Fractal calculus and its geometrical explanation

•Definition of fractional derivative is such a mess that a new replacement is needed.•Fractal calculus is tutorially introduced from very beginning, and it is accessible to all audience.•Its geometrical explanation and applications are elucidated. Fractal calculus is very simple but extremely effect...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 10; pp. 272 - 276
Main Author He, Ji-Huan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Definition of fractional derivative is such a mess that a new replacement is needed.•Fractal calculus is tutorially introduced from very beginning, and it is accessible to all audience.•Its geometrical explanation and applications are elucidated. Fractal calculus is very simple but extremely effective to deal with phenomena in hierarchical or porous media. Its operation is almost same with that by the advanced calculus, making it much accessible to all non-mathematicians. This paper begins with the basic concept of fractal gradient of temperature, i.e., the temperature change between two points in a fractal medium, to reveal the basic properties of fractal calculus. The fractal velocity and fractal material derivative are then introduced to deduce laws for fluid mechanics and heat conduction in fractal space. Conservation of mass in a fractal space is geometrically explained, and an approximate transform of a fractal space on a smaller scale into its continuous partner on a larger scale is illustrated by a nanofiber membrane, which is smooth on any observable scales, but its air permeability has to studied in a nano scale, under such a small scale, the nanofiber membrane becomes a porous one. Finally an example is given to explain cocoon’s heat-proof property, which cannot be unveiled by advanced calculus.
AbstractList Fractal calculus is very simple but extremely effective to deal with phenomena in hierarchical or porous media. Its operation is almost same with that by the advanced calculus, making it much accessible to all non-mathematicians. This paper begins with the basic concept of fractal gradient of temperature, i.e., the temperature change between two points in a fractal medium, to reveal the basic properties of fractal calculus. The fractal velocity and fractal material derivative are then introduced to deduce laws for fluid mechanics and heat conduction in fractal space. Conservation of mass in a fractal space is geometrically explained, and an approximate transform of a fractal space on a smaller scale into its continuous partner on a larger scale is illustrated by a nanofiber membrane, which is smooth on any observable scales, but its air permeability has to studied in a nano scale, under such a small scale, the nanofiber membrane becomes a porous one. Finally an example is given to explain cocoon’s heat-proof property, which cannot be unveiled by advanced calculus. Keywords: Fractal temperature gradient, Hierarchical structure, Fractal derivative, Fractional derivative, Thermal resistance, Nanofiber membrane, Porous medium, Hausdorff derivative, Fractional differential equation
•Definition of fractional derivative is such a mess that a new replacement is needed.•Fractal calculus is tutorially introduced from very beginning, and it is accessible to all audience.•Its geometrical explanation and applications are elucidated. Fractal calculus is very simple but extremely effective to deal with phenomena in hierarchical or porous media. Its operation is almost same with that by the advanced calculus, making it much accessible to all non-mathematicians. This paper begins with the basic concept of fractal gradient of temperature, i.e., the temperature change between two points in a fractal medium, to reveal the basic properties of fractal calculus. The fractal velocity and fractal material derivative are then introduced to deduce laws for fluid mechanics and heat conduction in fractal space. Conservation of mass in a fractal space is geometrically explained, and an approximate transform of a fractal space on a smaller scale into its continuous partner on a larger scale is illustrated by a nanofiber membrane, which is smooth on any observable scales, but its air permeability has to studied in a nano scale, under such a small scale, the nanofiber membrane becomes a porous one. Finally an example is given to explain cocoon’s heat-proof property, which cannot be unveiled by advanced calculus.
Author He, Ji-Huan
Author_xml – sequence: 1
  givenname: Ji-Huan
  surname: He
  fullname: He, Ji-Huan
  email: hejihuan@suda.edu.cn
  organization: National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
BookMark eNp9kFFLwzAQx4NMcM59AZ_6BVYvTZu04IsMp4OBL_ocrsl1pHTtSDPRb2-2KYgPPuW44_fP3e-aTfqhJ8ZuOaQcuLxrU-_6fZoBL1OQKXB-waZZxvlCqEpNftVXbD6OLUCk8qLgfMpg5dEE7BKDnTl0hzHB3iYujMmWhh0F7-IgoY99hz0GN_Q37LLBbqT59ztjb6vH1-XzYvPytF4-bBYm5xAWNZQInBpJNYq6LmUBAqEwuTWmkFkjGrSVUtZSXlU1YEaxIS0KUVhUVIkZW59z7YCt3nu3Q_-pB3T61Bj8VqMPznSkc1FxKZvMAuY5mfijEcqWoGRFpWqKmFWes4wfxtFTo40Lp2uCR9dpDvooUrf6KFIfRWqQOoqMaPYH_VnlX-j-DFEU9O7I69E46g1Z58mEeIH7D_8COBKPaw
CitedBy_id crossref_primary_10_1142_S0218348X22500098
crossref_primary_10_2298_TSCI2403165R
crossref_primary_10_1016_j_asej_2024_103035
crossref_primary_10_3934_math_20241496
crossref_primary_10_2298_TSCI2403371N
crossref_primary_10_1177_1461348420917244
crossref_primary_10_1016_j_rinp_2018_10_008
crossref_primary_10_2298_TSCI2403153L
crossref_primary_10_1007_s10910_021_01212_y
crossref_primary_10_1016_j_rinp_2019_01_043
crossref_primary_10_1108_HFF_09_2020_0552
crossref_primary_10_1142_S0218348X21500328
crossref_primary_10_1007_s10910_021_01310_x
crossref_primary_10_1142_S0218348X20500115
crossref_primary_10_2298_TSCI200524332K
crossref_primary_10_2298_TSCI2403993L
crossref_primary_10_1088_1402_4896_ad3c7e
crossref_primary_10_1142_S0218348X21500444
crossref_primary_10_1209_0295_5075_ac2a62
crossref_primary_10_2298_TSCI2403189L
crossref_primary_10_1007_s13137_021_00175_1
crossref_primary_10_1177_1461348419861450
crossref_primary_10_1007_s10750_024_05487_5
crossref_primary_10_1016_j_mex_2022_101853
crossref_primary_10_2298_TSCI2303155L
crossref_primary_10_3389_fphy_2024_1498185
crossref_primary_10_1177_14613484211007633
crossref_primary_10_1177_14613484231162657
crossref_primary_10_1007_s00500_023_07827_4
crossref_primary_10_1142_S0217979220503130
crossref_primary_10_1142_S0218348X2450124X
crossref_primary_10_1142_S0218348X20500243
crossref_primary_10_1142_S0218348X21502054
crossref_primary_10_3934_math_2021534
crossref_primary_10_2298_TSCI2203505C
crossref_primary_10_1016_j_ijthermalsci_2021_107089
crossref_primary_10_1080_25765299_2019_1706234
crossref_primary_10_3934_math_2024013
crossref_primary_10_1155_2022_9637098
crossref_primary_10_1108_HFF_03_2021_0211
crossref_primary_10_1016_j_cjph_2021_12_009
crossref_primary_10_1142_S0217979221502143
crossref_primary_10_1142_S0218348X22501882
crossref_primary_10_2298_TSCI2303057L
crossref_primary_10_3389_fphy_2022_1071200
crossref_primary_10_3390_e21100931
crossref_primary_10_1177_1461348418800554
crossref_primary_10_1007_s12346_024_01119_4
crossref_primary_10_1088_1572_9494_abdea1
crossref_primary_10_1142_S0218348X21500341
crossref_primary_10_1016_j_chaos_2021_111251
crossref_primary_10_1142_S0218348X20500693
crossref_primary_10_2298_TSCI2303873D
crossref_primary_10_1142_S0218348X21500225
crossref_primary_10_1007_s13137_021_00174_2
crossref_primary_10_1142_S0218348X22500438
crossref_primary_10_1080_25765299_2019_1691895
crossref_primary_10_1142_S0218348X22501523
crossref_primary_10_1186_s13662_021_03374_0
crossref_primary_10_3389_fphy_2023_1177335
crossref_primary_10_1177_14613484211070883
crossref_primary_10_3390_math12111688
crossref_primary_10_1080_25765299_2021_1969740
crossref_primary_10_1177_1461348419827455
crossref_primary_10_1186_s13662_021_03376_y
crossref_primary_10_1142_S0218348X23500834
crossref_primary_10_1007_s12043_019_1763_x
crossref_primary_10_1063_5_0153122
crossref_primary_10_1142_S0218348X20500589
crossref_primary_10_1007_s13137_021_00187_x
crossref_primary_10_1177_1461348420919193
crossref_primary_10_1177_1461348418811455
crossref_primary_10_1140_epjp_s13360_020_00891_x
crossref_primary_10_2298_TSCI23S1077X
crossref_primary_10_1177_14613484241279972
crossref_primary_10_3390_sym16101284
crossref_primary_10_1016_j_apm_2020_01_027
crossref_primary_10_1016_j_rinp_2019_102546
crossref_primary_10_1142_S0218348X22501894
crossref_primary_10_1209_0295_5075_132_44002
crossref_primary_10_1142_S0218348X19501342
crossref_primary_10_1177_1461348420917565
crossref_primary_10_3390_sym15010003
crossref_primary_10_3390_fractalfract7080586
crossref_primary_10_1142_S1793524523500274
crossref_primary_10_1177_1461348419878534
crossref_primary_10_1177_1461348419874973
crossref_primary_10_1177_14613484231219146
crossref_primary_10_1007_s11071_023_08812_0
crossref_primary_10_3934_mmc_2022009
crossref_primary_10_1142_S0218348X19501226
crossref_primary_10_1007_s12043_019_1773_8
crossref_primary_10_3390_math11020276
crossref_primary_10_1016_j_cej_2021_134178
crossref_primary_10_1177_1461348419858005
crossref_primary_10_1016_j_ijoes_2023_01_023
crossref_primary_10_1142_S0218348X21501334
crossref_primary_10_3390_math7090773
crossref_primary_10_1177_14613484221148411
crossref_primary_10_3390_sym15020290
crossref_primary_10_3390_math7060567
crossref_primary_10_1155_2020_1543503
crossref_primary_10_1002_num_22584
crossref_primary_10_1142_S0218348X21500808
crossref_primary_10_3390_sym13091593
crossref_primary_10_1155_2020_9075823
crossref_primary_10_1177_14613484211052753
crossref_primary_10_1186_s13662_019_2313_z
crossref_primary_10_3390_math12223499
crossref_primary_10_1007_s11082_021_02775_5
crossref_primary_10_1016_j_jelechem_2020_114883
crossref_primary_10_1016_j_chaos_2020_110096
crossref_primary_10_3390_fractalfract8020082
crossref_primary_10_1142_S0218348X22500463
crossref_primary_10_1007_s11082_021_03402_z
crossref_primary_10_1007_s40819_022_01343_z
crossref_primary_10_3390_e26121103
crossref_primary_10_3390_sym13061022
crossref_primary_10_1155_2021_6669087
crossref_primary_10_1177_1461348421992608
crossref_primary_10_1142_S0218348X21500596
crossref_primary_10_1177_1461348419881831
crossref_primary_10_1007_s12648_019_01487_7
crossref_primary_10_1142_S0218348X21501681
crossref_primary_10_1142_S0218348X24501214
crossref_primary_10_3390_sym15020279
crossref_primary_10_1016_j_padiff_2024_100775
crossref_primary_10_1016_j_physletb_2023_138370
crossref_primary_10_1155_2023_8283092
crossref_primary_10_1016_j_chaos_2024_115393
crossref_primary_10_1142_S0218348X21501449
crossref_primary_10_1177_1461348419836347
crossref_primary_10_1177_1461348418813015
crossref_primary_10_3390_physics1010015
crossref_primary_10_1177_14613484221135478
crossref_primary_10_1177_1461348419836344
crossref_primary_10_1007_s00419_023_02537_7
crossref_primary_10_1007_s12648_019_01502_x
crossref_primary_10_1002_zamm_202100391
crossref_primary_10_1016_j_chaos_2021_110958
crossref_primary_10_1016_j_rinp_2019_102646
crossref_primary_10_1142_S0218348X22501560
crossref_primary_10_1016_j_chaos_2022_112624
crossref_primary_10_1142_S0217979222500151
crossref_primary_10_1007_s00707_019_02569_7
crossref_primary_10_1007_s13726_021_00910_3
crossref_primary_10_3389_fphy_2023_1309182
crossref_primary_10_1142_S0218348X19500476
crossref_primary_10_1177_1461348418817991
crossref_primary_10_3934_math_2022995
crossref_primary_10_1007_s13137_021_00177_z
crossref_primary_10_1016_j_rinp_2020_103345
crossref_primary_10_1016_j_aej_2024_06_022
crossref_primary_10_1142_S0218348X20500930
crossref_primary_10_1142_S0218348X2150122X
crossref_primary_10_3390_math11102277
crossref_primary_10_1155_2019_3206503
crossref_primary_10_1140_epjp_i2019_12411_y
crossref_primary_10_3390_fractalfract7020187
crossref_primary_10_1007_s12346_025_01255_5
crossref_primary_10_3390_fractalfract9010001
crossref_primary_10_1016_j_physb_2022_414506
crossref_primary_10_1098_rspa_2022_0717
crossref_primary_10_1142_S0218348X22501687
crossref_primary_10_1007_s12043_022_02335_w
crossref_primary_10_1142_S0218348X23501207
crossref_primary_10_1140_epjs_s11734_021_00315_6
crossref_primary_10_1142_S0218348X23500238
crossref_primary_10_1142_S0218348X22500360
crossref_primary_10_3390_e25071008
crossref_primary_10_1016_j_chaos_2019_01_026
crossref_primary_10_1140_epje_s10189_023_00368_6
crossref_primary_10_1007_s12043_019_1746_y
crossref_primary_10_1016_j_padiff_2024_100630
crossref_primary_10_1177_14613484221126759
crossref_primary_10_3390_axioms12010095
crossref_primary_10_1063_5_0243581
crossref_primary_10_3390_axioms11070348
crossref_primary_10_1177_1461348418814122
crossref_primary_10_1108_HFF_02_2020_0111
crossref_primary_10_2298_TSCI2303755L
crossref_primary_10_2298_TSCI2303779M
crossref_primary_10_1108_HFF_03_2021_0232
crossref_primary_10_1177_1461348419831478
crossref_primary_10_1016_j_rinp_2018_10_062
crossref_primary_10_1142_S0217979221501952
crossref_primary_10_3389_fphy_2023_1158121
crossref_primary_10_1142_S0218348X22501213
crossref_primary_10_1108_HFF_02_2023_0073
crossref_primary_10_1142_S0218348X21501905
crossref_primary_10_1177_1461348420947832
crossref_primary_10_1142_S0218348X21500936
crossref_primary_10_1142_S0218348X23500470
crossref_primary_10_2298_TSCI220922211W
crossref_primary_10_1177_1461348419851931
crossref_primary_10_1177_1461348418822162
crossref_primary_10_1080_25765299_2023_2281068
crossref_primary_10_1088_1402_4896_abbfcb
crossref_primary_10_1108_HFF_01_2021_0030
crossref_primary_10_1177_14613484231216198
crossref_primary_10_1016_j_chaos_2022_112487
crossref_primary_10_1142_S0218348X21500043
crossref_primary_10_1142_S0218348X21500286
crossref_primary_10_1142_S0218348X19500178
crossref_primary_10_1142_S0218348X24500798
crossref_primary_10_3389_fphy_2023_1168795
crossref_primary_10_1002_mma_6233
crossref_primary_10_1002_mma_7200
crossref_primary_10_1007_s41478_024_00785_6
crossref_primary_10_1177_1461348418811028
crossref_primary_10_1002_mma_5823
crossref_primary_10_1142_S0217979221500235
crossref_primary_10_1214_25_EJP1297
crossref_primary_10_1177_1461348420922686
crossref_primary_10_1177_1461348418795813
crossref_primary_10_1007_s40819_022_01302_8
crossref_primary_10_1016_j_aej_2020_08_049
crossref_primary_10_1016_j_chaos_2022_112478
crossref_primary_10_1142_S0218348X22501596
crossref_primary_10_1007_s11082_023_04838_1
crossref_primary_10_1080_25765299_2022_2119685
crossref_primary_10_1016_j_matcom_2022_08_014
crossref_primary_10_1140_epjp_i2019_12854_0
crossref_primary_10_1177_1461348419847307
crossref_primary_10_1155_2021_6664039
crossref_primary_10_1142_S0218348X22400412
crossref_primary_10_3390_fractalfract7010027
crossref_primary_10_3934_dcdss_2020421
crossref_primary_10_3390_sym15040789
crossref_primary_10_1177_1461348418818349
crossref_primary_10_1177_1461348420979468
crossref_primary_10_1016_j_aml_2021_107199
crossref_primary_10_1142_S0219477521500346
crossref_primary_10_1177_1558925019872200
crossref_primary_10_2298_TSCI2203653X
crossref_primary_10_2298_TSCI2303029S
crossref_primary_10_1016_j_powtec_2023_118522
crossref_primary_10_3390_math11081803
crossref_primary_10_1142_S0218348X23500688
crossref_primary_10_1142_S0218348X22501481
crossref_primary_10_1007_s10910_020_01130_5
crossref_primary_10_1016_j_aej_2023_09_001
crossref_primary_10_2298_TSCI2403999Z
crossref_primary_10_1142_S0218348X21501152
crossref_primary_10_2298_TSCI220917207W
crossref_primary_10_2298_TSCI2403341C
crossref_primary_10_1142_S0218348X22500839
crossref_primary_10_1016_j_amc_2020_125327
crossref_primary_10_1177_1461348418820676
crossref_primary_10_1002_num_22609
crossref_primary_10_1142_S0218348X22501924
crossref_primary_10_2298_TSCI2403975Q
crossref_primary_10_1142_S0218348X21502248
crossref_primary_10_1002_mma_7428
crossref_primary_10_1142_S0217979221500016
crossref_primary_10_1209_0295_5075_ac5c78
crossref_primary_10_1016_j_chaos_2020_110396
crossref_primary_10_1177_1558925019895643
crossref_primary_10_1142_S0218348X22500165
crossref_primary_10_1016_j_chaos_2023_113520
crossref_primary_10_1155_2019_7952871
crossref_primary_10_1016_j_aej_2020_07_021
crossref_primary_10_1007_s40819_023_01596_2
crossref_primary_10_1016_j_rinp_2021_104549
crossref_primary_10_1177_1461348420960957
crossref_primary_10_1016_j_jelechem_2019_113565
crossref_primary_10_2298_TSCI2203535C
crossref_primary_10_5937_vojtehg72_52213
crossref_primary_10_2298_TSCI2203667Y
crossref_primary_10_1007_s10958_024_07014_2
crossref_primary_10_1007_s13137_021_00182_2
crossref_primary_10_3390_sym14081695
crossref_primary_10_2298_TSCI2203413Z
crossref_primary_10_1214_24_AAP2092
crossref_primary_10_3390_fluids8020034
crossref_primary_10_1007_s10910_019_01063_8
crossref_primary_10_1007_s40997_020_00414_0
crossref_primary_10_1515_phys_2023_0165
crossref_primary_10_1142_S0218348X2450018X
crossref_primary_10_1142_S0218348X2350041X
crossref_primary_10_1142_S0218348X21501176
crossref_primary_10_1007_s10910_019_01048_7
crossref_primary_10_1063_5_0176455
crossref_primary_10_1177_14613484251326645
crossref_primary_10_1002_num_22868
crossref_primary_10_1142_S0218348X21501978
crossref_primary_10_3390_fractalfract7040293
crossref_primary_10_1007_s40819_021_01182_4
crossref_primary_10_1142_S0218348X2150225X
crossref_primary_10_1515_eng_2020_0033
crossref_primary_10_1155_2022_2297866
crossref_primary_10_1177_1461348419856227
crossref_primary_10_3390_fractalfract7080618
crossref_primary_10_1016_j_chaos_2022_112329
crossref_primary_10_1016_j_jelechem_2020_114106
crossref_primary_10_3390_fractalfract7100727
crossref_primary_10_1108_HFF_02_2021_0136
crossref_primary_10_2298_TSCI2303119S
crossref_primary_10_1108_HFF_07_2019_0577
crossref_primary_10_1209_0295_5075_134_20006
crossref_primary_10_1016_j_ijnonlinmec_2022_104302
crossref_primary_10_1155_2024_9926131
crossref_primary_10_1007_s42235_023_00425_y
crossref_primary_10_4236_jamp_2023_111008
crossref_primary_10_1016_j_aej_2020_07_047
crossref_primary_10_1142_S0218348X21500195
crossref_primary_10_1142_S0218348X21501164
crossref_primary_10_3390_math8010053
crossref_primary_10_3390_math9151754
crossref_primary_10_1177_1461348418820746
crossref_primary_10_1142_S0218348X21500754
crossref_primary_10_3389_fphy_2024_1526258
crossref_primary_10_1142_S0218348X20501418
crossref_primary_10_3389_fphy_2024_1529644
crossref_primary_10_3390_sym15101952
crossref_primary_10_1080_09205071_2022_2120419
crossref_primary_10_1155_2020_5098329
crossref_primary_10_1108_HFF_01_2020_0060
crossref_primary_10_3390_axioms9040119
crossref_primary_10_1108_MMMS_08_2020_0202
crossref_primary_10_1142_S0218348X22500074
crossref_primary_10_1177_1461348419844145
crossref_primary_10_1016_j_chaos_2019_04_040
crossref_primary_10_1016_j_cej_2020_124946
crossref_primary_10_1142_S0218348X19500634
crossref_primary_10_1155_2021_9998610
crossref_primary_10_3934_mbe_2023643
crossref_primary_10_1142_S0218348X21500304
crossref_primary_10_2298_TSCI2403967S
crossref_primary_10_1016_j_ijleo_2021_167461
crossref_primary_10_2298_TSCI2303881D
crossref_primary_10_1016_j_jksus_2021_101604
crossref_primary_10_1016_j_powtec_2020_04_011
crossref_primary_10_1016_j_ijleo_2022_170105
crossref_primary_10_1108_HFF_05_2020_0247
crossref_primary_10_1142_S0218348X22500086
crossref_primary_10_1016_j_rinp_2019_102347
crossref_primary_10_1016_j_chaos_2020_110475
crossref_primary_10_1016_j_rinp_2021_104580
crossref_primary_10_1088_1402_4896_ad952b
crossref_primary_10_1142_S0218348X2150105X
crossref_primary_10_1016_j_exco_2022_100088
crossref_primary_10_1142_S0218348X21502157
crossref_primary_10_1142_S0218348X20501078
crossref_primary_10_1007_s10665_022_10245_4
crossref_primary_10_1007_s10910_022_01392_1
crossref_primary_10_1142_S0218348X1850086X
crossref_primary_10_1177_1461348419873470
crossref_primary_10_1108_HFF_02_2020_0077
crossref_primary_10_3390_math7010041
crossref_primary_10_1155_2021_6358530
crossref_primary_10_1007_s00024_022_03114_9
crossref_primary_10_1016_j_asej_2020_01_016
crossref_primary_10_3390_math11194183
crossref_primary_10_3390_fractalfract7080609
crossref_primary_10_3389_fphy_2023_1238901
crossref_primary_10_1007_s12206_021_0537_9
crossref_primary_10_1016_j_rinp_2023_106208
crossref_primary_10_1142_S0218348X22501614
crossref_primary_10_1016_j_rinp_2021_104103
crossref_primary_10_1142_S0218348X22501730
crossref_primary_10_1016_j_rinp_2021_104104
crossref_primary_10_1007_s41478_022_00474_2
Cites_doi 10.2298/TSCI160805057W
10.2298/TSCI151025054W
10.1016/j.chaos.2017.04.027
10.1016/S0960-0779(03)00278-9
10.2298/TSCI160111018A
10.2298/TSCI1305546F
10.2298/TSCI15S1S43W
10.3390/e19020055
10.1016/j.physleta.2013.04.012
10.2298/TSCI11S1145H
10.4236/jmp.2014.516160
10.1016/j.jhazmat.2018.02.015
10.1016/j.apm.2017.08.026
10.1016/j.cam.2014.01.002
10.1016/j.physleta.2011.11.030
10.1016/j.physa.2017.09.014
10.1016/j.jmaa.2009.08.014
10.2298/TSCI17S1025S
10.1016/j.matlet.2018.02.076
10.2298/TSCI160706146L
10.1007/s10773-014-2123-8
10.1186/s13662-015-0416-8
10.2298/TSCI1603779L
10.1016/j.ijpharm.2018.03.060
10.4134/BKMS.2010.47.1.081
10.1007/s10773-013-1618-z
10.2298/TSCI1603773H
10.1016/0960-0779(94)00227-H
10.2298/TSCI110503068H
10.2298/TSCI160415101L
10.1615/HeatTransRes.2013005856
10.2298/TSCI1603785Z
10.2298/TSCI151224222Y
10.2298/TSCI1504161F
10.2298/TSCI110503070W
10.1121/1.5027237
10.1016/j.chaos.2017.03.066
10.2298/TSCI170510196Y
10.1016/j.physa.2005.12.062
10.1126/science.284.5420.1677
10.1140/epjp/i2018-11885-3
ContentType Journal Article
Copyright 2018 The Author
Copyright_xml – notice: 2018 The Author
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2018.06.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
EndPage 276
ExternalDocumentID oai_doaj_org_article_439166f2d0a44ecebac37d80769e87f5
10_1016_j_rinp_2018_06_011
S2211379718311951
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-b08a01ef6eba3bb86503a05c4dcc562f3fad977dde499b0a2efad6da335da7e93
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:19:09 EDT 2025
Tue Jul 01 01:33:40 EDT 2025
Thu Apr 24 22:55:03 EDT 2025
Wed May 17 00:04:33 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fractional differential equation
Nanofiber membrane
Fractal derivative
Thermal resistance
Fractal temperature gradient
Porous medium
Hausdorff derivative
Hierarchical structure
Fractional derivative
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-b08a01ef6eba3bb86503a05c4dcc562f3fad977dde499b0a2efad6da335da7e93
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379718311951
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_439166f2d0a44ecebac37d80769e87f5
crossref_citationtrail_10_1016_j_rinp_2018_06_011
crossref_primary_10_1016_j_rinp_2018_06_011
elsevier_sciencedirect_doi_10_1016_j_rinp_2018_06_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationTitle Results in physics
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References El Naschie (b0015) 2004; 19
Chen, Yan, Zhang (b0110) 2010; 361
Yu, Tian, He (b0185) 2018; 220
Wang, He, Li (b0040) 2012; 16
Liu, He (b0195) 2018; 22
Zhu, Zhang, Li (b0045) 2016; 20
Guo (b0265) 2010; 47
Atangana (b0160) 2017; 102
Sohail, Siddiqui, Iftikhar (b0085) 2017; 8
Wu, Hu (b0065) 2017; 21
Kosmidis, Macheras (b0140) 2018; 543
Wang, Zhang, Rui (b0105) 2017; 21
Wang, He, Sun (b0190) 2018; 22
Zhu, Pan, Li (b0050) 2015; 19
He, Li (b0230) 2012; 16
Pan, Zheng, Liu (b0030) 2018; 53
Chen, Liang (b0150) 2017; 102
Brouers (b0135) 2014; 5
Brouers, Al-Musawi (b0025) 2018; 350
Yang (b0060) 2017; 21
Brouers, Sotolongo-Costa (b0130) 2006; 368
Atangana, Baleanu (b0070) 2016; 20
West, Brown, Enquist (b0020) 1999; 284
Yang, Srivastava, He (b0115) 2013; 377
Coronel-Escamilla, Gómez-Aguilar, Torres, Escobar-Jiménez (b0245) 2018; 491
Shang, Wang, Yang (b0225) 2017; 21
Liu, Liu, Li (b0240) 2017; 21
Hu, He (b0055) 2016; 20
Golmankhaneh, Baleanu (b0165) 2016; 18
Güner, Bekir (b0090) 2017; 8
Fan, Wang, Liu, Liu, Zhang (b0215) 2015; 19
Cheng (b0010) 2013; 52
Wang, Li, Kong, He (b0035) 2015; 19
Wang, Liu (b0095) 2017; 21
Liu, Wang, Zhang (b0235) 2016; 20
Gómez Aguilar, Córdova-Fraga, Tórres-Jiménez, Escobar-Jiménez, Olivares-Peregrino, Guerrero-Ramírez (b0255) 2016; 2016
Yang, Srivastava, Machado (b0075) 2016; 20
Ca, Chen, Xu (b0155) 2018; 143
Khalil, Al-Horani, Yousef (b0080) 2014; 264
Sayevand, Arjang (b0100) 2017; 24
Wu, Liang (b0125) 2017; 8
He (b0005) 2014; 53
Fan, He (b0220) 2012; 354701
Coronel-Escamilla (b0260) 2017; 19
Giona (b0180) 1995; 5
He (b0205) 2011; 15
Gómez-Aguilar (b0250) 2017
Nottale (b0145) 1988; 306
Hu, Tu (b0175) 2015
Fei, Liu, Cui, He (b0200) 2013; 17
He, Elagan, Li (b0120) 2012; 376
Allwright, Atangana (b0170) 2018; 133
Fan, Shang (b0210) 2013; 44
He (10.1016/j.rinp.2018.06.011_b0230) 2012; 16
Hu (10.1016/j.rinp.2018.06.011_b0175) 2015
Yang (10.1016/j.rinp.2018.06.011_b0075) 2016; 20
Chen (10.1016/j.rinp.2018.06.011_b0110) 2010; 361
He (10.1016/j.rinp.2018.06.011_b0120) 2012; 376
Ca (10.1016/j.rinp.2018.06.011_b0155) 2018; 143
Yang (10.1016/j.rinp.2018.06.011_b0060) 2017; 21
Wang (10.1016/j.rinp.2018.06.011_b0035) 2015; 19
Fan (10.1016/j.rinp.2018.06.011_b0215) 2015; 19
Gómez-Aguilar (10.1016/j.rinp.2018.06.011_b0250) 2017
Atangana (10.1016/j.rinp.2018.06.011_b0160) 2017; 102
Güner (10.1016/j.rinp.2018.06.011_b0090) 2017; 8
Sohail (10.1016/j.rinp.2018.06.011_b0085) 2017; 8
Gómez Aguilar (10.1016/j.rinp.2018.06.011_b0255) 2016; 2016
Wang (10.1016/j.rinp.2018.06.011_b0105) 2017; 21
Fan (10.1016/j.rinp.2018.06.011_b0210) 2013; 44
El Naschie (10.1016/j.rinp.2018.06.011_b0015) 2004; 19
Khalil (10.1016/j.rinp.2018.06.011_b0080) 2014; 264
Chen (10.1016/j.rinp.2018.06.011_b0150) 2017; 102
Hu (10.1016/j.rinp.2018.06.011_b0055) 2016; 20
Liu (10.1016/j.rinp.2018.06.011_b0235) 2016; 20
Wang (10.1016/j.rinp.2018.06.011_b0095) 2017; 21
Brouers (10.1016/j.rinp.2018.06.011_b0130) 2006; 368
Pan (10.1016/j.rinp.2018.06.011_b0030) 2018; 53
Wang (10.1016/j.rinp.2018.06.011_b0040) 2012; 16
Atangana (10.1016/j.rinp.2018.06.011_b0070) 2016; 20
Allwright (10.1016/j.rinp.2018.06.011_b0170) 2018; 133
Yang (10.1016/j.rinp.2018.06.011_b0115) 2013; 377
Wu (10.1016/j.rinp.2018.06.011_b0125) 2017; 8
Wu (10.1016/j.rinp.2018.06.011_b0065) 2017; 21
Zhu (10.1016/j.rinp.2018.06.011_b0045) 2016; 20
Fei (10.1016/j.rinp.2018.06.011_b0200) 2013; 17
Brouers (10.1016/j.rinp.2018.06.011_b0025) 2018; 350
Wang (10.1016/j.rinp.2018.06.011_b0190) 2018; 22
Coronel-Escamilla (10.1016/j.rinp.2018.06.011_b0245) 2018; 491
Brouers (10.1016/j.rinp.2018.06.011_b0135) 2014; 5
Liu (10.1016/j.rinp.2018.06.011_b0195) 2018; 22
West (10.1016/j.rinp.2018.06.011_b0020) 1999; 284
Giona (10.1016/j.rinp.2018.06.011_b0180) 1995; 5
He (10.1016/j.rinp.2018.06.011_b0005) 2014; 53
Guo (10.1016/j.rinp.2018.06.011_b0265) 2010; 47
Golmankhaneh (10.1016/j.rinp.2018.06.011_b0165) 2016; 18
Liu (10.1016/j.rinp.2018.06.011_b0240) 2017; 21
Sayevand (10.1016/j.rinp.2018.06.011_b0100) 2017; 24
He (10.1016/j.rinp.2018.06.011_b0205) 2011; 15
Nottale (10.1016/j.rinp.2018.06.011_b0145) 1988; 306
Zhu (10.1016/j.rinp.2018.06.011_b0050) 2015; 19
Yu (10.1016/j.rinp.2018.06.011_b0185) 2018; 220
Cheng (10.1016/j.rinp.2018.06.011_b0010) 2013; 52
Shang (10.1016/j.rinp.2018.06.011_b0225) 2017; 21
Kosmidis (10.1016/j.rinp.2018.06.011_b0140) 2018; 543
Fan (10.1016/j.rinp.2018.06.011_b0220) 2012; 354701
Coronel-Escamilla (10.1016/j.rinp.2018.06.011_b0260) 2017; 19
References_xml – volume: 8
  start-page: 228
  year: 2017
  end-page: 235
  ident: b0085
  article-title: Travelling wave solutions for fractional order KdV-like equation using G′/G-expansion method
  publication-title: Nonlinear Sci Lett A
– year: 2015
  ident: b0175
  article-title: A new discrete economic model involving generalized fractal derivative
  publication-title: Adv Diff Eqs
– volume: 368
  start-page: 165
  year: 2006
  end-page: 175
  ident: b0130
  article-title: Generalized fractal kinetics in complex systems (application to biophysics and biotechnology)
  publication-title: Phys Stat Mech Appl
– year: 2017
  ident: b0250
  article-title: Chaos in a nonlinear Bloch system with Atangana-Baleanu fractional derivatives
  publication-title: Numer Methods Partial Diff Eqs
– volume: 5
  start-page: 987
  year: 1995
  end-page: 1000
  ident: b0180
  article-title: Fractal calculus on [0,1]
  publication-title: Chaos, Solitons Fractals
– volume: 22
  start-page: 17
  year: 2018
  end-page: 218
  ident: b0190
  article-title: Improvement of air permeability of bubbfil nanofiber membrane
  publication-title: Therm Sci
– volume: 15
  start-page: S145
  year: 2011
  end-page: S147
  ident: b0205
  publication-title: Therm Sci
– volume: 8
  start-page: 41
  year: 2017
  end-page: 49
  ident: b0090
  article-title: Exp-function method for nonlinear fractional differential equations
  publication-title: Nonlinear Sci Lett A
– volume: 143
  start-page: 1559
  year: 2018
  end-page: 1566
  ident: b0155
  article-title: The fractal derivative wave equation: application to clinical amplitude/velocity reconstruction imaging
  publication-title: J Acoust Soc Am
– volume: 20
  start-page: 779
  year: 2016
  end-page: 784
  ident: b0235
  article-title: A fractional model for insulation clothings with cocoon-like porous structure
  publication-title: Therm Sci
– volume: 53
  start-page: 622
  year: 2018
  end-page: 634
  ident: b0030
  article-title: A spatial-fractional thermal transport model for nanofluid in porous media
  publication-title: Appl Math Model
– volume: 133
  year: 2018
  ident: b0170
  article-title: Fractal advection-dispersion equation for groundwater transport in fractured aquifers with self-similarities
  publication-title: Eur Phys J Plus
– volume: 376
  start-page: 257
  year: 2012
  end-page: 259
  ident: b0120
  article-title: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
  publication-title: Phys Lett A
– volume: 543
  start-page: 269
  year: 2018
  end-page: 273
  ident: b0140
  article-title: On the dilemma of fractal or fractional kinetics in drug release studies: a comparison between Weibull and Mittag-Leffler functions
  publication-title: Int J Pharm
– volume: 19
  start-page: 209
  year: 2004
  end-page: 236
  ident: b0015
  article-title: A review of E infinity theory and the mass spectrum of high energy particle physics
  publication-title: Chaos, Solitons Fractals
– volume: 5
  start-page: 1594
  year: 2014
  end-page: 1598
  ident: b0135
  article-title: The fractal (BSf) kinetics equation and its approximations
  publication-title: J Mod Phys
– volume: 18
  year: 2016
  ident: b0165
  article-title: New derivatives on the fractal subset of real-line
  publication-title: Entropy
– volume: 220
  start-page: 5
  year: 2018
  end-page: 7
  ident: b0185
  article-title: Snail-based nanofibers
  publication-title: Mater Lett
– volume: 21
  start-page: 1707
  year: 2017
  end-page: 1712
  ident: b0065
  article-title: On variational iteration method for fractional calculus
  publication-title: Therm Sci
– volume: 20
  start-page: 763
  year: 2016
  end-page: 769
  ident: b0070
  article-title: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm. Sci.
– volume: 361
  start-page: 17
  year: 2010
  end-page: 33
  ident: b0110
  article-title: On the local fractional derivative
  publication-title: J Math Anal Appl
– volume: 2016
  year: 2016
  ident: b0255
  article-title: Nonlocal transport processes and the Fractional Cattaneo-Vernotte equation
  publication-title: Math Probl Eng
– volume: 264
  start-page: 65
  year: 2014
  end-page: 70
  ident: b0080
  article-title: A new definition of fractional derivative
  publication-title: J Comput Appl Math
– volume: 52
  start-page: 3229
  year: 2013
  end-page: 3237
  ident: b0010
  article-title: The Casimir effect for parallel plates in the spacetime with a fractal extra compactified dimension
  publication-title: Int J Theor Phys
– volume: 16
  start-page: 331
  year: 2012
  end-page: 334
  ident: b0230
  article-title: Converting fractional differential equations into partial differential equations
  publication-title: Therm Sci
– volume: 44
  start-page: 399
  year: 2013
  end-page: 407
  ident: b0210
  article-title: Fractal heat transfer in wool fiber hierarchy
  publication-title: Heat Transf Res
– volume: 20
  start-page: 785
  year: 2016
  end-page: 788
  ident: b0045
  article-title: An analysis heat conduction in polar bear hairs using one-dimensional fractional model
  publication-title: Therm. Sci
– volume: 102
  start-page: 72
  year: 2017
  end-page: 77
  ident: b0150
  article-title: New methodologies in fractional and fractal derivatives modeling
  publication-title: Chaos, Solitons Fract
– volume: 47
  start-page: 81
  year: 2010
  end-page: 87
  ident: b0265
  article-title: Nontrivial solutions for boundary-value problems of nonlinear fractional differential equations
  publication-title: B Korean Math Soc
– volume: 20
  start-page: 773
  year: 2016
  end-page: 777
  ident: b0055
  article-title: On fractal space time and fractional calculus
  publication-title: Therm Sci
– volume: 354701
  year: 2012
  ident: b0220
  article-title: Fractal derivative model for air permeability in hierarchic porous media
  publication-title: Abs Appl Anal
– volume: 21
  start-page: 1867
  year: 2017
  end-page: 1871
  ident: b0240
  article-title: A delayed fractional model for cocoon heat-proof property
  publication-title: Therm Sci
– volume: 19
  start-page: S143
  year: 2015
  end-page: S144
  ident: b0035
  article-title: Fractal analysis of polar bear hairs
  publication-title: Therm Sci
– volume: 21
  start-page: S145
  year: 2017
  end-page: S151
  ident: b0105
  article-title: Shallow water waves in porous medium for coast protection
  publication-title: Therm Sci
– volume: 20
  start-page: 753
  year: 2016
  end-page: 756
  ident: b0075
  article-title: A new fractional derivative without singular kernel: application to the modelling of the steady heat flow
  publication-title: Therm. Sci.
– volume: 306
  start-page: 341
  year: 1988
  end-page: 346
  ident: b0145
  article-title: On time in microphysics, Comptes Rendus de L
  publication-title: Acad Sci, Ser II
– volume: 19
  start-page: 1161
  year: 2015
  end-page: 1166
  ident: b0215
  article-title: Model of moisture diffusion in fractal media
  publication-title: Therm Sci
– volume: 21
  start-page: S25
  year: 2017
  end-page: S31
  ident: b0225
  article-title: Fractal analysis for heat extraction in geothermal system
  publication-title: Therm Sci
– volume: 19
  start-page: S179
  year: 2015
  end-page: S181
  ident: b0050
  article-title: One dimensional heat conduction equation of the polar bear hair
  publication-title: Therm Sci
– volume: 377
  start-page: 1696
  year: 2013
  end-page: 1700
  ident: b0115
  article-title: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
  publication-title: Phys Lett A
– volume: 102
  start-page: 396
  year: 2017
  end-page: 406
  ident: b0160
  article-title: Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system
  publication-title: Chaos, Solitons Fractals
– volume: 21
  start-page: S317
  year: 2017
  end-page: S326
  ident: b0060
  article-title: General fractional calculus operators containing the generalized Mittage-Leffler functions applied to anomalous relaxation
  publication-title: Therm Sci
– volume: 491
  start-page: 406
  year: 2018
  end-page: 424
  ident: b0245
  article-title: A numerical solution for a variable-order reaction–diffusion model by using fractional derivativeswith non-local and non-singular kernel
  publication-title: Phys A
– volume: 17
  start-page: 1546
  year: 2013
  end-page: 1548
  ident: b0200
  article-title: Fractal approach to heat transfer in silkworm cocoon hierarchy
  publication-title: Therm Sci
– volume: 24
  start-page: 1100
  year: 2017
  end-page: 1107
  ident: b0100
  article-title: A reliable implicit difference scheme for treatments of fourth-order fractional sub-diffusion equation
  publication-title: Sci Iran
– volume: 16
  start-page: 339
  year: 2012
  end-page: 342
  ident: b0040
  article-title: Fractional model for heat conduction in polar bear hairs
  publication-title: Therm Sci
– volume: 21
  start-page: 2049
  year: 2017
  end-page: 2055
  ident: b0095
  article-title: He’s fractional derivative and its application for fractional Fornberg-Whitham equation
  publication-title: Therm Sci
– volume: 284
  start-page: 1677
  year: 1999
  end-page: 1679
  ident: b0020
  article-title: The fourth dimension of life: fractal geometry andallometric scaling of organisms
  publication-title: Science
– volume: 19
  start-page: 55
  year: 2017
  ident: b0260
  article-title: Bateman-Feshbach Tikochinsky and Caldirola-Kanai oscillators with new fractional differentiation
  publication-title: Entropy
– volume: 350
  start-page: 162
  year: 2018
  end-page: 168
  ident: b0025
  article-title: Brouers-Sotolongo fractal kinetics versus fractional derivative kinetics: a new strategy to analyze the pollutants sorption kinetics in porous materials
  publication-title: J Hazard Mater
– volume: 8
  start-page: 77
  year: 2017
  end-page: 89
  ident: b0125
  article-title: Relationship between fractal dimensions and fractional calculus
  publication-title: Nonl Sci Lett A
– volume: 53
  start-page: 3698
  year: 2014
  end-page: 3718
  ident: b0005
  article-title: A tutorial review on fractal spacetime and fractional calculus
  publication-title: Int J Theor Phys
– volume: 22
  start-page: 33
  year: 2018
  end-page: 38
  ident: b0195
  article-title: Geometrical potential: an explanation on of nanofibers wettability
  publication-title: Therm Sci
– volume: 21
  start-page: 1707
  issue: 4
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0065
  article-title: On variational iteration method for fractional calculus
  publication-title: Therm Sci
  doi: 10.2298/TSCI160805057W
– volume: 19
  start-page: S179
  issue: S1
  year: 2015
  ident: 10.1016/j.rinp.2018.06.011_b0050
  article-title: One dimensional heat conduction equation of the polar bear hair
  publication-title: Therm Sci
– volume: 21
  start-page: 2049
  issue: 5
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0095
  article-title: He’s fractional derivative and its application for fractional Fornberg-Whitham equation
  publication-title: Therm Sci
  doi: 10.2298/TSCI151025054W
– volume: 102
  start-page: 396
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0160
  article-title: Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2017.04.027
– volume: 19
  start-page: 209
  year: 2004
  ident: 10.1016/j.rinp.2018.06.011_b0015
  article-title: A review of E infinity theory and the mass spectrum of high energy particle physics
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/S0960-0779(03)00278-9
– volume: 20
  start-page: 763
  issue: 2
  year: 2016
  ident: 10.1016/j.rinp.2018.06.011_b0070
  article-title: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160111018A
– volume: 17
  start-page: 1546
  year: 2013
  ident: 10.1016/j.rinp.2018.06.011_b0200
  article-title: Fractal approach to heat transfer in silkworm cocoon hierarchy
  publication-title: Therm Sci
  doi: 10.2298/TSCI1305546F
– volume: 19
  start-page: S143
  issue: S1
  year: 2015
  ident: 10.1016/j.rinp.2018.06.011_b0035
  article-title: Fractal analysis of polar bear hairs
  publication-title: Therm Sci
  doi: 10.2298/TSCI15S1S43W
– volume: 306
  start-page: 341
  issue: 5
  year: 1988
  ident: 10.1016/j.rinp.2018.06.011_b0145
  article-title: On time in microphysics, Comptes Rendus de L
  publication-title: Acad Sci, Ser II
– volume: 19
  start-page: 55
  issue: 2
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0260
  article-title: Bateman-Feshbach Tikochinsky and Caldirola-Kanai oscillators with new fractional differentiation
  publication-title: Entropy
  doi: 10.3390/e19020055
– volume: 377
  start-page: 1696
  year: 2013
  ident: 10.1016/j.rinp.2018.06.011_b0115
  article-title: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2013.04.012
– volume: 15
  start-page: S145
  year: 2011
  ident: 10.1016/j.rinp.2018.06.011_b0205
  publication-title: Therm Sci
  doi: 10.2298/TSCI11S1145H
– volume: 24
  start-page: 1100
  issue: 3
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0100
  article-title: A reliable implicit difference scheme for treatments of fourth-order fractional sub-diffusion equation
  publication-title: Sci Iran
– volume: 5
  start-page: 1594
  issue: 16
  year: 2014
  ident: 10.1016/j.rinp.2018.06.011_b0135
  article-title: The fractal (BSf) kinetics equation and its approximations
  publication-title: J Mod Phys
  doi: 10.4236/jmp.2014.516160
– volume: 350
  start-page: 162
  year: 2018
  ident: 10.1016/j.rinp.2018.06.011_b0025
  article-title: Brouers-Sotolongo fractal kinetics versus fractional derivative kinetics: a new strategy to analyze the pollutants sorption kinetics in porous materials
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2018.02.015
– volume: 53
  start-page: 622
  year: 2018
  ident: 10.1016/j.rinp.2018.06.011_b0030
  article-title: A spatial-fractional thermal transport model for nanofluid in porous media
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.08.026
– volume: 264
  start-page: 65
  year: 2014
  ident: 10.1016/j.rinp.2018.06.011_b0080
  article-title: A new definition of fractional derivative
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2014.01.002
– volume: 376
  start-page: 257
  issue: 4
  year: 2012
  ident: 10.1016/j.rinp.2018.06.011_b0120
  article-title: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2011.11.030
– volume: 491
  start-page: 406
  year: 2018
  ident: 10.1016/j.rinp.2018.06.011_b0245
  article-title: A numerical solution for a variable-order reaction–diffusion model by using fractional derivativeswith non-local and non-singular kernel
  publication-title: Phys A
  doi: 10.1016/j.physa.2017.09.014
– volume: 361
  start-page: 17
  issue: 1
  year: 2010
  ident: 10.1016/j.rinp.2018.06.011_b0110
  article-title: On the local fractional derivative
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2009.08.014
– volume: 21
  start-page: S25
  issue: S1
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0225
  article-title: Fractal analysis for heat extraction in geothermal system
  publication-title: Therm Sci
  doi: 10.2298/TSCI17S1025S
– volume: 220
  start-page: 5
  year: 2018
  ident: 10.1016/j.rinp.2018.06.011_b0185
  article-title: Snail-based nanofibers
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.02.076
– volume: 22
  start-page: 33
  issue: 1A
  year: 2018
  ident: 10.1016/j.rinp.2018.06.011_b0195
  article-title: Geometrical potential: an explanation on of nanofibers wettability
  publication-title: Therm Sci
  doi: 10.2298/TSCI160706146L
– volume: 53
  start-page: 3698
  year: 2014
  ident: 10.1016/j.rinp.2018.06.011_b0005
  article-title: A tutorial review on fractal spacetime and fractional calculus
  publication-title: Int J Theor Phys
  doi: 10.1007/s10773-014-2123-8
– year: 2015
  ident: 10.1016/j.rinp.2018.06.011_b0175
  article-title: A new discrete economic model involving generalized fractal derivative
  publication-title: Adv Diff Eqs
  doi: 10.1186/s13662-015-0416-8
– volume: 21
  start-page: S145
  issue: S1
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0105
  article-title: Shallow water waves in porous medium for coast protection
  publication-title: Therm Sci
– volume: 18
  issue: 2
  year: 2016
  ident: 10.1016/j.rinp.2018.06.011_b0165
  article-title: New derivatives on the fractal subset of real-line
  publication-title: Entropy
– volume: 20
  start-page: 779
  year: 2016
  ident: 10.1016/j.rinp.2018.06.011_b0235
  article-title: A fractional model for insulation clothings with cocoon-like porous structure
  publication-title: Therm Sci
  doi: 10.2298/TSCI1603779L
– volume: 22
  start-page: 17
  issue: 1A
  year: 2018
  ident: 10.1016/j.rinp.2018.06.011_b0190
  article-title: Improvement of air permeability of bubbfil nanofiber membrane
  publication-title: Therm Sci
– volume: 543
  start-page: 269
  issue: 1–2
  year: 2018
  ident: 10.1016/j.rinp.2018.06.011_b0140
  article-title: On the dilemma of fractal or fractional kinetics in drug release studies: a comparison between Weibull and Mittag-Leffler functions
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2018.03.060
– volume: 47
  start-page: 81
  issue: 1
  year: 2010
  ident: 10.1016/j.rinp.2018.06.011_b0265
  article-title: Nontrivial solutions for boundary-value problems of nonlinear fractional differential equations
  publication-title: B Korean Math Soc
  doi: 10.4134/BKMS.2010.47.1.081
– volume: 52
  start-page: 3229
  year: 2013
  ident: 10.1016/j.rinp.2018.06.011_b0010
  article-title: The Casimir effect for parallel plates in the spacetime with a fractal extra compactified dimension
  publication-title: Int J Theor Phys
  doi: 10.1007/s10773-013-1618-z
– volume: 8
  start-page: 77
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0125
  article-title: Relationship between fractal dimensions and fractional calculus
  publication-title: Nonl Sci Lett A
– volume: 20
  start-page: 773
  year: 2016
  ident: 10.1016/j.rinp.2018.06.011_b0055
  article-title: On fractal space time and fractional calculus
  publication-title: Therm Sci
  doi: 10.2298/TSCI1603773H
– volume: 5
  start-page: 987
  issue: 6
  year: 1995
  ident: 10.1016/j.rinp.2018.06.011_b0180
  article-title: Fractal calculus on [0,1]
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/0960-0779(94)00227-H
– volume: 16
  start-page: 331
  issue: 2
  year: 2012
  ident: 10.1016/j.rinp.2018.06.011_b0230
  article-title: Converting fractional differential equations into partial differential equations
  publication-title: Therm Sci
  doi: 10.2298/TSCI110503068H
– volume: 21
  start-page: 1867
  issue: 4
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0240
  article-title: A delayed fractional model for cocoon heat-proof property
  publication-title: Therm Sci
  doi: 10.2298/TSCI160415101L
– volume: 44
  start-page: 399
  year: 2013
  ident: 10.1016/j.rinp.2018.06.011_b0210
  article-title: Fractal heat transfer in wool fiber hierarchy
  publication-title: Heat Transf Res
  doi: 10.1615/HeatTransRes.2013005856
– volume: 8
  start-page: 228
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0085
  article-title: Travelling wave solutions for fractional order KdV-like equation using G′/G-expansion method
  publication-title: Nonlinear Sci Lett A
– volume: 20
  start-page: 785
  issue: 3
  year: 2016
  ident: 10.1016/j.rinp.2018.06.011_b0045
  article-title: An analysis heat conduction in polar bear hairs using one-dimensional fractional model
  publication-title: Therm. Sci
  doi: 10.2298/TSCI1603785Z
– volume: 20
  start-page: 753
  issue: 2
  year: 2016
  ident: 10.1016/j.rinp.2018.06.011_b0075
  article-title: A new fractional derivative without singular kernel: application to the modelling of the steady heat flow
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI151224222Y
– volume: 2016
  year: 2016
  ident: 10.1016/j.rinp.2018.06.011_b0255
  article-title: Nonlocal transport processes and the Fractional Cattaneo-Vernotte equation
  publication-title: Math Probl Eng
– volume: 19
  start-page: 1161
  year: 2015
  ident: 10.1016/j.rinp.2018.06.011_b0215
  article-title: Model of moisture diffusion in fractal media
  publication-title: Therm Sci
  doi: 10.2298/TSCI1504161F
– volume: 16
  start-page: 339
  issue: 2
  year: 2012
  ident: 10.1016/j.rinp.2018.06.011_b0040
  article-title: Fractional model for heat conduction in polar bear hairs
  publication-title: Therm Sci
  doi: 10.2298/TSCI110503070W
– volume: 143
  start-page: 1559
  issue: 3
  year: 2018
  ident: 10.1016/j.rinp.2018.06.011_b0155
  article-title: The fractal derivative wave equation: application to clinical amplitude/velocity reconstruction imaging
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.5027237
– volume: 102
  start-page: 72
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0150
  article-title: New methodologies in fractional and fractal derivatives modeling
  publication-title: Chaos, Solitons Fract
  doi: 10.1016/j.chaos.2017.03.066
– volume: 21
  start-page: S317
  issue: S1
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0060
  article-title: General fractional calculus operators containing the generalized Mittage-Leffler functions applied to anomalous relaxation
  publication-title: Therm Sci
  doi: 10.2298/TSCI170510196Y
– volume: 354701
  year: 2012
  ident: 10.1016/j.rinp.2018.06.011_b0220
  article-title: Fractal derivative model for air permeability in hierarchic porous media
  publication-title: Abs Appl Anal
– volume: 8
  start-page: 41
  year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0090
  article-title: Exp-function method for nonlinear fractional differential equations
  publication-title: Nonlinear Sci Lett A
– volume: 368
  start-page: 165
  issue: 1
  year: 2006
  ident: 10.1016/j.rinp.2018.06.011_b0130
  article-title: Generalized fractal kinetics in complex systems (application to biophysics and biotechnology)
  publication-title: Phys Stat Mech Appl
  doi: 10.1016/j.physa.2005.12.062
– volume: 284
  start-page: 1677
  year: 1999
  ident: 10.1016/j.rinp.2018.06.011_b0020
  article-title: The fourth dimension of life: fractal geometry andallometric scaling of organisms
  publication-title: Science
  doi: 10.1126/science.284.5420.1677
– volume: 133
  issue: 2
  year: 2018
  ident: 10.1016/j.rinp.2018.06.011_b0170
  article-title: Fractal advection-dispersion equation for groundwater transport in fractured aquifers with self-similarities
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2018-11885-3
– year: 2017
  ident: 10.1016/j.rinp.2018.06.011_b0250
  article-title: Chaos in a nonlinear Bloch system with Atangana-Baleanu fractional derivatives
  publication-title: Numer Methods Partial Diff Eqs
SSID ssj0001645511
Score 2.5891693
Snippet •Definition of fractional derivative is such a mess that a new replacement is needed.•Fractal calculus is tutorially introduced from very beginning, and it is...
Fractal calculus is very simple but extremely effective to deal with phenomena in hierarchical or porous media. Its operation is almost same with that by the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 272
SubjectTerms Fractal derivative
Fractal temperature gradient
Fractional derivative
Fractional differential equation
Hausdorff derivative
Hierarchical structure
Nanofiber membrane
Porous medium
Thermal resistance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vevAmxaRJ0_ao4rJ48OTC3sLkUVlZu8tuBX--k6S71Mt68Zrm0cyUzjfhyzeE3HLjhfaMTLmgZSqENikgyk-1dIj2cwsSAkH2VY7G4mWST3qlvjwnLMoDR8Pdh5uhss4sBSGccRoML2yJ6XflyqIO6qUY83rJVDhdkQKhgM-2sszr9BVV0d2YieSu5bTxYpUsincy9isqBfH-XnDqBZzhITnokGLyEN_wiOy45pjsBcamWZ0QOvT3m7ADGtkf4a0SaGwybVfJu5t_-jpZ-CBx34sZxAO_UzIePr89jdKu_EFqBKNtqmkJlLla4p651iViKQ40N8Iag6il5jVYRG_4f8KsRVPIHDZIC5yjiQtX8TOy28wbd04SEM7hpCVgciUMh6pmOLzQ2jGwmpsBYevtK9Npg_sSFTO1JoF9KG8y5U2mPBOOsQG524xZRGWMrb0fvVU3Pb2qdWhAX6vO1-ovXw9IvvaJ6gBCDPw41XTL4hf_sfgl2fdTRn7ZFdltl1_uGgFJq2_Ct_cDDlvdCA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhUOhS-qTpCw_diokUybI9NqEhdOjSBrIZvRxcUickLvTn986W02TJ0NHynWydxOk7cfeJkEdukGjPyJALmoRCaBMqQPmhlg7QfmSVVHWC7JucTMXrLJp1yKithcG0Su_7G59ee2vf0vfW7K-Kov8-gNiFxyk4V468ZRgCcZHURXyz4d85ixQACjDuQvkQFXztTJPmtS5KpK1kDY0nY3v7U03jv7NN7Ww941Ny4jFj8Nz81hnpuPKcHNW5m2ZzQegYK51AAMyNh3mbQJU2KKpNMHfLL7wxC14E7me1UM3R3yWZjl8-RpPQX4QQGsFoFWqaKMpcLp1WXOsEUBVXNDLCGgP4Jee5soDjwFNB_KKpGjhokFZxDsaOXcqvSLdclu6aBEo4B50mCsIsYbhKcwbqsdaOKau56RHWDj8zniUcL6tYZG062GeGJsvQZBnmxDHWI09bnVXDkXFQeohW3Uoiv3XdsFzPMz_BWV0PLPOBpUoIZ2Dchsc2obFMXRLnUY9E7Zxke8sFuioOfPzmn3q35BifmuSyO9Kt1t_uHtBIpR_q5fYLqdXdSw
  priority: 102
  providerName: Elsevier
Title Fractal calculus and its geometrical explanation
URI https://dx.doi.org/10.1016/j.rinp.2018.06.011
https://doaj.org/article/439166f2d0a44ecebac37d80769e87f5
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9DEXwRP3F-jD74JpW0SdP2QcSJYwr65GBvJUnTMZnd7CrM_967tJ0TxsCXQtN8NJem97tw9ztCrphGoj0tXMZp5HKutCsB5btKGED7QSqFtA6yr6I_4M_DYNgiTbqjWoDztaYd5pMaFJObxef3HWz4219frWKcI_ekV3FxYqjvNmimEDMavNRw3565CA4AAW0w30f2vjAO6zia9d380VWW0n9FZa2ood4-2avxo3NfLfgBaZn8kOxYP049PyK0h1FPUAFEjwd7c0fmqTMu587ITD8wexY8cMxiNpHVMeAxGfQe3x76bp0UwdXco6WraCSpZzJhlGRKRYCwmKSB5qnWgGUylskUMB38tcCWUVT6BgpEKhkDwYcmZidkK5_m5pQ4khsDnUYSTC6umYwzD5qHShlPporpNvGa6Se6ZgzHxBWTpHENe09QZAmKLEH_OM9rk-tlm1nFl7GxdheluqyJXNe2YFqMknrrJDY2WGR-SiXnRsO8NQvTiIYiNlGYBW0SNGuS1LChggPQ1XjD4Gf_etVzsot3lXvZBdkqiy9zCXikVB1rx8P1adjt2A_uB4tz3w8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IxujF-BnxcwdvZqGlXTeOQiSgyEVIuDVt15EZHAQw8c_3vW0oXDh4bfu69bV9_b3mvV8JeeAWifas9LmgkS-Esb4GlO8b6QDtB7GWOg-QHcjuSLyMg3GFtNe5MBhWWdr-wqbn1rosqZfarM_TtP7eAN-Fh00wrhx5y8AF2gM0EOLu7I1bfxctUgAqQMcLBXyUKJNnijivRZohbyUreDwZ2zqgch7_jXNq4-zpHJOjEjR6T8V_nZCKy07Jfh68aZdnhHYw1QkagL7xNm_p6Sz20tXSm7jZJz6ZBRWe-55PdXH3d05Gnedhu-uXLyH4VjC68g2NNGUukc5obkwEsIprGlgRWwsAJuGJjgHIgakCB8ZQ3XBQIGPNOWg7dE1-QarZLHOXxNPCOeg00uBnCct1M2EgHhrjmI4NtzXC1sNXtqQJx9cqpmodD_ahUGUKVaYwKI6xGnn8lZkXJBk7W7dQq78tkeA6L5gtJqqcYZUnBMukEVMthLMwbsvDOKKhbLooTIIaCdZzorbWC3SV7vj41T_l7slBd_jWV_3e4PWaHGJNEWl2Q6qrxZe7BWiyMnf50vsB1YPgaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+calculus+and+its+geometrical+explanation&rft.jtitle=Results+in+physics&rft.au=He%2C+Ji-Huan&rft.date=2018-09-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=10&rft.spage=272&rft.epage=276&rft_id=info:doi/10.1016%2Fj.rinp.2018.06.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2018_06_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon