Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise

Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 22; no. 1; pp. 91 - 103
Main Authors Makitalo, M., Foi, A.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by applying a variance-stabilizing transformation (VST) to the noisy data, denoising the stabilized data with a Gaussian denoising algorithm, and finally applying an inverse VST to the denoised data. The generalized Anscombe transformation (GAT) is often used for variance stabilization, but its unbiased inverse transformation has not been rigorously studied in the past. We introduce the exact unbiased inverse of the GAT and show that it plays an integral part in ensuring accurate denoising results. We demonstrate that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses. We also show that this inverse is optimal in the sense that it can be interpreted as a maximum likelihood inverse. Moreover, we thoroughly analyze the behavior of the proposed inverse, which also enables us to derive a closed-form approximation for it. This paper generalizes our work on the exact unbiased inverse of the Anscombe transformation, which we have presented earlier for the removal of pure Poisson noise.
AbstractList Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by applying a variance-stabilizing transformation (VST) to the noisy data, denoising the stabilized data with a Gaussian denoising algorithm, and finally applying an inverse VST to the denoised data. The generalized Anscombe transformation (GAT) is often used for variance stabilization, but its unbiased inverse transformation has not been rigorously studied in the past. We introduce the exact unbiased inverse of the GAT and show that it plays an integral part in ensuring accurate denoising results. We demonstrate that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses. We also show that this inverse is optimal in the sense that it can be interpreted as a maximum likelihood inverse. Moreover, we thoroughly analyze the behavior of the proposed inverse, which also enables us to derive a closed-form approximation for it. This paper generalizes our work on the exact unbiased inverse of the Anscombe transformation, which we have presented earlier for the removal of pure Poisson noise.
Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by applying a variance-stabilizing transformation (VST) to the noisy data, denoising the stabilized data with a Gaussian denoising algorithm, and finally applying an inverse VST to the denoised data. The generalized Anscombe transformation (GAT) is often used for variance stabilization, but its unbiased inverse transformation has not been rigorously studied in the past. We introduce the exact unbiased inverse of the GAT and show that it plays an integral part in ensuring accurate denoising results. We demonstrate that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses. We also show that this inverse is optimal in the sense that it can be interpreted as a maximum likelihood inverse. Moreover, we thoroughly analyze the behavior of the proposed inverse, which also enables us to derive a closed-form approximation for it. This paper generalizes our work on the exact unbiased inverse of the Anscombe transformation, which we have presented earlier for the removal of pure Poisson noise.Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by applying a variance-stabilizing transformation (VST) to the noisy data, denoising the stabilized data with a Gaussian denoising algorithm, and finally applying an inverse VST to the denoised data. The generalized Anscombe transformation (GAT) is often used for variance stabilization, but its unbiased inverse transformation has not been rigorously studied in the past. We introduce the exact unbiased inverse of the GAT and show that it plays an integral part in ensuring accurate denoising results. We demonstrate that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses. We also show that this inverse is optimal in the sense that it can be interpreted as a maximum likelihood inverse. Moreover, we thoroughly analyze the behavior of the proposed inverse, which also enables us to derive a closed-form approximation for it. This paper generalizes our work on the exact unbiased inverse of the Anscombe transformation, which we have presented earlier for the removal of pure Poisson noise.
Author Makitalo, M.
Foi, A.
Author_xml – sequence: 1
  givenname: M.
  surname: Makitalo
  fullname: Makitalo, M.
  email: markku.makitalo@tut.fi
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland
– sequence: 2
  givenname: A.
  surname: Foi
  fullname: Foi, A.
  email: alessandro.foi@tut.fi
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853908$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22692910$$D View this record in MEDLINE/PubMed
BookMark eNqNkc2LFDEQxYOsuB96FwRpEMFLj6l8dee4LDoOLO4eRjw26XQFs3QnY9K9oH-9GWdWYQ_iqYri94qq987JSYgBCXkJdAVA9fvt5nbFKLAVY5SpRj4hZ6AF1JQKdlJ6Kpu6AaFPyXnOd5SCkKCekVPGlGYa6Bn5erOb_WTGahPuMWUfQxVdNX_Dao0Bkxn9Txyqy5BtnHqstsmE7GKazLxHS1fdRp9zDPXaLDl7E6rPZYDPyVNnxowvjvWCfPn4YXv1qb6-WW-uLq9rK4DOtUGUWgG4oem1QMudkqa3hjrjgGujhlaDhpYODGnrrHRUgEFr0SHrteMX5N1h7y7F7wvmuZt8tjiOJmBccges5Urytmn_A224ajQTqqBvHqF3cUmhPLKnmBBUtrxQr4_U0k84dLtUnEw_ugd3C_D2CJhszeiKedbnv5xqJdd0f5k6cDbFnBO6zvr5t8NzMn7sgHb7uLsSd7ePuzvGXYT0kfBh9z8krw4Sj4h_cMWAcSn4L61qtBE
CODEN IIPRE4
CitedBy_id crossref_primary_10_1038_s41467_021_22204_1
crossref_primary_10_1371_journal_pone_0243115
crossref_primary_10_3934_ipi_2022007
crossref_primary_10_1109_LCOMM_2017_2744638
crossref_primary_10_1007_s10915_024_02668_1
crossref_primary_10_1364_OE_546916
crossref_primary_10_1109_TIP_2018_2820812
crossref_primary_10_1109_TED_2022_3166716
crossref_primary_10_3390_s16111961
crossref_primary_10_1109_TIP_2015_2409566
crossref_primary_10_1109_TIP_2017_2651365
crossref_primary_10_1109_TIP_2019_2909805
crossref_primary_10_3934_math_20221080
crossref_primary_10_1016_j_eswa_2023_120628
crossref_primary_10_1088_1361_6560_62_2_633
crossref_primary_10_1016_j_knosys_2021_106949
crossref_primary_10_1109_TIP_2018_2811546
crossref_primary_10_1109_TCI_2022_3209936
crossref_primary_10_1016_j_sigpro_2021_108186
crossref_primary_10_1109_TGRS_2017_2771155
crossref_primary_10_1109_TIP_2014_2363735
crossref_primary_10_1017_S1431927621012678
crossref_primary_10_1049_cit2_12110
crossref_primary_10_1007_s11340_018_0390_7
crossref_primary_10_1109_TIP_2018_2819821
crossref_primary_10_1016_j_media_2018_03_007
crossref_primary_10_1080_21681163_2013_811039
crossref_primary_10_1186_s13634_014_0189_3
crossref_primary_10_1117_1_JMI_10_5_055501
crossref_primary_10_1109_TGRS_2024_3434349
crossref_primary_10_1002_smll_202400876
crossref_primary_10_1177_09544119221095416
crossref_primary_10_3390_math8111907
crossref_primary_10_1016_j_bspc_2017_05_001
crossref_primary_10_1049_iet_ipr_2018_5504
crossref_primary_10_1093_gigascience_giab032
crossref_primary_10_1002_mp_13950
crossref_primary_10_1109_TGRS_2023_3298679
crossref_primary_10_1137_140977035
crossref_primary_10_1109_TIP_2019_2916976
crossref_primary_10_1109_TPAMI_2022_3170155
crossref_primary_10_1016_j_net_2024_05_015
crossref_primary_10_1016_j_sigpro_2015_02_020
crossref_primary_10_1016_j_nima_2018_06_001
crossref_primary_10_1107_S1600576716008074
crossref_primary_10_1145_2980179_2980254
crossref_primary_10_1016_j_procs_2016_03_087
crossref_primary_10_1109_LSP_2023_3299191
crossref_primary_10_1186_s12938_019_0713_7
crossref_primary_10_1007_s11042_023_15341_w
crossref_primary_10_1007_s11075_017_0463_1
crossref_primary_10_3389_fnins_2021_630250
crossref_primary_10_1109_TCI_2024_3458418
crossref_primary_10_1364_OPTICA_448287
crossref_primary_10_1007_s11600_020_00405_4
crossref_primary_10_1016_j_dsp_2023_103975
crossref_primary_10_1016_j_vlsi_2014_10_004
crossref_primary_10_1016_j_dsp_2021_103012
crossref_primary_10_1016_j_jvcir_2019_04_011
crossref_primary_10_1016_j_optcom_2023_130245
crossref_primary_10_1007_s12046_017_0654_4
crossref_primary_10_1109_ACCESS_2021_3097078
crossref_primary_10_1002_sam_11432
crossref_primary_10_3390_s19010206
crossref_primary_10_1038_srep20640
crossref_primary_10_1016_j_sigpro_2019_04_004
crossref_primary_10_1109_JSTSP_2018_2873047
crossref_primary_10_1109_LSP_2017_2654480
crossref_primary_10_1007_s11042_020_08624_z
crossref_primary_10_1002_jbio_202400186
crossref_primary_10_1007_s10851_013_0435_6
crossref_primary_10_1145_3446918
crossref_primary_10_1007_s11548_018_1746_2
crossref_primary_10_1007_s11548_019_01912_6
crossref_primary_10_1016_j_nima_2023_169006
crossref_primary_10_1142_S0218126617500086
crossref_primary_10_1016_j_artmed_2018_12_006
crossref_primary_10_1016_j_compeleceng_2018_03_014
crossref_primary_10_1016_j_micpro_2021_103864
crossref_primary_10_3389_fphys_2023_1176409
crossref_primary_10_1109_TIM_2022_3228266
crossref_primary_10_1016_j_patcog_2016_03_033
crossref_primary_10_1016_j_nima_2015_04_005
crossref_primary_10_1016_j_physa_2017_04_163
crossref_primary_10_1038_s41598_019_43973_2
crossref_primary_10_1109_TCI_2022_3176536
crossref_primary_10_1109_TNNLS_2015_2479117
crossref_primary_10_1109_TCI_2017_2700203
crossref_primary_10_1016_j_eswa_2025_127166
crossref_primary_10_1016_j_icte_2022_01_012
crossref_primary_10_1038_s41467_024_48082_x
crossref_primary_10_1016_j_imavis_2024_105285
crossref_primary_10_1371_journal_pone_0208503
crossref_primary_10_3390_machines12090601
crossref_primary_10_1002_jbio_202300390
crossref_primary_10_1016_j_artmed_2023_102555
crossref_primary_10_1007_s11042_023_17670_2
crossref_primary_10_1093_micmic_ozac018
crossref_primary_10_1016_j_image_2023_117012
crossref_primary_10_1117_1_JMI_10_6_064004
crossref_primary_10_1109_TIP_2022_3183835
crossref_primary_10_1088_1742_6596_1651_1_012177
crossref_primary_10_1016_j_jrras_2024_101074
crossref_primary_10_1109_TGRS_2019_2897316
crossref_primary_10_1109_TIP_2018_2878326
crossref_primary_10_1109_ACCESS_2022_3181177
crossref_primary_10_3233_JIFS_161590
crossref_primary_10_1007_s11042_023_16452_0
crossref_primary_10_1109_TIP_2019_2957918
crossref_primary_10_1371_journal_pone_0136964
crossref_primary_10_1007_s11042_016_4227_z
crossref_primary_10_1016_j_ymeth_2014_03_010
crossref_primary_10_1155_2020_6707328
crossref_primary_10_1016_j_jvcir_2024_104049
crossref_primary_10_1038_s41467_022_33236_6
crossref_primary_10_1364_AO_53_0000C1
crossref_primary_10_1016_j_ejmp_2021_10_015
crossref_primary_10_1109_TIP_2014_2347204
crossref_primary_10_3847_1538_4357_aaf8ae
crossref_primary_10_1016_j_ultramic_2016_05_005
crossref_primary_10_15388_20_INFOR407
crossref_primary_10_1109_TIP_2022_3164532
crossref_primary_10_1038_s41598_017_09090_8
crossref_primary_10_1109_TIP_2018_2807126
crossref_primary_10_1088_1361_6501_aab2f6
crossref_primary_10_1007_s11042_024_18255_3
crossref_primary_10_1016_j_infrared_2018_07_024
crossref_primary_10_1109_LGRS_2018_2790396
crossref_primary_10_1364_AO_522546
crossref_primary_10_1109_TIP_2020_3032036
crossref_primary_10_1109_TIP_2016_2551639
crossref_primary_10_3762_bjnano_5_210
crossref_primary_10_1007_s11280_024_01258_3
crossref_primary_10_1016_j_bbe_2018_08_005
crossref_primary_10_1016_j_engappai_2023_106301
crossref_primary_10_1016_j_jvcir_2016_05_017
crossref_primary_10_1109_TIP_2023_3327590
crossref_primary_10_1021_acs_chemrev_1c00189
crossref_primary_10_1109_TIP_2021_3122085
crossref_primary_10_1016_j_image_2021_116299
crossref_primary_10_1007_s11548_019_01968_4
crossref_primary_10_1016_j_sigpro_2022_108486
crossref_primary_10_1051_0004_6361_202348425
crossref_primary_10_1007_s11554_014_0405_2
crossref_primary_10_1109_TCBB_2023_3281638
crossref_primary_10_3389_fcomp_2020_00005
crossref_primary_10_1109_TBME_2017_2674521
crossref_primary_10_1016_j_neucom_2024_127799
crossref_primary_10_3934_ipi_2014_8_733
crossref_primary_10_1088_1361_6560_abbb74
crossref_primary_10_3390_electronics11223751
crossref_primary_10_3390_s22228899
crossref_primary_10_1016_j_fsidi_2022_301473
crossref_primary_10_1142_S021972002250007X
crossref_primary_10_1007_s00034_018_01020_x
crossref_primary_10_1080_09500340_2018_1506058
crossref_primary_10_1016_j_bbe_2022_05_001
crossref_primary_10_3390_s18041019
crossref_primary_10_1016_j_neucom_2017_09_010
crossref_primary_10_1142_S1793524516500200
crossref_primary_10_1364_AO_57_005852
crossref_primary_10_1109_JBHI_2020_3024563
crossref_primary_10_1109_LSP_2020_3002652
crossref_primary_10_1109_TPAMI_2023_3301502
crossref_primary_10_1126_sciadv_adk1495
crossref_primary_10_1002_jrs_4824
crossref_primary_10_1109_TCYB_2016_2611679
crossref_primary_10_1109_TIP_2021_3087943
crossref_primary_10_1016_j_nima_2022_167003
crossref_primary_10_1109_TIP_2018_2812083
crossref_primary_10_3390_s19020339
crossref_primary_10_3847_1538_4357_ab4990
crossref_primary_10_1007_s11263_022_01627_3
crossref_primary_10_1109_JSTSP_2015_2505402
crossref_primary_10_3389_fphy_2015_00031
crossref_primary_10_1364_OE_553185
crossref_primary_10_1111_str_12070
crossref_primary_10_1007_s00034_018_0746_3
crossref_primary_10_1016_j_image_2023_117003
crossref_primary_10_1109_TIP_2017_2753404
crossref_primary_10_1364_OE_494311
crossref_primary_10_1088_1361_6560_abbc82
crossref_primary_10_1109_TPAMI_2023_3234026
crossref_primary_10_1186_s12938_021_00874_8
crossref_primary_10_1016_j_ultramic_2020_113116
crossref_primary_10_1364_OE_25_000168
crossref_primary_10_1093_jmicro_dfad012
Cites_doi 10.1109/TIP.2010.2056693
10.1109/TIP.2008.2001399
10.1109/TIP.2011.2121085
10.1017/CBO9780511564352
10.1109/TIP.2003.819861
10.1109/ICASSP.2012.6288074
10.1109/MSP.2011.940411
10.1109/ICIP.2007.4379564
10.2307/2332343
10.1016/j.sigpro.2009.04.035
10.1109/TIP.2010.2073477
10.1109/TIP.2007.901238
10.1109/TIP.2003.818640
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2012.2202675
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
PubMed
MEDLINE - Academic
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 103
ExternalDocumentID 2874203501
22692910
26853908
10_1109_TIP_2012_2202675
6212354
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c410t-aee59611fd7b94ec3f65abca0faf139a6d8919180d2e08fc5f041aeccefe2b9f3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 08:36:38 EDT 2025
Fri Jul 11 10:00:28 EDT 2025
Sun Jun 29 16:58:52 EDT 2025
Thu Apr 03 07:08:19 EDT 2025
Mon Jul 21 09:17:26 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Tue Jul 01 02:02:50 EDT 2025
Tue Aug 26 16:46:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords State of the art
Noise reduction
Stabilization
Imager
Inverse transformation
photon-limited imaging
Algorithm
Computational complexity
Poisson process
Poisson-Gaussian noise
variance stabilization
Denoising
Gaussian noise
Imaging
Signal processing
Maximum likelihood
Electrons
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-aee59611fd7b94ec3f65abca0faf139a6d8919180d2e08fc5f041aeccefe2b9f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22692910
PQID 1272440583
PQPubID 85429
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TIP_2012_2202675
crossref_primary_10_1109_TIP_2012_2202675
pubmed_primary_22692910
pascalfrancis_primary_26853908
proquest_miscellaneous_1283653878
ieee_primary_6212354
proquest_journals_1272440583
proquest_miscellaneous_1273679246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-Jan.
2013-01-00
2013
2013-Jan
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref11
ref10
ref2
ref1
ref8
ref7
foi (ref14) 2009
ref9
ref4
ref3
ref6
ref5
kendall (ref15) 1945; 1
References_xml – ident: ref7
  doi: 10.1109/TIP.2010.2056693
– ident: ref1
  doi: 10.1109/TIP.2008.2001399
– ident: ref8
  doi: 10.1109/TIP.2011.2121085
– ident: ref6
  doi: 10.1017/CBO9780511564352
– ident: ref12
  doi: 10.1109/TIP.2003.819861
– ident: ref5
  doi: 10.1109/ICASSP.2012.6288074
– year: 2009
  ident: ref14
  publication-title: Optimization of Variance-Stabilizing Transformations
– volume: 1
  year: 1945
  ident: ref15
  publication-title: The Advanced Theory of Statistics
– ident: ref13
  doi: 10.1109/MSP.2011.940411
– ident: ref3
  doi: 10.1109/ICIP.2007.4379564
– ident: ref9
  doi: 10.2307/2332343
– ident: ref2
  doi: 10.1016/j.sigpro.2009.04.035
– ident: ref4
  doi: 10.1109/TIP.2010.2073477
– ident: ref10
  doi: 10.1109/TIP.2007.901238
– ident: ref11
  doi: 10.1109/TIP.2003.818640
SSID ssj0014516
Score 2.5337105
Snippet Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 91
SubjectTerms Accuracy
Algorithms
Applied sciences
Approximation methods
Denoising
Detection, estimation, filtering, equalization, prediction
Devices
Exact sciences and technology
Exact solutions
Gaussian noise
Image processing
Information, signal and communications theory
Inverse
Mathematical analysis
Noise
Noise reduction
Optimization
photon-limited imaging
Photonics
Poisson-Gaussian noise
Signal and communications theory
Signal processing
Signal, noise
Studies
Telecommunications and information theory
Transformations
variance stabilization
Title Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise
URI https://ieeexplore.ieee.org/document/6212354
https://www.ncbi.nlm.nih.gov/pubmed/22692910
https://www.proquest.com/docview/1272440583
https://www.proquest.com/docview/1273679246
https://www.proquest.com/docview/1283653878
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjUKogcUHCu7FjO_GxQpSC1NLDVvQW2Y4tISBBZHPpr2fseMOCoOJmxWPFyYztbzwvgJfeW8qoNsTKShLeak5qq1oScrd5hBc1d8Gie34hz674h2txvQOv51gY51x0PnOL0Iy2_La3Y7gqW8qwzwq-C7uouE2xWrPFIBScjZZNUZEKYf_GJFmo5er9ZfDhYgvGQr2lUKwGQQfighA2u3UaxfIqwTlSD_h__FTY4t_IM55Ap_twvpn75HjyZTGuzcLe_JHW8X8_7j7cS1A0P5lk5wHsuO4A9hMszdOiHw7g7lbOwkP49BE3mW84LmToiHdtee9zhJF5ymD9-QZHn3QDirJx-WoLGCMptvLLHpndd-SdHocQwplf4AP3EK5O367enJFUnYFYTos10c4JJSn1bWUUd7b0UmhjdeG1R1ipZVsrVAbromWuqL0VvuBUo8Q475hRvnwEe13fuSeQt0I4RXXpJKecGY4gVrSUGU21oFqZDJYbLjU2pS4PFTS-NlGFKVSDLG4Ci5vE4gxezSO-T2k7bqE9DNyY6RIjMjj-TRDmfiYR4qiizuBoIxlNWvhDQ1mFgKkQdZnBi7kbl2yww-jO9WOkKWWFiq-8jaYuJR5GFb7m8SR1vyaQhPfp3yf-DO6wWLMj3BMdwd76x-ieI3Jam-O4ZH4CL0AStg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoegVKCxAWJ7MaO7cTHClG20F162IreItuxJQQkiN1c-usZO96wIKi4WfFYcTIz9mfPC-Clc4ZQonRmRCky1iiWVUY2mc_d5hBeVMx6i-58IWYX7P0lv9yB12MsjLU2OJ_ZiW8GW37Tmd5flU2FX2c5uwE3cd_nZIjWGm0GvuRssG3yMisR-G-MkrmcLk_PvRcXnVDqKy75cjUIOxAZ-MDZrf0oFFjx7pFqhX_IDaUt_o09wx50sgfzzewH15Mvk36tJ-bqj8SO__t59-BuBKPp8SA992HHtvuwF4FpGtV-tQ93trIWHsCnj7jMfMNxPkdHuG1LO5cikExjDuvPVzj6uF2hMGubLregMZJiKz3vkN1dm71T_coHcaYLfGAfwMXJ2-WbWRbrM2SGkXydKWu5FIS4ptSSWVM4wZU2KnfKIbBUoqkkHgervKE2r5zhLmdEocxYZ6mWrngIu23X2seQNpxbSVRhBSOMaoYwljeEakUUJ0rqBKYbLtUmJi_3NTS-1uEQk8saWVx7FteRxQm8Gkd8HxJ3XEN74Lkx0kVGJHD0myCM_VQgyJF5lcDhRjLqqPqrmtASIVPOqyKBF2M3Kq23xKjWdn2gKUSJR19xHU1VCNyOSnzNo0Hqfk0gCu-Tv0_8OdyaLedn9dnp4sNTuE1DBQ9_a3QIu-sfvX2GOGqtj4L6_AShYxX_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Inversion+of+the+Generalized+Anscombe+Transformation+for+Poisson-Gaussian+Noise&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=M%C3%84KITALO%2C+Markku&rft.au=FOI%2C+Alessandro&rft.date=2013&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1057-7149&rft.volume=22&rft.issue=1-2&rft.spage=91&rft.epage=103&rft_id=info:doi/10.1109%2FTIP.2012.2202675&rft.externalDBID=n%2Fa&rft.externalDocID=26853908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon