossref_primary_10_1016_j_cej_2023_144677 crossref_primary_10_1007_s11356_019_04321_z crossref_primary_10_1007_s10653_022_01462_y crossref_primary_10_1039_C9NJ06392G crossref_primary_10_1021_acsami_0c00597 crossref_primary_10_1021_acsomega_1c04129 crossref_primary_10_1007_s11368_021_02913_2 crossref_primary_10_1016_j_envres_2020_110650 crossref_primary_10_1016_j_chemosphere_2022_136976 crossref_primary_10_1016_j_talanta_2023_125320 crossref_primary_10_1016_j_chemosphere_2022_135088 crossref_primary_10_1016_j_chemosphere_2023_139760 crossref_primary_10_3390_cleantechnol4030039 crossref_primary_10_1016_j_chemosphere_2017_02_121 crossref_primary_10_1039_C7RA00324B crossref_primary_10_1088_1757_899X_518_6_062011 crossref_primary_10_1016_j_chemosphere_2016_08_025 crossref_primary_10_1016_j_scitotenv_2021_148691 crossref_primary_10_1016_j_biortech_2018_04_003 crossref_primary_10_1111_gcbb_13175 crossref_primary_10_1016_j_scitotenv_2019_03_011 crossref_primary_10_1080_26395940_2019_1590162 crossref_primary_10_1016_j_biortech_2016_05_005 crossref_primary_10_1016_j_chemosphere_2020_127683 crossref_primary_10_1016_j_envpol_2024_124322 crossref_primary_10_1016_j_scienta_2022_111187 crossref_primary_10_1007_s00267_022_01731_7 crossref_primary_10_1080_10643389_2016_1239975 crossref_primary_10_1016_j_jenvman_2021_113277 crossref_primary_10_1007_s44169_023_00045_x crossref_primary_10_1016_j_jhazmat_2016_01_052 crossref_primary_10_1016_j_matchemphys_2017_02_006 crossref_primary_10_1039_D0EM00057D crossref_primary_10_1007_s42773_023_00260_8 crossref_primary_10_1016_j_jhazmat_2022_129330 crossref_primary_10_1016_j_envpol_2020_115177 crossref_primary_10_1007_s11157_017_9450_1 crossref_primary_10_1007_s11769_018_0980_4 crossref_primary_10_1016_j_jclepro_2020_120111 crossref_primary_10_1016_j_jhazmat_2020_124376 crossref_primary_10_1016_j_scitotenv_2021_150268 crossref_primary_10_1016_j_psep_2023_12_022 crossref_primary_10_1016_j_cej_2016_02_073 crossref_primary_10_3390_app9071365 crossref_primary_10_1038_s41598_018_27111_y crossref_primary_10_1016_j_cjac_2023_100350 crossref_primary_10_1016_j_ecoenv_2025_117927 crossref_primary_10_1016_j_scitotenv_2020_139750 crossref_primary_10_1080_02726351_2023_2255834 crossref_primary_10_1016_j_biortech_2017_08_178 crossref_primary_10_1021_acs_cgd_9b01265 crossref_primary_10_1021_acsestengg_0c00174 crossref_primary_10_1021_acsomega_0c00216 crossref_primary_10_1007_s11356_022_23123_4 crossref_primary_10_1016_j_biortech_2017_07_082 crossref_primary_10_1016_j_jwpe_2025_107338 crossref_primary_10_1007_s42773_021_00129_8 crossref_primary_10_1093_jxb_erz301 crossref_primary_10_1016_j_carbon_2016_11_032 crossref_primary_10_1016_j_chemosphere_2018_01_113 crossref_primary_10_1016_j_jhazmat_2016_04_014 crossref_primary_10_1021_acsanm_3c04972 crossref_primary_10_1515_revce_2018_0003 crossref_primary_10_5004_dwt_2019_24782 crossref_primary_10_1016_j_biortech_2017_08_061 crossref_primary_10_1016_j_scitotenv_2017_12_257 crossref_primary_10_1016_j_chemosphere_2018_06_052 crossref_primary_10_1016_j_envres_2020_109442 crossref_primary_10_1007_s11356_021_18136_4 crossref_primary_10_1016_j_scitotenv_2020_144531 crossref_primary_10_3390_su15042893 crossref_primary_10_1016_j_scitotenv_2019_04_232 crossref_primary_10_1007_s44169_025_00081_9 crossref_primary_10_1007_s11356_020_10284_3 crossref_primary_10_1016_j_biortech_2016_11_057 crossref_primary_10_1007_s40726_022_00238_3 crossref_primary_10_1016_j_cej_2023_144754 crossref_primary_10_1016_j_jece_2023_110572 crossref_primary_10_3390_agriculture11080714 crossref_primary_10_1007_s11356_021_13856_z crossref_primary_10_1016_j_chemosphere_2020_127370 crossref_primary_10_1016_j_scitotenv_2017_12_267 crossref_primary_10_1007_s11356_023_27701_y crossref_primary_10_1007_s10653_022_01418_2 crossref_primary_10_1016_j_jiec_2019_06_008 crossref_primary_10_1039_D3NA00923H crossref_primary_10_1016_j_biortech_2016_05_057 crossref_primary_10_1007_s11270_022_05971_5 crossref_primary_10_1016_j_biortech_2020_124264 crossref_primary_10_1016_j_apsusc_2021_151991 crossref_primary_10_1016_j_scitotenv_2018_07_279 crossref_primary_10_1016_j_cherd_2022_08_043 crossref_primary_10_1080_01496395_2018_1543320 crossref_primary_10_1016_j_envpol_2022_120508 crossref_primary_10_1016_j_envres_2022_113406 crossref_primary_10_1016_j_chemosphere_2016_06_101 crossref_primary_10_1016_j_jece_2021_105625 crossref_primary_10_1016_j_biortech_2019_01_033 crossref_primary_10_1002_jctb_6000 crossref_primary_10_1007_s11356_016_8342_1 crossref_primary_10_1016_j_cej_2020_125100 crossref_primary_10_1016_j_indcrop_2018_11_041 crossref_primary_10_1016_j_jenvman_2018_11_043 crossref_primary_10_1007_s11356_019_04315_x crossref_primary_10_1016_j_scitotenv_2024_176883 crossref_primary_10_3390_biomass4020012 crossref_primary_10_1007_s42773_022_00149_y crossref_primary_10_1016_j_biortech_2018_03_125 crossref_primary_10_1016_j_biortech_2020_124128 crossref_primary_10_1021_acsomega_2c05117 crossref_primary_10_1016_j_ecoenv_2018_12_011 crossref_primary_10_3390_pr9030533 |
Cites_doi | 10.1016/j.jssc.2009.03.002 10.1021/es0012164 10.1016/j.cej.2013.04.001 10.1080/01496395.2011.584604 10.1081/ESE-200048254 10.1016/j.biortech.2013.03.057 10.1016/j.biortech.2012.11.132 10.1021/es0110170 10.1071/SR9800061 10.1073/pnas.96.7.3447 10.1016/j.cej.2010.02.013 10.1007/BF01982689 10.1016/j.clay.2013.08.035 10.1016/S0016-7037(03)00413-7 10.1016/j.cej.2013.10.081 10.1021/es102013p 10.1016/j.biortech.2014.10.104 10.1016/j.cej.2013.12.062 10.1016/j.biortech.2012.01.072 10.1021/es102016c 10.1016/j.scitotenv.2003.12.012 10.1021/es0109500 10.1016/j.watres.2014.10.009 10.1016/j.jcis.2007.01.020 10.1016/j.chemosphere.2013.10.071 10.1016/j.biortech.2013.11.021 10.1016/j.biortech.2010.06.088 10.1016/j.biortech.2014.01.120 10.1007/s11027-005-9006-5 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2015.01.044 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 17 |
ExternalDocumentID | 25625462 10_1016_j_biortech_2015_01_044 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC BNPGV CITATION CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSH SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AACTN AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-b2c937a880d2aa37029d715ec92da82a7273a584d5e195e12eec7f49e4eaeca33 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 10:11:14 EDT 2025 Fri Jul 11 10:27:56 EDT 2025 Wed Feb 19 01:53:42 EST 2025 Tue Jul 01 02:06:28 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Birnessite Nanocomposite Adsorption Biochar MnO |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c410t-b2c937a880d2aa37029d715ec92da82a7273a584d5e195e12eec7f49e4eaeca33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25625462 |
PQID | 1658417232 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1836623733 proquest_miscellaneous_1658417232 pubmed_primary_25625462 crossref_primary_10_1016_j_biortech_2015_01_044 crossref_citationtrail_10_1016_j_biortech_2015_01_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-00 2015-Apr 20150401 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2015 |
References | McKenzie (10.1016/j.biortech.2015.01.044_b0080) 1980; 18 Gonzalez (10.1016/j.biortech.2015.01.044_b0020) 1996; 47 Matocha (10.1016/j.biortech.2015.01.044_b0075) 2001; 35 Yao (10.1016/j.biortech.2015.01.044_b0130) 2014; 242 Lehmann (10.1016/j.biortech.2015.01.044_b0060) 2006; 11 Manning (10.1016/j.biortech.2015.01.044_b0070) 2002; 36 Post (10.1016/j.biortech.2015.01.044_b0105) 1999; 96 Inyang (10.1016/j.biortech.2015.01.044_b0040) 2011; 46 Lafferty (10.1016/j.biortech.2015.01.044_b0045) 2010; 44 Wang (10.1016/j.biortech.2015.01.044_b0120) 2015; 175 Inyang (10.1016/j.biortech.2015.01.044_b0035) 2012; 110 Sun (10.1016/j.biortech.2015.01.044_b0110) 2014; 240 Zhang (10.1016/j.biortech.2015.01.044_b0145) 2010; 158 Mohan (10.1016/j.biortech.2015.01.044_b0085) 2007; 310 Zhou (10.1016/j.biortech.2015.01.044_b0155) 2014; 152 Zhang (10.1016/j.biortech.2015.01.044_b0150) 2013; 225 Mohan (10.1016/j.biortech.2015.01.044_b0090) 2014; 160 Tournassat (10.1016/j.biortech.2015.01.044_b0115) 2002; 36 Hu (10.1016/j.biortech.2015.01.044_b0025) 2015; 68 Payne (10.1016/j.biortech.2015.01.044_b0100) 2005; 40 Lenoble (10.1016/j.biortech.2015.01.044_b0065) 2004; 326 Yao (10.1016/j.biortech.2015.01.044_b0125) 2013; 138 Ahmad (10.1016/j.biortech.2015.01.044_b0005) 2014; 99 Lee (10.1016/j.biortech.2015.01.044_b0055) 2013; 83–84 Inyang (10.1016/j.biortech.2015.01.044_b0030) 2010; 101 Lafferty (10.1016/j.biortech.2015.01.044_b0050) 2010; 44 Chen (10.1016/j.biortech.2015.01.044_b0010) 2009; 182 Zhang (10.1016/j.biortech.2015.01.044_b0140) 2013; 130 Essington (10.1016/j.biortech.2015.01.044_b0015) 2004 O’Reilly (10.1016/j.biortech.2015.01.044_b0095) 2003; 67 |
References_xml | – volume: 182 start-page: 1387 issue: 6 year: 2009 ident: 10.1016/j.biortech.2015.01.044_b0010 article-title: Solid-state thermolysis of [MnO]12 containing molecular clusters into novel MnO nano- and microparticles publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2009.03.002 – volume: 35 start-page: 2967 issue: 14 year: 2001 ident: 10.1016/j.biortech.2015.01.044_b0075 article-title: Reactivity of Pb(II) at the Mn(III,IV) (oxyhydr)oxide − water interface publication-title: Environ. Sci. Technol. doi: 10.1021/es0012164 – volume: 225 start-page: 271 year: 2013 ident: 10.1016/j.biortech.2015.01.044_b0150 article-title: Removal of arsenic from water using multifunctional micro-/nano-structured MnO2 spheres and microfiltration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.04.001 – volume: 46 start-page: 1950 issue: 12 year: 2011 ident: 10.1016/j.biortech.2015.01.044_b0040 article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2011.584604 – volume: 40 start-page: 723 issue: 4 year: 2005 ident: 10.1016/j.biortech.2015.01.044_b0100 article-title: Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength publication-title: J. Environ. Sci. Health. Part A doi: 10.1081/ESE-200048254 – volume: 138 start-page: 8 year: 2013 ident: 10.1016/j.biortech.2015.01.044_b0125 article-title: Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.057 – year: 2004 ident: 10.1016/j.biortech.2015.01.044_b0015 – volume: 130 start-page: 457 year: 2013 ident: 10.1016/j.biortech.2015.01.044_b0140 article-title: Preparation and characterization of a novel magnetic biochar for arsenic removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.132 – volume: 36 start-page: 976 issue: 5 year: 2002 ident: 10.1016/j.biortech.2015.01.044_b0070 article-title: Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite publication-title: Environ. Sci. Technol. doi: 10.1021/es0110170 – volume: 18 start-page: 61 year: 1980 ident: 10.1016/j.biortech.2015.01.044_b0080 article-title: The adsorption of lead and other heavy metals on oxides of manganese and iron publication-title: Aust. J. Soil Res. doi: 10.1071/SR9800061 – volume: 96 start-page: 3447 issue: 7 year: 1999 ident: 10.1016/j.biortech.2015.01.044_b0105 article-title: Manganese oxide minerals: crystal structures and economic and environmental significance publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.7.3447 – volume: 158 start-page: 599 issue: 3 year: 2010 ident: 10.1016/j.biortech.2015.01.044_b0145 article-title: Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.02.013 – volume: 47 start-page: 93 issue: 1 year: 1996 ident: 10.1016/j.biortech.2015.01.044_b0020 article-title: Transformations of manganese oxides under different thermal conditions publication-title: J. Therm. Anal. doi: 10.1007/BF01982689 – volume: 83–84 start-page: 263 year: 2013 ident: 10.1016/j.biortech.2015.01.044_b0055 article-title: Sorption characteristics of lead cations on microporous organo-birnessite publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2013.08.035 – volume: 67 start-page: 4471 issue: 23 year: 2003 ident: 10.1016/j.biortech.2015.01.044_b0095 article-title: Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(03)00413-7 – volume: 240 start-page: 574 year: 2014 ident: 10.1016/j.biortech.2015.01.044_b0110 article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.10.081 – volume: 44 start-page: 8460 issue: 22 year: 2010 ident: 10.1016/j.biortech.2015.01.044_b0045 article-title: Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments publication-title: Environ. Sci. Technol. doi: 10.1021/es102013p – volume: 175 start-page: 391 year: 2015 ident: 10.1016/j.biortech.2015.01.044_b0120 article-title: Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.10.104 – volume: 242 start-page: 136 year: 2014 ident: 10.1016/j.biortech.2015.01.044_b0130 article-title: Characterization and environmental applications of clay–biochar composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.12.062 – volume: 110 start-page: 50 year: 2012 ident: 10.1016/j.biortech.2015.01.044_b0035 article-title: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.072 – volume: 44 start-page: 8467 issue: 22 year: 2010 ident: 10.1016/j.biortech.2015.01.044_b0050 article-title: Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction publication-title: Environ. Sci. Technol. doi: 10.1021/es102016c – volume: 326 start-page: 197 issue: 1–3 year: 2004 ident: 10.1016/j.biortech.2015.01.044_b0065 article-title: As(V) retention and As(III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2003.12.012 – volume: 36 start-page: 493 issue: 3 year: 2002 ident: 10.1016/j.biortech.2015.01.044_b0115 article-title: Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate publication-title: Environ. Sci. Technol. doi: 10.1021/es0109500 – volume: 68 start-page: 206 year: 2015 ident: 10.1016/j.biortech.2015.01.044_b0025 article-title: Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis publication-title: Water Res. doi: 10.1016/j.watres.2014.10.009 – volume: 310 start-page: 57 issue: 1 year: 2007 ident: 10.1016/j.biortech.2015.01.044_b0085 article-title: Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.01.020 – volume: 99 start-page: 19 year: 2014 ident: 10.1016/j.biortech.2015.01.044_b0005 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 152 start-page: 538 year: 2014 ident: 10.1016/j.biortech.2015.01.044_b0155 article-title: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.11.021 – volume: 101 start-page: 8868 issue: 22 year: 2010 ident: 10.1016/j.biortech.2015.01.044_b0030 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.088 – volume: 160 start-page: 191 year: 2014 ident: 10.1016/j.biortech.2015.01.044_b0090 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.120 – volume: 11 start-page: 403 year: 2006 ident: 10.1016/j.biortech.2015.01.044_b0060 article-title: Bio-char sequestration in terrestrial ecosystems – a review publication-title: Mitigation Adapt. Strateg. Global Change doi: 10.1007/s11027-005-9006-5 |
SSID | ssj0003172 |
Score | 2.605531 |
Snippet | This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the... This work explored two modification methods to improve biochar’s ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 13 |
SubjectTerms | Adsorption Arsenates - isolation & purification arsenic biochar birnessite Charcoal - chemistry feedstocks Kinetics lead Lead - isolation & purification lead arsenate manganese manganese chloride Manganese Compounds - chemistry manganese oxides Oxides - chemistry Pinus Pinus - chemistry Porosity pyrolysis scanning electron microscopy sorption Temperature Thermogravimetry Water Pollutants, Chemical - isolation & purification wood X-radiation X-ray diffraction X-ray photoelectron spectroscopy |
Title | Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25625462 https://www.proquest.com/docview/1658417232 https://www.proquest.com/docview/1836623733 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHIADgvLaQpGRuLVZEifOg1tbFSqkcmqlcooc29mm6iarbCqhHvrbGb-SbNnyOmy0sjeJ1t-Xycx4Hgh9CLO4YBmhHmcl8VRHY3jmROoJQpmIhV8kOrfq-Ft8dBp9PaNnQ5yuzi7piim_XptX8j-owhjgqrJk_wHZ_qIwAN8BXzgCwnD8K4yPWT1jqoXkTvOjEtKbN6IqtU5ZNSqdSoe7LVpp6nub_XXeV2i-7seM87xdOO0RzpQ1KKF64hJYsLL1WzWt9fnvdGsc89b_fC7r2XLIM_vCtE92vxpCgHQcwXd4rzb27aljf5fG0Xs-t1lX1iMR0FEgizRSNE1UgzjT2GUQs8FIUJoE1F_kt3ElXExhmVr1F1TsnamraqpEjkBdzDWqRFlwkZXoq5Wz3dR99ICAEaGk4PRmCAACzYmMcsbX31QVi7aXWdVc7jBHtFpy8hQ9sfYE3jPkeIbuyXoTPd6btbamitxEDw9cUz-YGdWffI54TyC8SiDsCPQJj-izi2-TZxcDQ7CjDm5K7KijJxR1XqDTz4cnB0ee7brh8SjwO68gHFRWBnJdEMbCxCeZSAIqeUYESwlTCi8DtVVQGWTwIVLypIwyGUkmOQvDl2ijbmr5GmEmS-KnDBYwDaMylgzM16ikgpZRKspCTBB1K5pzW5JedUa5zF3s4UXuQMkVKLkf5ADKBH3sz1uYoix_POO9AyyHFVebYrC6zdUyD5QKDkwIyW9-k4YxmAlJGE7QK4N2f1_Hjq07Z96gR8NT8hZtdO2V3AZNtiveaUL-BDrioFo |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manganese+oxide-modified+biochars%3A+preparation%2C+characterization%2C+and+sorption+of+arsenate+and+lead&rft.jtitle=Bioresource+technology&rft.au=Wang%2C+Shengsen&rft.au=Gao%2C+Bin&rft.au=Li%2C+Yuncong&rft.au=Mosa%2C+Ahmed&rft.date=2015-04-01&rft.eissn=1873-2976&rft.volume=181&rft.spage=13&rft_id=info:doi/10.1016%2Fj.biortech.2015.01.044&rft_id=info%3Apmid%2F25625462&rft.externalDocID=25625462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |