Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead

This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulti...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 181; pp. 13 - 17
Main Authors Wang, Shengsen, Gao, Bin, Li, Yuncong, Mosa, Ahmed, Zimmerman, Andrew R., Ma, Lena Q., Harris, Willie G., Migliaccio, Kati W.
Format Journal Article
LanguageEnglish
Published England 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91 g/kg) and BPB (0.91 and 47.05 g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35 g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles.
AbstractList This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91 g/kg) and BPB (0.91 and 47.05 g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35 g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles.This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91 g/kg) and BPB (0.91 and 47.05 g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35 g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles.
This work explored two modification methods to improve biochar’s ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91g/kg) and BPB (0.91 and 47.05g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles.
This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91 g/kg) and BPB (0.91 and 47.05 g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35 g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles.
Author Mosa, Ahmed
Zimmerman, Andrew R.
Wang, Shengsen
Harris, Willie G.
Gao, Bin
Li, Yuncong
Ma, Lena Q.
Migliaccio, Kati W.
Author_xml – sequence: 1
  givenname: Shengsen
  surname: Wang
  fullname: Wang, Shengsen
– sequence: 2
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
– sequence: 3
  givenname: Yuncong
  surname: Li
  fullname: Li, Yuncong
– sequence: 4
  givenname: Ahmed
  surname: Mosa
  fullname: Mosa, Ahmed
– sequence: 5
  givenname: Andrew R.
  surname: Zimmerman
  fullname: Zimmerman, Andrew R.
– sequence: 6
  givenname: Lena Q.
  surname: Ma
  fullname: Ma, Lena Q.
– sequence: 7
  givenname: Willie G.
  surname: Harris
  fullname: Harris, Willie G.
– sequence: 8
  givenname: Kati W.
  surname: Migliaccio
  fullname: Migliaccio, Kati W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25625462$$D View this record in MEDLINE/PubMed
BookMark eNqNkctOwzAQRS0EgvL4BZQlCxL8SOwEsUGIlwSCBaytqT0BV2lc7FQCvh6XtizYwMKyPD53RnPvLtnsfY-EHDJaMMrkyaQYOx8GNK8Fp6wqKCtoWW6QEauVyHmj5CYZ0UbSvK54uUN2Y5xQSgVTfJvs8EryqpR8RMw99C_QY8TMvzuL-dRb1zq0WepvXiHE0-wx4AwCDM73x9miBmbA4D5XFehtFn2YLV6Zb7OkwR4G_P7oEOw-2Wqhi3iwuvfI89Xl08VNfvdwfXtxfpebktEhH3PTCAV1TS0HEIryxipWoWm4hZqD4kpAVZe2QtakwxGNassGSwQ0IMQeOVr2nQX_Nsc46KmLBrsu7efnUbNaSMmFEv9AZRqUvBI8oYcrdD6eotWz4KYQPvTawwTIJWCCjzFg-4Mwqhdh6Yleh6UXYWnKdAorCc9-CY0bvk0dArjuL_kXBLqfJA
CitedBy_id crossref_primary_10_1002_jctb_5283
crossref_primary_10_1016_j_ecoenv_2017_07_061
crossref_primary_10_2139_ssrn_4126026
crossref_primary_10_1016_j_biortech_2017_06_084
crossref_primary_10_1002_ep_12583
crossref_primary_10_1007_s10311_021_01207_w
crossref_primary_10_1007_s10668_024_05220_1
crossref_primary_10_3390_ma15144909
crossref_primary_10_1007_s13399_020_00870_3
crossref_primary_10_1002_etc_4542
crossref_primary_10_1007_s11356_018_2521_1
crossref_primary_10_3389_fenvs_2023_1220325
crossref_primary_10_1016_j_biortech_2015_08_132
crossref_primary_10_1080_01932691_2016_1203333
crossref_primary_10_1007_s42729_022_01066_6
crossref_primary_10_1016_j_jclepro_2022_135527
crossref_primary_10_1007_s42773_019_00006_5
crossref_primary_10_3390_ijerph20031679
crossref_primary_10_3390_ma13225124
crossref_primary_10_2134_jeq2016_02_0073
crossref_primary_10_1007_s11356_017_1145_1
crossref_primary_10_1016_j_mineng_2018_05_021
crossref_primary_10_1007_s13201_017_0604_7
crossref_primary_10_1016_j_biortech_2015_09_068
crossref_primary_10_1016_j_jenvman_2021_113340
crossref_primary_10_1080_09593330_2022_2135028
crossref_primary_10_1080_09506608_2018_1473096
crossref_primary_10_1016_j_cej_2020_124833
crossref_primary_10_1016_j_eti_2021_102114
crossref_primary_10_1021_acsestwater_1c00031
crossref_primary_10_3390_ijerph18094461
crossref_primary_10_1016_j_gsd_2022_100740
crossref_primary_10_1016_j_cej_2016_09_122
crossref_primary_10_1007_s00128_021_03374_6
crossref_primary_10_1016_j_jtice_2016_07_010
crossref_primary_10_1016_j_envint_2019_03_012
crossref_primary_10_1080_09542299_2017_1395712
crossref_primary_10_1016_j_chemosphere_2020_126529
crossref_primary_10_1016_j_jece_2021_106502
crossref_primary_10_1007_s11356_017_9466_7
crossref_primary_10_1016_j_biortech_2018_12_056
crossref_primary_10_1016_j_scitotenv_2019_03_300
crossref_primary_10_1080_09542299_2018_1487775
crossref_primary_10_1016_j_biombioe_2024_107201
crossref_primary_10_1016_j_cej_2020_126926
crossref_primary_10_1007_s13762_024_05460_8
crossref_primary_10_1016_j_jece_2022_108292
crossref_primary_10_1016_j_energy_2024_133549
crossref_primary_10_2139_ssrn_4116007
crossref_primary_10_1016_j_envres_2021_111988
crossref_primary_10_3389_frwa_2024_1301648
crossref_primary_10_1002_cjce_23998
crossref_primary_10_1016_j_jenvman_2018_04_108
crossref_primary_10_1016_j_jclepro_2020_125390
crossref_primary_10_1016_j_seppur_2019_115882
crossref_primary_10_1016_j_jcis_2022_12_008
crossref_primary_10_1021_acs_est_6b00685
crossref_primary_10_1021_acssuschemeng_7b00434
crossref_primary_10_3389_fenvs_2022_925205
crossref_primary_10_1007_s13399_023_04893_4
crossref_primary_10_3390_w14111691
crossref_primary_10_1016_j_chemosphere_2024_142262
crossref_primary_10_7717_peerj_10311
crossref_primary_10_1007_s13762_022_03920_7
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000381
crossref_primary_10_1007_s11356_021_14563_5
crossref_primary_10_1080_21622515_2019_1631393
crossref_primary_10_1007_s40726_023_00260_z
crossref_primary_10_1016_j_jiec_2016_03_048
crossref_primary_10_1007_s11270_021_05378_8
crossref_primary_10_1039_D0RA08987G
crossref_primary_10_1016_j_biortech_2021_126581
crossref_primary_10_1515_tvsbses_2017_0012
crossref_primary_10_2139_ssrn_4059780
crossref_primary_10_1016_j_sajb_2023_10_049
crossref_primary_10_1007_s13762_020_03116_x
crossref_primary_10_1016_j_chemosphere_2017_03_072
crossref_primary_10_1016_j_jece_2023_111840
crossref_primary_10_1080_10643389_2019_1642832
crossref_primary_10_1007_s42773_020_00077_9
crossref_primary_10_1016_j_carbon_2017_12_070
crossref_primary_10_1016_j_biortech_2017_03_109
crossref_primary_10_1007_s00128_022_03536_0
crossref_primary_10_1007_s10653_017_9984_8
crossref_primary_10_1016_j_jece_2020_104196
crossref_primary_10_1016_j_jenvman_2022_114758
crossref_primary_10_1016_j_scitotenv_2019_134847
crossref_primary_10_1016_j_seppur_2023_125074
crossref_primary_10_1016_j_scitotenv_2020_137299
crossref_primary_10_1021_acsami_7b07882
crossref_primary_10_1088_2053_1591_ab2fbc
crossref_primary_10_1016_j_jenvman_2019_03_110
crossref_primary_10_3390_w12102720
crossref_primary_10_1016_j_envc_2021_100353
crossref_primary_10_1016_j_envres_2020_109152
crossref_primary_10_1016_j_cej_2020_126021
crossref_primary_10_3390_app10217810
crossref_primary_10_1038_s41598_020_63000_z
crossref_primary_10_1007_s11356_021_18276_7
crossref_primary_10_1016_j_envpol_2023_122262
crossref_primary_10_1016_j_jafr_2021_100191
crossref_primary_10_1016_j_molstruc_2021_130143
crossref_primary_10_1155_2019_4506314
crossref_primary_10_1007_s10098_016_1218_8
crossref_primary_10_1016_j_scitotenv_2017_10_188
crossref_primary_10_1134_S2635167624602109
crossref_primary_10_1016_j_bej_2022_108332
crossref_primary_10_1061_JHTRBP_HZENG_1304
crossref_primary_10_1016_j_biortech_2016_02_032
crossref_primary_10_1016_j_biortech_2022_128262
crossref_primary_10_3389_fbioe_2021_769667
crossref_primary_10_1016_j_chemosphere_2016_01_043
crossref_primary_10_1016_j_biortech_2016_04_093
crossref_primary_10_1016_j_apsusc_2017_12_139
crossref_primary_10_1016_j_scitotenv_2019_134262
crossref_primary_10_1007_s10853_017_0749_7
crossref_primary_10_1021_acsami_6b08059
crossref_primary_10_3390_su152316161
crossref_primary_10_1016_j_jece_2024_113645
crossref_primary_10_1016_j_jece_2023_109989
crossref_primary_10_1016_j_jenvman_2021_113128
crossref_primary_10_1007_s42773_022_00189_4
crossref_primary_10_1016_j_scitotenv_2017_09_082
crossref_primary_10_1016_j_jenvman_2021_112397
crossref_primary_10_4028_p_1rt2Ck
crossref_primary_10_1002_jctb_6759
crossref_primary_10_1007_s13399_023_04013_2
crossref_primary_10_1016_j_cej_2020_125195
crossref_primary_10_1002_jctb_5428
crossref_primary_10_1016_j_gee_2019_05_002
crossref_primary_10_3390_molecules25235730
crossref_primary_10_3390_molecules27165340
crossref_primary_10_1016_j_eti_2021_101767
crossref_primary_10_1016_j_scitotenv_2024_170269
crossref_primary_10_1007_s11368_018_2000_9
crossref_primary_10_1002_wer_1123
crossref_primary_10_1016_j_psep_2024_09_115
crossref_primary_10_1016_j_scitotenv_2019_135122
crossref_primary_10_1016_j_chemosphere_2022_137238
crossref_primary_10_1080_10643389_2017_1418580
crossref_primary_10_1039_C8RA04600J
crossref_primary_10_1080_09542299_2017_1403294
crossref_primary_10_1016_j_scitotenv_2020_136532
crossref_primary_10_15415_jce_2019_52003
crossref_primary_10_1016_j_biortech_2019_122030
crossref_primary_10_1007_s13399_020_00649_6
crossref_primary_10_3390_molecules22010173
crossref_primary_10_1016_j_jclepro_2020_120672
crossref_primary_10_1007_s11356_019_04158_6
crossref_primary_10_1016_j_jwpe_2024_106051
crossref_primary_10_1016_j_wasman_2018_08_035
crossref_primary_10_1039_C5RA12137J
crossref_primary_10_1016_j_biortech_2018_01_145
crossref_primary_10_1016_j_biortech_2018_10_068
crossref_primary_10_1021_acs_est_7b06487
crossref_primary_10_1016_j_cej_2017_10_035
crossref_primary_10_1016_j_psep_2022_02_061
crossref_primary_10_1016_j_jiec_2015_10_007
crossref_primary_10_1007_s13399_022_02879_2
crossref_primary_10_1016_j_rser_2016_09_057
crossref_primary_10_1038_s41598_024_79446_4
crossref_primary_10_1016_j_jenvman_2020_110511
crossref_primary_10_1007_s42773_019_00002_9
crossref_primary_10_1016_j_envres_2020_109195
crossref_primary_10_1016_j_jhazmat_2022_129464
crossref_primary_10_1016_j_indcrop_2023_117496
crossref_primary_10_1016_j_scitotenv_2018_07_099
crossref_primary_10_1016_j_biortech_2017_02_103
crossref_primary_10_1016_j_jece_2022_107825
crossref_primary_10_3389_fenvs_2016_00026
crossref_primary_10_3390_agriculture13102003
crossref_primary_10_1016_j_jwpe_2018_10_018
crossref_primary_10_1557_jmr_2018_325
crossref_primary_10_1016_j_surfin_2022_102323
crossref_primary_10_1016_j_scitotenv_2019_134893
crossref_primary_10_1080_01932691_2024_2369881
crossref_primary_10_1007_s11356_017_0933_y
crossref_primary_10_1080_02757540_2019_1699537
crossref_primary_10_1021_acs_est_6b00627
crossref_primary_10_1016_j_scitotenv_2019_136154
crossref_primary_10_1016_j_watres_2024_121526
crossref_primary_10_1016_j_jaap_2021_105081
crossref_primary_10_1016_j_chemosphere_2017_12_193
crossref_primary_10_1016_j_jhazmat_2019_03_080
crossref_primary_10_1007_s42773_022_00172_z
crossref_primary_10_1007_s11356_017_1175_8
crossref_primary_10_2166_wst_2020_093
crossref_primary_10_1007_s11356_018_1594_1
crossref_primary_10_5004_dwt_2016_0059
crossref_primary_10_1016_j_jaap_2020_104962
crossref_primary_10_1039_C5RA17490B
crossref_primary_10_1016_j_scitotenv_2017_07_020
crossref_primary_10_1016_j_jes_2019_06_004
crossref_primary_10_1016_j_scitotenv_2022_153956
crossref_primary_10_1016_j_jhazmat_2021_126457
crossref_primary_10_1016_j_molliq_2018_07_072
crossref_primary_10_1039_D1EW00385B
crossref_primary_10_1016_j_cej_2020_124465
crossref_primary_10_1080_00032719_2020_1786696
crossref_primary_10_1016_j_cej_2023_144677
crossref_primary_10_1007_s11356_019_04321_z
crossref_primary_10_1007_s10653_022_01462_y
crossref_primary_10_1039_C9NJ06392G
crossref_primary_10_1021_acsami_0c00597
crossref_primary_10_1021_acsomega_1c04129
crossref_primary_10_1007_s11368_021_02913_2
crossref_primary_10_1016_j_envres_2020_110650
crossref_primary_10_1016_j_chemosphere_2022_136976
crossref_primary_10_1016_j_talanta_2023_125320
crossref_primary_10_1016_j_chemosphere_2022_135088
crossref_primary_10_1016_j_chemosphere_2023_139760
crossref_primary_10_3390_cleantechnol4030039
crossref_primary_10_1016_j_chemosphere_2017_02_121
crossref_primary_10_1039_C7RA00324B
crossref_primary_10_1088_1757_899X_518_6_062011
crossref_primary_10_1016_j_chemosphere_2016_08_025
crossref_primary_10_1016_j_scitotenv_2021_148691
crossref_primary_10_1016_j_biortech_2018_04_003
crossref_primary_10_1111_gcbb_13175
crossref_primary_10_1016_j_scitotenv_2019_03_011
crossref_primary_10_1080_26395940_2019_1590162
crossref_primary_10_1016_j_biortech_2016_05_005
crossref_primary_10_1016_j_chemosphere_2020_127683
crossref_primary_10_1016_j_envpol_2024_124322
crossref_primary_10_1016_j_scienta_2022_111187
crossref_primary_10_1007_s00267_022_01731_7
crossref_primary_10_1080_10643389_2016_1239975
crossref_primary_10_1016_j_jenvman_2021_113277
crossref_primary_10_1007_s44169_023_00045_x
crossref_primary_10_1016_j_jhazmat_2016_01_052
crossref_primary_10_1016_j_matchemphys_2017_02_006
crossref_primary_10_1039_D0EM00057D
crossref_primary_10_1007_s42773_023_00260_8
crossref_primary_10_1016_j_jhazmat_2022_129330
crossref_primary_10_1016_j_envpol_2020_115177
crossref_primary_10_1007_s11157_017_9450_1
crossref_primary_10_1007_s11769_018_0980_4
crossref_primary_10_1016_j_jclepro_2020_120111
crossref_primary_10_1016_j_jhazmat_2020_124376
crossref_primary_10_1016_j_scitotenv_2021_150268
crossref_primary_10_1016_j_psep_2023_12_022
crossref_primary_10_1016_j_cej_2016_02_073
crossref_primary_10_3390_app9071365
crossref_primary_10_1038_s41598_018_27111_y
crossref_primary_10_1016_j_cjac_2023_100350
crossref_primary_10_1016_j_ecoenv_2025_117927
crossref_primary_10_1016_j_scitotenv_2020_139750
crossref_primary_10_1080_02726351_2023_2255834
crossref_primary_10_1016_j_biortech_2017_08_178
crossref_primary_10_1021_acs_cgd_9b01265
crossref_primary_10_1021_acsestengg_0c00174
crossref_primary_10_1021_acsomega_0c00216
crossref_primary_10_1007_s11356_022_23123_4
crossref_primary_10_1016_j_biortech_2017_07_082
crossref_primary_10_1016_j_jwpe_2025_107338
crossref_primary_10_1007_s42773_021_00129_8
crossref_primary_10_1093_jxb_erz301
crossref_primary_10_1016_j_carbon_2016_11_032
crossref_primary_10_1016_j_chemosphere_2018_01_113
crossref_primary_10_1016_j_jhazmat_2016_04_014
crossref_primary_10_1021_acsanm_3c04972
crossref_primary_10_1515_revce_2018_0003
crossref_primary_10_5004_dwt_2019_24782
crossref_primary_10_1016_j_biortech_2017_08_061
crossref_primary_10_1016_j_scitotenv_2017_12_257
crossref_primary_10_1016_j_chemosphere_2018_06_052
crossref_primary_10_1016_j_envres_2020_109442
crossref_primary_10_1007_s11356_021_18136_4
crossref_primary_10_1016_j_scitotenv_2020_144531
crossref_primary_10_3390_su15042893
crossref_primary_10_1016_j_scitotenv_2019_04_232
crossref_primary_10_1007_s44169_025_00081_9
crossref_primary_10_1007_s11356_020_10284_3
crossref_primary_10_1016_j_biortech_2016_11_057
crossref_primary_10_1007_s40726_022_00238_3
crossref_primary_10_1016_j_cej_2023_144754
crossref_primary_10_1016_j_jece_2023_110572
crossref_primary_10_3390_agriculture11080714
crossref_primary_10_1007_s11356_021_13856_z
crossref_primary_10_1016_j_chemosphere_2020_127370
crossref_primary_10_1016_j_scitotenv_2017_12_267
crossref_primary_10_1007_s11356_023_27701_y
crossref_primary_10_1007_s10653_022_01418_2
crossref_primary_10_1016_j_jiec_2019_06_008
crossref_primary_10_1039_D3NA00923H
crossref_primary_10_1016_j_biortech_2016_05_057
crossref_primary_10_1007_s11270_022_05971_5
crossref_primary_10_1016_j_biortech_2020_124264
crossref_primary_10_1016_j_apsusc_2021_151991
crossref_primary_10_1016_j_scitotenv_2018_07_279
crossref_primary_10_1016_j_cherd_2022_08_043
crossref_primary_10_1080_01496395_2018_1543320
crossref_primary_10_1016_j_envpol_2022_120508
crossref_primary_10_1016_j_envres_2022_113406
crossref_primary_10_1016_j_chemosphere_2016_06_101
crossref_primary_10_1016_j_jece_2021_105625
crossref_primary_10_1016_j_biortech_2019_01_033
crossref_primary_10_1002_jctb_6000
crossref_primary_10_1007_s11356_016_8342_1
crossref_primary_10_1016_j_cej_2020_125100
crossref_primary_10_1016_j_indcrop_2018_11_041
crossref_primary_10_1016_j_jenvman_2018_11_043
crossref_primary_10_1007_s11356_019_04315_x
crossref_primary_10_1016_j_scitotenv_2024_176883
crossref_primary_10_3390_biomass4020012
crossref_primary_10_1007_s42773_022_00149_y
crossref_primary_10_1016_j_biortech_2018_03_125
crossref_primary_10_1016_j_biortech_2020_124128
crossref_primary_10_1021_acsomega_2c05117
crossref_primary_10_1016_j_ecoenv_2018_12_011
crossref_primary_10_3390_pr9030533
Cites_doi 10.1016/j.jssc.2009.03.002
10.1021/es0012164
10.1016/j.cej.2013.04.001
10.1080/01496395.2011.584604
10.1081/ESE-200048254
10.1016/j.biortech.2013.03.057
10.1016/j.biortech.2012.11.132
10.1021/es0110170
10.1071/SR9800061
10.1073/pnas.96.7.3447
10.1016/j.cej.2010.02.013
10.1007/BF01982689
10.1016/j.clay.2013.08.035
10.1016/S0016-7037(03)00413-7
10.1016/j.cej.2013.10.081
10.1021/es102013p
10.1016/j.biortech.2014.10.104
10.1016/j.cej.2013.12.062
10.1016/j.biortech.2012.01.072
10.1021/es102016c
10.1016/j.scitotenv.2003.12.012
10.1021/es0109500
10.1016/j.watres.2014.10.009
10.1016/j.jcis.2007.01.020
10.1016/j.chemosphere.2013.10.071
10.1016/j.biortech.2013.11.021
10.1016/j.biortech.2010.06.088
10.1016/j.biortech.2014.01.120
10.1007/s11027-005-9006-5
ContentType Journal Article
Copyright Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2015.01.044
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 17
ExternalDocumentID 25625462
10_1016_j_biortech_2015_01_044
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
BNPGV
CITATION
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSH
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AACTN
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c410t-b2c937a880d2aa37029d715ec92da82a7273a584d5e195e12eec7f49e4eaeca33
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 10:11:14 EDT 2025
Fri Jul 11 10:27:56 EDT 2025
Wed Feb 19 01:53:42 EST 2025
Tue Jul 01 02:06:28 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Birnessite
Nanocomposite
Adsorption
Biochar
MnO
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-b2c937a880d2aa37029d715ec92da82a7273a584d5e195e12eec7f49e4eaeca33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25625462
PQID 1658417232
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1836623733
proquest_miscellaneous_1658417232
pubmed_primary_25625462
crossref_primary_10_1016_j_biortech_2015_01_044
crossref_citationtrail_10_1016_j_biortech_2015_01_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-00
2015-Apr
20150401
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2015
References McKenzie (10.1016/j.biortech.2015.01.044_b0080) 1980; 18
Gonzalez (10.1016/j.biortech.2015.01.044_b0020) 1996; 47
Matocha (10.1016/j.biortech.2015.01.044_b0075) 2001; 35
Yao (10.1016/j.biortech.2015.01.044_b0130) 2014; 242
Lehmann (10.1016/j.biortech.2015.01.044_b0060) 2006; 11
Manning (10.1016/j.biortech.2015.01.044_b0070) 2002; 36
Post (10.1016/j.biortech.2015.01.044_b0105) 1999; 96
Inyang (10.1016/j.biortech.2015.01.044_b0040) 2011; 46
Lafferty (10.1016/j.biortech.2015.01.044_b0045) 2010; 44
Wang (10.1016/j.biortech.2015.01.044_b0120) 2015; 175
Inyang (10.1016/j.biortech.2015.01.044_b0035) 2012; 110
Sun (10.1016/j.biortech.2015.01.044_b0110) 2014; 240
Zhang (10.1016/j.biortech.2015.01.044_b0145) 2010; 158
Mohan (10.1016/j.biortech.2015.01.044_b0085) 2007; 310
Zhou (10.1016/j.biortech.2015.01.044_b0155) 2014; 152
Zhang (10.1016/j.biortech.2015.01.044_b0150) 2013; 225
Mohan (10.1016/j.biortech.2015.01.044_b0090) 2014; 160
Tournassat (10.1016/j.biortech.2015.01.044_b0115) 2002; 36
Hu (10.1016/j.biortech.2015.01.044_b0025) 2015; 68
Payne (10.1016/j.biortech.2015.01.044_b0100) 2005; 40
Lenoble (10.1016/j.biortech.2015.01.044_b0065) 2004; 326
Yao (10.1016/j.biortech.2015.01.044_b0125) 2013; 138
Ahmad (10.1016/j.biortech.2015.01.044_b0005) 2014; 99
Lee (10.1016/j.biortech.2015.01.044_b0055) 2013; 83–84
Inyang (10.1016/j.biortech.2015.01.044_b0030) 2010; 101
Lafferty (10.1016/j.biortech.2015.01.044_b0050) 2010; 44
Chen (10.1016/j.biortech.2015.01.044_b0010) 2009; 182
Zhang (10.1016/j.biortech.2015.01.044_b0140) 2013; 130
Essington (10.1016/j.biortech.2015.01.044_b0015) 2004
O’Reilly (10.1016/j.biortech.2015.01.044_b0095) 2003; 67
References_xml – volume: 182
  start-page: 1387
  issue: 6
  year: 2009
  ident: 10.1016/j.biortech.2015.01.044_b0010
  article-title: Solid-state thermolysis of [MnO]12 containing molecular clusters into novel MnO nano- and microparticles
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2009.03.002
– volume: 35
  start-page: 2967
  issue: 14
  year: 2001
  ident: 10.1016/j.biortech.2015.01.044_b0075
  article-title: Reactivity of Pb(II) at the Mn(III,IV) (oxyhydr)oxide − water interface
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0012164
– volume: 225
  start-page: 271
  year: 2013
  ident: 10.1016/j.biortech.2015.01.044_b0150
  article-title: Removal of arsenic from water using multifunctional micro-/nano-structured MnO2 spheres and microfiltration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.04.001
– volume: 46
  start-page: 1950
  issue: 12
  year: 2011
  ident: 10.1016/j.biortech.2015.01.044_b0040
  article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2011.584604
– volume: 40
  start-page: 723
  issue: 4
  year: 2005
  ident: 10.1016/j.biortech.2015.01.044_b0100
  article-title: Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength
  publication-title: J. Environ. Sci. Health. Part A
  doi: 10.1081/ESE-200048254
– volume: 138
  start-page: 8
  year: 2013
  ident: 10.1016/j.biortech.2015.01.044_b0125
  article-title: Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.057
– year: 2004
  ident: 10.1016/j.biortech.2015.01.044_b0015
– volume: 130
  start-page: 457
  year: 2013
  ident: 10.1016/j.biortech.2015.01.044_b0140
  article-title: Preparation and characterization of a novel magnetic biochar for arsenic removal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.132
– volume: 36
  start-page: 976
  issue: 5
  year: 2002
  ident: 10.1016/j.biortech.2015.01.044_b0070
  article-title: Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0110170
– volume: 18
  start-page: 61
  year: 1980
  ident: 10.1016/j.biortech.2015.01.044_b0080
  article-title: The adsorption of lead and other heavy metals on oxides of manganese and iron
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9800061
– volume: 96
  start-page: 3447
  issue: 7
  year: 1999
  ident: 10.1016/j.biortech.2015.01.044_b0105
  article-title: Manganese oxide minerals: crystal structures and economic and environmental significance
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.7.3447
– volume: 158
  start-page: 599
  issue: 3
  year: 2010
  ident: 10.1016/j.biortech.2015.01.044_b0145
  article-title: Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.02.013
– volume: 47
  start-page: 93
  issue: 1
  year: 1996
  ident: 10.1016/j.biortech.2015.01.044_b0020
  article-title: Transformations of manganese oxides under different thermal conditions
  publication-title: J. Therm. Anal.
  doi: 10.1007/BF01982689
– volume: 83–84
  start-page: 263
  year: 2013
  ident: 10.1016/j.biortech.2015.01.044_b0055
  article-title: Sorption characteristics of lead cations on microporous organo-birnessite
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2013.08.035
– volume: 67
  start-page: 4471
  issue: 23
  year: 2003
  ident: 10.1016/j.biortech.2015.01.044_b0095
  article-title: Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(03)00413-7
– volume: 240
  start-page: 574
  year: 2014
  ident: 10.1016/j.biortech.2015.01.044_b0110
  article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.10.081
– volume: 44
  start-page: 8460
  issue: 22
  year: 2010
  ident: 10.1016/j.biortech.2015.01.044_b0045
  article-title: Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102013p
– volume: 175
  start-page: 391
  year: 2015
  ident: 10.1016/j.biortech.2015.01.044_b0120
  article-title: Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.10.104
– volume: 242
  start-page: 136
  year: 2014
  ident: 10.1016/j.biortech.2015.01.044_b0130
  article-title: Characterization and environmental applications of clay–biochar composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.12.062
– volume: 110
  start-page: 50
  year: 2012
  ident: 10.1016/j.biortech.2015.01.044_b0035
  article-title: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.072
– volume: 44
  start-page: 8467
  issue: 22
  year: 2010
  ident: 10.1016/j.biortech.2015.01.044_b0050
  article-title: Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102016c
– volume: 326
  start-page: 197
  issue: 1–3
  year: 2004
  ident: 10.1016/j.biortech.2015.01.044_b0065
  article-title: As(V) retention and As(III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2003.12.012
– volume: 36
  start-page: 493
  issue: 3
  year: 2002
  ident: 10.1016/j.biortech.2015.01.044_b0115
  article-title: Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0109500
– volume: 68
  start-page: 206
  year: 2015
  ident: 10.1016/j.biortech.2015.01.044_b0025
  article-title: Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.009
– volume: 310
  start-page: 57
  issue: 1
  year: 2007
  ident: 10.1016/j.biortech.2015.01.044_b0085
  article-title: Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.01.020
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.biortech.2015.01.044_b0005
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 152
  start-page: 538
  year: 2014
  ident: 10.1016/j.biortech.2015.01.044_b0155
  article-title: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.11.021
– volume: 101
  start-page: 8868
  issue: 22
  year: 2010
  ident: 10.1016/j.biortech.2015.01.044_b0030
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.088
– volume: 160
  start-page: 191
  year: 2014
  ident: 10.1016/j.biortech.2015.01.044_b0090
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.120
– volume: 11
  start-page: 403
  year: 2006
  ident: 10.1016/j.biortech.2015.01.044_b0060
  article-title: Bio-char sequestration in terrestrial ecosystems – a review
  publication-title: Mitigation Adapt. Strateg. Global Change
  doi: 10.1007/s11027-005-9006-5
SSID ssj0003172
Score 2.605531
Snippet This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the...
This work explored two modification methods to improve biochar’s ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 13
SubjectTerms Adsorption
Arsenates - isolation & purification
arsenic
biochar
birnessite
Charcoal - chemistry
feedstocks
Kinetics
lead
Lead - isolation & purification
lead arsenate
manganese
manganese chloride
Manganese Compounds - chemistry
manganese oxides
Oxides - chemistry
Pinus
Pinus - chemistry
Porosity
pyrolysis
scanning electron microscopy
sorption
Temperature
Thermogravimetry
Water Pollutants, Chemical - isolation & purification
wood
X-radiation
X-ray diffraction
X-ray photoelectron spectroscopy
Title Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead
URI https://www.ncbi.nlm.nih.gov/pubmed/25625462
https://www.proquest.com/docview/1658417232
https://www.proquest.com/docview/1836623733
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHIADgvLaQpGRuLVZEifOg1tbFSqkcmqlcooc29mm6iarbCqhHvrbGb-SbNnyOmy0sjeJ1t-Xycx4Hgh9CLO4YBmhHmcl8VRHY3jmROoJQpmIhV8kOrfq-Ft8dBp9PaNnQ5yuzi7piim_XptX8j-owhjgqrJk_wHZ_qIwAN8BXzgCwnD8K4yPWT1jqoXkTvOjEtKbN6IqtU5ZNSqdSoe7LVpp6nub_XXeV2i-7seM87xdOO0RzpQ1KKF64hJYsLL1WzWt9fnvdGsc89b_fC7r2XLIM_vCtE92vxpCgHQcwXd4rzb27aljf5fG0Xs-t1lX1iMR0FEgizRSNE1UgzjT2GUQs8FIUJoE1F_kt3ElXExhmVr1F1TsnamraqpEjkBdzDWqRFlwkZXoq5Wz3dR99ICAEaGk4PRmCAACzYmMcsbX31QVi7aXWdVc7jBHtFpy8hQ9sfYE3jPkeIbuyXoTPd6btbamitxEDw9cUz-YGdWffI54TyC8SiDsCPQJj-izi2-TZxcDQ7CjDm5K7KijJxR1XqDTz4cnB0ee7brh8SjwO68gHFRWBnJdEMbCxCeZSAIqeUYESwlTCi8DtVVQGWTwIVLypIwyGUkmOQvDl2ijbmr5GmEmS-KnDBYwDaMylgzM16ikgpZRKspCTBB1K5pzW5JedUa5zF3s4UXuQMkVKLkf5ADKBH3sz1uYoix_POO9AyyHFVebYrC6zdUyD5QKDkwIyW9-k4YxmAlJGE7QK4N2f1_Hjq07Z96gR8NT8hZtdO2V3AZNtiveaUL-BDrioFo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manganese+oxide-modified+biochars%3A+preparation%2C+characterization%2C+and+sorption+of+arsenate+and+lead&rft.jtitle=Bioresource+technology&rft.au=Wang%2C+Shengsen&rft.au=Gao%2C+Bin&rft.au=Li%2C+Yuncong&rft.au=Mosa%2C+Ahmed&rft.date=2015-04-01&rft.eissn=1873-2976&rft.volume=181&rft.spage=13&rft_id=info:doi/10.1016%2Fj.biortech.2015.01.044&rft_id=info%3Apmid%2F25625462&rft.externalDocID=25625462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon