A Large Benchmark Dataset for Individual Sheep Face Recognition
The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach. As a result, automated sheep face recognition systems have become vital to modern breeding practices and have gradually replaced ear tagging...
Saved in:
Published in | Agriculture (Basel) Vol. 13; no. 9; p. 1718 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach. As a result, automated sheep face recognition systems have become vital to modern breeding practices and have gradually replaced ear tagging and other manual tracking techniques. Although sheep face datasets have been introduced in previous studies, they have often involved pose or background restrictions (e.g., fixing of the subject’s head, cleaning of the face), which restrict data collection and have limited the size of available sample sets. As a result, a comprehensive benchmark designed exclusively for the evaluation of individual sheep recognition algorithms is lacking. To address this issue, this study developed a large-scale benchmark dataset, Sheepface-107, comprising 5350 images acquired from 107 different subjects. Images were collected from each sheep at multiple angles, including front and back views, in a diverse collection that provides a more comprehensive representation of facial features. In addition to the dataset, an assessment protocol was developed by applying multiple evaluation metrics to the results produced by three different deep learning models: VGG16, GoogLeNet, and ResNet50, which achieved F1-scores of 83.79%, 89.11%, and 93.44%, respectively. A statistical analysis of each algorithm suggested that accuracy and the number of parameters were the most informative metrics for use in evaluating recognition performance. |
---|---|
AbstractList | The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach. As a result, automated sheep face recognition systems have become vital to modern breeding practices and have gradually replaced ear tagging and other manual tracking techniques. Although sheep face datasets have been introduced in previous studies, they have often involved pose or background restrictions (e.g., fixing of the subject’s head, cleaning of the face), which restrict data collection and have limited the size of available sample sets. As a result, a comprehensive benchmark designed exclusively for the evaluation of individual sheep recognition algorithms is lacking. To address this issue, this study developed a large-scale benchmark dataset, Sheepface-107, comprising 5350 images acquired from 107 different subjects. Images were collected from each sheep at multiple angles, including front and back views, in a diverse collection that provides a more comprehensive representation of facial features. In addition to the dataset, an assessment protocol was developed by applying multiple evaluation metrics to the results produced by three different deep learning models: VGG16, GoogLeNet, and ResNet50, which achieved F1-scores of 83.79%, 89.11%, and 93.44%, respectively. A statistical analysis of each algorithm suggested that accuracy and the number of parameters were the most informative metrics for use in evaluating recognition performance. |
Audience | Academic |
Author | Zhang, Yongan Xuan, Chuanzhong Wu, Pei Pang, Yue Yu, Wenbo |
Author_xml | – sequence: 1 givenname: Yue surname: Pang fullname: Pang, Yue – sequence: 2 givenname: Wenbo surname: Yu fullname: Yu, Wenbo – sequence: 3 givenname: Chuanzhong orcidid: 0000-0001-7605-9330 surname: Xuan fullname: Xuan, Chuanzhong – sequence: 4 givenname: Yongan surname: Zhang fullname: Zhang, Yongan – sequence: 5 givenname: Pei surname: Wu fullname: Wu, Pei |
BookMark | eNptUU1rFEEQHSSCMeYXeBnw4mWT_v44yZqYuLAQSPTc1NT0THqd7V67ZwT_vR1XRCTVh2qK91694r1uTmKKvmneUnLBuSWXMOaAyzQv2VNOLNXUvGhOGdF6RYRmJ__8XzXnpexILUu5Ieq0-bBut5BH3370ER_3kL-11zBD8XM7pNxuYh9-hH6BqX149P7Q3gD69t5jGmOYQ4pvmpcDTMWf_-lnzdebT1-uPq-2d7ebq_V2hYKSeQWdRmIkkWIwRkEnLa9-em6V4NUzISi6Hjpgw2A1NyhRI3SdsOg1eKL4WbM56vYJdu6QQ7X60yUI7vcg5dFBngNO3ilrOA4gaaetQG6NQkakNEIBZZbJqvX-qHXI6fviy-z2oaCfJog-LcUxKxixmhlToe_-g-7SkmO91DGjLKNS6yfUxRE1Qt0f4pDmDFhf7_cBa1pDqPO1VpUhFLGVwI8EzKmU7Ie_F1HinkJ1z4TKfwE9BZYq |
Cites_doi | 10.1109/CVPR.2016.90 10.11834/jig.200619 10.1155/2021/3375394 10.1109/CVPR.2017.713 10.1016/j.cosrev.2021.100379 10.1007/978-3-319-06483-3_6 10.1109/CVPR.2015.7298594 10.5121/sipij.2013.4307 10.13031/2013.22395 10.1109/TIP.2003.819861 10.1371/journal.pone.0075816 10.3390/s130506054 10.1109/ACCESS.2019.2902724 10.1109/CVPR.2018.00552 10.1109/CVPR.2019.00482 10.1126/science.aan6918 10.1016/j.biosystemseng.2018.05.013 10.1016/j.knosys.2021.108079 10.1007/s10462-022-10240-2 10.1109/TNNLS.2021.3084827 10.1109/WACV.2016.7477733 10.1109/ICCVW.2017.197 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture13091718 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central (ProQuest) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environment Abstracts AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_6983cfa51b794c3986c2055846a12925 A766924609 10_3390_agriculture13091718 |
GeographicLocations | China Mongolia |
GeographicLocations_xml | – name: China – name: Mongolia |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC PMFND 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c410t-ab7c085054f886ab593047d3964330900c4bdaba2ff9738c5c7cabb49ce7ae063 |
IEDL.DBID | BENPR |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:32:22 EDT 2025 Fri Jul 11 03:50:11 EDT 2025 Mon Jun 30 14:40:04 EDT 2025 Tue Jun 10 21:19:06 EDT 2025 Tue Jul 01 03:03:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-ab7c085054f886ab593047d3964330900c4bdaba2ff9738c5c7cabb49ce7ae063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7605-9330 |
OpenAccessLink | https://www.proquest.com/docview/2869215778?pq-origsite=%requestingapplication% |
PQID | 2869215778 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6983cfa51b794c3986c2055846a12925 proquest_miscellaneous_2942097288 proquest_journals_2869215778 gale_infotracacademiconefile_A766924609 crossref_primary_10_3390_agriculture13091718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Corkery (ref_11) 2007; 50 Chen (ref_8) 2021; 41 Xuan (ref_1) 2015; 31 Chen (ref_6) 2022; 4 ref_13 ref_12 Barbedo (ref_26) 2018; 172 ref_34 ref_33 ref_32 ref_31 ref_30 Xue (ref_17) 2021; 2021 Shang (ref_19) 2022; 4 Baratchi (ref_5) 2013; 13 ref_16 ref_15 Dong (ref_27) 2021; 40 Li (ref_10) 2021; 33 Lin (ref_28) 2022; 239 Liu (ref_9) 2023; 56 Sharma (ref_3) 2013; 4 Salama (ref_14) 2019; 7 Xuan (ref_2) 2016; 32 ref_25 Wang (ref_22) 2004; 13 ref_24 ref_23 ref_21 Qin (ref_7) 2019; 39 ref_20 ref_29 ref_4 Zhang (ref_18) 2022; 5 |
References_xml | – ident: ref_24 – ident: ref_29 doi: 10.1109/CVPR.2016.90 – ident: ref_34 – volume: 4 start-page: 1137 year: 2022 ident: ref_19 article-title: Identification of dairy goats with high similarity based on Joint loss optimization publication-title: J. Image Graph. doi: 10.11834/jig.200619 – volume: 2021 start-page: 3375394 year: 2021 ident: ref_17 article-title: Open Set Sheep Face Recognition Based on Euclidean Space Metric publication-title: Math. Probl. Eng. doi: 10.1155/2021/3375394 – volume: 4 start-page: 77 year: 2022 ident: ref_6 article-title: Multiscale Feature Fusion Yak Face Recognition Algorithm Based on Transfer Learning publication-title: Smart Agric. – ident: ref_30 doi: 10.1109/CVPR.2017.713 – ident: ref_20 doi: 10.1155/2021/3375394 – volume: 39 start-page: 12 year: 2019 ident: ref_7 article-title: Pig Face Recognition Based on Bilinear Convolution Neural Network publication-title: J. Hangzhou Dianzi Univ. – ident: ref_21 – volume: 31 start-page: 219 year: 2015 ident: ref_1 article-title: Vocal signal recognition of ewes based on power spectrum and formant analysis method publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 40 start-page: 100379 year: 2021 ident: ref_27 article-title: A survey on deep learning and its applications publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2021.100379 – volume: 32 start-page: 195 year: 2016 ident: ref_2 article-title: Behavior classification and recognition for facility breeding sheep based on acoustic signal weighted feature publication-title: Trans. Chin. Soc. Agric. Eng. – ident: ref_23 doi: 10.1007/978-3-319-06483-3_6 – ident: ref_25 doi: 10.1109/CVPR.2015.7298594 – volume: 4 start-page: 77 year: 2013 ident: ref_3 article-title: A Brief Overview on Different Animal Detection Methods publication-title: Signal Image Process. Int. J. doi: 10.5121/sipij.2013.4307 – volume: 50 start-page: 313 year: 2007 ident: ref_11 article-title: A Preliminary Investigation on Face Recognition as a Biometric Identifier of Sheep publication-title: Trans. Asabe doi: 10.13031/2013.22395 – volume: 5 start-page: 267 year: 2022 ident: ref_18 article-title: Research on Sheep Face Recognition Method Based on Improved Mobile-FaceNet publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 41 start-page: 1332 year: 2021 ident: ref_8 article-title: Yak Face Recognition Algorithm of Parallel Convolutional Neural Network Based on Transfer Learning publication-title: J. Comput. Appl. – volume: 13 start-page: 600 year: 2004 ident: ref_22 article-title: Image Quality Assessment: From Error Visibility to Structural Similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: ref_4 doi: 10.1371/journal.pone.0075816 – ident: ref_12 – volume: 13 start-page: 6054 year: 2013 ident: ref_5 article-title: Sensing solutions for collecting spatio-temporal data for wildlife monitoring applications:a review publication-title: Sensors doi: 10.3390/s130506054 – volume: 7 start-page: 31681 year: 2019 ident: ref_14 article-title: Sheep identification using a hybrid deep learning and Bayesian optimization approach publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902724 – ident: ref_31 doi: 10.1109/CVPR.2018.00552 – ident: ref_33 doi: 10.1109/CVPR.2019.00482 – ident: ref_16 doi: 10.1126/science.aan6918 – ident: ref_15 – volume: 172 start-page: 84 year: 2018 ident: ref_26 article-title: Factors influencing the use of deep learning for plant disease recognition publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.05.013 – volume: 239 start-page: 108079 year: 2022 ident: ref_28 article-title: Deep learning for missing value imputation of continuous data and the effect of data discretization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.108079 – volume: 56 start-page: 2723 year: 2023 ident: ref_9 article-title: Deep learning based single sample face recognition: A survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10240-2 – volume: 33 start-page: 6999 year: 2021 ident: ref_10 article-title: A survey of convolutional neural networks: Analysis, applications, and prospects publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3084827 – ident: ref_13 doi: 10.1109/WACV.2016.7477733 – ident: ref_32 doi: 10.1109/ICCVW.2017.197 |
SSID | ssj0000913806 |
Score | 2.2381618 |
Snippet | The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1718 |
SubjectTerms | Access control Accuracy agriculture Algorithms Animal husbandry Automation Benchmarks Biometry Breeding Breeding methods convolutional neural network Data collection dataset Datasets Deep learning ears Face Face recognition Grasslands Image acquisition industry large benchmark Machine learning Marking and tracking techniques Mutton Neural networks Pattern recognition Performance evaluation Sheep sheep face recognition Statistical analysis Tracking techniques |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXEQQvFtu0SZOTrI9lFfXgA7yFSTZVELvL2v3_zrTddQ-KF69NCNNvkswMmfmGsSO0MBrdgBAZKUWUOeoGKHOPCjHOocYVKCpOvrtX_efs5kW-zLX6opywhh64Ae5UGZ36AmTicOf41GjlRSzJbAKaKlGzl6LNmwum6jvYJKmOVUMzlGJcfwqv45bMIuC1jUEKtfmYM0U1Y_9v93JtbHqrbKX1Enm3kW6NLYRynS13vxffYGddfktZ3Pwc99nbB4zf-SVUaJMqjn4ov54VWvHHtxBGvAc-8IdputCw3GTPvauni37UdkOIfJbEVQQu98QvJ7NCawVOGnoxG6REqIU_FMc-cwNwIIrC5Kn20ucenMuMDzkE9ES22GI5LMM24wOlChWkE4M04BIIrMxAhkQUwtNaHXYyBcaOGtILi8EC4Wh_wLHDzgm82VRirK4_oB5tq0f7lx477Jigt3SuqjF4aMsDUGJiqLLdXCmMFRVJtzfVjm0P3KcVGkcTmecozeFsGI8KvX9AGYYTnGMyQWxFWu_8h8S7bIl6zzcJZ3tssRpPwj56KJU7qDfjF6wp3_0 priority: 102 providerName: Directory of Open Access Journals |
Title | A Large Benchmark Dataset for Individual Sheep Face Recognition |
URI | https://www.proquest.com/docview/2869215778 https://www.proquest.com/docview/2942097288 https://doaj.org/article/6983cfa51b794c3986c2055846a12925 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbocmkPVaFFbEuRkZB6aUTWsR37hHZbVoAoqmiRuFljxwGparIN4f93JutdeihcE2vizNv2-BvGDjHCGEwDYmaVEpn01A1QlQEFYr1HiWvQdDn526U-vZbnN-ombbjdp7LKlU8cHHXVBtojPxJGWwxPZWmOF38y6hpFp6uphcYLtoku2JgR25ydXH6_Wu-yEOqlyfUSbqjA9f0R3HYJ1CKi-8bFCrX7-CckDcj9T_nnIejM37DXKVvk06V4t9hGbLbZq-kj8bfseMovqJqbz1Df7n5D94t_hR5jU88xH-Vn6wtX_MddjAs-hxD51apsqG3esev5yc8vp1nqipAFOcn7DHwZCGdOydoYDV5ZOjmrCgLWwh_K8yB9BR5EXduyMEGFMoD30oZYQsSMZIeNmraJu4xXWtc6Ki-qIiIJNE0lQcWJqEUgWmP2ecUYt1iCXzhcNBAf3X_4OGYzYt56KCFXDw_a7tYlQ3DamiLUoCYePxcKa3QQuaI0CDD1EGrMPhHrHdlX30GAdE0AZ0xIVW5aalQEqWl2eyvpuGR49-5RTcbsYP0aTYbOQaCJ7QOOsVIQapEx758n8YG9pO7yy5KyPTbqu4f4EXOQ3u8nRdsf1vB_AZy125o |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gF4QPwUHQOMBOKFaKkTO_YDmlq2qmVdhcYm7c2zHWeTEGmXZUL8U_yN3DVJxwPwttckuljnO39n--47gLeIMArDgBBpIXiUOuoGKDKPE6KdwxmXVlJx8uFcTk7Sz6fidAN-dbUwlFbZrYmrhTpfeDoj3-FKaoSnLFO7y8uIukbR7WrXQqMxi4Pw8wdu2a4-Tvdwft9xPt4__jSJ2q4CkU8HcR1Zl3niaRNpoZS0Tmi6ecoTIqZKYh3HPnW5dZYXhc4S5YXPvHUu1T5kNiCio9w7sJkmMuY92Bztz78crU91iGVTxbKhN0oSHe_Y86ol0QgIF7g5ovYif0DgqlPAv_BgBXLjh_CgjU7ZsDGnR7ARysdwf3gj_AnsDtmMssfZCO374rutvrE9WyMW1gzjXzZdF3ixrxchLNnY-sCOujSlRfkUTm5FX8-gVy7K8BxYLmUhg3A8TwKKwKVApFaEAS-4J1l9-NApxiwbsg2DmxTSo_mLHvswIuWtPyWm7NWDRXVuWsczUqvEF1YMHP7OJ1pJz2NBYZfFUIeLPrwn1Rvy57qy3rZlCThiYsYyw0yi4aWSRrfdzY5pHf3K3JhlH96sX6OL0r2LLcPiGr_RKSeWJKW2_i_iNdydHB_OzGw6P3gB96izfZPOtg29uroOLzH-qd2r1ugYnN22nf8GFqwXpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUhQFGAvFC1NSJHfsBTS1dtbJRTYNJezO242wSIilZJsS_xl_HXZN0PABve02ii3Ufvjv77ncAr9DDKAwDQqSF4FHqaBqgyDwKRDuHEpdWUnPyx6XcP0k_nIrTLfjV98JQWWW_J6436rzydEY-4kpqdE9ZpkZFVxZxNJvvrr5HNEGKblr7cRqtihyEnz8wfbt4t5ihrF9zPt_7_H4_6iYMRD4dx01kXeYJs02khVLSOqHpFipPCKQqiXUc-9Tl1lleFDpLlBc-89a5VPuQ2YDeHenegO2MsqIBbE_3lkfHmxMeQtxUsWyhjpJExyN7VneAGgFdByZKNGrkD3e4nhrwL9-wdnjzu3Cni1TZpFWte7AVyvtwe3JF_AHsTtghVZKzKer6-Tdbf2Uz26BfbBjGwmyxafZin85DWLG59YEd9yVLVfkQTq6FX49gUFZleAwsl7KQQTieJwFJ4LYgUivCmBfcE60hvO0ZY1Yt8IbBhIX4aP7CxyFMiXmbTwk1e_2gqs9MZ4RGapX4woqxw9_5RCvpeSwoBLMY9nAxhDfEekO23dTW265FAVdMKFlmkklUwlTS6nZ66ZjO6C_MlYoO4eXmNZor3cHYMlSX-I1OOSEmKfXk_yRewE3Ub3O4WB48hVs05L6tbNuBQVNfhmcYCjXueadzDL5ct5r_Bum0G9o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Large+Benchmark+Dataset+for+Individual+Sheep+Face+Recognition&rft.jtitle=Agriculture+%28Basel%29&rft.au=Pang%2C+Yue&rft.au=Yu%2C+Wenbo&rft.au=Xuan%2C+Chuanzhong&rft.au=Zhang%2C+Yongan&rft.date=2023-09-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=13&rft.issue=9&rft.spage=1718&rft_id=info:doi/10.3390%2Fagriculture13091718&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriculture13091718 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |