Use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts
The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling process difficult to carry out. As an alternative to traditional image segmentation techniques, we propose to register the CAD models by deploying a realistic X-ray simulation on GPU in an optimisation fr...
Saved in:
Published in | Precision engineering Vol. 74; pp. 110 - 125 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0141-6359 |
DOI | 10.1016/j.precisioneng.2021.10.014 |
Cover
Loading…
Abstract | The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling process difficult to carry out. As an alternative to traditional image segmentation techniques, we propose to register the CAD models by deploying a realistic X-ray simulation on GPU in an optimisation framework. A user study was also conducted to compare the measurements made manually by a cohort of volunteers and those produced with our framework. Our implementation relies on open source software only. We numerically modelled the real experiment, taking into account geometrical properties as well as beam hardening, impulse response of the detector, phase contrast, and photon noise. Parameters of the overall model are then optimised so that X-ray projections of the registered the CAD models match the projections from an actual experiment. It appeared that manual measurements can be variable and subject to bias whereas our framework produced more reliable results. The features seen in the real CT image, including artefacts, were accurately replicated in the CT image reconstructed from the simulated data after registration: (i) linear attenuation coefficients are comparable for all the materials, (ii) geometrical properties are accurately recovered, and (iii) simulated images reproduce observed experimental artefacts. We showed that the choice of objective function is crucial to produce high fidelity results. We also demonstrated how to automatically produce CAD models as an optimisation problem, producing a high cross-correlation between the experimental CT slice and the simulated CT slice. These results pave the way towards the use of fast realistic simulation for accurate CAD modelling in tomographic X-ray data.
[Display omitted]
•Fully automatic creation of CAD models by image registration of X-ray projections.•Automatic, accurate and stable geometric analysis of the material scanned by synchrotron microtomography.•Simulation of the imaging chain, incl. beam hardening, impulse response of the detector, phase contrast, and photon noise.•Generation of simulated CT images, including their defects leading to realistic artefacts.•Fast X-ray simulations on GPU into an objective function to optimise. |
---|---|
AbstractList | The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling process difficult to carry out. As an alternative to traditional image segmentation techniques, we propose to register the CAD models by deploying a realistic X-ray simulation on GPU in an optimisation framework. A user study was also conducted to compare the measurements made manually by a cohort of volunteers and those produced with our framework. Our implementation relies on open source software only. We numerically modelled the real experiment, taking into account geometrical properties as well as beam hardening, impulse response of the detector, phase contrast, and photon noise. Parameters of the overall model are then optimised so that X-ray projections of the registered the CAD models match the projections from an actual experiment. It appeared that manual measurements can be variable and subject to bias whereas our framework produced more reliable results. The features seen in the real CT image, including artefacts, were accurately replicated in the CT image reconstructed from the simulated data after registration: (i) linear attenuation coefficients are comparable for all the materials, (ii) geometrical properties are accurately recovered, and (iii) simulated images reproduce observed experimental artefacts. We showed that the choice of objective function is crucial to produce high fidelity results. We also demonstrated how to automatically produce CAD models as an optimisation problem, producing a high cross-correlation between the experimental CT slice and the simulated CT slice. These results pave the way towards the use of fast realistic simulation for accurate CAD modelling in tomographic X-ray data The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling process difficult to carry out. As an alternative to traditional image segmentation techniques, we propose to register the CAD models by deploying a realistic X-ray simulation on GPU in an optimisation framework. A user study was also conducted to compare the measurements made manually by a cohort of volunteers and those produced with our framework. Our implementation relies on open source software only. We numerically modelled the real experiment, taking into account geometrical properties as well as beam hardening, impulse response of the detector, phase contrast, and photon noise. Parameters of the overall model are then optimised so that X-ray projections of the registered the CAD models match the projections from an actual experiment. It appeared that manual measurements can be variable and subject to bias whereas our framework produced more reliable results. The features seen in the real CT image, including artefacts, were accurately replicated in the CT image reconstructed from the simulated data after registration: (i) linear attenuation coefficients are comparable for all the materials, (ii) geometrical properties are accurately recovered, and (iii) simulated images reproduce observed experimental artefacts. We showed that the choice of objective function is crucial to produce high fidelity results. We also demonstrated how to automatically produce CAD models as an optimisation problem, producing a high cross-correlation between the experimental CT slice and the simulated CT slice. These results pave the way towards the use of fast realistic simulation for accurate CAD modelling in tomographic X-ray data. [Display omitted] •Fully automatic creation of CAD models by image registration of X-ray projections.•Automatic, accurate and stable geometric analysis of the material scanned by synchrotron microtomography.•Simulation of the imaging chain, incl. beam hardening, impulse response of the detector, phase contrast, and photon noise.•Generation of simulated CT images, including their defects leading to realistic artefacts.•Fast X-ray simulations on GPU into an objective function to optimise. |
Author | Vidal, Franck P. Mitchell, Iwan T. Létang, Jean M. |
Author_xml | – sequence: 1 givenname: Franck P. orcidid: 0000-0002-2768-4524 surname: Vidal fullname: Vidal, Franck P. email: f.vidal@bangor.ac.uk organization: School of Computer Science and Electronic Engineering, Bangor University, Bangor, UK – sequence: 2 givenname: Iwan T. orcidid: 0000-0002-1456-6027 surname: Mitchell fullname: Mitchell, Iwan T. organization: School of Computer Science and Electronic Engineering, Bangor University, Bangor, UK – sequence: 3 givenname: Jean M. orcidid: 0000-0003-2583-782X surname: Létang fullname: Létang, Jean M. email: jean.letang@insa-lyon.fr organization: Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69373, LYON, France |
BackLink | https://hal.science/hal-03409039$$DView record in HAL |
BookMark | eNqNkD1PwzAQhj2AxOd_OLExtNhxkiZMVC1fUiUY6GxdnUvrKokr21Sw8dNxWoQQUxdburv3Ofs5Y0ed7YixK8GHgov8Zj3cONLGm1julsOEJyI2hlykR-w0nmKQy6w8YWferznno4Knp-xr7glsDTX6AI6wMT4YDd607w2GiPJgO3h8nUOwQB_BoQ4wGU-htRU1HmpnW2iNdjbY1i4dblYxXmFAMB2EFUF8lKdO77b44Gy3hMkboAtUR5a_YMc1Np4uf-5zNn-4f5s8DWYvj8-T8WygU8HDACkpdZFQmWdVxknko2xUJoUYySQt0oWo6qxO8zQnwasKtVwspNSFxIIj6kxKec6u99wVNmrjTIvuU1k06mk8U32Ny5SXXJZbEWdv97PxW947qn8DgqvetVqrv65V77rvRcsxfPcvrE3YqYzyTHMYYrpHRMO0NeSU16Z3WJkYCaqy5hDMN_t8qdg |
CitedBy_id | crossref_primary_10_3390_s23020967 crossref_primary_10_1016_j_mejo_2023_105844 crossref_primary_10_1016_j_procir_2024_10_026 crossref_primary_10_1016_j_simpa_2023_100513 crossref_primary_10_3390_buildings13030587 crossref_primary_10_1016_j_cmpb_2023_107500 crossref_primary_10_3390_ma17133156 |
Cites_doi | 10.1016/j.jvcir.2013.06.010 10.1080/10255842.2012.670855 10.1016/j.nimb.2005.02.003 10.1016/j.nimb.2006.03.009 10.1016/j.precisioneng.2015.12.003 10.1109/TPAMI.1987.4767964 10.1118/1.2126207 10.1109/TMI.2012.2199763 10.1007/s11548-020-02159-2 10.1016/j.gmod.2015.06.002 10.1016/j.nima.2016.06.125 10.1016/j.nima.2017.07.036 10.1118/1.1755568 10.1016/j.compmedimag.2015.12.002 10.1016/j.precisioneng.2019.06.007 10.1088/0957-0233/27/7/072001 10.1109/TVCG.2015.2466992 10.1109/TIP.2003.819861 10.1364/JOSAA.375595 10.1109/TMI.2019.2962615 10.1016/S0262-8856(03)00137-9 10.1162/106365601750190398 10.1038/s43586-021-00015-4 10.1107/S1600577516015812 10.1016/j.media.2018.08.006 |
ContentType | Journal Article |
Copyright | 2021 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.precisioneng.2021.10.014 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EndPage | 125 |
ExternalDocumentID | oai_HAL_hal_03409039v1 10_1016_j_precisioneng_2021_10_014 S0141635921002609 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSH SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AAYWO AAYXX AFXIZ AGCQF AGQPQ AGRNS AIIUN APXCP CITATION 1XC VOOES |
ID | FETCH-LOGICAL-c410t-ae29c82e965d50e167579281732484b1df5f4646e10ddac3bb33c83a80aac5333 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Tue Jun 17 06:52:17 EDT 2025 Tue Jul 01 02:13:03 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Sun Apr 06 06:53:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Computed tomography High performance computing Optimisation X-rays Evolutionary computation Numerical simulation Computer aided analysis |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-ae29c82e965d50e167579281732484b1df5f4646e10ddac3bb33c83a80aac5333 |
ORCID | 0000-0003-2583-782X 0000-0002-2768-4524 0000-0002-1456-6027 |
OpenAccessLink | https://hal.science/hal-03409039 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_03409039v1 crossref_primary_10_1016_j_precisioneng_2021_10_014 crossref_citationtrail_10_1016_j_precisioneng_2021_10_014 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2021_10_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Precision engineering |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Hiller, Hornberger (bib12) 2016; 45 Hehn, Gradl, Dierolf, Morgan, Paganin, Pfeiffer (bib11) 2020; 39 Rogelj, Kovacic (bib24) 2001 Vidal, Villard (bib33) 2016; 49 Wen, Mihail, Al-maliki, Letang, Vidal (bib36) 2019 Allison, Amako, Apostolakis, Arce, Asai, Aso, Bagli, Bagulya, Banerjee, Barrand, Beck, Bogdanov, Brandt, Brown, Burkhardt, Canal, Cano-Ott, Chauvie, Cho, Cirrone, Cooperman, Cortés-Giraldo, Cosmo, Cuttone, Depaola, Desorgher, Dong, Dotti, Elvira, Folger, Francis, Galoyan, Garnier, Gayer, Genser, Grichine, Guatelli, Guèye, Gumplinger, Howard, Hřivnáčová, Hwang, Incerti, Ivanchenko, Ivanchenko, Jones, Jun, Kaitaniemi, Karakatsanis, Karamitros, Kelsey, Kimura, Koi, Kurashige, Lechner, Lee, Longo, Maire, Mancusi, Mantero, Mendoza, Morgan, Murakami, Nikitina, Pandola, Paprocki, Perl, Petrović, Pia, Pokorski, Quesada, Raine, Reis, Ribon, Ristić Fira, Romano, Russo, Santin, Sasaki, Sawkey, Shin, Strakovsky, Taborda, Tanaka, Tomé, Toshito, Tran, Truscott, Urban, Uzhinsky, Verbeke, Verderi, Wendt, Wenzel, Wright, Wright, Yamashita, Yarba, Yoshida (bib1) 2016; 835 ISO Central Secretary (bib14) 2021 Johansson, Forsell (bib16) 2016; 22 Razlighi, Kehtarnavaz, Yousefi (bib23) 2013; 24 Thompson, Maskery, Leach (bib27) 2016; 27 Vidal, Létang, Peix, Cloetens (bib28) 2005; 234 Liu, Bicer, Kettimuthu, Gursoy, De Carlo, Foster (bib19) 2020; 37 Hansen (bib9) 2009 Joskowicz, Cohen, Caplan, Sosna (bib17) 2018; 50 Vidal (bib29) 2021 Villarraga-Gómez, Herazo, Smith (bib34) 2019; 60 Haiderbhai, Ledesma, Lee, Seibold, Fürnstahl, Navab, Fallavollita (bib8) 2020; 15 Tekawade, Sforzo, Matusik, Kastengren, Powell (bib26) 2019 Stayman, Otake, Prince, Khanna, Siewerdsen (bib25) 2012; 31 Auger, Hansen (bib3) 2005 Jailin, Buffière, Hild, Poncelet, Roux (bib15) 2017; 24 Als-Nielsen, Mcmorrow (bib2) 2011 Freud, Duvauchelle, Létang, Babot (bib7) 2006; 248 Endrizzi (bib6) 2018; 878 Vidal, Mitchell, Létang (bib31) 2021 Vidal, Garnier, Freud, Létang, John (bib30) 2009 Berger, Hubbell (bib4) 1987 Kovács, Várady, Salvi (bib18) 2015; 82 Berger, Hubbell, Seltzer, Chang, Coursey, Sukumar, Zucker, Olsen (bib5) 1998 Vidal, Mitchell, Létang (bib32) 2021 Withers, Bouman, Carmignato, Cnudde, Grimaldi, Hagen, Maire, Manley, Du Plessis, Stock (bib37) 2021; 1 Hansen, Ostermeier (bib10) 2001; 9 Monnin, Bulling, Hoszowska, Valley, Meuli, Verdun (bib20) 2004; 31 Peterzol, Olivo, Rigon, Pani, Dreossi (bib22) 2005; 32 Wang, Bovik, Sheikh, Simoncelli (bib35) 2004; 13 Zitová, Flusser (bib38) 2003; 21 Oliveira, Tavares (bib21) 2014; 17 Illingworth, Kittler (bib13) 1987; 9 Hansen (10.1016/j.precisioneng.2021.10.014_bib10) 2001; 9 Auger (10.1016/j.precisioneng.2021.10.014_bib3) 2005 Kovács (10.1016/j.precisioneng.2021.10.014_bib18) 2015; 82 Zitová (10.1016/j.precisioneng.2021.10.014_bib38) 2003; 21 Liu (10.1016/j.precisioneng.2021.10.014_bib19) 2020; 37 Jailin (10.1016/j.precisioneng.2021.10.014_bib15) 2017; 24 Allison (10.1016/j.precisioneng.2021.10.014_bib1) 2016; 835 Peterzol (10.1016/j.precisioneng.2021.10.014_bib22) 2005; 32 Haiderbhai (10.1016/j.precisioneng.2021.10.014_bib8) 2020; 15 ISO Central Secretary (10.1016/j.precisioneng.2021.10.014_bib14) 2021 Stayman (10.1016/j.precisioneng.2021.10.014_bib25) 2012; 31 Vidal (10.1016/j.precisioneng.2021.10.014_bib30) 2009 Vidal (10.1016/j.precisioneng.2021.10.014_bib29) Rogelj (10.1016/j.precisioneng.2021.10.014_bib24) 2001 Vidal (10.1016/j.precisioneng.2021.10.014_bib32) 2021 Vidal (10.1016/j.precisioneng.2021.10.014_bib33) 2016; 49 Hansen (10.1016/j.precisioneng.2021.10.014_bib9) 2009 Oliveira (10.1016/j.precisioneng.2021.10.014_bib21) 2014; 17 Hehn (10.1016/j.precisioneng.2021.10.014_bib11) 2020; 39 Wen (10.1016/j.precisioneng.2021.10.014_bib36) 2019 Thompson (10.1016/j.precisioneng.2021.10.014_bib27) 2016; 27 Freud (10.1016/j.precisioneng.2021.10.014_bib7) 2006; 248 Villarraga-Gómez (10.1016/j.precisioneng.2021.10.014_bib34) 2019; 60 Berger (10.1016/j.precisioneng.2021.10.014_bib4) 1987 Johansson (10.1016/j.precisioneng.2021.10.014_bib16) 2016; 22 Vidal (10.1016/j.precisioneng.2021.10.014_bib31) Vidal (10.1016/j.precisioneng.2021.10.014_bib28) 2005; 234 Withers (10.1016/j.precisioneng.2021.10.014_bib37) 2021; 1 Berger (10.1016/j.precisioneng.2021.10.014_bib5) Joskowicz (10.1016/j.precisioneng.2021.10.014_bib17) 2018; 50 Illingworth (10.1016/j.precisioneng.2021.10.014_bib13) 1987; 9 Wang (10.1016/j.precisioneng.2021.10.014_bib35) 2004; 13 Hiller (10.1016/j.precisioneng.2021.10.014_bib12) 2016; 45 Als-Nielsen (10.1016/j.precisioneng.2021.10.014_bib2) 2011 Endrizzi (10.1016/j.precisioneng.2021.10.014_bib6) 2018; 878 Razlighi (10.1016/j.precisioneng.2021.10.014_bib23) 2013; 24 Tekawade (10.1016/j.precisioneng.2021.10.014_bib26) 2019 Monnin (10.1016/j.precisioneng.2021.10.014_bib20) 2004; 31 |
References_xml | – year: 2021 ident: bib32 article-title: Supplementary material: use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts publication-title: Mendeley Data – volume: 1 year: 2021 ident: bib37 article-title: X-ray computed tomography publication-title: Nature Reviews Methods Primers – volume: 17 start-page: 73 year: 2014 end-page: 93 ident: bib21 article-title: Medical image registration: a review publication-title: Comput Methods Biomech Biomed Eng – volume: 32 start-page: 3617 year: 2005 end-page: 3627 ident: bib22 article-title: The effects of the imaging system on the validity limits of the ray-optical approach to phase contrast imaging publication-title: Med Phys – volume: 9 start-page: 690 year: 1987 end-page: 698 ident: bib13 article-title: The adaptive hough transform publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI- – volume: 60 start-page: 544 year: 2019 end-page: 569 ident: bib34 article-title: X-ray computed tomography: from medical imaging to dimensional metrology publication-title: Precis Eng – volume: 50 start-page: 54 year: 2018 end-page: 64 ident: bib17 article-title: Automatic segmentation variability estimation with segmentation priors publication-title: Med Image Anal – year: 2021 ident: bib31 article-title: GitHub repository: use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts – volume: 878 start-page: 88 year: 2018 end-page: 98 ident: bib6 article-title: X-ray phase-contrast imaging publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip – year: 2019 ident: bib26 article-title: High-fidelity geometry generation from CT data using convolutional neural networks publication-title: Developments in X-ray tomography XII – year: 2011 ident: bib2 article-title: Elements of modern X-ray physics – volume: 835 start-page: 186 year: 2016 end-page: 225 ident: bib1 article-title: Recent developments in Geant4 publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip – volume: 24 start-page: 977 year: 2013 end-page: 987 ident: bib23 article-title: Evaluating similarity measures for brain image registration publication-title: J Vis Commun Image Represent – start-page: 1769 year: 2005 end-page: 1776 ident: bib3 article-title: A restart CMA evolution strategy with increasing population size publication-title: The 2005 IEEE international congress on evolutionary computation (CEC’05) – start-page: 2389 year: 2009 end-page: 2395 ident: bib9 article-title: Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed publication-title: Workshop proceedings of the GECCO genetic and evolutionary computation conference – start-page: 569 year: 2001 end-page: 578 ident: bib24 article-title: Similarity measures for nonrigid registration publication-title: Medical imaging 2001: image processing – volume: 39 start-page: 1975 year: 2020 end-page: 1987 ident: bib11 article-title: Model-based iterative reconstruction for propagation-based phase-contrast x-ray CT including models for the source and the detector publication-title: IEEE Trans Med Imag – volume: 234 start-page: 333 year: 2005 end-page: 348 ident: bib28 article-title: Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging publication-title: Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms – volume: 27 year: 2016 ident: bib27 article-title: X-ray computed tomography for additive manufacturing: a review publication-title: Meas Sci Technol – start-page: 25 year: 2009 end-page: 32 ident: bib30 article-title: Simulation of X-ray attenuation on the GPU publication-title: Proceedings of theory and practice of computer graphics 2009 – volume: 49 start-page: 1 year: 2016 end-page: 15 ident: bib33 article-title: Development and validation of real-time simulation of x-ray imaging with respiratory motion publication-title: Comput Med Imag Graph – year: 1998 ident: bib5 article-title: XCOM: photon cross section database – volume: 248 start-page: 175 year: 2006 end-page: 180 ident: bib7 article-title: Fast and robust ray casting algorithms for virtual x-ray imaging publication-title: Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms – year: 2021 ident: bib29 article-title: gVirtualXRay – volume: 45 start-page: 18 year: 2016 end-page: 32 ident: bib12 article-title: Measurement accuracy in x-ray computed tomography metrology: toward a systematic analysis of interference effects in tomographic imaging publication-title: Precis Eng – volume: 9 start-page: 159 year: 2001 end-page: 195 ident: bib10 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol Comput – volume: 15 start-page: 973 year: 2020 end-page: 980 ident: bib8 article-title: pix2xray: converting RGB images into x-rays using generative adversarial networks publication-title: Int. J. Comput. Assist.Radiol.Surg. – volume: 37 start-page: 422 year: 2020 end-page: 434 ident: bib19 article-title: TomoGAN: low-dose synchrotron x-ray tomography with generative adversarial networks: discussion publication-title: J Opt Soc Am A – volume: 21 start-page: 977 year: 2003 end-page: 1000 ident: bib38 article-title: Image registration methods: a survey publication-title: Image Vis Comput – year: 1987 ident: bib4 article-title: XCOM: photon cross sections on a personal computer. Technical Report – volume: 31 start-page: 1372 year: 2004 end-page: 1383 ident: bib20 article-title: Quantitative characterization of edge enhancement in phase contrast x-ray imaging publication-title: Med Phys – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib35 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process – volume: 22 start-page: 579 year: 2016 end-page: 588 ident: bib16 article-title: Evaluation of parallel coordinates: overview, categorization and guidelines for future research publication-title: IEEE Trans Visual Comput Graph – volume: 24 start-page: 220 year: 2017 end-page: 231 ident: bib15 article-title: On the use of flat-fields for tomographic reconstruction publication-title: J Synchrotron Radiat – year: 2021 ident: bib14 article-title: Geometrical product specifications (GPS) – acceptance and reverification tests for coordinate measuring systems (CMS) – Part 11: CMSs using the principle of X-ray computed tomography (CT). Standard ISO/IEC 10360-11:2021 – volume: 82 start-page: 44 year: 2015 end-page: 57 ident: bib18 article-title: Applying geometric constraints for perfecting CAD models in reverse engineering publication-title: Graph Model – start-page: 105 year: 2019 end-page: 113 ident: bib36 article-title: Registration of 3D triangular models to 2D X-ray projections using black-box optimisation and X-ray simulation publication-title: Computer graphics and visual computing (CGVC), the eurographics association – volume: 31 start-page: 1837 year: 2012 end-page: 1848 ident: bib25 article-title: Model-based tomographic reconstruction of objects containing known components publication-title: IEEE Trans Med Imag – volume: 24 start-page: 977 year: 2013 ident: 10.1016/j.precisioneng.2021.10.014_bib23 article-title: Evaluating similarity measures for brain image registration publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2013.06.010 – ident: 10.1016/j.precisioneng.2021.10.014_bib31 – volume: 17 start-page: 73 year: 2014 ident: 10.1016/j.precisioneng.2021.10.014_bib21 article-title: Medical image registration: a review publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2012.670855 – year: 2021 ident: 10.1016/j.precisioneng.2021.10.014_bib14 – volume: 234 start-page: 333 year: 2005 ident: 10.1016/j.precisioneng.2021.10.014_bib28 article-title: Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging publication-title: Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms doi: 10.1016/j.nimb.2005.02.003 – volume: 248 start-page: 175 year: 2006 ident: 10.1016/j.precisioneng.2021.10.014_bib7 article-title: Fast and robust ray casting algorithms for virtual x-ray imaging publication-title: Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms doi: 10.1016/j.nimb.2006.03.009 – volume: 45 start-page: 18 year: 2016 ident: 10.1016/j.precisioneng.2021.10.014_bib12 article-title: Measurement accuracy in x-ray computed tomography metrology: toward a systematic analysis of interference effects in tomographic imaging publication-title: Precis Eng doi: 10.1016/j.precisioneng.2015.12.003 – volume: 9 start-page: 690 year: 1987 ident: 10.1016/j.precisioneng.2021.10.014_bib13 article-title: The adaptive hough transform publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI- doi: 10.1109/TPAMI.1987.4767964 – year: 2011 ident: 10.1016/j.precisioneng.2021.10.014_bib2 – volume: 32 start-page: 3617 year: 2005 ident: 10.1016/j.precisioneng.2021.10.014_bib22 article-title: The effects of the imaging system on the validity limits of the ray-optical approach to phase contrast imaging publication-title: Med Phys doi: 10.1118/1.2126207 – volume: 31 start-page: 1837 year: 2012 ident: 10.1016/j.precisioneng.2021.10.014_bib25 article-title: Model-based tomographic reconstruction of objects containing known components publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2012.2199763 – start-page: 569 year: 2001 ident: 10.1016/j.precisioneng.2021.10.014_bib24 article-title: Similarity measures for nonrigid registration – start-page: 105 year: 2019 ident: 10.1016/j.precisioneng.2021.10.014_bib36 article-title: Registration of 3D triangular models to 2D X-ray projections using black-box optimisation and X-ray simulation – volume: 15 start-page: 973 year: 2020 ident: 10.1016/j.precisioneng.2021.10.014_bib8 article-title: pix2xray: converting RGB images into x-rays using generative adversarial networks publication-title: Int. J. Comput. Assist.Radiol.Surg. doi: 10.1007/s11548-020-02159-2 – start-page: 2389 year: 2009 ident: 10.1016/j.precisioneng.2021.10.014_bib9 article-title: Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed – volume: 82 start-page: 44 year: 2015 ident: 10.1016/j.precisioneng.2021.10.014_bib18 article-title: Applying geometric constraints for perfecting CAD models in reverse engineering publication-title: Graph Model doi: 10.1016/j.gmod.2015.06.002 – volume: 835 start-page: 186 year: 2016 ident: 10.1016/j.precisioneng.2021.10.014_bib1 article-title: Recent developments in Geant4 publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip doi: 10.1016/j.nima.2016.06.125 – ident: 10.1016/j.precisioneng.2021.10.014_bib5 – year: 2019 ident: 10.1016/j.precisioneng.2021.10.014_bib26 article-title: High-fidelity geometry generation from CT data using convolutional neural networks – volume: 878 start-page: 88 year: 2018 ident: 10.1016/j.precisioneng.2021.10.014_bib6 article-title: X-ray phase-contrast imaging publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip doi: 10.1016/j.nima.2017.07.036 – year: 2021 ident: 10.1016/j.precisioneng.2021.10.014_bib32 article-title: Supplementary material: use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts publication-title: Mendeley Data – volume: 31 start-page: 1372 year: 2004 ident: 10.1016/j.precisioneng.2021.10.014_bib20 article-title: Quantitative characterization of edge enhancement in phase contrast x-ray imaging publication-title: Med Phys doi: 10.1118/1.1755568 – volume: 49 start-page: 1 year: 2016 ident: 10.1016/j.precisioneng.2021.10.014_bib33 article-title: Development and validation of real-time simulation of x-ray imaging with respiratory motion publication-title: Comput Med Imag Graph doi: 10.1016/j.compmedimag.2015.12.002 – volume: 60 start-page: 544 year: 2019 ident: 10.1016/j.precisioneng.2021.10.014_bib34 article-title: X-ray computed tomography: from medical imaging to dimensional metrology publication-title: Precis Eng doi: 10.1016/j.precisioneng.2019.06.007 – volume: 27 year: 2016 ident: 10.1016/j.precisioneng.2021.10.014_bib27 article-title: X-ray computed tomography for additive manufacturing: a review publication-title: Meas Sci Technol doi: 10.1088/0957-0233/27/7/072001 – volume: 22 start-page: 579 year: 2016 ident: 10.1016/j.precisioneng.2021.10.014_bib16 article-title: Evaluation of parallel coordinates: overview, categorization and guidelines for future research publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2015.2466992 – volume: 13 start-page: 600 year: 2004 ident: 10.1016/j.precisioneng.2021.10.014_bib35 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – ident: 10.1016/j.precisioneng.2021.10.014_bib29 – start-page: 1769 year: 2005 ident: 10.1016/j.precisioneng.2021.10.014_bib3 article-title: A restart CMA evolution strategy with increasing population size – volume: 37 start-page: 422 year: 2020 ident: 10.1016/j.precisioneng.2021.10.014_bib19 article-title: TomoGAN: low-dose synchrotron x-ray tomography with generative adversarial networks: discussion publication-title: J Opt Soc Am A doi: 10.1364/JOSAA.375595 – volume: 39 start-page: 1975 year: 2020 ident: 10.1016/j.precisioneng.2021.10.014_bib11 article-title: Model-based iterative reconstruction for propagation-based phase-contrast x-ray CT including models for the source and the detector publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2019.2962615 – volume: 21 start-page: 977 year: 2003 ident: 10.1016/j.precisioneng.2021.10.014_bib38 article-title: Image registration methods: a survey publication-title: Image Vis Comput doi: 10.1016/S0262-8856(03)00137-9 – year: 1987 ident: 10.1016/j.precisioneng.2021.10.014_bib4 – volume: 9 start-page: 159 year: 2001 ident: 10.1016/j.precisioneng.2021.10.014_bib10 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol Comput doi: 10.1162/106365601750190398 – volume: 1 year: 2021 ident: 10.1016/j.precisioneng.2021.10.014_bib37 article-title: X-ray computed tomography publication-title: Nature Reviews Methods Primers doi: 10.1038/s43586-021-00015-4 – volume: 24 start-page: 220 year: 2017 ident: 10.1016/j.precisioneng.2021.10.014_bib15 article-title: On the use of flat-fields for tomographic reconstruction publication-title: J Synchrotron Radiat doi: 10.1107/S1600577516015812 – start-page: 25 year: 2009 ident: 10.1016/j.precisioneng.2021.10.014_bib30 article-title: Simulation of X-ray attenuation on the GPU – volume: 50 start-page: 54 year: 2018 ident: 10.1016/j.precisioneng.2021.10.014_bib17 article-title: Automatic segmentation variability estimation with segmentation priors publication-title: Med Image Anal doi: 10.1016/j.media.2018.08.006 |
SSID | ssj0007804 |
Score | 2.363245 |
Snippet | The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling process difficult to carry out. As an alternative to... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 110 |
SubjectTerms | Computed tomography Computer aided analysis Computer Aided Engineering Computer Science Evolutionary computation High performance computing Image Processing Modeling and Simulation Numerical simulation Optimisation X-rays |
Title | Use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts |
URI | https://dx.doi.org/10.1016/j.precisioneng.2021.10.014 https://hal.science/hal-03409039 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN5UvejB-Iz10UyMVywLC8LBQ9Oo-EjjoU28EdgFrWmBFPRo_OnOLODjYGLihcPCZMnOZubbzTffMHaCB5xIyDQ2vNhRhlCWMrwUHUJSa8KSXMlUq32O3GAibh6chw4btrUwRKtsYn8d03W0bkb6zWr2i-m0T7QkBBOOb3EtjEVFfKReh3v69O2L5kECOzWNkRv0dSs8qjlexaJtZJM94lnR4qfE9OLityS19NRet-r0c7nB1hvcCIP61zZZJ8m22No3NcFt9j4pE8hTSKOyAsSCM63BDOV03rToKiHP4Op-AlUOGJOpPgrQE6C74ZRAlSYwJ4Jelc9rJWs0JwopTDNAoAiFrlWSepaS7tAfYTgGYoVSfUS5wyaXF-NhYDQNFgwpuFkZUWL50rMS33WUYyYcDw9nvuXxM0RZnoi5Sp1UuMJNuKlUJO04tm3p2ZFnRpFEnGjvsuUMF2-PAZc-hnDM9S4iMD9RkavM1JUIJhx8eHGX-e2KhrJRH6cmGLOwpZk9h9-9EZI36B16o8vsT9ui1uD4k9V567jwx44KMVn8yf4Yvf05IclwB4O7kMZMW9D1lv_K9_85yQFbtaieQpPaDtlytXhJjhDlVHFPb-MeWxlc3wajD0W3_ug |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3Bcmh7QEBbQfkaVb2mGydOiA8cVisgwHbFYVfiFiV2AovY7IqkPfPTmXGSFT0gIXHJwdHIlseaebbevAH4RRecVOoic6IsMI40nnGighzCUmvS08Lowqp9jsN4Kq9ug9s1GHa1MEyrbGN_E9NttG5H-u1u9pezWZ9pSQQmAuUJK4yl1mGD1alkDzYGl9fxeBWQWWOnYTIKhw067VFL81o-db1syju6LnriN5O9hHwrT63fdy-uNgOdb8FmCx1x0KxuG9bycge-vBIU_ArP0yrHRYFFWtVIcPDRyjBjNZu3XboqXJR4cTPFeoEUlrlECskZaBviVMjFJjhnjl69mDdi1mTOLFKclUhYEZe2XEnbWSp-Rr_D4QSZGMolEtU3mJ6fTYax0_ZYcLQUbu2kuad05OUqDEzg5oLuDyfKi8QJAa1IZsIUQSFDGebCNSbVfpb5vo78NHLTVBNU9L9Dr6TN2wUUWlEUp3QfEghTuUlD4xahJjwR0CfK9kB1O5roVoCc-2A8Jh3T7CF57Y2EvcH_yBt74K9sl40Mx7usTjvHJf8dqoTyxbvsf5K3VxOyEnc8GCU85vqSX7jUP_Hjg5Mcw6d48meUjC7H1_vw2ePyCstxO4Be_fQ3PyTQU2dH7aF-AfeEAag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+fast+realistic+simulations+on+GPU+to+extract+CAD+models+from+microtomographic+data+in+the+presence+of+strong+CT+artefacts&rft.jtitle=Precision+engineering&rft.au=Vidal%2C+Franck&rft.au=Mitchell%2C+Iwan&rft.au=Letang%2C+J.-M.&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=0141-6359&rft.volume=74&rft.spage=110&rft.epage=125&rft_id=info:doi/10.1016%2Fj.precisioneng.2021.10.014&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03409039v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |