Shifts of surface-bound •OH to homogeneous •OH in BDD electrochemical system via UV irradiation for enhanced degradation of hydrophilic aromatic compounds
Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In th...
Saved in:
Published in | Chemosphere (Oxford) Vol. 291; no. Pt 2; p. 132817 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8–10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants.
[Display omitted]
••OH(surface) is the primary reactive species in BDD electrolysis process.•Hydrophobic organics are easier to be degraded with BDD electrolysis than hydrophilic ones.•UV shifts .•OH(surface) to •OH(free) in UV-assisted BDD electrolysis.•Degradation of hydrophilic organics is dramatically enhanced in UV-assisted BDD electrolysis.•Bio-pretreated landfill leachate is amenable to UV-assisted BDD electrolysis. |
---|---|
AbstractList | Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8–10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants.
[Display omitted]
••OH(surface) is the primary reactive species in BDD electrolysis process.•Hydrophobic organics are easier to be degraded with BDD electrolysis than hydrophilic ones.•UV shifts .•OH(surface) to •OH(free) in UV-assisted BDD electrolysis.•Degradation of hydrophilic organics is dramatically enhanced in UV-assisted BDD electrolysis.•Bio-pretreated landfill leachate is amenable to UV-assisted BDD electrolysis. Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8-10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH ) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH ) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H O formed on the BDD anode surface, thus retarding O evolution and facilitating •OH generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants. Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8-10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants.Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8-10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants. Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8–10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH₍ₛᵤᵣfₐcₑ₎) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH₍fᵣₑₑ₎) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H₂O₂ formed on the BDD anode surface, thus retarding O₂ evolution and facilitating •OH₍fᵣₑₑ₎ generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants. |
ArticleNumber | 132817 |
Author | Jiang, Xun-Heng Zou, Jian-Ping Mu, Yi Chen, Peng Chen, Ying Tian, Lei Luo, Sheng-Lian |
Author_xml | – sequence: 1 givenname: Peng surname: Chen fullname: Chen, Peng – sequence: 2 givenname: Yi surname: Mu fullname: Mu, Yi email: my812852435@163.com – sequence: 3 givenname: Ying surname: Chen fullname: Chen, Ying – sequence: 4 givenname: Lei surname: Tian fullname: Tian, Lei – sequence: 5 givenname: Xun-Heng surname: Jiang fullname: Jiang, Xun-Heng – sequence: 6 givenname: Jian-Ping surname: Zou fullname: Zou, Jian-Ping email: zjp_112@126.com – sequence: 7 givenname: Sheng-Lian surname: Luo fullname: Luo, Sheng-Lian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34752837$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUc1u1DAQtlAR3RZeAZkblyx2HMfJCcEWKFKlHqBcLWc8abxK4mAnlfbGk3Dg0XgSkmZBiAs9WZrvxzPfd0ZOet8jIS8423LG81f7LTTY-Tg0GHCbspRvuUgLrh6RDS9UmfC0LE7IhrFMJrkU8pScxbhnbBbL8gk5FZmSaSHUhnz_1Lh6jNTXNE6hNoBJ5afe0p_fflxf0tHTxnf-Fnv0UzwOXU_fXlxQbBHG4JdVHJiWxkMcsaN3ztCbL9SFYKwzo_M9rX2g2DemB7TU4u2MrMD8a3OwwQ-Nax1QE3w3A0DBd8OyRXxKHtemjfjs-J6Tm_fvPu8uk6vrDx93b64SyDgbE1NLMEIpK8EWFaLKJCrgZQ5VJqtSiXkAgJUSAnImZS0sTyXnNs-xKmojzsnL1XcI_uuEcdSdi4Bta-4P12ku8qxgWZH-nyrLnPEik2KmPj9Sp6pDq4fgOhMO-nf8M6FcCRB8jAHrPxTO9FK13uu_qtZL1Xqteta-_kcLbryPdQzGtQ9y2K0OOCd75zDoCA6XklyYq9XWuwe4_AJkQtGb |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_169582 crossref_primary_10_1016_j_watres_2022_119277 crossref_primary_10_1016_j_cej_2023_145507 crossref_primary_10_1007_s12598_023_02513_8 crossref_primary_10_1016_j_cej_2024_148619 crossref_primary_10_1016_j_cej_2022_139484 crossref_primary_10_1080_09593330_2022_2130102 crossref_primary_10_1021_acsestengg_2c00228 crossref_primary_10_1002_anie_202214145 crossref_primary_10_1016_j_isci_2024_109192 crossref_primary_10_1016_j_jhazmat_2023_131534 crossref_primary_10_1039_D4RA03107E crossref_primary_10_1016_j_horiz_2023_100059 crossref_primary_10_1021_acs_energyfuels_2c03067 crossref_primary_10_1021_acs_langmuir_4c02465 crossref_primary_10_1016_j_matchemphys_2024_129509 crossref_primary_10_1021_acsomega_2c00267 crossref_primary_10_1016_j_jhazmat_2024_135185 crossref_primary_10_3389_fmats_2023_1020649 crossref_primary_10_1002_ange_202214145 crossref_primary_10_1016_j_apcatb_2023_123468 crossref_primary_10_1016_j_clay_2022_106802 crossref_primary_10_1007_s10653_025_02430_y crossref_primary_10_1016_j_chemosphere_2022_135470 crossref_primary_10_1016_j_chemosphere_2022_137653 crossref_primary_10_1039_D4RA00366G |
Cites_doi | 10.1039/c3cc45671d 10.1016/j.apcatb.2016.10.026 10.1016/j.chemosphere.2018.07.043 10.1016/j.cej.2015.10.017 10.1016/j.jhazmat.2009.07.113 10.1080/10643380500326564 10.1016/j.watres.2017.03.035 10.1016/j.jwpe.2021.101995 10.1039/C6CC03866B 10.1039/C3EM00679D 10.1021/acs.est.6b02232 10.1016/j.carbon.2017.12.052 10.1016/j.chemosphere.2018.12.003 10.1063/1.555805 10.1016/j.jhazmat.2019.120875 10.1016/j.watres.2015.10.060 10.1080/09593330.2017.1284271 10.1021/acs.est.9b03975 10.1016/j.jhazmat.2016.01.050 10.1016/j.chemosphere.2016.01.036 10.1021/acs.est.5b00445 10.1016/j.watres.2017.10.018 10.1021/acs.est.7b00040 10.1016/j.jhazmat.2019.121789 10.1021/acs.chemrev.5b00361 10.1016/j.jelechem.2021.115560 10.1016/j.ecoenv.2016.11.013 10.1016/j.electacta.2020.135944 10.1016/j.cej.2017.04.129 10.1016/S0043-1354(01)00235-4 10.1016/j.apcatb.2010.02.033 10.1016/j.chemosphere.2007.01.038 10.1007/s11356-019-04900-0 10.1021/acs.est.6b03540 10.1016/j.seppur.2013.03.038 10.1016/j.watres.2004.06.010 10.1021/es8034285 10.1021/acs.est.0c05554 10.1016/j.watres.2020.115517 10.1016/j.chemosphere.2008.08.008 10.1016/j.apsusc.2016.03.045 10.1016/j.chemosphere.2019.124575 10.1021/acs.est.0c02192 10.1016/j.watres.2019.03.086 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2021.132817 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | 34752837 10_1016_j_chemosphere_2021_132817 S0045653521032896 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEFWE AEGFY AEIPS AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-af5ca377d5cd8bee745e7c196cb45b973745cceb733c6055f3d12511d66eb8fa3 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Jul 11 03:35:24 EDT 2025 Tue Aug 05 11:38:35 EDT 2025 Wed Feb 19 02:27:07 EST 2025 Tue Jul 01 02:08:09 EDT 2025 Thu Apr 24 22:58:29 EDT 2025 Sat Jan 18 16:09:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | Surface-bound •OH Homogeneous •OH UV irradiation Boron-doped diamond Electro-oxidation |
Language | English |
License | Copyright © 2021. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-af5ca377d5cd8bee745e7c196cb45b973745cceb733c6055f3d12511d66eb8fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34752837 |
PQID | 2596018453 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636480482 proquest_miscellaneous_2596018453 pubmed_primary_34752837 crossref_primary_10_1016_j_chemosphere_2021_132817 crossref_citationtrail_10_1016_j_chemosphere_2021_132817 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2021_132817 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 2022-Mar 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xing, Xu, Dong, Bai, Zeng, Zhou, Zhang, Yin (bib38) 2018; 4 Zhang, Sun, Hedtke, Deshmukh, Zhou, Weon, Elimelech, Kim (bib42) 2020; 54 Lei, Tang, Wang, Ma, Niu (bib21) 2019; 241 Yang, Wang, Jia (bib39) 2009; 43 Ando, Kohno, Nakamura, Ohno (bib2) 2013; 49 Cotillas, Vidales, Llanos, Sáez, Cañizares, Rodrigo (bib10) 2016; 319 Acharya, Werner, Dolfing, Barycki, Meynet, Mrozik, Komolafe, Puzyn, Davenport (bib1) 2019; 157 Ye, Zhang, Zhang, Zhou (bib41) 2016; 286 Koiki, Orimolade, Zwane, Nkosi, Mabuba, Arotiba (bib19) 2020; 340 He, Miller, Collins, Wang, Waite (bib14) 2020; 54 Chaplin (bib11) 2014; 16 Li, Zhou, Shi, Meng, Li, Liu (bib22) 2019; 26 Cashman, Kirschenbaum, Holowachuk, Boving (bib7) 2019; 380 Zhou, Hu, Zhang, Bi, Jin, Zhou (bib46) 2013; 111 Barazesh, Prasse, Sedlak (bib3) 2016; 50 Li, Li, Li, Li, Sun, Lei, Yang (bib25) 2018; 129 Zhao, Gao, Shen, Li, Li, Wu, Lei (bib43) 2009; 172 Buxton, Greenstock, Helman, Ross (bib6) 1988; 17 Brillas, Baños, Skoumal, Cabot, Garrido, Rodríguez (bib5) 2007; 68 Świetlik, Sikorska (bib36) 2004; 38 Sánchez-Montes, Pérez, Sáez, Rodrigo, Cañizares, Aquino (bib32) 2020; 238 Qiang, Chang, Huang (bib30) 2002; 36 Lamichhane, Krishna, Sarukkalige (bib20) 2016; 148 Song, Yan, Jiang, Ma, Zhang, Zhang, Liu, Yang (bib34) 2020; 128 Sun, Zhang, Gao, Han, Yang (bib35) 2020; 173 Song, Yan, Ma, Jiang, Cai, Zhang, Zhang, Zhang, Yang (bib33) 2017; 116 Montanaro, Lavecchia, Petrucci, Zuorro (bib28) 2017; 323 Jin, Jin, Bjerkelund, Østerhus, Wang, Yang (bib17) 2016; 88 Ennouri, Lavecchia, Zuorro, Elaoud, Petrucci (bib13) 2020; 41 Li, Ma, Dai, Wang, Chen, Waite, Wang (bib24) 2021; 55 Yang, Hoffmann (bib40) 2016; 50 Khandarkhaeva, Batoeva, Aseev, Sizykh, Tsydenova (bib18) 2017; 137 Ding, Bu, Zhao, Kabutey, Wei, Dionysiou (bib12) 2020; 388 Chen, Lei, Li, Yang, Zhang, Lei (bib9) 2018; 210 Li, Shang, Yang, Shen, Ai, Zhang (bib23) 2017; 51 Martínez-Huitle, Rodrigo, Sirés, Scialdone (bib27) 2015; 115 Bensalah, Bedoui (bib4) 2017; 38 Titchou, Zazou, Afanga, Gaayda, Akbour, Hamdani, Oturan (bib37) 2021; 897 Pignatello, Oliveros, MacKay (bib29) 2006; 36 Zhou, Yu, Wei, Long, Xie, Wang (bib45) 2016; 377 Salazar, Ridruejo, Brillas, Yáñez, Mansilla, Sirés (bib31) 2017; 203 Lyu, Zhang, Wang, Nie, Hu (bib26) 2019; 49 Zhao, Shen, Li, Wu, Cao, Li (bib44) 2008; 73 Cerrón-Calle, Aranda-Aguirre, Luyo, Garcia-Segura, Alarcón (bib8) 2019; 219 He, Lin, Wang, Huang, Chen, Li (bib15) 2016; 52 Isarain-Chávez, Arias, Cabot, Centellas, Rodríguez, Garrido, Brillas (bib16) 2010; 3 Qiang (10.1016/j.chemosphere.2021.132817_bib30) 2002; 36 Zhou (10.1016/j.chemosphere.2021.132817_bib45) 2016; 377 He (10.1016/j.chemosphere.2021.132817_bib14) 2020; 54 Ye (10.1016/j.chemosphere.2021.132817_bib41) 2016; 286 Cerrón-Calle (10.1016/j.chemosphere.2021.132817_bib8) 2019; 219 Pignatello (10.1016/j.chemosphere.2021.132817_bib29) 2006; 36 Zhao (10.1016/j.chemosphere.2021.132817_bib44) 2008; 73 Cotillas (10.1016/j.chemosphere.2021.132817_bib10) 2016; 319 Li (10.1016/j.chemosphere.2021.132817_bib25) 2018; 129 Jin (10.1016/j.chemosphere.2021.132817_bib17) 2016; 88 Koiki (10.1016/j.chemosphere.2021.132817_bib19) 2020; 340 Li (10.1016/j.chemosphere.2021.132817_bib23) 2017; 51 Lyu (10.1016/j.chemosphere.2021.132817_bib26) 2019; 49 Bensalah (10.1016/j.chemosphere.2021.132817_bib4) 2017; 38 Yang (10.1016/j.chemosphere.2021.132817_bib40) 2016; 50 Zhang (10.1016/j.chemosphere.2021.132817_bib42) 2020; 54 Song (10.1016/j.chemosphere.2021.132817_bib33) 2017; 116 Brillas (10.1016/j.chemosphere.2021.132817_bib5) 2007; 68 Song (10.1016/j.chemosphere.2021.132817_bib34) 2020; 128 Acharya (10.1016/j.chemosphere.2021.132817_bib1) 2019; 157 Cashman (10.1016/j.chemosphere.2021.132817_bib7) 2019; 380 Yang (10.1016/j.chemosphere.2021.132817_bib39) 2009; 43 Isarain-Chávez (10.1016/j.chemosphere.2021.132817_bib16) 2010; 3 He (10.1016/j.chemosphere.2021.132817_bib15) 2016; 52 Barazesh (10.1016/j.chemosphere.2021.132817_bib3) 2016; 50 Montanaro (10.1016/j.chemosphere.2021.132817_bib28) 2017; 323 Chaplin (10.1016/j.chemosphere.2021.132817_bib11) 2014; 16 Chen (10.1016/j.chemosphere.2021.132817_bib9) 2018; 210 Ennouri (10.1016/j.chemosphere.2021.132817_bib13) 2020; 41 Li (10.1016/j.chemosphere.2021.132817_bib24) 2021; 55 Sánchez-Montes (10.1016/j.chemosphere.2021.132817_bib32) 2020; 238 Li (10.1016/j.chemosphere.2021.132817_bib22) 2019; 26 Ding (10.1016/j.chemosphere.2021.132817_bib12) 2020; 388 Martínez-Huitle (10.1016/j.chemosphere.2021.132817_bib27) 2015; 115 Świetlik (10.1016/j.chemosphere.2021.132817_bib36) 2004; 38 Lei (10.1016/j.chemosphere.2021.132817_bib21) 2019; 241 Zhao (10.1016/j.chemosphere.2021.132817_bib43) 2009; 172 Sun (10.1016/j.chemosphere.2021.132817_bib35) 2020; 173 Khandarkhaeva (10.1016/j.chemosphere.2021.132817_bib18) 2017; 137 Zhou (10.1016/j.chemosphere.2021.132817_bib46) 2013; 111 Buxton (10.1016/j.chemosphere.2021.132817_bib6) 1988; 17 Salazar (10.1016/j.chemosphere.2021.132817_bib31) 2017; 203 Titchou (10.1016/j.chemosphere.2021.132817_bib37) 2021; 897 Xing (10.1016/j.chemosphere.2021.132817_bib38) 2018; 4 Lamichhane (10.1016/j.chemosphere.2021.132817_bib20) 2016; 148 Ando (10.1016/j.chemosphere.2021.132817_bib2) 2013; 49 |
References_xml | – volume: 88 start-page: 643 year: 2016 end-page: 652 ident: bib17 article-title: A study on the reactivity characteristics of dissolved effluent organic matter from municipal wastewater treatment plant during ozonation publication-title: Water Res. – volume: 129 start-page: 543 year: 2018 end-page: 551 ident: bib25 article-title: Preparation of a porous boron-doped diamond/Ta electrode for the electrocatalytic degradation of organic pollutants publication-title: Carbon – volume: 54 start-page: 1167 year: 2020 end-page: 1176 ident: bib14 article-title: Production of a surface-localized oxidant during oxygenation of mackinawite (FeS) publication-title: Environ. Sci. Technol. – volume: 50 start-page: 10143 year: 2016 end-page: 10152 ident: bib3 article-title: Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions publication-title: Environ. Sci. Technol. – volume: 148 start-page: 336 year: 2016 end-page: 353 ident: bib20 article-title: Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review publication-title: Chemosphere – volume: 377 start-page: 406 year: 2016 end-page: 415 ident: bib45 article-title: Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode publication-title: Appl. Surf. Sci. – volume: 51 start-page: 5685 year: 2017 end-page: 5694 ident: bib23 article-title: Oxygen vacancy associated surface fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity publication-title: Environ. Sci. Technol. – volume: 219 start-page: 296 year: 2019 end-page: 304 ident: bib8 article-title: Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles publication-title: Chemosphere – volume: 128 start-page: 393 year: 2020 end-page: 401 ident: bib34 article-title: Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation? publication-title: Water Res. – volume: 286 start-page: 508 year: 2016 end-page: 516 ident: bib41 article-title: Treatment of landfill leachate using electrochemically assisted UV/chlorine process: effect of operating conditions, molecular weight distribution and fluorescence EEM-PARAFAC analysis publication-title: Chem. Eng. J. – volume: 210 start-page: 516 year: 2018 end-page: 523 ident: bib9 article-title: Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants publication-title: Chemosphere – volume: 172 start-page: 1076 year: 2009 end-page: 1081 ident: bib43 article-title: Ultrasound enhanced electrochemical oxidation of phenol and phthalic acid on boron-doped diamond electrode publication-title: J. Hazard Mater. – volume: 111 start-page: 131 year: 2013 end-page: 136 ident: bib46 article-title: Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode publication-title: Separ. Purif. Technol. – volume: 43 start-page: 3796 year: 2009 end-page: 3802 ident: bib39 article-title: Improvement of Electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor publication-title: Environ. Sci. Technol. – volume: 36 start-page: 85 year: 2002 end-page: 94 ident: bib30 article-title: Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions publication-title: Water Res. – volume: 388 start-page: 121789 year: 2020 ident: bib12 article-title: Electrochemical activation of persulfate on BDD and DSA anodes: electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A publication-title: J. Hazard Mater. – volume: 238 start-page: 124575 year: 2020 ident: bib32 article-title: Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light publication-title: Chemosphere – volume: 173 start-page: 115517 year: 2020 ident: bib35 article-title: Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: performance, mechanism, and full-scale application publication-title: Water Res. – volume: 50 start-page: 11888 year: 2016 end-page: 11894 ident: bib40 article-title: Synthesis and stabilization of blue-black TiO publication-title: Environ. Sci. Technol. – volume: 157 start-page: 181 year: 2019 end-page: 190 ident: bib1 article-title: A quantitative structure-biodegradation relationship (QSBR) approach to predict biodegradation rates of aromatic chemicals publication-title: Water Res. – volume: 52 start-page: 8026 year: 2016 end-page: 8029 ident: bib15 article-title: A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation publication-title: Chem. Commun. – volume: 323 start-page: 512 year: 2017 end-page: 519 ident: bib28 article-title: UV-assisted electrochemical degradation of coumarin on boron-doped diamond electrodes publication-title: Chem. Eng. J. – volume: 17 start-page: 513 year: 1988 ident: bib6 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O publication-title: J. Phys. Chem. Ref. Data – volume: 16 start-page: 1182 year: 2014 end-page: 1203 ident: bib11 article-title: Critical review of electrochemical advanced oxidation processes for water treatment applications publication-title: Environ. Sci. Process. Impacts – volume: 54 start-page: 10868 year: 2020 end-page: 10875 ident: bib42 article-title: Mechanism of heterogeneous fenton reaction kinetics enhancement under nanoscale spatial confinement publication-title: Environ. Sci. Technol. – volume: 380 start-page: 120875 year: 2019 ident: bib7 article-title: Identification of hydroxyl and sulfate free radicals involved in the reaction of 1,4-dioxane with peroxone activated persulfate oxidant publication-title: J. Hazard Mater. – volume: 115 start-page: 13362 year: 2015 end-page: 13407 ident: bib27 article-title: Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review publication-title: Chem. Rev. – volume: 38 start-page: 2979 year: 2017 end-page: 2987 ident: bib4 article-title: Enhancing the performance of electro-peroxone by incorporation of UV irradiation and BDD anodes publication-title: Environ. Technol. – volume: 3 start-page: 361 year: 2010 end-page: 369 ident: bib16 article-title: Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H publication-title: Appl. Catal. B Environ. – volume: 73 start-page: 1407 year: 2008 end-page: 1413 ident: bib44 article-title: The mechanism and kinetics of ultrasound-enhanced electrochemical oxidation of phenol on boron-doped diamond and Pt electrodes publication-title: Chemosphere – volume: 203 start-page: 189 year: 2017 end-page: 198 ident: bib31 article-title: Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods publication-title: Appl. Catal. B Environ. – volume: 55 start-page: 655 year: 2021 end-page: 664 ident: bib24 article-title: Self-Enhanced decomplexation of Cu-organic complexes and Cu recovery from wastewaters using an electrochemical membrane filtration system publication-title: Environ. Sci. Technol. – volume: 116 start-page: 182 year: 2017 end-page: 193 ident: bib33 article-title: Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors publication-title: Water Res. – volume: 49 start-page: 10248 year: 2013 end-page: 10250 ident: bib2 article-title: Introduction of hydrophilic groups onto the ortho-position of benzoate anions induced phase separation of the corresponding ionic liquids with water publication-title: Chem. Commun. – volume: 241 start-page: 125058 year: 2019 ident: bib21 article-title: Insights into the degradation and detoxication mechanisms of aqueous capecitabine in electrochemical oxidation process publication-title: Chemosphere – volume: 38 start-page: 3791 year: 2004 end-page: 3799 ident: bib36 article-title: Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone publication-title: Water Res. – volume: 68 start-page: 199 year: 2007 end-page: 209 ident: bib5 article-title: Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes publication-title: Chemosphere – volume: 897 start-page: 115560 year: 2021 ident: bib37 article-title: Electro-Fenton process for the removal of Direct Red 23 using BDD anode in chloride and sulfate media publication-title: J. Electroanal. Chem. – volume: 319 start-page: 93 year: 2016 end-page: 101 ident: bib10 article-title: Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater publication-title: J. Hazard Mater. – volume: 49 start-page: 8639 year: 2019 end-page: 8647 ident: bib26 article-title: Enhanced Fenton catalytic efficiency of γ-Cu–Al publication-title: Environ. Sci. Technol. – volume: 340 start-page: 135944 year: 2020 ident: bib19 article-title: Cu publication-title: Electrochim. Acta – volume: 4 start-page: 1359 year: 2018 end-page: 1372 ident: bib38 article-title: Metal sulfides as excellent Co-catalysts for H publication-title: Inside Chem. – volume: 36 start-page: 1 year: 2006 end-page: 84 ident: bib29 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 41 start-page: 101995 year: 2020 ident: bib13 article-title: Degradation of chloramphenicol in water by oxidation on a boron-doped diamond electrode under UV irradiation publication-title: J. Water Process Eng. – volume: 137 start-page: 35 year: 2017 end-page: 41 ident: bib18 article-title: Oxidation of atrazine in aqueous media by solar- enhanced Fenton-like process involving persulfate and ferrous ion publication-title: Ecotoxicol. Environ. Saf. – volume: 26 start-page: 17740 year: 2019 end-page: 17750 ident: bib22 article-title: Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: mechanisms, kinetics and pathways publication-title: Environ. Sci. Pollut. Res. – volume: 49 start-page: 10248 year: 2013 ident: 10.1016/j.chemosphere.2021.132817_bib2 article-title: Introduction of hydrophilic groups onto the ortho-position of benzoate anions induced phase separation of the corresponding ionic liquids with water publication-title: Chem. Commun. doi: 10.1039/c3cc45671d – volume: 203 start-page: 189 year: 2017 ident: 10.1016/j.chemosphere.2021.132817_bib31 article-title: Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.10.026 – volume: 210 start-page: 516 year: 2018 ident: 10.1016/j.chemosphere.2021.132817_bib9 article-title: Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.043 – volume: 286 start-page: 508 year: 2016 ident: 10.1016/j.chemosphere.2021.132817_bib41 article-title: Treatment of landfill leachate using electrochemically assisted UV/chlorine process: effect of operating conditions, molecular weight distribution and fluorescence EEM-PARAFAC analysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.10.017 – volume: 172 start-page: 1076 year: 2009 ident: 10.1016/j.chemosphere.2021.132817_bib43 article-title: Ultrasound enhanced electrochemical oxidation of phenol and phthalic acid on boron-doped diamond electrode publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.07.113 – volume: 36 start-page: 1 year: 2006 ident: 10.1016/j.chemosphere.2021.132817_bib29 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380500326564 – volume: 116 start-page: 182 year: 2017 ident: 10.1016/j.chemosphere.2021.132817_bib33 article-title: Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors publication-title: Water Res. doi: 10.1016/j.watres.2017.03.035 – volume: 41 start-page: 101995 year: 2020 ident: 10.1016/j.chemosphere.2021.132817_bib13 article-title: Degradation of chloramphenicol in water by oxidation on a boron-doped diamond electrode under UV irradiation publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.101995 – volume: 52 start-page: 8026 year: 2016 ident: 10.1016/j.chemosphere.2021.132817_bib15 article-title: A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation publication-title: Chem. Commun. doi: 10.1039/C6CC03866B – volume: 16 start-page: 1182 year: 2014 ident: 10.1016/j.chemosphere.2021.132817_bib11 article-title: Critical review of electrochemical advanced oxidation processes for water treatment applications publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C3EM00679D – volume: 50 start-page: 10143 year: 2016 ident: 10.1016/j.chemosphere.2021.132817_bib3 article-title: Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02232 – volume: 129 start-page: 543 year: 2018 ident: 10.1016/j.chemosphere.2021.132817_bib25 article-title: Preparation of a porous boron-doped diamond/Ta electrode for the electrocatalytic degradation of organic pollutants publication-title: Carbon doi: 10.1016/j.carbon.2017.12.052 – volume: 219 start-page: 296 year: 2019 ident: 10.1016/j.chemosphere.2021.132817_bib8 article-title: Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.12.003 – volume: 17 start-page: 513 year: 1988 ident: 10.1016/j.chemosphere.2021.132817_bib6 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O-) in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 380 start-page: 120875 year: 2019 ident: 10.1016/j.chemosphere.2021.132817_bib7 article-title: Identification of hydroxyl and sulfate free radicals involved in the reaction of 1,4-dioxane with peroxone activated persulfate oxidant publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.120875 – volume: 88 start-page: 643 year: 2016 ident: 10.1016/j.chemosphere.2021.132817_bib17 article-title: A study on the reactivity characteristics of dissolved effluent organic matter from municipal wastewater treatment plant during ozonation publication-title: Water Res. doi: 10.1016/j.watres.2015.10.060 – volume: 38 start-page: 2979 year: 2017 ident: 10.1016/j.chemosphere.2021.132817_bib4 article-title: Enhancing the performance of electro-peroxone by incorporation of UV irradiation and BDD anodes publication-title: Environ. Technol. doi: 10.1080/09593330.2017.1284271 – volume: 54 start-page: 1167 year: 2020 ident: 10.1016/j.chemosphere.2021.132817_bib14 article-title: Production of a surface-localized oxidant during oxygenation of mackinawite (FeS) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03975 – volume: 319 start-page: 93 year: 2016 ident: 10.1016/j.chemosphere.2021.132817_bib10 article-title: Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.01.050 – volume: 148 start-page: 336 year: 2016 ident: 10.1016/j.chemosphere.2021.132817_bib20 article-title: Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.036 – volume: 49 start-page: 8639 year: 2019 ident: 10.1016/j.chemosphere.2021.132817_bib26 article-title: Enhanced Fenton catalytic efficiency of γ-Cu–Al2O3 by σ-Cu2+–ligand complexes from aromatic pollutant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00445 – volume: 128 start-page: 393 year: 2020 ident: 10.1016/j.chemosphere.2021.132817_bib34 article-title: Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation? publication-title: Water Res. doi: 10.1016/j.watres.2017.10.018 – volume: 51 start-page: 5685 year: 2017 ident: 10.1016/j.chemosphere.2021.132817_bib23 article-title: Oxygen vacancy associated surface fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00040 – volume: 388 start-page: 121789 year: 2020 ident: 10.1016/j.chemosphere.2021.132817_bib12 article-title: Electrochemical activation of persulfate on BDD and DSA anodes: electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.121789 – volume: 115 start-page: 13362 year: 2015 ident: 10.1016/j.chemosphere.2021.132817_bib27 article-title: Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00361 – volume: 897 start-page: 115560 year: 2021 ident: 10.1016/j.chemosphere.2021.132817_bib37 article-title: Electro-Fenton process for the removal of Direct Red 23 using BDD anode in chloride and sulfate media publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2021.115560 – volume: 137 start-page: 35 year: 2017 ident: 10.1016/j.chemosphere.2021.132817_bib18 article-title: Oxidation of atrazine in aqueous media by solar- enhanced Fenton-like process involving persulfate and ferrous ion publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2016.11.013 – volume: 340 start-page: 135944 year: 2020 ident: 10.1016/j.chemosphere.2021.132817_bib19 article-title: Cu2O on anodised TiO2 nanotube arrays: a heterojunction photoanode for visible light assisted electrochemical degradation of pharmaceuticals in water publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135944 – volume: 241 start-page: 125058 year: 2019 ident: 10.1016/j.chemosphere.2021.132817_bib21 article-title: Insights into the degradation and detoxication mechanisms of aqueous capecitabine in electrochemical oxidation process publication-title: Chemosphere – volume: 323 start-page: 512 year: 2017 ident: 10.1016/j.chemosphere.2021.132817_bib28 article-title: UV-assisted electrochemical degradation of coumarin on boron-doped diamond electrodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.129 – volume: 36 start-page: 85 year: 2002 ident: 10.1016/j.chemosphere.2021.132817_bib30 article-title: Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions publication-title: Water Res. doi: 10.1016/S0043-1354(01)00235-4 – volume: 3 start-page: 361 year: 2010 ident: 10.1016/j.chemosphere.2021.132817_bib16 article-title: Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2010.02.033 – volume: 68 start-page: 199 year: 2007 ident: 10.1016/j.chemosphere.2021.132817_bib5 article-title: Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.01.038 – volume: 26 start-page: 17740 year: 2019 ident: 10.1016/j.chemosphere.2021.132817_bib22 article-title: Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: mechanisms, kinetics and pathways publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-04900-0 – volume: 50 start-page: 11888 year: 2016 ident: 10.1016/j.chemosphere.2021.132817_bib40 article-title: Synthesis and stabilization of blue-black TiO2 Nanotube arrays for electrochemical oxidant generation and wastewater treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03540 – volume: 111 start-page: 131 year: 2013 ident: 10.1016/j.chemosphere.2021.132817_bib46 article-title: Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2013.03.038 – volume: 38 start-page: 3791 year: 2004 ident: 10.1016/j.chemosphere.2021.132817_bib36 article-title: Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone publication-title: Water Res. doi: 10.1016/j.watres.2004.06.010 – volume: 43 start-page: 3796 year: 2009 ident: 10.1016/j.chemosphere.2021.132817_bib39 article-title: Improvement of Electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor publication-title: Environ. Sci. Technol. doi: 10.1021/es8034285 – volume: 55 start-page: 655 year: 2021 ident: 10.1016/j.chemosphere.2021.132817_bib24 article-title: Self-Enhanced decomplexation of Cu-organic complexes and Cu recovery from wastewaters using an electrochemical membrane filtration system publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c05554 – volume: 173 start-page: 115517 year: 2020 ident: 10.1016/j.chemosphere.2021.132817_bib35 article-title: Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: performance, mechanism, and full-scale application publication-title: Water Res. doi: 10.1016/j.watres.2020.115517 – volume: 4 start-page: 1359 year: 2018 ident: 10.1016/j.chemosphere.2021.132817_bib38 article-title: Metal sulfides as excellent Co-catalysts for H2O2 decomposition in advanced oxidation processes publication-title: Inside Chem. – volume: 73 start-page: 1407 year: 2008 ident: 10.1016/j.chemosphere.2021.132817_bib44 article-title: The mechanism and kinetics of ultrasound-enhanced electrochemical oxidation of phenol on boron-doped diamond and Pt electrodes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.08.008 – volume: 377 start-page: 406 year: 2016 ident: 10.1016/j.chemosphere.2021.132817_bib45 article-title: Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.045 – volume: 238 start-page: 124575 year: 2020 ident: 10.1016/j.chemosphere.2021.132817_bib32 article-title: Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124575 – volume: 54 start-page: 10868 year: 2020 ident: 10.1016/j.chemosphere.2021.132817_bib42 article-title: Mechanism of heterogeneous fenton reaction kinetics enhancement under nanoscale spatial confinement publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02192 – volume: 157 start-page: 181 year: 2019 ident: 10.1016/j.chemosphere.2021.132817_bib1 article-title: A quantitative structure-biodegradation relationship (QSBR) approach to predict biodegradation rates of aromatic chemicals publication-title: Water Res. doi: 10.1016/j.watres.2019.03.086 |
SSID | ssj0001659 |
Score | 2.5323489 |
Snippet | Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 132817 |
SubjectTerms | anodes benzoic acid Boron Boron-doped diamond Diamond Electro-oxidation electrochemistry Electrodes Electrolysis Homogeneous •OH Hydrogen Peroxide hydrophilicity hydroxyl radicals landfill leachates mass transfer oxidation Oxidation-Reduction Surface-bound •OH ultraviolet radiation Ultraviolet Rays UV irradiation voltammetry Water Pollutants, Chemical |
Title | Shifts of surface-bound •OH to homogeneous •OH in BDD electrochemical system via UV irradiation for enhanced degradation of hydrophilic aromatic compounds |
URI | https://dx.doi.org/10.1016/j.chemosphere.2021.132817 https://www.ncbi.nlm.nih.gov/pubmed/34752837 https://www.proquest.com/docview/2596018453 https://www.proquest.com/docview/2636480482 |
Volume | 291 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIn4uCAqU5adyJa5u17FjJxKXsm21gCgHWNSbZTuONojGqySL1AviSTjwaDwJHidpQQJUiasVJxN_4_FMMvMNQs9EwlMnaEEcpYJwYwzJtbOEMuqSxLCEpVDg_OZEzBf81Wl6uoFmYy0MpFUOtr-36dFaDyP7w2rur6oKanzBGwkOROSEy4F2m3MJWr735TLNg4q0d4F5SuDqG2j3MscrrMuZb6F-HxgzE7oXYrMs9i774xn1Nx80nkXHd9DtwYnEB72cd9GGq7fQzdnYu20LXT-KZNTn99C3d8uq7FrsS9yum1JbRwx0UsI_vn5_O8edx0t_5oMWOb9uh8Gqxi8OD_HQIccOlAK4J33GnyuNFx9w1TRAawC44uD4YlcvYzIBLoB-ou_UBE9dnheNX8FnG4t14yNDLIZEdpCivY8Wx0fvZ3My9GQgltNpR3SZWs2kLIBUwDgnA9TShm1sDU9NLlkYsNYZyZgNkVJasgJcKFoI4UxWavYAbda-dg8RLo2YMivDsueaS5eFGzDLptwKau00dxOUjSgoOxCWQ9-MT2rMTPuofgFQAYCqB3CCkoupq5614yqTno9Qq99UUIXT5SrTd0f1UAFt-O-iI3YqRJgh7M3C6_3jGsEEz4I5TSZou9etC8kZl0DBIx_9n4CP0a0EajdiAt0TtNk1a_c0eFSd2YlbZgddO3j5en7yEz23JaI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VIigXBOVv-XUlrmnXsWMnUi-wbbVAWw50UW9W7DjaIJqskixSL4gn6aGP1ifB4yQtSIAqcbXiZOJvPJ5JZr4BeC1CHllBs8BSKgKutQ6S1JqAMmrDULOQRVjgfHAopjP-_jg6XoHJUAuDaZW97e9surfW_chWv5pbi6LAGl_0RpwD4TnhEnEDbnK3fbGNweb3qzwPKqLOB-ZRgJffho2rJC-3MCdVgwX8SJkZ0k0XnMW-edkfD6m_OaH-MNq7B3d7L5K86QS9Dyu2XIe1ydC8bR1u7Xo26tMHcPZpXuRtQ6qcNMs6T40NNLZSIhc_zj9OSVuReXVSOTWy1bLpB4uSvN3ZIX2LHNNzCpCO9Zl8K1Iy-0yKukZeAwSWOM-X2HLuswlIhvwTXasmfOr8NKurBX63MSStK08RSzCTHaVoHsJsb_doMg36pgyB4XTcBmkemZRJmSGrgLZWOqylcfvYaB7pRDI3YIzVkjHjQqUoZxn6UDQTwuo4T9kjWC2r0j4BkmsxZka6ZU9SLm3sbsAMG3MjqDHjxI4gHlBQpmcsx8YZX9WQmvZF_QKgQgBVB-AIwsupi4624zqTtgeo1W86qNzxcp3pG4N6KIc2_nhJPXbKhZgu7o3d6_3jGsEEj509DUfwuNOtS8kZl8jBI5_-n4CvYG16dLCv9t8dfngGd0Is5PDZdM9hta2X9oVzr1r90m-fn7GJJzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shifts+of+surface-bound+%E2%80%A2OH+to+homogeneous+%E2%80%A2OH+in+BDD+electrochemical+system+via+UV+irradiation+for+enhanced+degradation+of+hydrophilic+aromatic+compounds&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Chen%2C+Peng&rft.au=Mu%2C+Yi&rft.au=Chen%2C+Ying&rft.au=Tian%2C+Lei&rft.date=2022-03-01&rft.issn=0045-6535&rft.volume=291&rft.spage=132817&rft_id=info:doi/10.1016%2Fj.chemosphere.2021.132817&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2021_132817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |