Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise
Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by...
Saved in:
Published in | IEEE transactions on image processing Vol. 22; no. 1; pp. 91 - 103 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.01.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by applying a variance-stabilizing transformation (VST) to the noisy data, denoising the stabilized data with a Gaussian denoising algorithm, and finally applying an inverse VST to the denoised data. The generalized Anscombe transformation (GAT) is often used for variance stabilization, but its unbiased inverse transformation has not been rigorously studied in the past. We introduce the exact unbiased inverse of the GAT and show that it plays an integral part in ensuring accurate denoising results. We demonstrate that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses. We also show that this inverse is optimal in the sense that it can be interpreted as a maximum likelihood inverse. Moreover, we thoroughly analyze the behavior of the proposed inverse, which also enables us to derive a closed-form approximation for it. This paper generalizes our work on the exact unbiased inverse of the Anscombe transformation, which we have presented earlier for the removal of pure Poisson noise. |
---|---|
AbstractList | Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by applying a variance-stabilizing transformation (VST) to the noisy data, denoising the stabilized data with a Gaussian denoising algorithm, and finally applying an inverse VST to the denoised data. The generalized Anscombe transformation (GAT) is often used for variance stabilization, but its unbiased inverse transformation has not been rigorously studied in the past. We introduce the exact unbiased inverse of the GAT and show that it plays an integral part in ensuring accurate denoising results. We demonstrate that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses. We also show that this inverse is optimal in the sense that it can be interpreted as a maximum likelihood inverse. Moreover, we thoroughly analyze the behavior of the proposed inverse, which also enables us to derive a closed-form approximation for it. This paper generalizes our work on the exact unbiased inverse of the Anscombe transformation, which we have presented earlier for the removal of pure Poisson noise. Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by applying a variance-stabilizing transformation (VST) to the noisy data, denoising the stabilized data with a Gaussian denoising algorithm, and finally applying an inverse VST to the denoised data. The generalized Anscombe transformation (GAT) is often used for variance stabilization, but its unbiased inverse transformation has not been rigorously studied in the past. We introduce the exact unbiased inverse of the GAT and show that it plays an integral part in ensuring accurate denoising results. We demonstrate that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses. We also show that this inverse is optimal in the sense that it can be interpreted as a maximum likelihood inverse. Moreover, we thoroughly analyze the behavior of the proposed inverse, which also enables us to derive a closed-form approximation for it. This paper generalizes our work on the exact unbiased inverse of the Anscombe transformation, which we have presented earlier for the removal of pure Poisson noise.Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by applying a variance-stabilizing transformation (VST) to the noisy data, denoising the stabilized data with a Gaussian denoising algorithm, and finally applying an inverse VST to the denoised data. The generalized Anscombe transformation (GAT) is often used for variance stabilization, but its unbiased inverse transformation has not been rigorously studied in the past. We introduce the exact unbiased inverse of the GAT and show that it plays an integral part in ensuring accurate denoising results. We demonstrate that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses. We also show that this inverse is optimal in the sense that it can be interpreted as a maximum likelihood inverse. Moreover, we thoroughly analyze the behavior of the proposed inverse, which also enables us to derive a closed-form approximation for it. This paper generalizes our work on the exact unbiased inverse of the Anscombe transformation, which we have presented earlier for the removal of pure Poisson noise. |
Author | Makitalo, M. Foi, A. |
Author_xml | – sequence: 1 givenname: M. surname: Makitalo fullname: Makitalo, M. email: markku.makitalo@tut.fi organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland – sequence: 2 givenname: A. surname: Foi fullname: Foi, A. email: alessandro.foi@tut.fi organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853908$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22692910$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc2LFDEQxYOsuB96FwRpEMFLj6l8dee4LDoOLO4eRjw26XQFs3QnY9K9oH-9GWdWYQ_iqYri94qq987JSYgBCXkJdAVA9fvt5nbFKLAVY5SpRj4hZ6AF1JQKdlJ6Kpu6AaFPyXnOd5SCkKCekVPGlGYa6Bn5erOb_WTGahPuMWUfQxVdNX_Dao0Bkxn9Txyqy5BtnHqstsmE7GKazLxHS1fdRp9zDPXaLDl7E6rPZYDPyVNnxowvjvWCfPn4YXv1qb6-WW-uLq9rK4DOtUGUWgG4oem1QMudkqa3hjrjgGujhlaDhpYODGnrrHRUgEFr0SHrteMX5N1h7y7F7wvmuZt8tjiOJmBccges5Urytmn_A224ajQTqqBvHqF3cUmhPLKnmBBUtrxQr4_U0k84dLtUnEw_ugd3C_D2CJhszeiKedbnv5xqJdd0f5k6cDbFnBO6zvr5t8NzMn7sgHb7uLsSd7ePuzvGXYT0kfBh9z8krw4Sj4h_cMWAcSn4L61qtBE |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1038_s41467_021_22204_1 crossref_primary_10_1371_journal_pone_0243115 crossref_primary_10_3934_ipi_2022007 crossref_primary_10_1109_LCOMM_2017_2744638 crossref_primary_10_1007_s10915_024_02668_1 crossref_primary_10_1364_OE_546916 crossref_primary_10_1109_TIP_2018_2820812 crossref_primary_10_1109_TED_2022_3166716 crossref_primary_10_3390_s16111961 crossref_primary_10_1109_TIP_2015_2409566 crossref_primary_10_1109_TIP_2017_2651365 crossref_primary_10_1109_TIP_2019_2909805 crossref_primary_10_3934_math_20221080 crossref_primary_10_1016_j_eswa_2023_120628 crossref_primary_10_1088_1361_6560_62_2_633 crossref_primary_10_1016_j_knosys_2021_106949 crossref_primary_10_1109_TIP_2018_2811546 crossref_primary_10_1109_TCI_2022_3209936 crossref_primary_10_1016_j_sigpro_2021_108186 crossref_primary_10_1109_TGRS_2017_2771155 crossref_primary_10_1109_TIP_2014_2363735 crossref_primary_10_1017_S1431927621012678 crossref_primary_10_1049_cit2_12110 crossref_primary_10_1007_s11340_018_0390_7 crossref_primary_10_1109_TIP_2018_2819821 crossref_primary_10_1016_j_media_2018_03_007 crossref_primary_10_1080_21681163_2013_811039 crossref_primary_10_1186_s13634_014_0189_3 crossref_primary_10_1117_1_JMI_10_5_055501 crossref_primary_10_1109_TGRS_2024_3434349 crossref_primary_10_1002_smll_202400876 crossref_primary_10_1177_09544119221095416 crossref_primary_10_3390_math8111907 crossref_primary_10_1016_j_bspc_2017_05_001 crossref_primary_10_1049_iet_ipr_2018_5504 crossref_primary_10_1093_gigascience_giab032 crossref_primary_10_1002_mp_13950 crossref_primary_10_1109_TGRS_2023_3298679 crossref_primary_10_1137_140977035 crossref_primary_10_1109_TIP_2019_2916976 crossref_primary_10_1109_TPAMI_2022_3170155 crossref_primary_10_1016_j_net_2024_05_015 crossref_primary_10_1016_j_sigpro_2015_02_020 crossref_primary_10_1016_j_nima_2018_06_001 crossref_primary_10_1107_S1600576716008074 crossref_primary_10_1145_2980179_2980254 crossref_primary_10_1016_j_procs_2016_03_087 crossref_primary_10_1109_LSP_2023_3299191 crossref_primary_10_1186_s12938_019_0713_7 crossref_primary_10_1007_s11042_023_15341_w crossref_primary_10_1007_s11075_017_0463_1 crossref_primary_10_3389_fnins_2021_630250 crossref_primary_10_1109_TCI_2024_3458418 crossref_primary_10_1364_OPTICA_448287 crossref_primary_10_1007_s11600_020_00405_4 crossref_primary_10_1016_j_dsp_2023_103975 crossref_primary_10_1016_j_vlsi_2014_10_004 crossref_primary_10_1016_j_dsp_2021_103012 crossref_primary_10_1016_j_jvcir_2019_04_011 crossref_primary_10_1016_j_optcom_2023_130245 crossref_primary_10_1007_s12046_017_0654_4 crossref_primary_10_1109_ACCESS_2021_3097078 crossref_primary_10_1002_sam_11432 crossref_primary_10_3390_s19010206 crossref_primary_10_1038_srep20640 crossref_primary_10_1016_j_sigpro_2019_04_004 crossref_primary_10_1109_JSTSP_2018_2873047 crossref_primary_10_1109_LSP_2017_2654480 crossref_primary_10_1007_s11042_020_08624_z crossref_primary_10_1002_jbio_202400186 crossref_primary_10_1007_s10851_013_0435_6 crossref_primary_10_1145_3446918 crossref_primary_10_1007_s11548_018_1746_2 crossref_primary_10_1007_s11548_019_01912_6 crossref_primary_10_1016_j_nima_2023_169006 crossref_primary_10_1142_S0218126617500086 crossref_primary_10_1016_j_artmed_2018_12_006 crossref_primary_10_1016_j_compeleceng_2018_03_014 crossref_primary_10_1016_j_micpro_2021_103864 crossref_primary_10_3389_fphys_2023_1176409 crossref_primary_10_1109_TIM_2022_3228266 crossref_primary_10_1016_j_patcog_2016_03_033 crossref_primary_10_1016_j_nima_2015_04_005 crossref_primary_10_1016_j_physa_2017_04_163 crossref_primary_10_1038_s41598_019_43973_2 crossref_primary_10_1109_TCI_2022_3176536 crossref_primary_10_1109_TNNLS_2015_2479117 crossref_primary_10_1109_TCI_2017_2700203 crossref_primary_10_1016_j_eswa_2025_127166 crossref_primary_10_1016_j_icte_2022_01_012 crossref_primary_10_1038_s41467_024_48082_x crossref_primary_10_1016_j_imavis_2024_105285 crossref_primary_10_1371_journal_pone_0208503 crossref_primary_10_3390_machines12090601 crossref_primary_10_1002_jbio_202300390 crossref_primary_10_1016_j_artmed_2023_102555 crossref_primary_10_1007_s11042_023_17670_2 crossref_primary_10_1093_micmic_ozac018 crossref_primary_10_1016_j_image_2023_117012 crossref_primary_10_1117_1_JMI_10_6_064004 crossref_primary_10_1109_TIP_2022_3183835 crossref_primary_10_1088_1742_6596_1651_1_012177 crossref_primary_10_1016_j_jrras_2024_101074 crossref_primary_10_1109_TGRS_2019_2897316 crossref_primary_10_1109_TIP_2018_2878326 crossref_primary_10_1109_ACCESS_2022_3181177 crossref_primary_10_3233_JIFS_161590 crossref_primary_10_1007_s11042_023_16452_0 crossref_primary_10_1109_TIP_2019_2957918 crossref_primary_10_1371_journal_pone_0136964 crossref_primary_10_1007_s11042_016_4227_z crossref_primary_10_1016_j_ymeth_2014_03_010 crossref_primary_10_1155_2020_6707328 crossref_primary_10_1016_j_jvcir_2024_104049 crossref_primary_10_1038_s41467_022_33236_6 crossref_primary_10_1364_AO_53_0000C1 crossref_primary_10_1016_j_ejmp_2021_10_015 crossref_primary_10_1109_TIP_2014_2347204 crossref_primary_10_3847_1538_4357_aaf8ae crossref_primary_10_1016_j_ultramic_2016_05_005 crossref_primary_10_15388_20_INFOR407 crossref_primary_10_1109_TIP_2022_3164532 crossref_primary_10_1038_s41598_017_09090_8 crossref_primary_10_1109_TIP_2018_2807126 crossref_primary_10_1088_1361_6501_aab2f6 crossref_primary_10_1007_s11042_024_18255_3 crossref_primary_10_1016_j_infrared_2018_07_024 crossref_primary_10_1109_LGRS_2018_2790396 crossref_primary_10_1364_AO_522546 crossref_primary_10_1109_TIP_2020_3032036 crossref_primary_10_1109_TIP_2016_2551639 crossref_primary_10_3762_bjnano_5_210 crossref_primary_10_1007_s11280_024_01258_3 crossref_primary_10_1016_j_bbe_2018_08_005 crossref_primary_10_1016_j_engappai_2023_106301 crossref_primary_10_1016_j_jvcir_2016_05_017 crossref_primary_10_1109_TIP_2023_3327590 crossref_primary_10_1021_acs_chemrev_1c00189 crossref_primary_10_1109_TIP_2021_3122085 crossref_primary_10_1016_j_image_2021_116299 crossref_primary_10_1007_s11548_019_01968_4 crossref_primary_10_1016_j_sigpro_2022_108486 crossref_primary_10_1051_0004_6361_202348425 crossref_primary_10_1007_s11554_014_0405_2 crossref_primary_10_1109_TCBB_2023_3281638 crossref_primary_10_3389_fcomp_2020_00005 crossref_primary_10_1109_TBME_2017_2674521 crossref_primary_10_1016_j_neucom_2024_127799 crossref_primary_10_3934_ipi_2014_8_733 crossref_primary_10_1088_1361_6560_abbb74 crossref_primary_10_3390_electronics11223751 crossref_primary_10_3390_s22228899 crossref_primary_10_1016_j_fsidi_2022_301473 crossref_primary_10_1142_S021972002250007X crossref_primary_10_1007_s00034_018_01020_x crossref_primary_10_1080_09500340_2018_1506058 crossref_primary_10_1016_j_bbe_2022_05_001 crossref_primary_10_3390_s18041019 crossref_primary_10_1016_j_neucom_2017_09_010 crossref_primary_10_1142_S1793524516500200 crossref_primary_10_1364_AO_57_005852 crossref_primary_10_1109_JBHI_2020_3024563 crossref_primary_10_1109_LSP_2020_3002652 crossref_primary_10_1109_TPAMI_2023_3301502 crossref_primary_10_1126_sciadv_adk1495 crossref_primary_10_1002_jrs_4824 crossref_primary_10_1109_TCYB_2016_2611679 crossref_primary_10_1109_TIP_2021_3087943 crossref_primary_10_1016_j_nima_2022_167003 crossref_primary_10_1109_TIP_2018_2812083 crossref_primary_10_3390_s19020339 crossref_primary_10_3847_1538_4357_ab4990 crossref_primary_10_1007_s11263_022_01627_3 crossref_primary_10_1109_JSTSP_2015_2505402 crossref_primary_10_3389_fphy_2015_00031 crossref_primary_10_1364_OE_553185 crossref_primary_10_1111_str_12070 crossref_primary_10_1007_s00034_018_0746_3 crossref_primary_10_1016_j_image_2023_117003 crossref_primary_10_1109_TIP_2017_2753404 crossref_primary_10_1364_OE_494311 crossref_primary_10_1088_1361_6560_abbc82 crossref_primary_10_1109_TPAMI_2023_3234026 crossref_primary_10_1186_s12938_021_00874_8 crossref_primary_10_1016_j_ultramic_2020_113116 crossref_primary_10_1364_OE_25_000168 crossref_primary_10_1093_jmicro_dfad012 |
Cites_doi | 10.1109/TIP.2010.2056693 10.1109/TIP.2008.2001399 10.1109/TIP.2011.2121085 10.1017/CBO9780511564352 10.1109/TIP.2003.819861 10.1109/ICASSP.2012.6288074 10.1109/MSP.2011.940411 10.1109/ICIP.2007.4379564 10.2307/2332343 10.1016/j.sigpro.2009.04.035 10.1109/TIP.2010.2073477 10.1109/TIP.2007.901238 10.1109/TIP.2003.818640 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013 |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013 |
DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TIP.2012.2202675 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 103 |
ExternalDocumentID | 2874203501 22692910 26853908 10_1109_TIP_2012_2202675 6212354 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c410t-aee59611fd7b94ec3f65abca0faf139a6d8919180d2e08fc5f041aeccefe2b9f3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 08:36:38 EDT 2025 Fri Jul 11 10:00:28 EDT 2025 Sun Jun 29 16:58:52 EDT 2025 Thu Apr 03 07:08:19 EDT 2025 Mon Jul 21 09:17:26 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Tue Jul 01 02:02:50 EDT 2025 Tue Aug 26 16:46:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | State of the art Noise reduction Stabilization Imager Inverse transformation photon-limited imaging Algorithm Computational complexity Poisson process Poisson-Gaussian noise variance stabilization Denoising Gaussian noise Imaging Signal processing Maximum likelihood Electrons |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-aee59611fd7b94ec3f65abca0faf139a6d8919180d2e08fc5f041aeccefe2b9f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22692910 |
PQID | 1272440583 |
PQPubID | 85429 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TIP_2012_2202675 crossref_primary_10_1109_TIP_2012_2202675 pubmed_primary_22692910 pascalfrancis_primary_26853908 proquest_miscellaneous_1283653878 ieee_primary_6212354 proquest_journals_1272440583 proquest_miscellaneous_1273679246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-Jan. 2013-01-00 2013 2013-Jan 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-Jan. |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2013 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref11 ref10 ref2 ref1 ref8 ref7 foi (ref14) 2009 ref9 ref4 ref3 ref6 ref5 kendall (ref15) 1945; 1 |
References_xml | – ident: ref7 doi: 10.1109/TIP.2010.2056693 – ident: ref1 doi: 10.1109/TIP.2008.2001399 – ident: ref8 doi: 10.1109/TIP.2011.2121085 – ident: ref6 doi: 10.1017/CBO9780511564352 – ident: ref12 doi: 10.1109/TIP.2003.819861 – ident: ref5 doi: 10.1109/ICASSP.2012.6288074 – year: 2009 ident: ref14 publication-title: Optimization of Variance-Stabilizing Transformations – volume: 1 year: 1945 ident: ref15 publication-title: The Advanced Theory of Statistics – ident: ref13 doi: 10.1109/MSP.2011.940411 – ident: ref3 doi: 10.1109/ICIP.2007.4379564 – ident: ref9 doi: 10.2307/2332343 – ident: ref2 doi: 10.1016/j.sigpro.2009.04.035 – ident: ref4 doi: 10.1109/TIP.2010.2073477 – ident: ref10 doi: 10.1109/TIP.2007.901238 – ident: ref11 doi: 10.1109/TIP.2003.818640 |
SSID | ssj0014516 |
Score | 2.5337105 |
Snippet | Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 91 |
SubjectTerms | Accuracy Algorithms Applied sciences Approximation methods Denoising Detection, estimation, filtering, equalization, prediction Devices Exact sciences and technology Exact solutions Gaussian noise Image processing Information, signal and communications theory Inverse Mathematical analysis Noise Noise reduction Optimization photon-limited imaging Photonics Poisson-Gaussian noise Signal and communications theory Signal processing Signal, noise Studies Telecommunications and information theory Transformations variance stabilization |
Title | Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise |
URI | https://ieeexplore.ieee.org/document/6212354 https://www.ncbi.nlm.nih.gov/pubmed/22692910 https://www.proquest.com/docview/1272440583 https://www.proquest.com/docview/1273679246 https://www.proquest.com/docview/1283653878 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjUKogcUHCu7FjO_GxQpSC1NLDVvQW2Y4tISBBZHPpr2fseMOCoOJmxWPFyYztbzwvgJfeW8qoNsTKShLeak5qq1oScrd5hBc1d8Gie34hz674h2txvQOv51gY51x0PnOL0Iy2_La3Y7gqW8qwzwq-C7uouE2xWrPFIBScjZZNUZEKYf_GJFmo5er9ZfDhYgvGQr2lUKwGQQfighA2u3UaxfIqwTlSD_h__FTY4t_IM55Ap_twvpn75HjyZTGuzcLe_JHW8X8_7j7cS1A0P5lk5wHsuO4A9hMszdOiHw7g7lbOwkP49BE3mW84LmToiHdtee9zhJF5ymD9-QZHn3QDirJx-WoLGCMptvLLHpndd-SdHocQwplf4AP3EK5O367enJFUnYFYTos10c4JJSn1bWUUd7b0UmhjdeG1R1ipZVsrVAbromWuqL0VvuBUo8Q475hRvnwEe13fuSeQt0I4RXXpJKecGY4gVrSUGU21oFqZDJYbLjU2pS4PFTS-NlGFKVSDLG4Ci5vE4gxezSO-T2k7bqE9DNyY6RIjMjj-TRDmfiYR4qiizuBoIxlNWvhDQ1mFgKkQdZnBi7kbl2yww-jO9WOkKWWFiq-8jaYuJR5GFb7m8SR1vyaQhPfp3yf-DO6wWLMj3BMdwd76x-ieI3Jam-O4ZH4CL0AStg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoegVKCxAWJ7MaO7cTHClG20F162IreItuxJQQkiN1c-usZO96wIKi4WfFYcTIz9mfPC-Clc4ZQonRmRCky1iiWVUY2mc_d5hBeVMx6i-58IWYX7P0lv9yB12MsjLU2OJ_ZiW8GW37Tmd5flU2FX2c5uwE3cd_nZIjWGm0GvuRssG3yMisR-G-MkrmcLk_PvRcXnVDqKy75cjUIOxAZ-MDZrf0oFFjx7pFqhX_IDaUt_o09wx50sgfzzewH15Mvk36tJ-bqj8SO__t59-BuBKPp8SA992HHtvuwF4FpGtV-tQ93trIWHsCnj7jMfMNxPkdHuG1LO5cikExjDuvPVzj6uF2hMGubLregMZJiKz3vkN1dm71T_coHcaYLfGAfwMXJ2-WbWRbrM2SGkXydKWu5FIS4ptSSWVM4wZU2KnfKIbBUoqkkHgervKE2r5zhLmdEocxYZ6mWrngIu23X2seQNpxbSVRhBSOMaoYwljeEakUUJ0rqBKYbLtUmJi_3NTS-1uEQk8saWVx7FteRxQm8Gkd8HxJ3XEN74Lkx0kVGJHD0myCM_VQgyJF5lcDhRjLqqPqrmtASIVPOqyKBF2M3Kq23xKjWdn2gKUSJR19xHU1VCNyOSnzNo0Hqfk0gCu-Tv0_8OdyaLedn9dnp4sNTuE1DBQ9_a3QIu-sfvX2GOGqtj4L6_AShYxX_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Inversion+of+the+Generalized+Anscombe+Transformation+for+Poisson-Gaussian+Noise&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=M%C3%84KITALO%2C+Markku&rft.au=FOI%2C+Alessandro&rft.date=2013&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1057-7149&rft.volume=22&rft.issue=1-2&rft.spage=91&rft.epage=103&rft_id=info:doi/10.1109%2FTIP.2012.2202675&rft.externalDBID=n%2Fa&rft.externalDocID=26853908 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |