Use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts

The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling process difficult to carry out. As an alternative to traditional image segmentation techniques, we propose to register the CAD models by deploying a realistic X-ray simulation on GPU in an optimisation fr...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 74; pp. 110 - 125
Main Authors Vidal, Franck P., Mitchell, Iwan T., Létang, Jean M.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2022
Elsevier
Subjects
Online AccessGet full text
ISSN0141-6359
DOI10.1016/j.precisioneng.2021.10.014

Cover

Loading…
Abstract The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling process difficult to carry out. As an alternative to traditional image segmentation techniques, we propose to register the CAD models by deploying a realistic X-ray simulation on GPU in an optimisation framework. A user study was also conducted to compare the measurements made manually by a cohort of volunteers and those produced with our framework. Our implementation relies on open source software only. We numerically modelled the real experiment, taking into account geometrical properties as well as beam hardening, impulse response of the detector, phase contrast, and photon noise. Parameters of the overall model are then optimised so that X-ray projections of the registered the CAD models match the projections from an actual experiment. It appeared that manual measurements can be variable and subject to bias whereas our framework produced more reliable results. The features seen in the real CT image, including artefacts, were accurately replicated in the CT image reconstructed from the simulated data after registration: (i) linear attenuation coefficients are comparable for all the materials, (ii) geometrical properties are accurately recovered, and (iii) simulated images reproduce observed experimental artefacts. We showed that the choice of objective function is crucial to produce high fidelity results. We also demonstrated how to automatically produce CAD models as an optimisation problem, producing a high cross-correlation between the experimental CT slice and the simulated CT slice. These results pave the way towards the use of fast realistic simulation for accurate CAD modelling in tomographic X-ray data. [Display omitted] •Fully automatic creation of CAD models by image registration of X-ray projections.•Automatic, accurate and stable geometric analysis of the material scanned by synchrotron microtomography.•Simulation of the imaging chain, incl. beam hardening, impulse response of the detector, phase contrast, and photon noise.•Generation of simulated CT images, including their defects leading to realistic artefacts.•Fast X-ray simulations on GPU into an objective function to optimise.
AbstractList The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling process difficult to carry out. As an alternative to traditional image segmentation techniques, we propose to register the CAD models by deploying a realistic X-ray simulation on GPU in an optimisation framework. A user study was also conducted to compare the measurements made manually by a cohort of volunteers and those produced with our framework. Our implementation relies on open source software only. We numerically modelled the real experiment, taking into account geometrical properties as well as beam hardening, impulse response of the detector, phase contrast, and photon noise. Parameters of the overall model are then optimised so that X-ray projections of the registered the CAD models match the projections from an actual experiment. It appeared that manual measurements can be variable and subject to bias whereas our framework produced more reliable results. The features seen in the real CT image, including artefacts, were accurately replicated in the CT image reconstructed from the simulated data after registration: (i) linear attenuation coefficients are comparable for all the materials, (ii) geometrical properties are accurately recovered, and (iii) simulated images reproduce observed experimental artefacts. We showed that the choice of objective function is crucial to produce high fidelity results. We also demonstrated how to automatically produce CAD models as an optimisation problem, producing a high cross-correlation between the experimental CT slice and the simulated CT slice. These results pave the way towards the use of fast realistic simulation for accurate CAD modelling in tomographic X-ray data
The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling process difficult to carry out. As an alternative to traditional image segmentation techniques, we propose to register the CAD models by deploying a realistic X-ray simulation on GPU in an optimisation framework. A user study was also conducted to compare the measurements made manually by a cohort of volunteers and those produced with our framework. Our implementation relies on open source software only. We numerically modelled the real experiment, taking into account geometrical properties as well as beam hardening, impulse response of the detector, phase contrast, and photon noise. Parameters of the overall model are then optimised so that X-ray projections of the registered the CAD models match the projections from an actual experiment. It appeared that manual measurements can be variable and subject to bias whereas our framework produced more reliable results. The features seen in the real CT image, including artefacts, were accurately replicated in the CT image reconstructed from the simulated data after registration: (i) linear attenuation coefficients are comparable for all the materials, (ii) geometrical properties are accurately recovered, and (iii) simulated images reproduce observed experimental artefacts. We showed that the choice of objective function is crucial to produce high fidelity results. We also demonstrated how to automatically produce CAD models as an optimisation problem, producing a high cross-correlation between the experimental CT slice and the simulated CT slice. These results pave the way towards the use of fast realistic simulation for accurate CAD modelling in tomographic X-ray data. [Display omitted] •Fully automatic creation of CAD models by image registration of X-ray projections.•Automatic, accurate and stable geometric analysis of the material scanned by synchrotron microtomography.•Simulation of the imaging chain, incl. beam hardening, impulse response of the detector, phase contrast, and photon noise.•Generation of simulated CT images, including their defects leading to realistic artefacts.•Fast X-ray simulations on GPU into an objective function to optimise.
Author Vidal, Franck P.
Mitchell, Iwan T.
Létang, Jean M.
Author_xml – sequence: 1
  givenname: Franck P.
  orcidid: 0000-0002-2768-4524
  surname: Vidal
  fullname: Vidal, Franck P.
  email: f.vidal@bangor.ac.uk
  organization: School of Computer Science and Electronic Engineering, Bangor University, Bangor, UK
– sequence: 2
  givenname: Iwan T.
  orcidid: 0000-0002-1456-6027
  surname: Mitchell
  fullname: Mitchell, Iwan T.
  organization: School of Computer Science and Electronic Engineering, Bangor University, Bangor, UK
– sequence: 3
  givenname: Jean M.
  orcidid: 0000-0003-2583-782X
  surname: Létang
  fullname: Létang, Jean M.
  email: jean.letang@insa-lyon.fr
  organization: Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69373, LYON, France
BackLink https://hal.science/hal-03409039$$DView record in HAL
BookMark eNqNkD1PwzAQhj2AxOd_OLExtNhxkiZMVC1fUiUY6GxdnUvrKokr21Sw8dNxWoQQUxdburv3Ofs5Y0ed7YixK8GHgov8Zj3cONLGm1julsOEJyI2hlykR-w0nmKQy6w8YWferznno4Knp-xr7glsDTX6AI6wMT4YDd607w2GiPJgO3h8nUOwQB_BoQ4wGU-htRU1HmpnW2iNdjbY1i4dblYxXmFAMB2EFUF8lKdO77b44Gy3hMkboAtUR5a_YMc1Np4uf-5zNn-4f5s8DWYvj8-T8WygU8HDACkpdZFQmWdVxknko2xUJoUYySQt0oWo6qxO8zQnwasKtVwspNSFxIIj6kxKec6u99wVNmrjTIvuU1k06mk8U32Ny5SXXJZbEWdv97PxW947qn8DgqvetVqrv65V77rvRcsxfPcvrE3YqYzyTHMYYrpHRMO0NeSU16Z3WJkYCaqy5hDMN_t8qdg
CitedBy_id crossref_primary_10_3390_s23020967
crossref_primary_10_1016_j_mejo_2023_105844
crossref_primary_10_1016_j_procir_2024_10_026
crossref_primary_10_1016_j_simpa_2023_100513
crossref_primary_10_3390_buildings13030587
crossref_primary_10_1016_j_cmpb_2023_107500
crossref_primary_10_3390_ma17133156
Cites_doi 10.1016/j.jvcir.2013.06.010
10.1080/10255842.2012.670855
10.1016/j.nimb.2005.02.003
10.1016/j.nimb.2006.03.009
10.1016/j.precisioneng.2015.12.003
10.1109/TPAMI.1987.4767964
10.1118/1.2126207
10.1109/TMI.2012.2199763
10.1007/s11548-020-02159-2
10.1016/j.gmod.2015.06.002
10.1016/j.nima.2016.06.125
10.1016/j.nima.2017.07.036
10.1118/1.1755568
10.1016/j.compmedimag.2015.12.002
10.1016/j.precisioneng.2019.06.007
10.1088/0957-0233/27/7/072001
10.1109/TVCG.2015.2466992
10.1109/TIP.2003.819861
10.1364/JOSAA.375595
10.1109/TMI.2019.2962615
10.1016/S0262-8856(03)00137-9
10.1162/106365601750190398
10.1038/s43586-021-00015-4
10.1107/S1600577516015812
10.1016/j.media.2018.08.006
ContentType Journal Article
Copyright 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.precisioneng.2021.10.014
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 125
ExternalDocumentID oai_HAL_hal_03409039v1
10_1016_j_precisioneng_2021_10_014
S0141635921002609
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c410t-ae29c82e965d50e167579281732484b1df5f4646e10ddac3bb33c83a80aac5333
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Tue Jun 17 06:52:17 EDT 2025
Tue Jul 01 02:13:03 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Sun Apr 06 06:53:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Computed tomography
High performance computing
Optimisation
X-rays
Evolutionary computation
Numerical simulation
Computer aided analysis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-ae29c82e965d50e167579281732484b1df5f4646e10ddac3bb33c83a80aac5333
ORCID 0000-0003-2583-782X
0000-0002-2768-4524
0000-0002-1456-6027
OpenAccessLink https://hal.science/hal-03409039
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_03409039v1
crossref_primary_10_1016_j_precisioneng_2021_10_014
crossref_citationtrail_10_1016_j_precisioneng_2021_10_014
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2021_10_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Precision engineering
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hiller, Hornberger (bib12) 2016; 45
Hehn, Gradl, Dierolf, Morgan, Paganin, Pfeiffer (bib11) 2020; 39
Rogelj, Kovacic (bib24) 2001
Vidal, Villard (bib33) 2016; 49
Wen, Mihail, Al-maliki, Letang, Vidal (bib36) 2019
Allison, Amako, Apostolakis, Arce, Asai, Aso, Bagli, Bagulya, Banerjee, Barrand, Beck, Bogdanov, Brandt, Brown, Burkhardt, Canal, Cano-Ott, Chauvie, Cho, Cirrone, Cooperman, Cortés-Giraldo, Cosmo, Cuttone, Depaola, Desorgher, Dong, Dotti, Elvira, Folger, Francis, Galoyan, Garnier, Gayer, Genser, Grichine, Guatelli, Guèye, Gumplinger, Howard, Hřivnáčová, Hwang, Incerti, Ivanchenko, Ivanchenko, Jones, Jun, Kaitaniemi, Karakatsanis, Karamitros, Kelsey, Kimura, Koi, Kurashige, Lechner, Lee, Longo, Maire, Mancusi, Mantero, Mendoza, Morgan, Murakami, Nikitina, Pandola, Paprocki, Perl, Petrović, Pia, Pokorski, Quesada, Raine, Reis, Ribon, Ristić Fira, Romano, Russo, Santin, Sasaki, Sawkey, Shin, Strakovsky, Taborda, Tanaka, Tomé, Toshito, Tran, Truscott, Urban, Uzhinsky, Verbeke, Verderi, Wendt, Wenzel, Wright, Wright, Yamashita, Yarba, Yoshida (bib1) 2016; 835
ISO Central Secretary (bib14) 2021
Johansson, Forsell (bib16) 2016; 22
Razlighi, Kehtarnavaz, Yousefi (bib23) 2013; 24
Thompson, Maskery, Leach (bib27) 2016; 27
Vidal, Létang, Peix, Cloetens (bib28) 2005; 234
Liu, Bicer, Kettimuthu, Gursoy, De Carlo, Foster (bib19) 2020; 37
Hansen (bib9) 2009
Joskowicz, Cohen, Caplan, Sosna (bib17) 2018; 50
Vidal (bib29) 2021
Villarraga-Gómez, Herazo, Smith (bib34) 2019; 60
Haiderbhai, Ledesma, Lee, Seibold, Fürnstahl, Navab, Fallavollita (bib8) 2020; 15
Tekawade, Sforzo, Matusik, Kastengren, Powell (bib26) 2019
Stayman, Otake, Prince, Khanna, Siewerdsen (bib25) 2012; 31
Auger, Hansen (bib3) 2005
Jailin, Buffière, Hild, Poncelet, Roux (bib15) 2017; 24
Als-Nielsen, Mcmorrow (bib2) 2011
Freud, Duvauchelle, Létang, Babot (bib7) 2006; 248
Endrizzi (bib6) 2018; 878
Vidal, Mitchell, Létang (bib31) 2021
Vidal, Garnier, Freud, Létang, John (bib30) 2009
Berger, Hubbell (bib4) 1987
Kovács, Várady, Salvi (bib18) 2015; 82
Berger, Hubbell, Seltzer, Chang, Coursey, Sukumar, Zucker, Olsen (bib5) 1998
Vidal, Mitchell, Létang (bib32) 2021
Withers, Bouman, Carmignato, Cnudde, Grimaldi, Hagen, Maire, Manley, Du Plessis, Stock (bib37) 2021; 1
Hansen, Ostermeier (bib10) 2001; 9
Monnin, Bulling, Hoszowska, Valley, Meuli, Verdun (bib20) 2004; 31
Peterzol, Olivo, Rigon, Pani, Dreossi (bib22) 2005; 32
Wang, Bovik, Sheikh, Simoncelli (bib35) 2004; 13
Zitová, Flusser (bib38) 2003; 21
Oliveira, Tavares (bib21) 2014; 17
Illingworth, Kittler (bib13) 1987; 9
Hansen (10.1016/j.precisioneng.2021.10.014_bib10) 2001; 9
Auger (10.1016/j.precisioneng.2021.10.014_bib3) 2005
Kovács (10.1016/j.precisioneng.2021.10.014_bib18) 2015; 82
Zitová (10.1016/j.precisioneng.2021.10.014_bib38) 2003; 21
Liu (10.1016/j.precisioneng.2021.10.014_bib19) 2020; 37
Jailin (10.1016/j.precisioneng.2021.10.014_bib15) 2017; 24
Allison (10.1016/j.precisioneng.2021.10.014_bib1) 2016; 835
Peterzol (10.1016/j.precisioneng.2021.10.014_bib22) 2005; 32
Haiderbhai (10.1016/j.precisioneng.2021.10.014_bib8) 2020; 15
ISO Central Secretary (10.1016/j.precisioneng.2021.10.014_bib14) 2021
Stayman (10.1016/j.precisioneng.2021.10.014_bib25) 2012; 31
Vidal (10.1016/j.precisioneng.2021.10.014_bib30) 2009
Vidal (10.1016/j.precisioneng.2021.10.014_bib29)
Rogelj (10.1016/j.precisioneng.2021.10.014_bib24) 2001
Vidal (10.1016/j.precisioneng.2021.10.014_bib32) 2021
Vidal (10.1016/j.precisioneng.2021.10.014_bib33) 2016; 49
Hansen (10.1016/j.precisioneng.2021.10.014_bib9) 2009
Oliveira (10.1016/j.precisioneng.2021.10.014_bib21) 2014; 17
Hehn (10.1016/j.precisioneng.2021.10.014_bib11) 2020; 39
Wen (10.1016/j.precisioneng.2021.10.014_bib36) 2019
Thompson (10.1016/j.precisioneng.2021.10.014_bib27) 2016; 27
Freud (10.1016/j.precisioneng.2021.10.014_bib7) 2006; 248
Villarraga-Gómez (10.1016/j.precisioneng.2021.10.014_bib34) 2019; 60
Berger (10.1016/j.precisioneng.2021.10.014_bib4) 1987
Johansson (10.1016/j.precisioneng.2021.10.014_bib16) 2016; 22
Vidal (10.1016/j.precisioneng.2021.10.014_bib31)
Vidal (10.1016/j.precisioneng.2021.10.014_bib28) 2005; 234
Withers (10.1016/j.precisioneng.2021.10.014_bib37) 2021; 1
Berger (10.1016/j.precisioneng.2021.10.014_bib5)
Joskowicz (10.1016/j.precisioneng.2021.10.014_bib17) 2018; 50
Illingworth (10.1016/j.precisioneng.2021.10.014_bib13) 1987; 9
Wang (10.1016/j.precisioneng.2021.10.014_bib35) 2004; 13
Hiller (10.1016/j.precisioneng.2021.10.014_bib12) 2016; 45
Als-Nielsen (10.1016/j.precisioneng.2021.10.014_bib2) 2011
Endrizzi (10.1016/j.precisioneng.2021.10.014_bib6) 2018; 878
Razlighi (10.1016/j.precisioneng.2021.10.014_bib23) 2013; 24
Tekawade (10.1016/j.precisioneng.2021.10.014_bib26) 2019
Monnin (10.1016/j.precisioneng.2021.10.014_bib20) 2004; 31
References_xml – year: 2021
  ident: bib32
  article-title: Supplementary material: use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts
  publication-title: Mendeley Data
– volume: 1
  year: 2021
  ident: bib37
  article-title: X-ray computed tomography
  publication-title: Nature Reviews Methods Primers
– volume: 17
  start-page: 73
  year: 2014
  end-page: 93
  ident: bib21
  article-title: Medical image registration: a review
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 32
  start-page: 3617
  year: 2005
  end-page: 3627
  ident: bib22
  article-title: The effects of the imaging system on the validity limits of the ray-optical approach to phase contrast imaging
  publication-title: Med Phys
– volume: 9
  start-page: 690
  year: 1987
  end-page: 698
  ident: bib13
  article-title: The adaptive hough transform
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-
– volume: 60
  start-page: 544
  year: 2019
  end-page: 569
  ident: bib34
  article-title: X-ray computed tomography: from medical imaging to dimensional metrology
  publication-title: Precis Eng
– volume: 50
  start-page: 54
  year: 2018
  end-page: 64
  ident: bib17
  article-title: Automatic segmentation variability estimation with segmentation priors
  publication-title: Med Image Anal
– year: 2021
  ident: bib31
  article-title: GitHub repository: use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts
– volume: 878
  start-page: 88
  year: 2018
  end-page: 98
  ident: bib6
  article-title: X-ray phase-contrast imaging
  publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip
– year: 2019
  ident: bib26
  article-title: High-fidelity geometry generation from CT data using convolutional neural networks
  publication-title: Developments in X-ray tomography XII
– year: 2011
  ident: bib2
  article-title: Elements of modern X-ray physics
– volume: 835
  start-page: 186
  year: 2016
  end-page: 225
  ident: bib1
  article-title: Recent developments in Geant4
  publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip
– volume: 24
  start-page: 977
  year: 2013
  end-page: 987
  ident: bib23
  article-title: Evaluating similarity measures for brain image registration
  publication-title: J Vis Commun Image Represent
– start-page: 1769
  year: 2005
  end-page: 1776
  ident: bib3
  article-title: A restart CMA evolution strategy with increasing population size
  publication-title: The 2005 IEEE international congress on evolutionary computation (CEC’05)
– start-page: 2389
  year: 2009
  end-page: 2395
  ident: bib9
  article-title: Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed
  publication-title: Workshop proceedings of the GECCO genetic and evolutionary computation conference
– start-page: 569
  year: 2001
  end-page: 578
  ident: bib24
  article-title: Similarity measures for nonrigid registration
  publication-title: Medical imaging 2001: image processing
– volume: 39
  start-page: 1975
  year: 2020
  end-page: 1987
  ident: bib11
  article-title: Model-based iterative reconstruction for propagation-based phase-contrast x-ray CT including models for the source and the detector
  publication-title: IEEE Trans Med Imag
– volume: 234
  start-page: 333
  year: 2005
  end-page: 348
  ident: bib28
  article-title: Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging
  publication-title: Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms
– volume: 27
  year: 2016
  ident: bib27
  article-title: X-ray computed tomography for additive manufacturing: a review
  publication-title: Meas Sci Technol
– start-page: 25
  year: 2009
  end-page: 32
  ident: bib30
  article-title: Simulation of X-ray attenuation on the GPU
  publication-title: Proceedings of theory and practice of computer graphics 2009
– volume: 49
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib33
  article-title: Development and validation of real-time simulation of x-ray imaging with respiratory motion
  publication-title: Comput Med Imag Graph
– year: 1998
  ident: bib5
  article-title: XCOM: photon cross section database
– volume: 248
  start-page: 175
  year: 2006
  end-page: 180
  ident: bib7
  article-title: Fast and robust ray casting algorithms for virtual x-ray imaging
  publication-title: Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms
– year: 2021
  ident: bib29
  article-title: gVirtualXRay
– volume: 45
  start-page: 18
  year: 2016
  end-page: 32
  ident: bib12
  article-title: Measurement accuracy in x-ray computed tomography metrology: toward a systematic analysis of interference effects in tomographic imaging
  publication-title: Precis Eng
– volume: 9
  start-page: 159
  year: 2001
  end-page: 195
  ident: bib10
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol Comput
– volume: 15
  start-page: 973
  year: 2020
  end-page: 980
  ident: bib8
  article-title: pix2xray: converting RGB images into x-rays using generative adversarial networks
  publication-title: Int. J. Comput. Assist.Radiol.Surg.
– volume: 37
  start-page: 422
  year: 2020
  end-page: 434
  ident: bib19
  article-title: TomoGAN: low-dose synchrotron x-ray tomography with generative adversarial networks: discussion
  publication-title: J Opt Soc Am A
– volume: 21
  start-page: 977
  year: 2003
  end-page: 1000
  ident: bib38
  article-title: Image registration methods: a survey
  publication-title: Image Vis Comput
– year: 1987
  ident: bib4
  article-title: XCOM: photon cross sections on a personal computer. Technical Report
– volume: 31
  start-page: 1372
  year: 2004
  end-page: 1383
  ident: bib20
  article-title: Quantitative characterization of edge enhancement in phase contrast x-ray imaging
  publication-title: Med Phys
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib35
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 22
  start-page: 579
  year: 2016
  end-page: 588
  ident: bib16
  article-title: Evaluation of parallel coordinates: overview, categorization and guidelines for future research
  publication-title: IEEE Trans Visual Comput Graph
– volume: 24
  start-page: 220
  year: 2017
  end-page: 231
  ident: bib15
  article-title: On the use of flat-fields for tomographic reconstruction
  publication-title: J Synchrotron Radiat
– year: 2021
  ident: bib14
  article-title: Geometrical product specifications (GPS) – acceptance and reverification tests for coordinate measuring systems (CMS) – Part 11: CMSs using the principle of X-ray computed tomography (CT). Standard ISO/IEC 10360-11:2021
– volume: 82
  start-page: 44
  year: 2015
  end-page: 57
  ident: bib18
  article-title: Applying geometric constraints for perfecting CAD models in reverse engineering
  publication-title: Graph Model
– start-page: 105
  year: 2019
  end-page: 113
  ident: bib36
  article-title: Registration of 3D triangular models to 2D X-ray projections using black-box optimisation and X-ray simulation
  publication-title: Computer graphics and visual computing (CGVC), the eurographics association
– volume: 31
  start-page: 1837
  year: 2012
  end-page: 1848
  ident: bib25
  article-title: Model-based tomographic reconstruction of objects containing known components
  publication-title: IEEE Trans Med Imag
– volume: 24
  start-page: 977
  year: 2013
  ident: 10.1016/j.precisioneng.2021.10.014_bib23
  article-title: Evaluating similarity measures for brain image registration
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2013.06.010
– ident: 10.1016/j.precisioneng.2021.10.014_bib31
– volume: 17
  start-page: 73
  year: 2014
  ident: 10.1016/j.precisioneng.2021.10.014_bib21
  article-title: Medical image registration: a review
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2012.670855
– year: 2021
  ident: 10.1016/j.precisioneng.2021.10.014_bib14
– volume: 234
  start-page: 333
  year: 2005
  ident: 10.1016/j.precisioneng.2021.10.014_bib28
  article-title: Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging
  publication-title: Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms
  doi: 10.1016/j.nimb.2005.02.003
– volume: 248
  start-page: 175
  year: 2006
  ident: 10.1016/j.precisioneng.2021.10.014_bib7
  article-title: Fast and robust ray casting algorithms for virtual x-ray imaging
  publication-title: Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms
  doi: 10.1016/j.nimb.2006.03.009
– volume: 45
  start-page: 18
  year: 2016
  ident: 10.1016/j.precisioneng.2021.10.014_bib12
  article-title: Measurement accuracy in x-ray computed tomography metrology: toward a systematic analysis of interference effects in tomographic imaging
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2015.12.003
– volume: 9
  start-page: 690
  year: 1987
  ident: 10.1016/j.precisioneng.2021.10.014_bib13
  article-title: The adaptive hough transform
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-
  doi: 10.1109/TPAMI.1987.4767964
– year: 2011
  ident: 10.1016/j.precisioneng.2021.10.014_bib2
– volume: 32
  start-page: 3617
  year: 2005
  ident: 10.1016/j.precisioneng.2021.10.014_bib22
  article-title: The effects of the imaging system on the validity limits of the ray-optical approach to phase contrast imaging
  publication-title: Med Phys
  doi: 10.1118/1.2126207
– volume: 31
  start-page: 1837
  year: 2012
  ident: 10.1016/j.precisioneng.2021.10.014_bib25
  article-title: Model-based tomographic reconstruction of objects containing known components
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2012.2199763
– start-page: 569
  year: 2001
  ident: 10.1016/j.precisioneng.2021.10.014_bib24
  article-title: Similarity measures for nonrigid registration
– start-page: 105
  year: 2019
  ident: 10.1016/j.precisioneng.2021.10.014_bib36
  article-title: Registration of 3D triangular models to 2D X-ray projections using black-box optimisation and X-ray simulation
– volume: 15
  start-page: 973
  year: 2020
  ident: 10.1016/j.precisioneng.2021.10.014_bib8
  article-title: pix2xray: converting RGB images into x-rays using generative adversarial networks
  publication-title: Int. J. Comput. Assist.Radiol.Surg.
  doi: 10.1007/s11548-020-02159-2
– start-page: 2389
  year: 2009
  ident: 10.1016/j.precisioneng.2021.10.014_bib9
  article-title: Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed
– volume: 82
  start-page: 44
  year: 2015
  ident: 10.1016/j.precisioneng.2021.10.014_bib18
  article-title: Applying geometric constraints for perfecting CAD models in reverse engineering
  publication-title: Graph Model
  doi: 10.1016/j.gmod.2015.06.002
– volume: 835
  start-page: 186
  year: 2016
  ident: 10.1016/j.precisioneng.2021.10.014_bib1
  article-title: Recent developments in Geant4
  publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip
  doi: 10.1016/j.nima.2016.06.125
– ident: 10.1016/j.precisioneng.2021.10.014_bib5
– year: 2019
  ident: 10.1016/j.precisioneng.2021.10.014_bib26
  article-title: High-fidelity geometry generation from CT data using convolutional neural networks
– volume: 878
  start-page: 88
  year: 2018
  ident: 10.1016/j.precisioneng.2021.10.014_bib6
  article-title: X-ray phase-contrast imaging
  publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip
  doi: 10.1016/j.nima.2017.07.036
– year: 2021
  ident: 10.1016/j.precisioneng.2021.10.014_bib32
  article-title: Supplementary material: use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts
  publication-title: Mendeley Data
– volume: 31
  start-page: 1372
  year: 2004
  ident: 10.1016/j.precisioneng.2021.10.014_bib20
  article-title: Quantitative characterization of edge enhancement in phase contrast x-ray imaging
  publication-title: Med Phys
  doi: 10.1118/1.1755568
– volume: 49
  start-page: 1
  year: 2016
  ident: 10.1016/j.precisioneng.2021.10.014_bib33
  article-title: Development and validation of real-time simulation of x-ray imaging with respiratory motion
  publication-title: Comput Med Imag Graph
  doi: 10.1016/j.compmedimag.2015.12.002
– volume: 60
  start-page: 544
  year: 2019
  ident: 10.1016/j.precisioneng.2021.10.014_bib34
  article-title: X-ray computed tomography: from medical imaging to dimensional metrology
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2019.06.007
– volume: 27
  year: 2016
  ident: 10.1016/j.precisioneng.2021.10.014_bib27
  article-title: X-ray computed tomography for additive manufacturing: a review
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/27/7/072001
– volume: 22
  start-page: 579
  year: 2016
  ident: 10.1016/j.precisioneng.2021.10.014_bib16
  article-title: Evaluation of parallel coordinates: overview, categorization and guidelines for future research
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2015.2466992
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.precisioneng.2021.10.014_bib35
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– ident: 10.1016/j.precisioneng.2021.10.014_bib29
– start-page: 1769
  year: 2005
  ident: 10.1016/j.precisioneng.2021.10.014_bib3
  article-title: A restart CMA evolution strategy with increasing population size
– volume: 37
  start-page: 422
  year: 2020
  ident: 10.1016/j.precisioneng.2021.10.014_bib19
  article-title: TomoGAN: low-dose synchrotron x-ray tomography with generative adversarial networks: discussion
  publication-title: J Opt Soc Am A
  doi: 10.1364/JOSAA.375595
– volume: 39
  start-page: 1975
  year: 2020
  ident: 10.1016/j.precisioneng.2021.10.014_bib11
  article-title: Model-based iterative reconstruction for propagation-based phase-contrast x-ray CT including models for the source and the detector
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2019.2962615
– volume: 21
  start-page: 977
  year: 2003
  ident: 10.1016/j.precisioneng.2021.10.014_bib38
  article-title: Image registration methods: a survey
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(03)00137-9
– year: 1987
  ident: 10.1016/j.precisioneng.2021.10.014_bib4
– volume: 9
  start-page: 159
  year: 2001
  ident: 10.1016/j.precisioneng.2021.10.014_bib10
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol Comput
  doi: 10.1162/106365601750190398
– volume: 1
  year: 2021
  ident: 10.1016/j.precisioneng.2021.10.014_bib37
  article-title: X-ray computed tomography
  publication-title: Nature Reviews Methods Primers
  doi: 10.1038/s43586-021-00015-4
– volume: 24
  start-page: 220
  year: 2017
  ident: 10.1016/j.precisioneng.2021.10.014_bib15
  article-title: On the use of flat-fields for tomographic reconstruction
  publication-title: J Synchrotron Radiat
  doi: 10.1107/S1600577516015812
– start-page: 25
  year: 2009
  ident: 10.1016/j.precisioneng.2021.10.014_bib30
  article-title: Simulation of X-ray attenuation on the GPU
– volume: 50
  start-page: 54
  year: 2018
  ident: 10.1016/j.precisioneng.2021.10.014_bib17
  article-title: Automatic segmentation variability estimation with segmentation priors
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.08.006
SSID ssj0007804
Score 2.363245
Snippet The presence of strong imaging artefacts in microtomographic X-ray data makes the CAD modelling process difficult to carry out. As an alternative to...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 110
SubjectTerms Computed tomography
Computer aided analysis
Computer Aided Engineering
Computer Science
Evolutionary computation
High performance computing
Image Processing
Modeling and Simulation
Numerical simulation
Optimisation
X-rays
Title Use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts
URI https://dx.doi.org/10.1016/j.precisioneng.2021.10.014
https://hal.science/hal-03409039
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN5UvejB-Iz10UyMVywLC8LBQ9Oo-EjjoU28EdgFrWmBFPRo_OnOLODjYGLihcPCZMnOZubbzTffMHaCB5xIyDQ2vNhRhlCWMrwUHUJSa8KSXMlUq32O3GAibh6chw4btrUwRKtsYn8d03W0bkb6zWr2i-m0T7QkBBOOb3EtjEVFfKReh3v69O2L5kECOzWNkRv0dSs8qjlexaJtZJM94lnR4qfE9OLityS19NRet-r0c7nB1hvcCIP61zZZJ8m22No3NcFt9j4pE8hTSKOyAsSCM63BDOV03rToKiHP4Op-AlUOGJOpPgrQE6C74ZRAlSYwJ4Jelc9rJWs0JwopTDNAoAiFrlWSepaS7tAfYTgGYoVSfUS5wyaXF-NhYDQNFgwpuFkZUWL50rMS33WUYyYcDw9nvuXxM0RZnoi5Sp1UuMJNuKlUJO04tm3p2ZFnRpFEnGjvsuUMF2-PAZc-hnDM9S4iMD9RkavM1JUIJhx8eHGX-e2KhrJRH6cmGLOwpZk9h9-9EZI36B16o8vsT9ui1uD4k9V567jwx44KMVn8yf4Yvf05IclwB4O7kMZMW9D1lv_K9_85yQFbtaieQpPaDtlytXhJjhDlVHFPb-MeWxlc3wajD0W3_ug
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3Bcmh7QEBbQfkaVb2mGydOiA8cVisgwHbFYVfiFiV2AovY7IqkPfPTmXGSFT0gIXHJwdHIlseaebbevAH4RRecVOoic6IsMI40nnGighzCUmvS08Lowqp9jsN4Kq9ug9s1GHa1MEyrbGN_E9NttG5H-u1u9pezWZ9pSQQmAuUJK4yl1mGD1alkDzYGl9fxeBWQWWOnYTIKhw067VFL81o-db1syju6LnriN5O9hHwrT63fdy-uNgOdb8FmCx1x0KxuG9bycge-vBIU_ArP0yrHRYFFWtVIcPDRyjBjNZu3XboqXJR4cTPFeoEUlrlECskZaBviVMjFJjhnjl69mDdi1mTOLFKclUhYEZe2XEnbWSp-Rr_D4QSZGMolEtU3mJ6fTYax0_ZYcLQUbu2kuad05OUqDEzg5oLuDyfKi8QJAa1IZsIUQSFDGebCNSbVfpb5vo78NHLTVBNU9L9Dr6TN2wUUWlEUp3QfEghTuUlD4xahJjwR0CfK9kB1O5roVoCc-2A8Jh3T7CF57Y2EvcH_yBt74K9sl40Mx7usTjvHJf8dqoTyxbvsf5K3VxOyEnc8GCU85vqSX7jUP_Hjg5Mcw6d48meUjC7H1_vw2ePyCstxO4Be_fQ3PyTQU2dH7aF-AfeEAag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+fast+realistic+simulations+on+GPU+to+extract+CAD+models+from+microtomographic+data+in+the+presence+of+strong+CT+artefacts&rft.jtitle=Precision+engineering&rft.au=Vidal%2C+Franck&rft.au=Mitchell%2C+Iwan&rft.au=Letang%2C+J.-M.&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=0141-6359&rft.volume=74&rft.spage=110&rft.epage=125&rft_id=info:doi/10.1016%2Fj.precisioneng.2021.10.014&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03409039v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon