Shifts of surface-bound •OH to homogeneous •OH in BDD electrochemical system via UV irradiation for enhanced degradation of hydrophilic aromatic compounds

Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In th...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 291; no. Pt 2; p. 132817
Main Authors Chen, Peng, Mu, Yi, Chen, Ying, Tian, Lei, Jiang, Xun-Heng, Zou, Jian-Ping, Luo, Sheng-Lian
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8–10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants. [Display omitted] ••OH(surface) is the primary reactive species in BDD electrolysis process.•Hydrophobic organics are easier to be degraded with BDD electrolysis than hydrophilic ones.•UV shifts .•OH(surface) to •OH(free) in UV-assisted BDD electrolysis.•Degradation of hydrophilic organics is dramatically enhanced in UV-assisted BDD electrolysis.•Bio-pretreated landfill leachate is amenable to UV-assisted BDD electrolysis.
AbstractList Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8–10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants. [Display omitted] ••OH(surface) is the primary reactive species in BDD electrolysis process.•Hydrophobic organics are easier to be degraded with BDD electrolysis than hydrophilic ones.•UV shifts .•OH(surface) to •OH(free) in UV-assisted BDD electrolysis.•Degradation of hydrophilic organics is dramatically enhanced in UV-assisted BDD electrolysis.•Bio-pretreated landfill leachate is amenable to UV-assisted BDD electrolysis.
Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8-10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH ) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH ) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H O formed on the BDD anode surface, thus retarding O evolution and facilitating •OH generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants.
Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8-10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants.Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8-10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants.
Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8–10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH₍ₛᵤᵣfₐcₑ₎) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH₍fᵣₑₑ₎) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H₂O₂ formed on the BDD anode surface, thus retarding O₂ evolution and facilitating •OH₍fᵣₑₑ₎ generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants.
ArticleNumber 132817
Author Jiang, Xun-Heng
Zou, Jian-Ping
Mu, Yi
Chen, Peng
Chen, Ying
Tian, Lei
Luo, Sheng-Lian
Author_xml – sequence: 1
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
– sequence: 2
  givenname: Yi
  surname: Mu
  fullname: Mu, Yi
  email: my812852435@163.com
– sequence: 3
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
– sequence: 4
  givenname: Lei
  surname: Tian
  fullname: Tian, Lei
– sequence: 5
  givenname: Xun-Heng
  surname: Jiang
  fullname: Jiang, Xun-Heng
– sequence: 6
  givenname: Jian-Ping
  surname: Zou
  fullname: Zou, Jian-Ping
  email: zjp_112@126.com
– sequence: 7
  givenname: Sheng-Lian
  surname: Luo
  fullname: Luo, Sheng-Lian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34752837$$D View this record in MEDLINE/PubMed
BookMark eNqNUc1u1DAQtlAR3RZeAZkblyx2HMfJCcEWKFKlHqBcLWc8abxK4mAnlfbGk3Dg0XgSkmZBiAs9WZrvxzPfd0ZOet8jIS8423LG81f7LTTY-Tg0GHCbspRvuUgLrh6RDS9UmfC0LE7IhrFMJrkU8pScxbhnbBbL8gk5FZmSaSHUhnz_1Lh6jNTXNE6hNoBJ5afe0p_fflxf0tHTxnf-Fnv0UzwOXU_fXlxQbBHG4JdVHJiWxkMcsaN3ztCbL9SFYKwzo_M9rX2g2DemB7TU4u2MrMD8a3OwwQ-Nax1QE3w3A0DBd8OyRXxKHtemjfjs-J6Tm_fvPu8uk6vrDx93b64SyDgbE1NLMEIpK8EWFaLKJCrgZQ5VJqtSiXkAgJUSAnImZS0sTyXnNs-xKmojzsnL1XcI_uuEcdSdi4Bta-4P12ku8qxgWZH-nyrLnPEik2KmPj9Sp6pDq4fgOhMO-nf8M6FcCRB8jAHrPxTO9FK13uu_qtZL1Xqteta-_kcLbryPdQzGtQ9y2K0OOCd75zDoCA6XklyYq9XWuwe4_AJkQtGb
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_169582
crossref_primary_10_1016_j_watres_2022_119277
crossref_primary_10_1016_j_cej_2023_145507
crossref_primary_10_1007_s12598_023_02513_8
crossref_primary_10_1016_j_cej_2024_148619
crossref_primary_10_1016_j_cej_2022_139484
crossref_primary_10_1080_09593330_2022_2130102
crossref_primary_10_1021_acsestengg_2c00228
crossref_primary_10_1002_anie_202214145
crossref_primary_10_1016_j_isci_2024_109192
crossref_primary_10_1016_j_jhazmat_2023_131534
crossref_primary_10_1039_D4RA03107E
crossref_primary_10_1016_j_horiz_2023_100059
crossref_primary_10_1021_acs_energyfuels_2c03067
crossref_primary_10_1021_acs_langmuir_4c02465
crossref_primary_10_1016_j_matchemphys_2024_129509
crossref_primary_10_1021_acsomega_2c00267
crossref_primary_10_1016_j_jhazmat_2024_135185
crossref_primary_10_3389_fmats_2023_1020649
crossref_primary_10_1002_ange_202214145
crossref_primary_10_1016_j_apcatb_2023_123468
crossref_primary_10_1016_j_clay_2022_106802
crossref_primary_10_1007_s10653_025_02430_y
crossref_primary_10_1016_j_chemosphere_2022_135470
crossref_primary_10_1016_j_chemosphere_2022_137653
crossref_primary_10_1039_D4RA00366G
Cites_doi 10.1039/c3cc45671d
10.1016/j.apcatb.2016.10.026
10.1016/j.chemosphere.2018.07.043
10.1016/j.cej.2015.10.017
10.1016/j.jhazmat.2009.07.113
10.1080/10643380500326564
10.1016/j.watres.2017.03.035
10.1016/j.jwpe.2021.101995
10.1039/C6CC03866B
10.1039/C3EM00679D
10.1021/acs.est.6b02232
10.1016/j.carbon.2017.12.052
10.1016/j.chemosphere.2018.12.003
10.1063/1.555805
10.1016/j.jhazmat.2019.120875
10.1016/j.watres.2015.10.060
10.1080/09593330.2017.1284271
10.1021/acs.est.9b03975
10.1016/j.jhazmat.2016.01.050
10.1016/j.chemosphere.2016.01.036
10.1021/acs.est.5b00445
10.1016/j.watres.2017.10.018
10.1021/acs.est.7b00040
10.1016/j.jhazmat.2019.121789
10.1021/acs.chemrev.5b00361
10.1016/j.jelechem.2021.115560
10.1016/j.ecoenv.2016.11.013
10.1016/j.electacta.2020.135944
10.1016/j.cej.2017.04.129
10.1016/S0043-1354(01)00235-4
10.1016/j.apcatb.2010.02.033
10.1016/j.chemosphere.2007.01.038
10.1007/s11356-019-04900-0
10.1021/acs.est.6b03540
10.1016/j.seppur.2013.03.038
10.1016/j.watres.2004.06.010
10.1021/es8034285
10.1021/acs.est.0c05554
10.1016/j.watres.2020.115517
10.1016/j.chemosphere.2008.08.008
10.1016/j.apsusc.2016.03.045
10.1016/j.chemosphere.2019.124575
10.1021/acs.est.0c02192
10.1016/j.watres.2019.03.086
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Ltd.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2021.132817
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID 34752837
10_1016_j_chemosphere_2021_132817
S0045653521032896
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c410t-af5ca377d5cd8bee745e7c196cb45b973745cceb733c6055f3d12511d66eb8fa3
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Fri Jul 11 03:35:24 EDT 2025
Tue Aug 05 11:38:35 EDT 2025
Wed Feb 19 02:27:07 EST 2025
Tue Jul 01 02:08:09 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Sat Jan 18 16:09:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Surface-bound •OH
Homogeneous •OH
UV irradiation
Boron-doped diamond
Electro-oxidation
Language English
License Copyright © 2021. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-af5ca377d5cd8bee745e7c196cb45b973745cceb733c6055f3d12511d66eb8fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34752837
PQID 2596018453
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636480482
proquest_miscellaneous_2596018453
pubmed_primary_34752837
crossref_primary_10_1016_j_chemosphere_2021_132817
crossref_citationtrail_10_1016_j_chemosphere_2021_132817
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2021_132817
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
2022-Mar
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xing, Xu, Dong, Bai, Zeng, Zhou, Zhang, Yin (bib38) 2018; 4
Zhang, Sun, Hedtke, Deshmukh, Zhou, Weon, Elimelech, Kim (bib42) 2020; 54
Lei, Tang, Wang, Ma, Niu (bib21) 2019; 241
Yang, Wang, Jia (bib39) 2009; 43
Ando, Kohno, Nakamura, Ohno (bib2) 2013; 49
Cotillas, Vidales, Llanos, Sáez, Cañizares, Rodrigo (bib10) 2016; 319
Acharya, Werner, Dolfing, Barycki, Meynet, Mrozik, Komolafe, Puzyn, Davenport (bib1) 2019; 157
Ye, Zhang, Zhang, Zhou (bib41) 2016; 286
Koiki, Orimolade, Zwane, Nkosi, Mabuba, Arotiba (bib19) 2020; 340
He, Miller, Collins, Wang, Waite (bib14) 2020; 54
Chaplin (bib11) 2014; 16
Li, Zhou, Shi, Meng, Li, Liu (bib22) 2019; 26
Cashman, Kirschenbaum, Holowachuk, Boving (bib7) 2019; 380
Zhou, Hu, Zhang, Bi, Jin, Zhou (bib46) 2013; 111
Barazesh, Prasse, Sedlak (bib3) 2016; 50
Li, Li, Li, Li, Sun, Lei, Yang (bib25) 2018; 129
Zhao, Gao, Shen, Li, Li, Wu, Lei (bib43) 2009; 172
Buxton, Greenstock, Helman, Ross (bib6) 1988; 17
Brillas, Baños, Skoumal, Cabot, Garrido, Rodríguez (bib5) 2007; 68
Świetlik, Sikorska (bib36) 2004; 38
Sánchez-Montes, Pérez, Sáez, Rodrigo, Cañizares, Aquino (bib32) 2020; 238
Qiang, Chang, Huang (bib30) 2002; 36
Lamichhane, Krishna, Sarukkalige (bib20) 2016; 148
Song, Yan, Jiang, Ma, Zhang, Zhang, Liu, Yang (bib34) 2020; 128
Sun, Zhang, Gao, Han, Yang (bib35) 2020; 173
Song, Yan, Ma, Jiang, Cai, Zhang, Zhang, Zhang, Yang (bib33) 2017; 116
Montanaro, Lavecchia, Petrucci, Zuorro (bib28) 2017; 323
Jin, Jin, Bjerkelund, Østerhus, Wang, Yang (bib17) 2016; 88
Ennouri, Lavecchia, Zuorro, Elaoud, Petrucci (bib13) 2020; 41
Li, Ma, Dai, Wang, Chen, Waite, Wang (bib24) 2021; 55
Yang, Hoffmann (bib40) 2016; 50
Khandarkhaeva, Batoeva, Aseev, Sizykh, Tsydenova (bib18) 2017; 137
Ding, Bu, Zhao, Kabutey, Wei, Dionysiou (bib12) 2020; 388
Chen, Lei, Li, Yang, Zhang, Lei (bib9) 2018; 210
Li, Shang, Yang, Shen, Ai, Zhang (bib23) 2017; 51
Martínez-Huitle, Rodrigo, Sirés, Scialdone (bib27) 2015; 115
Bensalah, Bedoui (bib4) 2017; 38
Titchou, Zazou, Afanga, Gaayda, Akbour, Hamdani, Oturan (bib37) 2021; 897
Pignatello, Oliveros, MacKay (bib29) 2006; 36
Zhou, Yu, Wei, Long, Xie, Wang (bib45) 2016; 377
Salazar, Ridruejo, Brillas, Yáñez, Mansilla, Sirés (bib31) 2017; 203
Lyu, Zhang, Wang, Nie, Hu (bib26) 2019; 49
Zhao, Shen, Li, Wu, Cao, Li (bib44) 2008; 73
Cerrón-Calle, Aranda-Aguirre, Luyo, Garcia-Segura, Alarcón (bib8) 2019; 219
He, Lin, Wang, Huang, Chen, Li (bib15) 2016; 52
Isarain-Chávez, Arias, Cabot, Centellas, Rodríguez, Garrido, Brillas (bib16) 2010; 3
Qiang (10.1016/j.chemosphere.2021.132817_bib30) 2002; 36
Zhou (10.1016/j.chemosphere.2021.132817_bib45) 2016; 377
He (10.1016/j.chemosphere.2021.132817_bib14) 2020; 54
Ye (10.1016/j.chemosphere.2021.132817_bib41) 2016; 286
Cerrón-Calle (10.1016/j.chemosphere.2021.132817_bib8) 2019; 219
Pignatello (10.1016/j.chemosphere.2021.132817_bib29) 2006; 36
Zhao (10.1016/j.chemosphere.2021.132817_bib44) 2008; 73
Cotillas (10.1016/j.chemosphere.2021.132817_bib10) 2016; 319
Li (10.1016/j.chemosphere.2021.132817_bib25) 2018; 129
Jin (10.1016/j.chemosphere.2021.132817_bib17) 2016; 88
Koiki (10.1016/j.chemosphere.2021.132817_bib19) 2020; 340
Li (10.1016/j.chemosphere.2021.132817_bib23) 2017; 51
Lyu (10.1016/j.chemosphere.2021.132817_bib26) 2019; 49
Bensalah (10.1016/j.chemosphere.2021.132817_bib4) 2017; 38
Yang (10.1016/j.chemosphere.2021.132817_bib40) 2016; 50
Zhang (10.1016/j.chemosphere.2021.132817_bib42) 2020; 54
Song (10.1016/j.chemosphere.2021.132817_bib33) 2017; 116
Brillas (10.1016/j.chemosphere.2021.132817_bib5) 2007; 68
Song (10.1016/j.chemosphere.2021.132817_bib34) 2020; 128
Acharya (10.1016/j.chemosphere.2021.132817_bib1) 2019; 157
Cashman (10.1016/j.chemosphere.2021.132817_bib7) 2019; 380
Yang (10.1016/j.chemosphere.2021.132817_bib39) 2009; 43
Isarain-Chávez (10.1016/j.chemosphere.2021.132817_bib16) 2010; 3
He (10.1016/j.chemosphere.2021.132817_bib15) 2016; 52
Barazesh (10.1016/j.chemosphere.2021.132817_bib3) 2016; 50
Montanaro (10.1016/j.chemosphere.2021.132817_bib28) 2017; 323
Chaplin (10.1016/j.chemosphere.2021.132817_bib11) 2014; 16
Chen (10.1016/j.chemosphere.2021.132817_bib9) 2018; 210
Ennouri (10.1016/j.chemosphere.2021.132817_bib13) 2020; 41
Li (10.1016/j.chemosphere.2021.132817_bib24) 2021; 55
Sánchez-Montes (10.1016/j.chemosphere.2021.132817_bib32) 2020; 238
Li (10.1016/j.chemosphere.2021.132817_bib22) 2019; 26
Ding (10.1016/j.chemosphere.2021.132817_bib12) 2020; 388
Martínez-Huitle (10.1016/j.chemosphere.2021.132817_bib27) 2015; 115
Świetlik (10.1016/j.chemosphere.2021.132817_bib36) 2004; 38
Lei (10.1016/j.chemosphere.2021.132817_bib21) 2019; 241
Zhao (10.1016/j.chemosphere.2021.132817_bib43) 2009; 172
Sun (10.1016/j.chemosphere.2021.132817_bib35) 2020; 173
Khandarkhaeva (10.1016/j.chemosphere.2021.132817_bib18) 2017; 137
Zhou (10.1016/j.chemosphere.2021.132817_bib46) 2013; 111
Buxton (10.1016/j.chemosphere.2021.132817_bib6) 1988; 17
Salazar (10.1016/j.chemosphere.2021.132817_bib31) 2017; 203
Titchou (10.1016/j.chemosphere.2021.132817_bib37) 2021; 897
Xing (10.1016/j.chemosphere.2021.132817_bib38) 2018; 4
Lamichhane (10.1016/j.chemosphere.2021.132817_bib20) 2016; 148
Ando (10.1016/j.chemosphere.2021.132817_bib2) 2013; 49
References_xml – volume: 88
  start-page: 643
  year: 2016
  end-page: 652
  ident: bib17
  article-title: A study on the reactivity characteristics of dissolved effluent organic matter from municipal wastewater treatment plant during ozonation
  publication-title: Water Res.
– volume: 129
  start-page: 543
  year: 2018
  end-page: 551
  ident: bib25
  article-title: Preparation of a porous boron-doped diamond/Ta electrode for the electrocatalytic degradation of organic pollutants
  publication-title: Carbon
– volume: 54
  start-page: 1167
  year: 2020
  end-page: 1176
  ident: bib14
  article-title: Production of a surface-localized oxidant during oxygenation of mackinawite (FeS)
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 10143
  year: 2016
  end-page: 10152
  ident: bib3
  article-title: Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions
  publication-title: Environ. Sci. Technol.
– volume: 148
  start-page: 336
  year: 2016
  end-page: 353
  ident: bib20
  article-title: Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review
  publication-title: Chemosphere
– volume: 377
  start-page: 406
  year: 2016
  end-page: 415
  ident: bib45
  article-title: Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode
  publication-title: Appl. Surf. Sci.
– volume: 51
  start-page: 5685
  year: 2017
  end-page: 5694
  ident: bib23
  article-title: Oxygen vacancy associated surface fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity
  publication-title: Environ. Sci. Technol.
– volume: 219
  start-page: 296
  year: 2019
  end-page: 304
  ident: bib8
  article-title: Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles
  publication-title: Chemosphere
– volume: 128
  start-page: 393
  year: 2020
  end-page: 401
  ident: bib34
  article-title: Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation?
  publication-title: Water Res.
– volume: 286
  start-page: 508
  year: 2016
  end-page: 516
  ident: bib41
  article-title: Treatment of landfill leachate using electrochemically assisted UV/chlorine process: effect of operating conditions, molecular weight distribution and fluorescence EEM-PARAFAC analysis
  publication-title: Chem. Eng. J.
– volume: 210
  start-page: 516
  year: 2018
  end-page: 523
  ident: bib9
  article-title: Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants
  publication-title: Chemosphere
– volume: 172
  start-page: 1076
  year: 2009
  end-page: 1081
  ident: bib43
  article-title: Ultrasound enhanced electrochemical oxidation of phenol and phthalic acid on boron-doped diamond electrode
  publication-title: J. Hazard Mater.
– volume: 111
  start-page: 131
  year: 2013
  end-page: 136
  ident: bib46
  article-title: Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode
  publication-title: Separ. Purif. Technol.
– volume: 43
  start-page: 3796
  year: 2009
  end-page: 3802
  ident: bib39
  article-title: Improvement of Electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 85
  year: 2002
  end-page: 94
  ident: bib30
  article-title: Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions
  publication-title: Water Res.
– volume: 388
  start-page: 121789
  year: 2020
  ident: bib12
  article-title: Electrochemical activation of persulfate on BDD and DSA anodes: electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A
  publication-title: J. Hazard Mater.
– volume: 238
  start-page: 124575
  year: 2020
  ident: bib32
  article-title: Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light
  publication-title: Chemosphere
– volume: 173
  start-page: 115517
  year: 2020
  ident: bib35
  article-title: Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: performance, mechanism, and full-scale application
  publication-title: Water Res.
– volume: 50
  start-page: 11888
  year: 2016
  end-page: 11894
  ident: bib40
  article-title: Synthesis and stabilization of blue-black TiO
  publication-title: Environ. Sci. Technol.
– volume: 157
  start-page: 181
  year: 2019
  end-page: 190
  ident: bib1
  article-title: A quantitative structure-biodegradation relationship (QSBR) approach to predict biodegradation rates of aromatic chemicals
  publication-title: Water Res.
– volume: 52
  start-page: 8026
  year: 2016
  end-page: 8029
  ident: bib15
  article-title: A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation
  publication-title: Chem. Commun.
– volume: 323
  start-page: 512
  year: 2017
  end-page: 519
  ident: bib28
  article-title: UV-assisted electrochemical degradation of coumarin on boron-doped diamond electrodes
  publication-title: Chem. Eng. J.
– volume: 17
  start-page: 513
  year: 1988
  ident: bib6
  article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O
  publication-title: J. Phys. Chem. Ref. Data
– volume: 16
  start-page: 1182
  year: 2014
  end-page: 1203
  ident: bib11
  article-title: Critical review of electrochemical advanced oxidation processes for water treatment applications
  publication-title: Environ. Sci. Process. Impacts
– volume: 54
  start-page: 10868
  year: 2020
  end-page: 10875
  ident: bib42
  article-title: Mechanism of heterogeneous fenton reaction kinetics enhancement under nanoscale spatial confinement
  publication-title: Environ. Sci. Technol.
– volume: 380
  start-page: 120875
  year: 2019
  ident: bib7
  article-title: Identification of hydroxyl and sulfate free radicals involved in the reaction of 1,4-dioxane with peroxone activated persulfate oxidant
  publication-title: J. Hazard Mater.
– volume: 115
  start-page: 13362
  year: 2015
  end-page: 13407
  ident: bib27
  article-title: Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review
  publication-title: Chem. Rev.
– volume: 38
  start-page: 2979
  year: 2017
  end-page: 2987
  ident: bib4
  article-title: Enhancing the performance of electro-peroxone by incorporation of UV irradiation and BDD anodes
  publication-title: Environ. Technol.
– volume: 3
  start-page: 361
  year: 2010
  end-page: 369
  ident: bib16
  article-title: Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H
  publication-title: Appl. Catal. B Environ.
– volume: 73
  start-page: 1407
  year: 2008
  end-page: 1413
  ident: bib44
  article-title: The mechanism and kinetics of ultrasound-enhanced electrochemical oxidation of phenol on boron-doped diamond and Pt electrodes
  publication-title: Chemosphere
– volume: 203
  start-page: 189
  year: 2017
  end-page: 198
  ident: bib31
  article-title: Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods
  publication-title: Appl. Catal. B Environ.
– volume: 55
  start-page: 655
  year: 2021
  end-page: 664
  ident: bib24
  article-title: Self-Enhanced decomplexation of Cu-organic complexes and Cu recovery from wastewaters using an electrochemical membrane filtration system
  publication-title: Environ. Sci. Technol.
– volume: 116
  start-page: 182
  year: 2017
  end-page: 193
  ident: bib33
  article-title: Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors
  publication-title: Water Res.
– volume: 49
  start-page: 10248
  year: 2013
  end-page: 10250
  ident: bib2
  article-title: Introduction of hydrophilic groups onto the ortho-position of benzoate anions induced phase separation of the corresponding ionic liquids with water
  publication-title: Chem. Commun.
– volume: 241
  start-page: 125058
  year: 2019
  ident: bib21
  article-title: Insights into the degradation and detoxication mechanisms of aqueous capecitabine in electrochemical oxidation process
  publication-title: Chemosphere
– volume: 38
  start-page: 3791
  year: 2004
  end-page: 3799
  ident: bib36
  article-title: Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone
  publication-title: Water Res.
– volume: 68
  start-page: 199
  year: 2007
  end-page: 209
  ident: bib5
  article-title: Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes
  publication-title: Chemosphere
– volume: 897
  start-page: 115560
  year: 2021
  ident: bib37
  article-title: Electro-Fenton process for the removal of Direct Red 23 using BDD anode in chloride and sulfate media
  publication-title: J. Electroanal. Chem.
– volume: 319
  start-page: 93
  year: 2016
  end-page: 101
  ident: bib10
  article-title: Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater
  publication-title: J. Hazard Mater.
– volume: 49
  start-page: 8639
  year: 2019
  end-page: 8647
  ident: bib26
  article-title: Enhanced Fenton catalytic efficiency of γ-Cu–Al
  publication-title: Environ. Sci. Technol.
– volume: 340
  start-page: 135944
  year: 2020
  ident: bib19
  article-title: Cu
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 1359
  year: 2018
  end-page: 1372
  ident: bib38
  article-title: Metal sulfides as excellent Co-catalysts for H
  publication-title: Inside Chem.
– volume: 36
  start-page: 1
  year: 2006
  end-page: 84
  ident: bib29
  article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 41
  start-page: 101995
  year: 2020
  ident: bib13
  article-title: Degradation of chloramphenicol in water by oxidation on a boron-doped diamond electrode under UV irradiation
  publication-title: J. Water Process Eng.
– volume: 137
  start-page: 35
  year: 2017
  end-page: 41
  ident: bib18
  article-title: Oxidation of atrazine in aqueous media by solar- enhanced Fenton-like process involving persulfate and ferrous ion
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 26
  start-page: 17740
  year: 2019
  end-page: 17750
  ident: bib22
  article-title: Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: mechanisms, kinetics and pathways
  publication-title: Environ. Sci. Pollut. Res.
– volume: 49
  start-page: 10248
  year: 2013
  ident: 10.1016/j.chemosphere.2021.132817_bib2
  article-title: Introduction of hydrophilic groups onto the ortho-position of benzoate anions induced phase separation of the corresponding ionic liquids with water
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45671d
– volume: 203
  start-page: 189
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132817_bib31
  article-title: Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.10.026
– volume: 210
  start-page: 516
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132817_bib9
  article-title: Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.07.043
– volume: 286
  start-page: 508
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132817_bib41
  article-title: Treatment of landfill leachate using electrochemically assisted UV/chlorine process: effect of operating conditions, molecular weight distribution and fluorescence EEM-PARAFAC analysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.10.017
– volume: 172
  start-page: 1076
  year: 2009
  ident: 10.1016/j.chemosphere.2021.132817_bib43
  article-title: Ultrasound enhanced electrochemical oxidation of phenol and phthalic acid on boron-doped diamond electrode
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.07.113
– volume: 36
  start-page: 1
  year: 2006
  ident: 10.1016/j.chemosphere.2021.132817_bib29
  article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380500326564
– volume: 116
  start-page: 182
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132817_bib33
  article-title: Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.03.035
– volume: 41
  start-page: 101995
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132817_bib13
  article-title: Degradation of chloramphenicol in water by oxidation on a boron-doped diamond electrode under UV irradiation
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.101995
– volume: 52
  start-page: 8026
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132817_bib15
  article-title: A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC03866B
– volume: 16
  start-page: 1182
  year: 2014
  ident: 10.1016/j.chemosphere.2021.132817_bib11
  article-title: Critical review of electrochemical advanced oxidation processes for water treatment applications
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C3EM00679D
– volume: 50
  start-page: 10143
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132817_bib3
  article-title: Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02232
– volume: 129
  start-page: 543
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132817_bib25
  article-title: Preparation of a porous boron-doped diamond/Ta electrode for the electrocatalytic degradation of organic pollutants
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.12.052
– volume: 219
  start-page: 296
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132817_bib8
  article-title: Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.12.003
– volume: 17
  start-page: 513
  year: 1988
  ident: 10.1016/j.chemosphere.2021.132817_bib6
  article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O-) in aqueous solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555805
– volume: 380
  start-page: 120875
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132817_bib7
  article-title: Identification of hydroxyl and sulfate free radicals involved in the reaction of 1,4-dioxane with peroxone activated persulfate oxidant
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.120875
– volume: 88
  start-page: 643
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132817_bib17
  article-title: A study on the reactivity characteristics of dissolved effluent organic matter from municipal wastewater treatment plant during ozonation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.10.060
– volume: 38
  start-page: 2979
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132817_bib4
  article-title: Enhancing the performance of electro-peroxone by incorporation of UV irradiation and BDD anodes
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2017.1284271
– volume: 54
  start-page: 1167
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132817_bib14
  article-title: Production of a surface-localized oxidant during oxygenation of mackinawite (FeS)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03975
– volume: 319
  start-page: 93
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132817_bib10
  article-title: Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.01.050
– volume: 148
  start-page: 336
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132817_bib20
  article-title: Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.036
– volume: 49
  start-page: 8639
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132817_bib26
  article-title: Enhanced Fenton catalytic efficiency of γ-Cu–Al2O3 by σ-Cu2+–ligand complexes from aromatic pollutant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00445
– volume: 128
  start-page: 393
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132817_bib34
  article-title: Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation?
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.10.018
– volume: 51
  start-page: 5685
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132817_bib23
  article-title: Oxygen vacancy associated surface fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00040
– volume: 388
  start-page: 121789
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132817_bib12
  article-title: Electrochemical activation of persulfate on BDD and DSA anodes: electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.121789
– volume: 115
  start-page: 13362
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132817_bib27
  article-title: Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00361
– volume: 897
  start-page: 115560
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132817_bib37
  article-title: Electro-Fenton process for the removal of Direct Red 23 using BDD anode in chloride and sulfate media
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2021.115560
– volume: 137
  start-page: 35
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132817_bib18
  article-title: Oxidation of atrazine in aqueous media by solar- enhanced Fenton-like process involving persulfate and ferrous ion
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2016.11.013
– volume: 340
  start-page: 135944
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132817_bib19
  article-title: Cu2O on anodised TiO2 nanotube arrays: a heterojunction photoanode for visible light assisted electrochemical degradation of pharmaceuticals in water
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.135944
– volume: 241
  start-page: 125058
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132817_bib21
  article-title: Insights into the degradation and detoxication mechanisms of aqueous capecitabine in electrochemical oxidation process
  publication-title: Chemosphere
– volume: 323
  start-page: 512
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132817_bib28
  article-title: UV-assisted electrochemical degradation of coumarin on boron-doped diamond electrodes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.04.129
– volume: 36
  start-page: 85
  year: 2002
  ident: 10.1016/j.chemosphere.2021.132817_bib30
  article-title: Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00235-4
– volume: 3
  start-page: 361
  year: 2010
  ident: 10.1016/j.chemosphere.2021.132817_bib16
  article-title: Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2010.02.033
– volume: 68
  start-page: 199
  year: 2007
  ident: 10.1016/j.chemosphere.2021.132817_bib5
  article-title: Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.01.038
– volume: 26
  start-page: 17740
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132817_bib22
  article-title: Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: mechanisms, kinetics and pathways
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-04900-0
– volume: 50
  start-page: 11888
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132817_bib40
  article-title: Synthesis and stabilization of blue-black TiO2 Nanotube arrays for electrochemical oxidant generation and wastewater treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03540
– volume: 111
  start-page: 131
  year: 2013
  ident: 10.1016/j.chemosphere.2021.132817_bib46
  article-title: Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2013.03.038
– volume: 38
  start-page: 3791
  year: 2004
  ident: 10.1016/j.chemosphere.2021.132817_bib36
  article-title: Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.06.010
– volume: 43
  start-page: 3796
  year: 2009
  ident: 10.1016/j.chemosphere.2021.132817_bib39
  article-title: Improvement of Electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8034285
– volume: 55
  start-page: 655
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132817_bib24
  article-title: Self-Enhanced decomplexation of Cu-organic complexes and Cu recovery from wastewaters using an electrochemical membrane filtration system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c05554
– volume: 173
  start-page: 115517
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132817_bib35
  article-title: Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: performance, mechanism, and full-scale application
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115517
– volume: 4
  start-page: 1359
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132817_bib38
  article-title: Metal sulfides as excellent Co-catalysts for H2O2 decomposition in advanced oxidation processes
  publication-title: Inside Chem.
– volume: 73
  start-page: 1407
  year: 2008
  ident: 10.1016/j.chemosphere.2021.132817_bib44
  article-title: The mechanism and kinetics of ultrasound-enhanced electrochemical oxidation of phenol on boron-doped diamond and Pt electrodes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.08.008
– volume: 377
  start-page: 406
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132817_bib45
  article-title: Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.03.045
– volume: 238
  start-page: 124575
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132817_bib32
  article-title: Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124575
– volume: 54
  start-page: 10868
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132817_bib42
  article-title: Mechanism of heterogeneous fenton reaction kinetics enhancement under nanoscale spatial confinement
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c02192
– volume: 157
  start-page: 181
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132817_bib1
  article-title: A quantitative structure-biodegradation relationship (QSBR) approach to predict biodegradation rates of aromatic chemicals
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.086
SSID ssj0001659
Score 2.5323489
Snippet Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 132817
SubjectTerms anodes
benzoic acid
Boron
Boron-doped diamond
Diamond
Electro-oxidation
electrochemistry
Electrodes
Electrolysis
Homogeneous •OH
Hydrogen Peroxide
hydrophilicity
hydroxyl radicals
landfill leachates
mass transfer
oxidation
Oxidation-Reduction
Surface-bound •OH
ultraviolet radiation
Ultraviolet Rays
UV irradiation
voltammetry
Water Pollutants, Chemical
Title Shifts of surface-bound •OH to homogeneous •OH in BDD electrochemical system via UV irradiation for enhanced degradation of hydrophilic aromatic compounds
URI https://dx.doi.org/10.1016/j.chemosphere.2021.132817
https://www.ncbi.nlm.nih.gov/pubmed/34752837
https://www.proquest.com/docview/2596018453
https://www.proquest.com/docview/2636480482
Volume 291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIn4uCAqU5adyJa5u17FjJxKXsm21gCgHWNSbZTuONojGqySL1AviSTjwaDwJHidpQQJUiasVJxN_4_FMMvMNQs9EwlMnaEEcpYJwYwzJtbOEMuqSxLCEpVDg_OZEzBf81Wl6uoFmYy0MpFUOtr-36dFaDyP7w2rur6oKanzBGwkOROSEy4F2m3MJWr735TLNg4q0d4F5SuDqG2j3MscrrMuZb6F-HxgzE7oXYrMs9i774xn1Nx80nkXHd9DtwYnEB72cd9GGq7fQzdnYu20LXT-KZNTn99C3d8uq7FrsS9yum1JbRwx0UsI_vn5_O8edx0t_5oMWOb9uh8Gqxi8OD_HQIccOlAK4J33GnyuNFx9w1TRAawC44uD4YlcvYzIBLoB-ou_UBE9dnheNX8FnG4t14yNDLIZEdpCivY8Wx0fvZ3My9GQgltNpR3SZWs2kLIBUwDgnA9TShm1sDU9NLlkYsNYZyZgNkVJasgJcKFoI4UxWavYAbda-dg8RLo2YMivDsueaS5eFGzDLptwKau00dxOUjSgoOxCWQ9-MT2rMTPuofgFQAYCqB3CCkoupq5614yqTno9Qq99UUIXT5SrTd0f1UAFt-O-iI3YqRJgh7M3C6_3jGsEEz4I5TSZou9etC8kZl0DBIx_9n4CP0a0EajdiAt0TtNk1a_c0eFSd2YlbZgddO3j5en7yEz23JaI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VIigXBOVv-XUlrmnXsWMnUi-wbbVAWw50UW9W7DjaIJqskixSL4gn6aGP1ifB4yQtSIAqcbXiZOJvPJ5JZr4BeC1CHllBs8BSKgKutQ6S1JqAMmrDULOQRVjgfHAopjP-_jg6XoHJUAuDaZW97e9surfW_chWv5pbi6LAGl_0RpwD4TnhEnEDbnK3fbGNweb3qzwPKqLOB-ZRgJffho2rJC-3MCdVgwX8SJkZ0k0XnMW-edkfD6m_OaH-MNq7B3d7L5K86QS9Dyu2XIe1ydC8bR1u7Xo26tMHcPZpXuRtQ6qcNMs6T40NNLZSIhc_zj9OSVuReXVSOTWy1bLpB4uSvN3ZIX2LHNNzCpCO9Zl8K1Iy-0yKukZeAwSWOM-X2HLuswlIhvwTXasmfOr8NKurBX63MSStK08RSzCTHaVoHsJsb_doMg36pgyB4XTcBmkemZRJmSGrgLZWOqylcfvYaB7pRDI3YIzVkjHjQqUoZxn6UDQTwuo4T9kjWC2r0j4BkmsxZka6ZU9SLm3sbsAMG3MjqDHjxI4gHlBQpmcsx8YZX9WQmvZF_QKgQgBVB-AIwsupi4624zqTtgeo1W86qNzxcp3pG4N6KIc2_nhJPXbKhZgu7o3d6_3jGsEEj509DUfwuNOtS8kZl8jBI5_-n4CvYG16dLCv9t8dfngGd0Is5PDZdM9hta2X9oVzr1r90m-fn7GJJzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shifts+of+surface-bound+%E2%80%A2OH+to+homogeneous+%E2%80%A2OH+in+BDD+electrochemical+system+via+UV+irradiation+for+enhanced+degradation+of+hydrophilic+aromatic+compounds&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Chen%2C+Peng&rft.au=Mu%2C+Yi&rft.au=Chen%2C+Ying&rft.au=Tian%2C+Lei&rft.date=2022-03-01&rft.issn=0045-6535&rft.volume=291&rft.spage=132817&rft_id=info:doi/10.1016%2Fj.chemosphere.2021.132817&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2021_132817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon