A Large Benchmark Dataset for Individual Sheep Face Recognition

The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach. As a result, automated sheep face recognition systems have become vital to modern breeding practices and have gradually replaced ear tagging...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 13; no. 9; p. 1718
Main Authors Pang, Yue, Yu, Wenbo, Xuan, Chuanzhong, Zhang, Yongan, Wu, Pei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach. As a result, automated sheep face recognition systems have become vital to modern breeding practices and have gradually replaced ear tagging and other manual tracking techniques. Although sheep face datasets have been introduced in previous studies, they have often involved pose or background restrictions (e.g., fixing of the subject’s head, cleaning of the face), which restrict data collection and have limited the size of available sample sets. As a result, a comprehensive benchmark designed exclusively for the evaluation of individual sheep recognition algorithms is lacking. To address this issue, this study developed a large-scale benchmark dataset, Sheepface-107, comprising 5350 images acquired from 107 different subjects. Images were collected from each sheep at multiple angles, including front and back views, in a diverse collection that provides a more comprehensive representation of facial features. In addition to the dataset, an assessment protocol was developed by applying multiple evaluation metrics to the results produced by three different deep learning models: VGG16, GoogLeNet, and ResNet50, which achieved F1-scores of 83.79%, 89.11%, and 93.44%, respectively. A statistical analysis of each algorithm suggested that accuracy and the number of parameters were the most informative metrics for use in evaluating recognition performance.
AbstractList The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach. As a result, automated sheep face recognition systems have become vital to modern breeding practices and have gradually replaced ear tagging and other manual tracking techniques. Although sheep face datasets have been introduced in previous studies, they have often involved pose or background restrictions (e.g., fixing of the subject’s head, cleaning of the face), which restrict data collection and have limited the size of available sample sets. As a result, a comprehensive benchmark designed exclusively for the evaluation of individual sheep recognition algorithms is lacking. To address this issue, this study developed a large-scale benchmark dataset, Sheepface-107, comprising 5350 images acquired from 107 different subjects. Images were collected from each sheep at multiple angles, including front and back views, in a diverse collection that provides a more comprehensive representation of facial features. In addition to the dataset, an assessment protocol was developed by applying multiple evaluation metrics to the results produced by three different deep learning models: VGG16, GoogLeNet, and ResNet50, which achieved F1-scores of 83.79%, 89.11%, and 93.44%, respectively. A statistical analysis of each algorithm suggested that accuracy and the number of parameters were the most informative metrics for use in evaluating recognition performance.
Audience Academic
Author Zhang, Yongan
Xuan, Chuanzhong
Wu, Pei
Pang, Yue
Yu, Wenbo
Author_xml – sequence: 1
  givenname: Yue
  surname: Pang
  fullname: Pang, Yue
– sequence: 2
  givenname: Wenbo
  surname: Yu
  fullname: Yu, Wenbo
– sequence: 3
  givenname: Chuanzhong
  orcidid: 0000-0001-7605-9330
  surname: Xuan
  fullname: Xuan, Chuanzhong
– sequence: 4
  givenname: Yongan
  surname: Zhang
  fullname: Zhang, Yongan
– sequence: 5
  givenname: Pei
  surname: Wu
  fullname: Wu, Pei
BookMark eNptUU1rFEEQHSSCMeYXeBnw4mWT_v44yZqYuLAQSPTc1NT0THqd7V67ZwT_vR1XRCTVh2qK91694r1uTmKKvmneUnLBuSWXMOaAyzQv2VNOLNXUvGhOGdF6RYRmJ__8XzXnpexILUu5Ieq0-bBut5BH3370ER_3kL-11zBD8XM7pNxuYh9-hH6BqX149P7Q3gD69t5jGmOYQ4pvmpcDTMWf_-lnzdebT1-uPq-2d7ebq_V2hYKSeQWdRmIkkWIwRkEnLa9-em6V4NUzISi6Hjpgw2A1NyhRI3SdsOg1eKL4WbM56vYJdu6QQ7X60yUI7vcg5dFBngNO3ilrOA4gaaetQG6NQkakNEIBZZbJqvX-qHXI6fviy-z2oaCfJog-LcUxKxixmhlToe_-g-7SkmO91DGjLKNS6yfUxRE1Qt0f4pDmDFhf7_cBa1pDqPO1VpUhFLGVwI8EzKmU7Ie_F1HinkJ1z4TKfwE9BZYq
Cites_doi 10.1109/CVPR.2016.90
10.11834/jig.200619
10.1155/2021/3375394
10.1109/CVPR.2017.713
10.1016/j.cosrev.2021.100379
10.1007/978-3-319-06483-3_6
10.1109/CVPR.2015.7298594
10.5121/sipij.2013.4307
10.13031/2013.22395
10.1109/TIP.2003.819861
10.1371/journal.pone.0075816
10.3390/s130506054
10.1109/ACCESS.2019.2902724
10.1109/CVPR.2018.00552
10.1109/CVPR.2019.00482
10.1126/science.aan6918
10.1016/j.biosystemseng.2018.05.013
10.1016/j.knosys.2021.108079
10.1007/s10462-022-10240-2
10.1109/TNNLS.2021.3084827
10.1109/WACV.2016.7477733
10.1109/ICCVW.2017.197
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture13091718
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central (ProQuest)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

CrossRef
Agricultural Science Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_6983cfa51b794c3986c2055846a12925
A766924609
10_3390_agriculture13091718
GeographicLocations China
Mongolia
GeographicLocations_xml – name: China
– name: Mongolia
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
PMFND
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c410t-ab7c085054f886ab593047d3964330900c4bdaba2ff9738c5c7cabb49ce7ae063
IEDL.DBID BENPR
ISSN 2077-0472
IngestDate Wed Aug 27 01:32:22 EDT 2025
Fri Jul 11 03:50:11 EDT 2025
Mon Jun 30 14:40:04 EDT 2025
Tue Jun 10 21:19:06 EDT 2025
Tue Jul 01 03:03:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-ab7c085054f886ab593047d3964330900c4bdaba2ff9738c5c7cabb49ce7ae063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7605-9330
OpenAccessLink https://www.proquest.com/docview/2869215778?pq-origsite=%requestingapplication%
PQID 2869215778
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_6983cfa51b794c3986c2055846a12925
proquest_miscellaneous_2942097288
proquest_journals_2869215778
gale_infotracacademiconefile_A766924609
crossref_primary_10_3390_agriculture13091718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Corkery (ref_11) 2007; 50
Chen (ref_8) 2021; 41
Xuan (ref_1) 2015; 31
Chen (ref_6) 2022; 4
ref_13
ref_12
Barbedo (ref_26) 2018; 172
ref_34
ref_33
ref_32
ref_31
ref_30
Xue (ref_17) 2021; 2021
Shang (ref_19) 2022; 4
Baratchi (ref_5) 2013; 13
ref_16
ref_15
Dong (ref_27) 2021; 40
Li (ref_10) 2021; 33
Lin (ref_28) 2022; 239
Liu (ref_9) 2023; 56
Sharma (ref_3) 2013; 4
Salama (ref_14) 2019; 7
Xuan (ref_2) 2016; 32
ref_25
Wang (ref_22) 2004; 13
ref_24
ref_23
ref_21
Qin (ref_7) 2019; 39
ref_20
ref_29
ref_4
Zhang (ref_18) 2022; 5
References_xml – ident: ref_24
– ident: ref_29
  doi: 10.1109/CVPR.2016.90
– ident: ref_34
– volume: 4
  start-page: 1137
  year: 2022
  ident: ref_19
  article-title: Identification of dairy goats with high similarity based on Joint loss optimization
  publication-title: J. Image Graph.
  doi: 10.11834/jig.200619
– volume: 2021
  start-page: 3375394
  year: 2021
  ident: ref_17
  article-title: Open Set Sheep Face Recognition Based on Euclidean Space Metric
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/3375394
– volume: 4
  start-page: 77
  year: 2022
  ident: ref_6
  article-title: Multiscale Feature Fusion Yak Face Recognition Algorithm Based on Transfer Learning
  publication-title: Smart Agric.
– ident: ref_30
  doi: 10.1109/CVPR.2017.713
– ident: ref_20
  doi: 10.1155/2021/3375394
– volume: 39
  start-page: 12
  year: 2019
  ident: ref_7
  article-title: Pig Face Recognition Based on Bilinear Convolution Neural Network
  publication-title: J. Hangzhou Dianzi Univ.
– ident: ref_21
– volume: 31
  start-page: 219
  year: 2015
  ident: ref_1
  article-title: Vocal signal recognition of ewes based on power spectrum and formant analysis method
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 40
  start-page: 100379
  year: 2021
  ident: ref_27
  article-title: A survey on deep learning and its applications
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100379
– volume: 32
  start-page: 195
  year: 2016
  ident: ref_2
  article-title: Behavior classification and recognition for facility breeding sheep based on acoustic signal weighted feature
  publication-title: Trans. Chin. Soc. Agric. Eng.
– ident: ref_23
  doi: 10.1007/978-3-319-06483-3_6
– ident: ref_25
  doi: 10.1109/CVPR.2015.7298594
– volume: 4
  start-page: 77
  year: 2013
  ident: ref_3
  article-title: A Brief Overview on Different Animal Detection Methods
  publication-title: Signal Image Process. Int. J.
  doi: 10.5121/sipij.2013.4307
– volume: 50
  start-page: 313
  year: 2007
  ident: ref_11
  article-title: A Preliminary Investigation on Face Recognition as a Biometric Identifier of Sheep
  publication-title: Trans. Asabe
  doi: 10.13031/2013.22395
– volume: 5
  start-page: 267
  year: 2022
  ident: ref_18
  article-title: Research on Sheep Face Recognition Method Based on Improved Mobile-FaceNet
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 41
  start-page: 1332
  year: 2021
  ident: ref_8
  article-title: Yak Face Recognition Algorithm of Parallel Convolutional Neural Network Based on Transfer Learning
  publication-title: J. Comput. Appl.
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_22
  article-title: Image Quality Assessment: From Error Visibility to Structural Similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: ref_4
  doi: 10.1371/journal.pone.0075816
– ident: ref_12
– volume: 13
  start-page: 6054
  year: 2013
  ident: ref_5
  article-title: Sensing solutions for collecting spatio-temporal data for wildlife monitoring applications:a review
  publication-title: Sensors
  doi: 10.3390/s130506054
– volume: 7
  start-page: 31681
  year: 2019
  ident: ref_14
  article-title: Sheep identification using a hybrid deep learning and Bayesian optimization approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902724
– ident: ref_31
  doi: 10.1109/CVPR.2018.00552
– ident: ref_33
  doi: 10.1109/CVPR.2019.00482
– ident: ref_16
  doi: 10.1126/science.aan6918
– ident: ref_15
– volume: 172
  start-page: 84
  year: 2018
  ident: ref_26
  article-title: Factors influencing the use of deep learning for plant disease recognition
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.05.013
– volume: 239
  start-page: 108079
  year: 2022
  ident: ref_28
  article-title: Deep learning for missing value imputation of continuous data and the effect of data discretization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.108079
– volume: 56
  start-page: 2723
  year: 2023
  ident: ref_9
  article-title: Deep learning based single sample face recognition: A survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10240-2
– volume: 33
  start-page: 6999
  year: 2021
  ident: ref_10
  article-title: A survey of convolutional neural networks: Analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
– ident: ref_13
  doi: 10.1109/WACV.2016.7477733
– ident: ref_32
  doi: 10.1109/ICCVW.2017.197
SSID ssj0000913806
Score 2.2381618
Snippet The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1718
SubjectTerms Access control
Accuracy
agriculture
Algorithms
Animal husbandry
Automation
Benchmarks
Biometry
Breeding
Breeding methods
convolutional neural network
Data collection
dataset
Datasets
Deep learning
ears
Face
Face recognition
Grasslands
Image acquisition
industry
large benchmark
Machine learning
Marking and tracking techniques
Mutton
Neural networks
Pattern recognition
Performance evaluation
Sheep
sheep face recognition
Statistical analysis
Tracking techniques
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXEQQvFtu0SZOTrI9lFfXgA7yFSTZVELvL2v3_zrTddQ-KF69NCNNvkswMmfmGsSO0MBrdgBAZKUWUOeoGKHOPCjHOocYVKCpOvrtX_efs5kW-zLX6opywhh64Ae5UGZ36AmTicOf41GjlRSzJbAKaKlGzl6LNmwum6jvYJKmOVUMzlGJcfwqv45bMIuC1jUEKtfmYM0U1Y_9v93JtbHqrbKX1Enm3kW6NLYRynS13vxffYGddfktZ3Pwc99nbB4zf-SVUaJMqjn4ov54VWvHHtxBGvAc-8IdputCw3GTPvauni37UdkOIfJbEVQQu98QvJ7NCawVOGnoxG6REqIU_FMc-cwNwIIrC5Kn20ucenMuMDzkE9ES22GI5LMM24wOlChWkE4M04BIIrMxAhkQUwtNaHXYyBcaOGtILi8EC4Wh_wLHDzgm82VRirK4_oB5tq0f7lx477Jigt3SuqjF4aMsDUGJiqLLdXCmMFRVJtzfVjm0P3KcVGkcTmecozeFsGI8KvX9AGYYTnGMyQWxFWu_8h8S7bIl6zzcJZ3tssRpPwj56KJU7qDfjF6wp3_0
  priority: 102
  providerName: Directory of Open Access Journals
Title A Large Benchmark Dataset for Individual Sheep Face Recognition
URI https://www.proquest.com/docview/2869215778
https://www.proquest.com/docview/2942097288
https://doaj.org/article/6983cfa51b794c3986c2055846a12925
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbocmkPVaFFbEuRkZB6aUTWsR37hHZbVoAoqmiRuFljxwGparIN4f93JutdeihcE2vizNv2-BvGDjHCGEwDYmaVEpn01A1QlQEFYr1HiWvQdDn526U-vZbnN-ombbjdp7LKlU8cHHXVBtojPxJGWwxPZWmOF38y6hpFp6uphcYLtoku2JgR25ydXH6_Wu-yEOqlyfUSbqjA9f0R3HYJ1CKi-8bFCrX7-CckDcj9T_nnIejM37DXKVvk06V4t9hGbLbZq-kj8bfseMovqJqbz1Df7n5D94t_hR5jU88xH-Vn6wtX_MddjAs-hxD51apsqG3esev5yc8vp1nqipAFOcn7DHwZCGdOydoYDV5ZOjmrCgLWwh_K8yB9BR5EXduyMEGFMoD30oZYQsSMZIeNmraJu4xXWtc6Ki-qIiIJNE0lQcWJqEUgWmP2ecUYt1iCXzhcNBAf3X_4OGYzYt56KCFXDw_a7tYlQ3DamiLUoCYePxcKa3QQuaI0CDD1EGrMPhHrHdlX30GAdE0AZ0xIVW5aalQEqWl2eyvpuGR49-5RTcbsYP0aTYbOQaCJ7QOOsVIQapEx758n8YG9pO7yy5KyPTbqu4f4EXOQ3u8nRdsf1vB_AZy125o
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gF4QPwUHQOMBOKFaKkTO_YDmlq2qmVdhcYm7c2zHWeTEGmXZUL8U_yN3DVJxwPwttckuljnO39n--47gLeIMArDgBBpIXiUOuoGKDKPE6KdwxmXVlJx8uFcTk7Sz6fidAN-dbUwlFbZrYmrhTpfeDoj3-FKaoSnLFO7y8uIukbR7WrXQqMxi4Pw8wdu2a4-Tvdwft9xPt4__jSJ2q4CkU8HcR1Zl3niaRNpoZS0Tmi6ecoTIqZKYh3HPnW5dZYXhc4S5YXPvHUu1T5kNiCio9w7sJkmMuY92Bztz78crU91iGVTxbKhN0oSHe_Y86ol0QgIF7g5ovYif0DgqlPAv_BgBXLjh_CgjU7ZsDGnR7ARysdwf3gj_AnsDtmMssfZCO374rutvrE9WyMW1gzjXzZdF3ixrxchLNnY-sCOujSlRfkUTm5FX8-gVy7K8BxYLmUhg3A8TwKKwKVApFaEAS-4J1l9-NApxiwbsg2DmxTSo_mLHvswIuWtPyWm7NWDRXVuWsczUqvEF1YMHP7OJ1pJz2NBYZfFUIeLPrwn1Rvy57qy3rZlCThiYsYyw0yi4aWSRrfdzY5pHf3K3JhlH96sX6OL0r2LLcPiGr_RKSeWJKW2_i_iNdydHB_OzGw6P3gB96izfZPOtg29uroOLzH-qd2r1ugYnN22nf8GFqwXpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUhQFGAvFC1NSJHfsBTS1dtbJRTYNJezO242wSIilZJsS_xl_HXZN0PABve02ii3Ufvjv77ncAr9DDKAwDQqSF4FHqaBqgyDwKRDuHEpdWUnPyx6XcP0k_nIrTLfjV98JQWWW_J6436rzydEY-4kpqdE9ZpkZFVxZxNJvvrr5HNEGKblr7cRqtihyEnz8wfbt4t5ihrF9zPt_7_H4_6iYMRD4dx01kXeYJs02khVLSOqHpFipPCKQqiXUc-9Tl1lleFDpLlBc-89a5VPuQ2YDeHenegO2MsqIBbE_3lkfHmxMeQtxUsWyhjpJExyN7VneAGgFdByZKNGrkD3e4nhrwL9-wdnjzu3Cni1TZpFWte7AVyvtwe3JF_AHsTtghVZKzKer6-Tdbf2Uz26BfbBjGwmyxafZin85DWLG59YEd9yVLVfkQTq6FX49gUFZleAwsl7KQQTieJwFJ4LYgUivCmBfcE60hvO0ZY1Yt8IbBhIX4aP7CxyFMiXmbTwk1e_2gqs9MZ4RGapX4woqxw9_5RCvpeSwoBLMY9nAxhDfEekO23dTW265FAVdMKFlmkklUwlTS6nZ66ZjO6C_MlYoO4eXmNZor3cHYMlSX-I1OOSEmKfXk_yRewE3Ub3O4WB48hVs05L6tbNuBQVNfhmcYCjXueadzDL5ct5r_Bum0G9o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Large+Benchmark+Dataset+for+Individual+Sheep+Face+Recognition&rft.jtitle=Agriculture+%28Basel%29&rft.au=Pang%2C+Yue&rft.au=Yu%2C+Wenbo&rft.au=Xuan%2C+Chuanzhong&rft.au=Zhang%2C+Yongan&rft.date=2023-09-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=13&rft.issue=9&rft.spage=1718&rft_id=info:doi/10.3390%2Fagriculture13091718&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriculture13091718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon