Review on machining of additively manufactured nickel and titanium alloys
The machining of nickel and titanium-based superalloy components is very expensive and involves unusually high lead times compared with other engineering metals such as steels and aluminum. This has led to the development of most suitable additive manufacturing (AM) processes to fabricate these diff...
Saved in:
Published in | Journal of materials research and technology Vol. 15; pp. 3192 - 3221 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2238-7854 |
DOI | 10.1016/j.jmrt.2021.09.088 |
Cover
Loading…
Abstract | The machining of nickel and titanium-based superalloy components is very expensive and involves unusually high lead times compared with other engineering metals such as steels and aluminum. This has led to the development of most suitable additive manufacturing (AM) processes to fabricate these difficult-to-machine metals into near-net shape parts, thereby reducing the lead time and material waste, and significantly increasing productivity. Nonetheless, finish machining is still required on the AMed metal components to meet the dimensional and surface requirements of the application. Several research studies have investigated the machinability of AMed nickel and titanium alloy workpieces and have compared the results with the machining responses of wrought counterparts, which is detailed in this review. The categorization of the literature is based on the machining operations including turning, milling, drilling, and non-conventional machining, and the observations are discussed in accordance with various input parameters such as workpiece characteristics (hardness, microstructures) and anisotropy in mechanical properties due to build orientations during the AM process. Moreover, the influence of these parameters on cutting forces and temperatures, chip formation, and tool wear is analyzed and reported. From this review, it is found that the machinability of AMed nickel and titanium workpieces is quite different to the machining responses of their wrought counterparts. Further thorough experimentation is required to develop optimized machining parameters for AMed metal parts, while an exploration of different cutting tool geometries, coolant, and lubrication strategies for enhanced tool performance for machining AMed workpieces is essential. Finally, this study reviews the state of contemporary research, and offers suggestions for future research. |
---|---|
AbstractList | The machining of nickel and titanium-based superalloy components is very expensive and involves unusually high lead times compared with other engineering metals such as steels and aluminum. This has led to the development of most suitable additive manufacturing (AM) processes to fabricate these difficult-to-machine metals into near-net shape parts, thereby reducing the lead time and material waste, and significantly increasing productivity. Nonetheless, finish machining is still required on the AMed metal components to meet the dimensional and surface requirements of the application. Several research studies have investigated the machinability of AMed nickel and titanium alloy workpieces and have compared the results with the machining responses of wrought counterparts, which is detailed in this review. The categorization of the literature is based on the machining operations including turning, milling, drilling, and non-conventional machining, and the observations are discussed in accordance with various input parameters such as workpiece characteristics (hardness, microstructures) and anisotropy in mechanical properties due to build orientations during the AM process. Moreover, the influence of these parameters on cutting forces and temperatures, chip formation, and tool wear is analyzed and reported. From this review, it is found that the machinability of AMed nickel and titanium workpieces is quite different to the machining responses of their wrought counterparts. Further thorough experimentation is required to develop optimized machining parameters for AMed metal parts, while an exploration of different cutting tool geometries, coolant, and lubrication strategies for enhanced tool performance for machining AMed workpieces is essential. Finally, this study reviews the state of contemporary research, and offers suggestions for future research. |
Author | Kaynak, Yusuf Zadafiya, Kishan Khanna, Navneet Patel, Tej Vafadar, Ana Rahman Rashid, Rizwan Abdul |
Author_xml | – sequence: 1 givenname: Navneet orcidid: 0000-0002-8094-4604 surname: Khanna fullname: Khanna, Navneet email: navneetkhanna@iitram.ac.in organization: Advanced Manufacturing Laboratory, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, 380026, India – sequence: 2 givenname: Kishan surname: Zadafiya fullname: Zadafiya, Kishan organization: Advanced Manufacturing Laboratory, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, 380026, India – sequence: 3 givenname: Tej orcidid: 0000-0001-9779-9813 surname: Patel fullname: Patel, Tej organization: Advanced Manufacturing Laboratory, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, 380026, India – sequence: 4 givenname: Yusuf surname: Kaynak fullname: Kaynak, Yusuf organization: Department of Mechanical Engineering, Marmara University, Goztepe Campus, 34722, Kadikoy, Istanbul, Turkey – sequence: 5 givenname: Rizwan Abdul orcidid: 0000-0002-2332-3465 surname: Rahman Rashid fullname: Rahman Rashid, Rizwan Abdul organization: School of Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia – sequence: 6 givenname: Ana orcidid: 0000-0002-7697-6443 surname: Vafadar fullname: Vafadar, Ana email: a.vafadarshamasbi@ecu.edu.au organization: School of Engineering, Edith Cowan University (ECU), Joondalup, 6027, Western Australia, Australia |
BookMark | eNp9kMtOwzAQRb0AiecPsMoPNPiROLbEBlU8KlVCQrC2JvYEHFIbOW5R_56UwoZFVyNdzbmaOWfkKMSAhFwxWjLK5HVf9quUS045K6kuqVJH5JRzoWaNqqsTcjmOPaWU1VpSxU7J4hk3Hr-KGIoV2HcffHgrYleAcz77DQ7bKQ_rDmxeJ3RF8PYDhwKCK7LPEPx6VcAwxO14QY47GEa8_J3n5PX-7mX-OFs-PSzmt8uZrRjNMwCUXDeoagktbxFaLZ0WDXa15QyZ6xRtQYu61pUTjAngWutGtszaabMT52Sx73URevOZ_ArS1kTw5ieI6c1Ayt4OaJSzAiXU2ApRqYYq65SuKtlBxRoud11q32VTHMeEnbHTU9nHkBP4wTBqdlZNb3ZWzc6qodpMVieU_0P_TjkI3ewhnARN3pMZrcdg0fmENk8f-EP4N31mliU |
CitedBy_id | crossref_primary_10_3390_ma16072583 crossref_primary_10_1016_j_triboint_2024_109677 crossref_primary_10_1016_j_jmapro_2022_01_065 crossref_primary_10_1016_j_triboint_2024_109555 crossref_primary_10_1016_j_jmrt_2024_11_094 crossref_primary_10_1016_j_matpr_2023_05_714 crossref_primary_10_1016_j_jmrt_2023_05_263 crossref_primary_10_1016_j_surfcoat_2023_130097 crossref_primary_10_1016_j_triboint_2024_110068 crossref_primary_10_1007_s00170_022_09372_0 crossref_primary_10_3390_met12050806 crossref_primary_10_4028_p_9E75Iv crossref_primary_10_1016_j_cirpj_2024_04_008 crossref_primary_10_1016_j_jmapro_2023_01_072 crossref_primary_10_1177_14644207231192812 crossref_primary_10_3390_nano12244394 crossref_primary_10_1016_j_susmat_2022_e00458 crossref_primary_10_1016_j_msea_2023_145326 crossref_primary_10_1051_mfreview_2022022 crossref_primary_10_1016_j_jmrt_2024_08_186 crossref_primary_10_1063_5_0176244 crossref_primary_10_1080_10910344_2024_2381206 crossref_primary_10_3390_lubricants11040159 crossref_primary_10_3390_lubricants11110493 crossref_primary_10_3390_ma16237429 crossref_primary_10_1080_10426914_2024_2362621 crossref_primary_10_1016_j_jmapro_2022_10_060 crossref_primary_10_1016_j_matpr_2022_03_255 crossref_primary_10_1177_09544062221126809 crossref_primary_10_1016_j_surfcoat_2023_129426 crossref_primary_10_1177_13506501211062540 crossref_primary_10_4028_p_MBQBb6 crossref_primary_10_1016_j_mtcomm_2023_106422 crossref_primary_10_1016_j_addma_2024_103970 crossref_primary_10_1016_j_susmat_2024_e00946 crossref_primary_10_1016_j_triboint_2023_108316 crossref_primary_10_1016_j_measurement_2022_112281 crossref_primary_10_1007_s11665_022_07128_1 crossref_primary_10_1016_j_msea_2023_145116 crossref_primary_10_3390_ma15155181 crossref_primary_10_1007_s11665_024_09706_x crossref_primary_10_1016_j_jmapro_2022_06_023 crossref_primary_10_1016_j_msea_2023_145319 crossref_primary_10_1016_j_triboint_2023_108289 crossref_primary_10_1007_s11465_024_0792_4 crossref_primary_10_1007_s00170_024_13958_1 crossref_primary_10_1177_14644207231212566 crossref_primary_10_3390_ma15228122 crossref_primary_10_1016_j_jmatprotec_2022_117722 crossref_primary_10_3390_jmmp7030111 crossref_primary_10_3390_met12071167 crossref_primary_10_3390_met15040338 crossref_primary_10_1016_j_ijfatigue_2025_108821 crossref_primary_10_1016_j_ijmachtools_2023_104086 crossref_primary_10_3390_machines12070451 crossref_primary_10_1016_j_jmapro_2024_12_069 crossref_primary_10_1016_j_nanoms_2022_08_001 crossref_primary_10_1007_s00170_023_11541_8 crossref_primary_10_1016_j_jmrt_2023_07_251 crossref_primary_10_1016_j_msea_2024_147304 crossref_primary_10_1016_j_susmat_2022_e00434 crossref_primary_10_1016_j_jmapro_2024_01_015 crossref_primary_10_1016_j_esd_2023_03_003 crossref_primary_10_1016_j_jallcom_2023_172573 crossref_primary_10_1007_s40430_024_05315_w crossref_primary_10_1016_j_msea_2024_146618 crossref_primary_10_1016_j_matpr_2023_10_056 crossref_primary_10_3389_fmats_2024_1470651 crossref_primary_10_1016_j_jmapro_2023_03_041 crossref_primary_10_1016_j_jmrt_2024_01_233 crossref_primary_10_1016_j_jmst_2024_02_065 crossref_primary_10_1016_j_wear_2024_205514 crossref_primary_10_1016_j_jmapro_2025_02_045 crossref_primary_10_3390_jcs7060262 crossref_primary_10_3390_pr13030717 crossref_primary_10_1007_s00170_024_13382_5 crossref_primary_10_1016_j_cirpj_2024_09_002 crossref_primary_10_1016_j_triboint_2024_110070 crossref_primary_10_1111_ffe_13967 crossref_primary_10_1115_1_4056417 crossref_primary_10_1016_j_jmrt_2023_04_036 crossref_primary_10_1016_j_susmat_2023_e00580 crossref_primary_10_3390_ma18061249 crossref_primary_10_1016_j_ijfatigue_2022_107129 crossref_primary_10_1007_s40516_022_00195_1 crossref_primary_10_1186_s44147_024_00436_4 crossref_primary_10_1051_e3sconf_202343001271 crossref_primary_10_3390_met12030469 crossref_primary_10_1016_j_msea_2022_144047 crossref_primary_10_3390_pr10040752 |
Cites_doi | 10.1007/s00170-017-0239-8 10.1016/j.jmapro.2021.01.009 10.1016/j.msea.2016.12.028 10.1016/j.procir.2016.02.328 10.1007/s40684-020-00221-7 10.1108/RPJ-12-2011-0127 10.1016/j.msea.2018.02.012 10.1016/j.procir.2020.02.110 10.1088/2053-1591/ab18bd 10.3390/met10010024 10.1016/S0007-8506(07)62438-X 10.1007/s00170-004-2201-9 10.1016/j.prostr.2019.12.045 10.1016/j.procir.2016.02.066 10.1016/j.jclepro.2016.09.209 10.1016/j.ijfatigue.2018.12.021 10.1016/j.jmapro.2020.03.004 10.1016/j.matpr.2020.08.486 10.1016/j.procir.2016.04.030 10.1002/adem.201700842 10.1016/j.matpr.2019.06.664 10.1007/s00170-020-05699-8 10.1007/s00170-018-2494-8 10.1016/j.msea.2019.06.024 10.1007/s12541-019-00275-x 10.1016/j.surfcoat.2019.125090 10.1016/j.wear.2015.01.030 10.1016/j.jmrt.2021.06.081 10.1016/j.promfg.2018.07.129 10.1108/13552540510573365 10.1016/j.triboint.2016.05.036 10.3390/ma13030766 10.1016/j.jmapro.2020.10.006 10.1016/j.matdes.2015.10.141 10.1007/s00170-019-04180-5 10.1016/j.matdes.2018.107552 10.1016/j.matpr.2019.08.159 10.1007/s00170-020-04921-x 10.1016/j.wear.2021.203617 10.1016/j.ceramint.2020.02.253 10.1016/j.promfg.2016.12.071 10.1108/09642369210056629 10.1016/j.proeng.2011.03.130 10.1016/j.procir.2016.04.032 10.1016/j.cirpj.2011.04.003 10.1016/j.triboint.2020.106200 10.1016/j.triboint.2020.106408 10.1016/j.procir.2020.02.104 10.1080/10426914.2019.1692353 10.1007/s11837-018-2994-x 10.3390/met8090710 10.1016/j.actbio.2009.01.011 10.1016/j.jmapro.2018.09.018 10.1016/j.precisioneng.2019.11.002 10.1016/j.procir.2019.04.166 10.1007/s11465-013-0248-8 10.1016/j.jallcom.2018.04.158 10.1016/j.procir.2015.03.040 10.1016/j.procir.2017.03.326 10.1007/s00170-018-2169-5 10.1080/10426914.2019.1594254 10.3390/app11031213 10.1016/j.jmatprotec.2015.08.021 10.1007/s00170-020-05212-1 10.4028/www.scientific.net/SSP.278.1 10.1016/j.procir.2018.05.013 10.1016/j.procir.2020.02.092 10.1007/s00170-020-05309-7 10.3390/ma12071144 10.1016/j.jmatprotec.2020.116689 10.1016/j.precisioneng.2020.10.003 10.1108/13552540610707031 10.3390/ma13194301 10.1016/j.procir.2020.02.072 10.1007/s00170-020-06222-9 10.1007/s00170-021-06940-8 10.1089/ten.2004.10.1316 10.1016/j.promfg.2017.07.104 10.1016/j.jmrt.2020.06.090 10.1007/s40964-019-00099-1 10.1016/j.matdes.2014.11.017 10.1016/j.promfg.2020.04.149 10.3390/ma12132159 10.1016/j.triboint.2016.09.034 10.1016/j.jmatprotec.2016.11.027 10.1016/j.jmatprotec.2018.03.014 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jmrt.2021.09.088 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 3221 |
ExternalDocumentID | oai_doaj_org_article_8dc3e6a5eb3348708cd89446fa41726f 10_1016_j_jmrt_2021_09_088 S2238785421010772 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ABXRA ACGFS ADBBV ADCUG ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB FNPLU GROUPED_DOAJ GX1 HH5 HZ~ IPNFZ IXB KQ8 M41 NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ADVLN AFJKZ CITATION |
ID | FETCH-LOGICAL-c410t-aae6297e856ab2beab96d937ef5c21e1df80ba935594d3113a299976b1cc96df3 |
IEDL.DBID | DOA |
ISSN | 2238-7854 |
IngestDate | Wed Aug 27 01:32:00 EDT 2025 Tue Jul 01 01:14:19 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Thu Jul 20 20:12:07 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface integrity analysis Titanium alloys Tool wear analysis Additive manufacturing Nickel alloy Machining |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-aae6297e856ab2beab96d937ef5c21e1df80ba935594d3113a299976b1cc96df3 |
ORCID | 0000-0002-8094-4604 0000-0002-2332-3465 0000-0002-7697-6443 0000-0001-9779-9813 |
OpenAccessLink | https://doaj.org/article/8dc3e6a5eb3348708cd89446fa41726f |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8dc3e6a5eb3348708cd89446fa41726f crossref_citationtrail_10_1016_j_jmrt_2021_09_088 crossref_primary_10_1016_j_jmrt_2021_09_088 elsevier_sciencedirect_doi_10_1016_j_jmrt_2021_09_088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November-December 2021 2021-11-00 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November-December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of materials research and technology |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Dang, Liu, Chen, An, Ming, Chen (bib103) 2019; 34 Ostra, Alonso, Veiga, Ortiz, Ramiro, Alberdi (bib64) 2019; 12 Rysava, Bruschi, Carmignato, Medeossi, Savio, Zanini (bib101) 2016; 46 Ponnusamy, Rahman Rashid, Masood, Ruan, Palanisamy (bib14) 2020; 13 Kaynak, Tascioglu (bib54) 2020; 5 Kaynak, Tascioglu (bib55) 2018; 71 Lizzul, Sorgato, Bertolini, Ghiotti, Bruschi (bib91) 2020; 146 Mireles, Espalin, Roberson, Zinniel, Medina, Wicker (bib10) 2012 Rahman Rashid, Barr, Palanisamy, Nazari, Orchowski, Matthews (bib18) 2019; 380 Ming, Dang, An, Chen (bib104) 2020; 35 Wong, Hernandez (bib5) 2012; 2012 Sadiq, Hoang, Valencia, Obeidat, Hung (bib67) 2018; 26 Careri, Umbrello, Essa, Attallah, Imbrogno (bib53) 2021; 470 Sartori, Moro, Ghiotti, Bruschi (bib74) 2017; 105 Yang, Patel, Jarosz, Özel (bib57) 2020; 87 Li, Zhang, Bai (bib95) 2020; 107 Kruth, Mercelis, Van Vaerenbergh, Froyen, Rombouts (bib11) 2005; 11 Woo, Kim, Jeong, Lee (bib105) 2020; 7 Bermingham, Nicastro, Kent, Chen, Dargusch (bib23) 2018; 753 Bonaiti, Parenti, Annoni, Kapoor (bib89) 2017; 10 Chen, Xu, Liu, Cai, Liu (bib52) 2021; 114 Dhinakaran, Ajith, Fahmidha, Jagadeesha, Sathish, Stalin (bib25) 2020; 21 MELD Manufacturing (bib28) 2020 Bordin, Sartori, Bruschi, Ghiotti (bib77) 2017; 142 Kent, Rahman Rashid, Bermingham, Attar, Sun, Dargusch (bib36) 2018; 8 Bordin, Imbrogno, Rotella, Bruschi, Ghiotti, Umbrello (bib86) 2015; 31 Park, Kim, Park, Park, Kim (bib66) 2020; 21 Liu, Shin (bib48) 2019; 164 Zhumatay, Perveen (bib31) 2019; 18 Sartori, Bordin, Ghiotti, Bruschi (bib76) 2016; 45 Khanna, Shah, Agrawal, Pusavec, Hegab (bib44) 2020; 106 Khanna, Rashid, Palanisamy (bib51) 2017; 19 Singla, Banerjee, Sharma, Singh, Bansal, Gupta (bib49) 2021; 64 Waterman, Dickens (bib8) 1994; 1 Youssef, El-Hofy, Ahmed (bib2) 2011 Moritz, Seidel, Kopper, Bretschneider, Gumpinger, Finaske (bib90) 2020; 107 Sartori, Bordin, Moro, Ghiotti, Bruschi (bib73) 2016; 46 Gibson, Rosen, Stucker, Khorasani (bib4) 2014; vol. 17 Chen, Murphy, Herlehy, Bourell, Wood (bib34) 2006; 12 Fei, Liu, Patel, Özel (bib61) 2019; 12 Karabulut, Kaynak (bib69) 2020; 87 Gong, Manogharan (bib98) 2020; vol. 84256 Ji, Gupta, Song, Cai, Zheng, Zhao (bib65) 2021; 14 Ozaner, Dursun, Akbulut (bib71) 2021; 38 Yang, He, Zhang (bib24) 2016; 227 Sachs, Cima, Cornie, Brancazio, Bredt, Curodeau (bib19) 1993; 42 Attar, Bermingham, Ehtemam-Haghighi, Dehghan-Manshadi, Kent, Dargusch (bib26) 2019; 760 Chan (bib45) 2020 Zhang, Liu, Li, Hao (bib15) 2018; 20 Veiga, Gil Del Val, Suárez, Alonso (bib88) 2020; 13 Oyelola, Crawforth, M'Saoubi, Clare (bib75) 2016; 45 Nau, Roderburg, Klocke (bib30) 2011; 4 Komarasamy, Shukla, Williams, Kandasamy, Kelly, Mishra (bib42) 2019; 28 Le Coz, Fischer, Piquard, D'Acunto, Laheurte, Dudzinski (bib83) 2017; 58 (bib6) 2015 Cooper, Thornby, Blundell, Henrys, Williams, Gibbons (bib39) 2015; 69 Bermingham, Thomson-Larkins, St John, Dargusch (bib21) 2018; 258 Zhang, Wang, Paddea, Zhang (bib50) 2016; 90 Khaliq, Zhang, Jamil, Khan (bib94) 2020; 151 Fei, Liu, Patel, Özel (bib60) 2020; 4 Bordin, Bruschi, Ghiotti, Bucciotti, Facchini (bib79) 2014; vol. 611 Alonso, Veiga, Suárez, Artaza (bib102) 2020; 10 Oyelola, Jackson-Crisp, Crawforth, Pieris, Smith, M'Saoubi (bib99) 2020; 54 Ma, Stoica, Wang, Beese (bib41) 2017; 684 Bermingham, McDonald, Dargusch (bib47) 2018; 719 Polishetty, Shunmugavel, Goldberg, Littlefair, Singh (bib72) 2017; 7 Huang, Bai, Li, Zhang (bib87) 2017; vol. 872 Bertolini, Lizzul, Pezzato, Ghiotti, Bruschi (bib80) 2019; 104 Klocke, Roderburg, Zeppenfeld (bib29) 2011; 9 Periane, Duchosal, Vaudreuil, Chibane, Morandeau, Xavior (bib62) 2020; 87 de Oliveira Campos, Araujo, Munhoz, Kapoor (bib96) 2020; 60 Calleja, Urbikain, González, Cerrillo, Polvorosa, Lamikiz (bib56) 2018; 97 Zhang, Dang, Ming, Xu, Chen, An (bib97) 2020; 46 Jacobs (bib9) 1992 Leal, Barreiros, Alves, Romeiro, Vasco, Santos (bib40) 2017; 92 Bordin, Bruschi, Ghiotti, Bariani (bib78) 2015; 328 Bertolini, Lizzul, Bruschi, Ghiotti (bib84) 2019; 82 Periane, Duchosal, Vaudreuil, Chibane, Morandeau, Cormier (bib68) 2019; 19 Jarosz, Patel, Özel (bib58) 2020; 111 Khanna, Mistry, Rashid, Gupta (bib12) 2019; 6 Lizzul, Sorgato, Bertolini, Ghiotti, Bruschi (bib93) 2021; 67 Dubiel, Sieniawski (bib46) 2019; 12 Standard (bib1) 2012 Rashid, Palanisamy, Attar, Bermingham, Dargusch (bib16) 2018; 35 Dhariwala, Hunt, Boland (bib37) 2004; 10 Ivanova, Williams, Campbell (bib38) 2013; 19 Yakout, Elbestawi, Veldhuis (bib7) 2018; 278 Oyelola, Crawforth, M'Saoubi, Clare (bib81) 2018; 24 Balla, DeVasConCellos, Xue, Bose, Bandyopadhyay (bib17) 2009; 5 Liao, Li, Chiu (bib20) 2006; 27 Lynch, Williams, Cabrera, Beccuti (bib70) 2021; 113 Hoye, Cuiuri, Rashid, Palanisamy (bib100) 2018; 99 Vafadar, Guzzomi, Rassau, Hayward (bib35) 2021; 11 Solberg, Berto (bib43) 2019; 122 Bruschi, Bertolini, Bordin, Medea, Ghiotti (bib82) 2016; 102 Tascioglu, Kaynak, Poyraz, Orhangül, Ören (bib63) 2019 Mereddy, Bermingham, Kent, Dehghan-Manshadi, StJohn, Dargusch (bib27) 2018; 70 Lizzul, Bertolini, Ghiotti, Bruschi (bib85) 2020; 47 Gupta, Singla, Ji, Song, Liu, Cai (bib13) 2020; 9 Guo, Leu (bib3) 2013; 8 Bambach, Sizova, Sydow, Hemes, Meiners (bib32) 2020; 282 Liu, Wang, Sparks, Liou, Newkirk (bib33) 2017 Hojati, Daneshi, Soltani, Azarhoushang, Biermann (bib92) 2020; 62 Sen, Subasi, Ozaner, Orhangul (bib59) 2020; 87 Geng, Li, Xiong, Lin, Zhang (bib22) 2017; 243 Zhang (10.1016/j.jmrt.2021.09.088_bib97) 2020; 46 Chen (10.1016/j.jmrt.2021.09.088_bib52) 2021; 114 Dubiel (10.1016/j.jmrt.2021.09.088_bib46) 2019; 12 Jacobs (10.1016/j.jmrt.2021.09.088_bib9) 1992 Rashid (10.1016/j.jmrt.2021.09.088_bib16) 2018; 35 Ostra (10.1016/j.jmrt.2021.09.088_bib64) 2019; 12 Karabulut (10.1016/j.jmrt.2021.09.088_bib69) 2020; 87 Lizzul (10.1016/j.jmrt.2021.09.088_bib91) 2020; 146 Ivanova (10.1016/j.jmrt.2021.09.088_bib38) 2013; 19 Yang (10.1016/j.jmrt.2021.09.088_bib24) 2016; 227 Attar (10.1016/j.jmrt.2021.09.088_bib26) 2019; 760 Park (10.1016/j.jmrt.2021.09.088_bib66) 2020; 21 Rysava (10.1016/j.jmrt.2021.09.088_bib101) 2016; 46 Khanna (10.1016/j.jmrt.2021.09.088_bib12) 2019; 6 Liao (10.1016/j.jmrt.2021.09.088_bib20) 2006; 27 Bruschi (10.1016/j.jmrt.2021.09.088_bib82) 2016; 102 Standard (10.1016/j.jmrt.2021.09.088_bib1) 2012 Zhumatay (10.1016/j.jmrt.2021.09.088_bib31) 2019; 18 Vafadar (10.1016/j.jmrt.2021.09.088_bib35) 2021; 11 Woo (10.1016/j.jmrt.2021.09.088_bib105) 2020; 7 Chen (10.1016/j.jmrt.2021.09.088_bib34) 2006; 12 Bordin (10.1016/j.jmrt.2021.09.088_bib86) 2015; 31 Fei (10.1016/j.jmrt.2021.09.088_bib60) 2020; 4 Khanna (10.1016/j.jmrt.2021.09.088_bib51) 2017; 19 Dhariwala (10.1016/j.jmrt.2021.09.088_bib37) 2004; 10 Le Coz (10.1016/j.jmrt.2021.09.088_bib83) 2017; 58 Ozaner (10.1016/j.jmrt.2021.09.088_bib71) 2021; 38 Periane (10.1016/j.jmrt.2021.09.088_bib68) 2019; 19 Bertolini (10.1016/j.jmrt.2021.09.088_bib84) 2019; 82 Zhang (10.1016/j.jmrt.2021.09.088_bib15) 2018; 20 Dhinakaran (10.1016/j.jmrt.2021.09.088_bib25) 2020; 21 Mireles (10.1016/j.jmrt.2021.09.088_bib10) 2012 Periane (10.1016/j.jmrt.2021.09.088_bib62) 2020; 87 Ming (10.1016/j.jmrt.2021.09.088_bib104) 2020; 35 MELD Manufacturing (10.1016/j.jmrt.2021.09.088_bib28) Bertolini (10.1016/j.jmrt.2021.09.088_bib80) 2019; 104 Balla (10.1016/j.jmrt.2021.09.088_bib17) 2009; 5 Komarasamy (10.1016/j.jmrt.2021.09.088_bib42) 2019; 28 Bermingham (10.1016/j.jmrt.2021.09.088_bib23) 2018; 753 Singla (10.1016/j.jmrt.2021.09.088_bib49) 2021; 64 Jarosz (10.1016/j.jmrt.2021.09.088_bib58) 2020; 111 de Oliveira Campos (10.1016/j.jmrt.2021.09.088_bib96) 2020; 60 (10.1016/j.jmrt.2021.09.088_bib6) 2015 Lizzul (10.1016/j.jmrt.2021.09.088_bib93) 2021; 67 Dang (10.1016/j.jmrt.2021.09.088_bib103) 2019; 34 Gibson (10.1016/j.jmrt.2021.09.088_bib4) 2014; vol. 17 Ma (10.1016/j.jmrt.2021.09.088_bib41) 2017; 684 Sadiq (10.1016/j.jmrt.2021.09.088_bib67) 2018; 26 Fei (10.1016/j.jmrt.2021.09.088_bib61) 2019; 12 Ji (10.1016/j.jmrt.2021.09.088_bib65) 2021; 14 Careri (10.1016/j.jmrt.2021.09.088_bib53) 2021; 470 Bordin (10.1016/j.jmrt.2021.09.088_bib78) 2015; 328 Tascioglu (10.1016/j.jmrt.2021.09.088_bib63) 2019 Moritz (10.1016/j.jmrt.2021.09.088_bib90) 2020; 107 Bermingham (10.1016/j.jmrt.2021.09.088_bib21) 2018; 258 Oyelola (10.1016/j.jmrt.2021.09.088_bib81) 2018; 24 Sachs (10.1016/j.jmrt.2021.09.088_bib19) 1993; 42 Liu (10.1016/j.jmrt.2021.09.088_bib33) 2017 Kruth (10.1016/j.jmrt.2021.09.088_bib11) 2005; 11 Rahman Rashid (10.1016/j.jmrt.2021.09.088_bib18) 2019; 380 Klocke (10.1016/j.jmrt.2021.09.088_bib29) 2011; 9 Kent (10.1016/j.jmrt.2021.09.088_bib36) 2018; 8 Gupta (10.1016/j.jmrt.2021.09.088_bib13) 2020; 9 Kaynak (10.1016/j.jmrt.2021.09.088_bib54) 2020; 5 Hojati (10.1016/j.jmrt.2021.09.088_bib92) 2020; 62 Wong (10.1016/j.jmrt.2021.09.088_bib5) 2012; 2012 Yang (10.1016/j.jmrt.2021.09.088_bib57) 2020; 87 Lynch (10.1016/j.jmrt.2021.09.088_bib70) 2021; 113 Polishetty (10.1016/j.jmrt.2021.09.088_bib72) 2017; 7 Veiga (10.1016/j.jmrt.2021.09.088_bib88) 2020; 13 Leal (10.1016/j.jmrt.2021.09.088_bib40) 2017; 92 Bermingham (10.1016/j.jmrt.2021.09.088_bib47) 2018; 719 Sartori (10.1016/j.jmrt.2021.09.088_bib74) 2017; 105 Ponnusamy (10.1016/j.jmrt.2021.09.088_bib14) 2020; 13 Waterman (10.1016/j.jmrt.2021.09.088_bib8) 1994; 1 Bordin (10.1016/j.jmrt.2021.09.088_bib79) 2014; vol. 611 Lizzul (10.1016/j.jmrt.2021.09.088_bib85) 2020; 47 Li (10.1016/j.jmrt.2021.09.088_bib95) 2020; 107 Nau (10.1016/j.jmrt.2021.09.088_bib30) 2011; 4 Chan (10.1016/j.jmrt.2021.09.088_bib45) 2020 Khanna (10.1016/j.jmrt.2021.09.088_bib44) 2020; 106 Yakout (10.1016/j.jmrt.2021.09.088_bib7) 2018; 278 Alonso (10.1016/j.jmrt.2021.09.088_bib102) 2020; 10 Guo (10.1016/j.jmrt.2021.09.088_bib3) 2013; 8 Calleja (10.1016/j.jmrt.2021.09.088_bib56) 2018; 97 Khaliq (10.1016/j.jmrt.2021.09.088_bib94) 2020; 151 Gong (10.1016/j.jmrt.2021.09.088_bib98) 2020; vol. 84256 Kaynak (10.1016/j.jmrt.2021.09.088_bib55) 2018; 71 Oyelola (10.1016/j.jmrt.2021.09.088_bib99) 2020; 54 Bordin (10.1016/j.jmrt.2021.09.088_bib77) 2017; 142 Bonaiti (10.1016/j.jmrt.2021.09.088_bib89) 2017; 10 Liu (10.1016/j.jmrt.2021.09.088_bib48) 2019; 164 Sen (10.1016/j.jmrt.2021.09.088_bib59) 2020; 87 Huang (10.1016/j.jmrt.2021.09.088_bib87) 2017; vol. 872 Sartori (10.1016/j.jmrt.2021.09.088_bib76) 2016; 45 Bambach (10.1016/j.jmrt.2021.09.088_bib32) 2020; 282 Zhang (10.1016/j.jmrt.2021.09.088_bib50) 2016; 90 Sartori (10.1016/j.jmrt.2021.09.088_bib73) 2016; 46 Solberg (10.1016/j.jmrt.2021.09.088_bib43) 2019; 122 Oyelola (10.1016/j.jmrt.2021.09.088_bib75) 2016; 45 Hoye (10.1016/j.jmrt.2021.09.088_bib100) 2018; 99 Geng (10.1016/j.jmrt.2021.09.088_bib22) 2017; 243 Cooper (10.1016/j.jmrt.2021.09.088_bib39) 2015; 69 Mereddy (10.1016/j.jmrt.2021.09.088_bib27) 2018; 70 Youssef (10.1016/j.jmrt.2021.09.088_bib2) 2011 |
References_xml | – volume: 87 start-page: 31 year: 2020 end-page: 34 ident: bib59 article-title: The effect of milling parameters on surface properties of additively manufactured Inconel 939 publication-title: Procedia CIRP – year: 2012 ident: bib1 article-title: Standard terminology for additive manufacturing technologies – volume: 760 start-page: 339 year: 2019 end-page: 345 ident: bib26 article-title: Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application publication-title: Mater Sci Eng A – volume: 19 start-page: 374 year: 2017 end-page: 393 ident: bib51 article-title: Experimental evaluation of the effect of workpiece heat treatments and cutting parameters on the machinability of Ti-10V-2Fe-3Al β titanium alloy using Taguchi's design of experiments publication-title: Int J Mach Mach Mater – volume: 5 start-page: 1831 year: 2009 end-page: 1837 ident: bib17 article-title: Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS) publication-title: Acta Biomater – volume: 97 start-page: 2873 year: 2018 end-page: 2885 ident: bib56 article-title: Inconel® 718 superalloy machinability evaluation after laser cladding additive manufacturing process publication-title: Int J Adv Manuf Technol – volume: vol. 84256 year: 2020 ident: bib98 article-title: Machining behavior and material properties in additive manufacturing Ti-6Al-4V parts publication-title: International manufacturing science and engineering conference – volume: 164 start-page: 107552 year: 2019 ident: bib48 article-title: Additive manufacturing of Ti6Al4V alloy: a review publication-title: Mater Des – volume: 99 start-page: 313 year: 2018 end-page: 326 ident: bib100 article-title: Machining of GTAW additively manufactured Ti-6Al-4V structures publication-title: Int J Adv Manuf Technol – volume: 111 start-page: 1535 year: 2020 end-page: 1551 ident: bib58 article-title: Mechanistic force modeling in finish face milling of additively manufactured Inconel 625 nickel-based alloy publication-title: Int J Adv Manuf Technol – year: 2020 ident: bib28 – volume: 64 start-page: 161 year: 2021 end-page: 187 ident: bib49 article-title: Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments publication-title: J Manuf Process – volume: 11 start-page: 1213 year: 2021 ident: bib35 article-title: Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges publication-title: Appl Sci – volume: 8 start-page: 710 year: 2018 ident: bib36 article-title: Insights into machining of a β titanium biomedical alloy from chip microstructures publication-title: Metals – volume: 45 start-page: 123 year: 2016 end-page: 126 ident: bib76 article-title: Analysis of the surface integrity in cryogenic turning of Ti6Al4 v produced by direct melting laser sintering publication-title: Procedia CIRP – volume: 151 start-page: 106408 year: 2020 ident: bib94 article-title: Tool wear, surface quality, and residual stresses analysis of micro-machined additive manufactured Ti–6Al–4V under dry and MQL conditions publication-title: Tribol Int – volume: 69 start-page: 44 year: 2015 end-page: 55 ident: bib39 article-title: Design and manufacture of high-performance hollow engine valves by additive layer manufacturing publication-title: Mater Des – volume: 4 start-page: 32 year: 2020 ident: bib60 article-title: Effects of machining parameters on finishing additively manufactured nickel-based alloy Inconel 625 publication-title: J Manuf Mater Process – volume: 87 start-page: 333 year: 2020 end-page: 338 ident: bib62 article-title: Selection of machining condition on surface integrity of additive and conventional Inconel 718 publication-title: Procedia CIRP – volume: 19 start-page: 415 year: 2019 end-page: 422 ident: bib68 article-title: Machining influence on the fatigue resistance of Inconel 718 fabricated by selective laser melting (SLM) publication-title: Procedia Struct Integr – start-page: 351 year: 2017 end-page: 371 ident: bib33 article-title: Aerospace applications of laser additive manufacturing publication-title: Laser additive manufacturing – volume: 47 start-page: 505 year: 2020 end-page: 510 ident: bib85 article-title: Effect of AM-induced anisotropy on the surface integrity of laser powder bed fused Ti6Al4V machined parts publication-title: Procedia Manuf – volume: 10 start-page: 1316 year: 2004 end-page: 1322 ident: bib37 article-title: Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography publication-title: Tissue Eng – volume: 104 start-page: 2839 year: 2019 end-page: 2850 ident: bib80 article-title: Improving surface integrity and corrosion resistance of additive manufactured Ti6Al4V alloy by cryogenic machining publication-title: Int J Adv Manuf Technol – volume: 21 start-page: 57 year: 2020 end-page: 65 ident: bib66 article-title: Evaluation of tool life in the dry machining of Inconel 718 parts from additive manufacturing (AM) publication-title: Int J Precis Eng Manuf – volume: 46 start-page: 583 year: 2016 end-page: 586 ident: bib101 article-title: Micro-drilling and threading of the Ti6Al4 v titanium alloy produced through additive manufacturing publication-title: Procedia CIRP – year: 2015 ident: bib6 article-title: ISO/ASTM52900-15 standard terminology for additive manufacturing – general principles – terminology – volume: 12 start-page: 275 year: 2006 end-page: 282 ident: bib34 article-title: Development of SLS fuel cell current collectors publication-title: Rapid Prototyp J – volume: 12 start-page: 196 year: 2019 end-page: 210 ident: bib61 article-title: Cutting force investigation in face milling of additively fabricated nickel alloy 625 via powder bed fusion publication-title: Int J Mechatron Manuf Syst – volume: 82 start-page: 326 year: 2019 end-page: 331 ident: bib84 article-title: On the surface integrity of Electron Beam Melted Ti6Al4V after machining publication-title: Procedia CIRP – volume: vol. 872 start-page: 43 year: 2017 end-page: 48 ident: bib87 article-title: Machining finish of titanium alloy prepared by additive manufacturing publication-title: Applied mechanics and materials – volume: 14 start-page: 348 year: 2021 end-page: 362 ident: bib65 article-title: Microstructure and machinability evaluation in micro milling of selective laser melted Inconel 718 alloy publication-title: J Mater Res Technol – volume: 380 year: 2019 ident: bib18 article-title: Effect of clad orientation on the mechanical properties of laser-clad repaired ultra-high strength 300 M steel publication-title: Surf Coat Technol – year: 2011 ident: bib2 article-title: Manufacturing technology: materials, processes, and equipment – start-page: 263 year: 2019 end-page: 272 ident: bib63 article-title: The effect of finish-milling operation on surface quality and wear resistance of Inconel 625 produced by selective laser melting additive manufacturing publication-title: International conference on advanced surface enhancement – volume: 7 start-page: 284 year: 2017 end-page: 289 ident: bib72 article-title: Cutting force and surface finish analysis of machining additive manufactured titanium alloy Ti-6Al-4V publication-title: Procedia Manuf – volume: 146 start-page: 106200 year: 2020 ident: bib91 article-title: Influence of additive manufacturing-induced anisotropy on tool wear in end milling of Ti6Al4V publication-title: Tribol Int – volume: 58 start-page: 228 year: 2017 end-page: 232 ident: bib83 article-title: Micro cutting of Ti-6Al-4V parts produced by SLM process publication-title: Procedia CIRP – volume: 46 start-page: 587 year: 2016 end-page: 590 ident: bib73 article-title: The influence of material properties on the tool crater wear when machining Ti6Al4V produced by additive manufacturing technologies publication-title: Procedia CIRP – volume: 35 start-page: 43 year: 2020 end-page: 51 ident: bib104 article-title: Chip formation and hole quality in dry drilling additive manufactured Ti6Al4V publication-title: Mater Manuf Process – volume: 243 start-page: 40 year: 2017 end-page: 47 ident: bib22 article-title: Optimization of wire feed for GTAW based additive manufacturing publication-title: J Mater Process Technol – volume: vol. 17 start-page: 195 year: 2014 ident: bib4 publication-title: Additive manufacturing technologies – volume: 227 start-page: 153 year: 2016 end-page: 160 ident: bib24 article-title: Forming characteristics of thin-wall steel parts by double electrode GMAW based additive manufacturing publication-title: J Mater Process Technol – volume: 62 start-page: 1 year: 2020 end-page: 9 ident: bib92 article-title: Study on machinability of additively manufactured and conventional titanium alloys in micro-milling process publication-title: Precis Eng – volume: 122 start-page: 35 year: 2019 end-page: 45 ident: bib43 article-title: Notch-defect interaction in additively manufactured Inconel 718 publication-title: Int J Fatigue – volume: 684 start-page: 47 year: 2017 end-page: 53 ident: bib41 article-title: Crystallographic texture in an additively manufactured nickel-base superalloy publication-title: Mater Sci Eng A – volume: 142 start-page: 4142 year: 2017 end-page: 4151 ident: bib77 article-title: Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6Al4V produced by additive manufacturing publication-title: J Clean Prod – volume: 34 start-page: 749 year: 2019 end-page: 758 ident: bib103 article-title: Experimental investigation on machinability of DMLS Ti6Al4V under dry drilling process publication-title: Mater Manuf Process – volume: 87 start-page: 351 year: 2020 end-page: 354 ident: bib57 article-title: Surface integrity induced in machining additively fabricated nickel alloy Inconel 625 publication-title: Procedia CIRP – volume: vol. 611 start-page: 1186 year: 2014 end-page: 1193 ident: bib79 article-title: Comparison between wrought and EBM Ti6Al4V machinability characteristics publication-title: Key engineering materials – volume: 753 start-page: 247 year: 2018 end-page: 255 ident: bib23 article-title: Optimising the mechanical properties of Ti-6Al-4V components produced by wire + arc additive manufacturing with post-process heat treatments publication-title: J Alloys Compd – start-page: 1 year: 2020 end-page: 11 ident: bib45 article-title: Mechanism-based models for predicting the microstructure and stress–strain response of additively manufactured superalloy 718Plus publication-title: J Mater Eng Perform – volume: 278 start-page: 1 year: 2018 end-page: 14 ident: bib7 article-title: A review of metal additive manufacturing technologies publication-title: SSP – volume: 106 start-page: 4987 year: 2020 end-page: 4999 ident: bib44 article-title: Inconel 718 machining performance evaluation using indigenously developed hybrid machining facilities: experimental investigation and sustainability assessment publication-title: Int J Adv Manuf Technol – volume: 6 year: 2019 ident: bib12 article-title: Investigations on density and surface roughness characteristics during selective laser sintering of Invar-36 alloy publication-title: Mater Res Express – volume: 10 start-page: 497 year: 2017 end-page: 509 ident: bib89 article-title: Micro-milling machinability of DED additive titanium Ti-6Al-4V publication-title: Procedia Manuf – volume: 13 start-page: 766 year: 2020 ident: bib88 article-title: Analysis of the machining process of titanium Ti6Al-4V parts manufactured by wire arc additive manufacturing (WAAM) publication-title: Materials – volume: 719 start-page: 1 year: 2018 end-page: 11 ident: bib47 article-title: Effect of trace lanthanum hexaboride and boron additions on microstructure, tensile properties and anisotropy of Ti-6Al-4V produced by additive manufacturing publication-title: Mater Sci Eng A – volume: 70 start-page: 1670 year: 2018 end-page: 1676 ident: bib27 article-title: Trace carbon addition to refine microstructure and enhance properties of additive-manufactured Ti-6Al-4V publication-title: JOM – volume: 46 start-page: 14536 year: 2020 end-page: 14547 ident: bib97 article-title: Cutting responses of additive manufactured Ti6Al4V with solid ceramic tool under dry high-speed milling processes publication-title: Ceram Int – volume: 4 start-page: 313 year: 2011 end-page: 316 ident: bib30 article-title: Ramp-up of hybrid manufacturing technologies publication-title: CIRP J Manuf Sci Technol – volume: 92 start-page: 1671 year: 2017 end-page: 1676 ident: bib40 article-title: Additive manufacturing tooling for the automotive industry publication-title: Int J Adv Manuf Technol – volume: 67 start-page: 301 year: 2021 end-page: 310 ident: bib93 article-title: Anisotropy effect of additively manufactured Ti6Al4V titanium alloy on surface quality after milling publication-title: Precis Eng – volume: 12 start-page: 1144 year: 2019 ident: bib46 article-title: Precipitates in additively manufactured Inconel 625 superalloy publication-title: Materials – volume: 107 start-page: 2995 year: 2020 end-page: 3009 ident: bib90 article-title: Hybrid manufacturing of titanium Ti-6Al-4V combining laser metal deposition and cryogenic milling publication-title: Int J Adv Manuf Technol – volume: 328 start-page: 89 year: 2015 end-page: 99 ident: bib78 article-title: Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy publication-title: Wear – volume: 102 start-page: 133 year: 2016 end-page: 142 ident: bib82 article-title: Influence of the machining parameters and cooling strategies on the wear behavior of wrought and additive manufactured Ti6Al4V for biomedical applications publication-title: Tribol Int – volume: 11 start-page: 26 year: 2005 end-page: 36 ident: bib11 article-title: Binding mechanisms in selective laser sintering and selective laser melting publication-title: Rapid Prototyp J – volume: 12 start-page: 2159 year: 2019 ident: bib64 article-title: Analysis of the machining process of inconel 718 parts manufactured by laser metal deposition publication-title: Materials – volume: 10 start-page: 24 year: 2020 ident: bib102 article-title: Experimental investigation of the influence of wire arc additive manufacturing on the machinability of titanium parts publication-title: Metals – volume: 21 start-page: 920 year: 2020 end-page: 925 ident: bib25 article-title: Wire arc additive manufacturing (WAAM) process of nickel-based superalloys – a review publication-title: Mater Today Proc – volume: 13 start-page: 4301 year: 2020 ident: bib14 article-title: Mechanical properties of SLM-printed aluminium alloys: a review publication-title: Materials – volume: 470 start-page: 203617 year: 2021 ident: bib53 article-title: The effect of the heat treatments on the tool wear of hybrid additive manufacturing of IN718 publication-title: Wear – volume: 71 start-page: 500 year: 2018 end-page: 504 ident: bib55 article-title: Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy publication-title: Procedia CIRP – volume: 9 start-page: 9506 year: 2020 end-page: 9522 ident: bib13 article-title: Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy publication-title: J Mater Res Technol – volume: 38 start-page: 1861 year: 2021 end-page: 1865 ident: bib71 article-title: Effects of wire-EDM parameters on the surface integrity and mechanical characteristics of additively manufactured Inconel 939 publication-title: Mater Today Proc – volume: 35 start-page: 651 year: 2018 end-page: 656 ident: bib16 article-title: Metallurgical features of direct laser-deposited Ti6Al4V with trace boron publication-title: J Manuf Process – volume: 90 start-page: 551 year: 2016 end-page: 561 ident: bib50 article-title: Fatigue crack propagation behaviour in wire + arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress publication-title: Mater Des – volume: 60 start-page: 299 year: 2020 end-page: 307 ident: bib96 article-title: The influence of additive manufacturing on the micromilling machinability of Ti6Al4V: a comparison of SLM and commercial workpieces publication-title: J Manuf Process – start-page: 6 year: 2012 end-page: 8 ident: bib10 article-title: Fused deposition modeling of metals publication-title: Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA – volume: 258 start-page: 29 year: 2018 end-page: 37 ident: bib21 article-title: Sensitivity of Ti-6Al-4V components to oxidation during out of chamber wire + arc additive manufacturing publication-title: J Mater Process Technol – volume: 31 start-page: 551 year: 2015 end-page: 556 ident: bib86 article-title: Finite element simulation of semi-finishing turning of electron beam melted Ti6Al4V under dry and cryogenic cooling publication-title: Procedia CIRP – volume: 18 start-page: 2209 year: 2019 end-page: 2216 ident: bib31 article-title: Hybrid machining process for microfabrication of micro parts publication-title: Mater Today Proc – volume: 113 start-page: 967 year: 2021 end-page: 984 ident: bib70 article-title: Surface finishing of additively manufactured IN718 lattices by electrochemical machining publication-title: Int J Adv Manuf Technol – volume: 24 start-page: 20 year: 2018 end-page: 29 ident: bib81 article-title: Machining of functionally graded Ti6Al4V/WC produced by directed energy deposition publication-title: Addit Manuf – volume: 2012 year: 2012 ident: bib5 article-title: A review of additive manufacturing publication-title: Int Sch Res Notices – volume: 45 start-page: 119 year: 2016 end-page: 122 ident: bib75 article-title: Machining of additively manufactured parts: implications for surface integrity publication-title: Procedia CIRP – volume: 107 start-page: 4191 year: 2020 end-page: 4200 ident: bib95 article-title: Effect of temperature buildup on milling forces in additive/subtractive hybrid manufacturing of Ti-6Al-4V publication-title: Int J Adv Manuf Technol – volume: 26 start-page: 983 year: 2018 end-page: 992 ident: bib67 article-title: Experimental study of micromilling selective laser melted Inconel 718 superalloy publication-title: Procedia Manuf – volume: 5 start-page: 221 year: 2020 end-page: 234 ident: bib54 article-title: Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing publication-title: Prog Addit Manuf – volume: 9 start-page: 417 year: 2011 end-page: 430 ident: bib29 article-title: Design methodology for hybrid production processes publication-title: Procedia Eng – volume: 87 start-page: 355 year: 2020 end-page: 359 ident: bib69 article-title: Drilling process and resulting surface properties of Inconel 718 alloy fabricated by selective laser melting additive manufacturing publication-title: Procedia CIRP – volume: 20 start-page: 1700842 year: 2018 ident: bib15 article-title: Additive manufacturing of titanium alloys by electron beam melting: a review publication-title: Adv Eng Mater – volume: 27 start-page: 703 year: 2006 end-page: 707 ident: bib20 article-title: Study of laminated object manufacturing with separately applied heating and pressing publication-title: Int J Adv Manuf Technol – volume: 54 start-page: 240 year: 2020 end-page: 250 ident: bib99 article-title: Machining of directed energy deposited Ti6Al4V using adaptive control publication-title: J Manuf Process – volume: 8 start-page: 215 year: 2013 end-page: 243 ident: bib3 article-title: Additive manufacturing: technology, applications and research needs publication-title: Front Mech Eng – volume: 42 start-page: 257 year: 1993 end-page: 260 ident: bib19 article-title: Three-dimensional printing: the physics and implications of additive manufacturing publication-title: CIRP Ann – volume: 28 start-page: 661 year: 2019 end-page: 675 ident: bib42 article-title: Microstructure, fatigue, and impact toughness properties of additively manufactured nickel alloy 718 publication-title: Addit Manuf – volume: 114 start-page: 871 year: 2021 end-page: 882 ident: bib52 article-title: Machinability of the laser additively manufactured Inconel 718 superalloy in turning publication-title: Int J Adv Manuf Technol – volume: 282 start-page: 116689 year: 2020 ident: bib32 article-title: Hybrid manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing publication-title: J Mater Process Technol – volume: 105 start-page: 264 year: 2017 end-page: 273 ident: bib74 article-title: On the tool wear mechanisms in dry and cryogenic turning additive manufactured titanium alloys publication-title: Tribol Int – volume: 7 start-page: 559 year: 2020 end-page: 572 ident: bib105 article-title: Laser-assisted machining of Ti-6Al-4V fabricated by DED additive manufacturing publication-title: Int J Precis Eng Manuf Green Technol – volume: 1 start-page: 27 year: 1994 end-page: 36 ident: bib8 article-title: Rapid product development in the USA, Europe and Japan publication-title: World Class Des Manuf – year: 1992 ident: bib9 article-title: Fundamentals of stereolithography publication-title: 1992 International Solid Freeform Fabrication Symposium – volume: 19 start-page: 353 year: 2013 end-page: 364 ident: bib38 article-title: Additive manufacturing (AM) and nanotechnology: promises and challenges publication-title: Rapid Prototyp J – volume: 92 start-page: 1671 issue: 5 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib40 article-title: Additive manufacturing tooling for the automotive industry publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-0239-8 – volume: 64 start-page: 161 year: 2021 ident: 10.1016/j.jmrt.2021.09.088_bib49 article-title: Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.01.009 – volume: 684 start-page: 47 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib41 article-title: Crystallographic texture in an additively manufactured nickel-base superalloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2016.12.028 – volume: 45 start-page: 123 year: 2016 ident: 10.1016/j.jmrt.2021.09.088_bib76 article-title: Analysis of the surface integrity in cryogenic turning of Ti6Al4 v produced by direct melting laser sintering publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.02.328 – volume: 7 start-page: 559 issue: 3 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib105 article-title: Laser-assisted machining of Ti-6Al-4V fabricated by DED additive manufacturing publication-title: Int J Precis Eng Manuf Green Technol doi: 10.1007/s40684-020-00221-7 – volume: 19 start-page: 353 issue: 5 year: 2013 ident: 10.1016/j.jmrt.2021.09.088_bib38 article-title: Additive manufacturing (AM) and nanotechnology: promises and challenges publication-title: Rapid Prototyp J doi: 10.1108/RPJ-12-2011-0127 – volume: 719 start-page: 1 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib47 article-title: Effect of trace lanthanum hexaboride and boron additions on microstructure, tensile properties and anisotropy of Ti-6Al-4V produced by additive manufacturing publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.02.012 – year: 2012 ident: 10.1016/j.jmrt.2021.09.088_bib1 – volume: 19 start-page: 374 issue: 4 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib51 article-title: Experimental evaluation of the effect of workpiece heat treatments and cutting parameters on the machinability of Ti-10V-2Fe-3Al β titanium alloy using Taguchi's design of experiments publication-title: Int J Mach Mach Mater – year: 1992 ident: 10.1016/j.jmrt.2021.09.088_bib9 article-title: Fundamentals of stereolithography – volume: 87 start-page: 355 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib69 article-title: Drilling process and resulting surface properties of Inconel 718 alloy fabricated by selective laser melting additive manufacturing publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.02.110 – volume: 6 issue: 8 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib12 article-title: Investigations on density and surface roughness characteristics during selective laser sintering of Invar-36 alloy publication-title: Mater Res Express doi: 10.1088/2053-1591/ab18bd – volume: 10 start-page: 24 issue: 1 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib102 article-title: Experimental investigation of the influence of wire arc additive manufacturing on the machinability of titanium parts publication-title: Metals doi: 10.3390/met10010024 – volume: 42 start-page: 257 issue: 1 year: 1993 ident: 10.1016/j.jmrt.2021.09.088_bib19 article-title: Three-dimensional printing: the physics and implications of additive manufacturing publication-title: CIRP Ann doi: 10.1016/S0007-8506(07)62438-X – volume: 27 start-page: 703 issue: 7–8 year: 2006 ident: 10.1016/j.jmrt.2021.09.088_bib20 article-title: Study of laminated object manufacturing with separately applied heating and pressing publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-004-2201-9 – volume: 19 start-page: 415 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib68 article-title: Machining influence on the fatigue resistance of Inconel 718 fabricated by selective laser melting (SLM) publication-title: Procedia Struct Integr doi: 10.1016/j.prostr.2019.12.045 – volume: 45 start-page: 119 year: 2016 ident: 10.1016/j.jmrt.2021.09.088_bib75 article-title: Machining of additively manufactured parts: implications for surface integrity publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.02.066 – volume: 142 start-page: 4142 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib77 article-title: Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6Al4V produced by additive manufacturing publication-title: J Clean Prod doi: 10.1016/j.jclepro.2016.09.209 – volume: 122 start-page: 35 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib43 article-title: Notch-defect interaction in additively manufactured Inconel 718 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.12.021 – volume: 54 start-page: 240 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib99 article-title: Machining of directed energy deposited Ti6Al4V using adaptive control publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.03.004 – volume: 38 start-page: 1861 year: 2021 ident: 10.1016/j.jmrt.2021.09.088_bib71 article-title: Effects of wire-EDM parameters on the surface integrity and mechanical characteristics of additively manufactured Inconel 939 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.08.486 – volume: 46 start-page: 583 year: 2016 ident: 10.1016/j.jmrt.2021.09.088_bib101 article-title: Micro-drilling and threading of the Ti6Al4 v titanium alloy produced through additive manufacturing publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.04.030 – volume: 20 start-page: 1700842 issue: 5 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib15 article-title: Additive manufacturing of titanium alloys by electron beam melting: a review publication-title: Adv Eng Mater doi: 10.1002/adem.201700842 – volume: 18 start-page: 2209 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib31 article-title: Hybrid machining process for microfabrication of micro parts publication-title: Mater Today Proc doi: 10.1016/j.matpr.2019.06.664 – volume: 113 start-page: 967 issue: 3 year: 2021 ident: 10.1016/j.jmrt.2021.09.088_bib70 article-title: Surface finishing of additively manufactured IN718 lattices by electrochemical machining publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05699-8 – volume: 99 start-page: 313 issue: 1 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib100 article-title: Machining of GTAW additively manufactured Ti-6Al-4V structures publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2494-8 – volume: 760 start-page: 339 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib26 article-title: Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2019.06.024 – volume: 21 start-page: 57 issue: 1 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib66 article-title: Evaluation of tool life in the dry machining of Inconel 718 parts from additive manufacturing (AM) publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-019-00275-x – volume: 380 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib18 article-title: Effect of clad orientation on the mechanical properties of laser-clad repaired ultra-high strength 300 M steel publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.125090 – volume: 328 start-page: 89 year: 2015 ident: 10.1016/j.jmrt.2021.09.088_bib78 article-title: Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy publication-title: Wear doi: 10.1016/j.wear.2015.01.030 – volume: 14 start-page: 348 year: 2021 ident: 10.1016/j.jmrt.2021.09.088_bib65 article-title: Microstructure and machinability evaluation in micro milling of selective laser melted Inconel 718 alloy publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2021.06.081 – volume: 26 start-page: 983 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib67 article-title: Experimental study of micromilling selective laser melted Inconel 718 superalloy publication-title: Procedia Manuf doi: 10.1016/j.promfg.2018.07.129 – volume: 11 start-page: 26 issue: 1 year: 2005 ident: 10.1016/j.jmrt.2021.09.088_bib11 article-title: Binding mechanisms in selective laser sintering and selective laser melting publication-title: Rapid Prototyp J doi: 10.1108/13552540510573365 – volume: 102 start-page: 133 year: 2016 ident: 10.1016/j.jmrt.2021.09.088_bib82 article-title: Influence of the machining parameters and cooling strategies on the wear behavior of wrought and additive manufactured Ti6Al4V for biomedical applications publication-title: Tribol Int doi: 10.1016/j.triboint.2016.05.036 – volume: 13 start-page: 766 issue: 3 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib88 article-title: Analysis of the machining process of titanium Ti6Al-4V parts manufactured by wire arc additive manufacturing (WAAM) publication-title: Materials doi: 10.3390/ma13030766 – volume: 60 start-page: 299 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib96 article-title: The influence of additive manufacturing on the micromilling machinability of Ti6Al4V: a comparison of SLM and commercial workpieces publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.10.006 – volume: 90 start-page: 551 year: 2016 ident: 10.1016/j.jmrt.2021.09.088_bib50 article-title: Fatigue crack propagation behaviour in wire + arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress publication-title: Mater Des doi: 10.1016/j.matdes.2015.10.141 – volume: 104 start-page: 2839 issue: 5 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib80 article-title: Improving surface integrity and corrosion resistance of additive manufactured Ti6Al4V alloy by cryogenic machining publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-04180-5 – volume: 164 start-page: 107552 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib48 article-title: Additive manufacturing of Ti6Al4V alloy: a review publication-title: Mater Des doi: 10.1016/j.matdes.2018.107552 – volume: 21 start-page: 920 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib25 article-title: Wire arc additive manufacturing (WAAM) process of nickel-based superalloys – a review publication-title: Mater Today Proc doi: 10.1016/j.matpr.2019.08.159 – volume: 106 start-page: 4987 issue: 11 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib44 article-title: Inconel 718 machining performance evaluation using indigenously developed hybrid machining facilities: experimental investigation and sustainability assessment publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-04921-x – year: 2011 ident: 10.1016/j.jmrt.2021.09.088_bib2 – volume: 470 start-page: 203617 year: 2021 ident: 10.1016/j.jmrt.2021.09.088_bib53 article-title: The effect of the heat treatments on the tool wear of hybrid additive manufacturing of IN718 publication-title: Wear doi: 10.1016/j.wear.2021.203617 – volume: 46 start-page: 14536 issue: 10 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib97 article-title: Cutting responses of additive manufactured Ti6Al4V with solid ceramic tool under dry high-speed milling processes publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.02.253 – volume: 7 start-page: 284 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib72 article-title: Cutting force and surface finish analysis of machining additive manufactured titanium alloy Ti-6Al-4V publication-title: Procedia Manuf doi: 10.1016/j.promfg.2016.12.071 – volume: 1 start-page: 27 issue: 3 year: 1994 ident: 10.1016/j.jmrt.2021.09.088_bib8 article-title: Rapid product development in the USA, Europe and Japan publication-title: World Class Des Manuf doi: 10.1108/09642369210056629 – volume: 9 start-page: 417 year: 2011 ident: 10.1016/j.jmrt.2021.09.088_bib29 article-title: Design methodology for hybrid production processes publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.03.130 – volume: 46 start-page: 587 year: 2016 ident: 10.1016/j.jmrt.2021.09.088_bib73 article-title: The influence of material properties on the tool crater wear when machining Ti6Al4V produced by additive manufacturing technologies publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.04.032 – volume: 4 start-page: 313 issue: 3 year: 2011 ident: 10.1016/j.jmrt.2021.09.088_bib30 article-title: Ramp-up of hybrid manufacturing technologies publication-title: CIRP J Manuf Sci Technol doi: 10.1016/j.cirpj.2011.04.003 – volume: 146 start-page: 106200 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib91 article-title: Influence of additive manufacturing-induced anisotropy on tool wear in end milling of Ti6Al4V publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106200 – volume: vol. 84256 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib98 article-title: Machining behavior and material properties in additive manufacturing Ti-6Al-4V parts – volume: vol. 611 start-page: 1186 year: 2014 ident: 10.1016/j.jmrt.2021.09.088_bib79 article-title: Comparison between wrought and EBM Ti6Al4V machinability characteristics – volume: 151 start-page: 106408 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib94 article-title: Tool wear, surface quality, and residual stresses analysis of micro-machined additive manufactured Ti–6Al–4V under dry and MQL conditions publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106408 – volume: 87 start-page: 351 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib57 article-title: Surface integrity induced in machining additively fabricated nickel alloy Inconel 625 publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.02.104 – volume: 35 start-page: 43 issue: 1 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib104 article-title: Chip formation and hole quality in dry drilling additive manufactured Ti6Al4V publication-title: Mater Manuf Process doi: 10.1080/10426914.2019.1692353 – volume: 70 start-page: 1670 issue: 9 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib27 article-title: Trace carbon addition to refine microstructure and enhance properties of additive-manufactured Ti-6Al-4V publication-title: JOM doi: 10.1007/s11837-018-2994-x – volume: 8 start-page: 710 issue: 9 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib36 article-title: Insights into machining of a β titanium biomedical alloy from chip microstructures publication-title: Metals doi: 10.3390/met8090710 – volume: 5 start-page: 1831 issue: 5 year: 2009 ident: 10.1016/j.jmrt.2021.09.088_bib17 article-title: Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS) publication-title: Acta Biomater doi: 10.1016/j.actbio.2009.01.011 – volume: 35 start-page: 651 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib16 article-title: Metallurgical features of direct laser-deposited Ti6Al4V with trace boron publication-title: J Manuf Process doi: 10.1016/j.jmapro.2018.09.018 – volume: 62 start-page: 1 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib92 article-title: Study on machinability of additively manufactured and conventional titanium alloys in micro-milling process publication-title: Precis Eng doi: 10.1016/j.precisioneng.2019.11.002 – start-page: 6 year: 2012 ident: 10.1016/j.jmrt.2021.09.088_bib10 article-title: Fused deposition modeling of metals – volume: 82 start-page: 326 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib84 article-title: On the surface integrity of Electron Beam Melted Ti6Al4V after machining publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.04.166 – year: 2015 ident: 10.1016/j.jmrt.2021.09.088_bib6 – volume: 8 start-page: 215 issue: 3 year: 2013 ident: 10.1016/j.jmrt.2021.09.088_bib3 article-title: Additive manufacturing: technology, applications and research needs publication-title: Front Mech Eng doi: 10.1007/s11465-013-0248-8 – volume: 753 start-page: 247 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib23 article-title: Optimising the mechanical properties of Ti-6Al-4V components produced by wire + arc additive manufacturing with post-process heat treatments publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2018.04.158 – ident: 10.1016/j.jmrt.2021.09.088_bib28 – volume: 31 start-page: 551 year: 2015 ident: 10.1016/j.jmrt.2021.09.088_bib86 article-title: Finite element simulation of semi-finishing turning of electron beam melted Ti6Al4V under dry and cryogenic cooling publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.03.040 – volume: 58 start-page: 228 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib83 article-title: Micro cutting of Ti-6Al-4V parts produced by SLM process publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.03.326 – volume: 97 start-page: 2873 issue: 5 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib56 article-title: Inconel® 718 superalloy machinability evaluation after laser cladding additive manufacturing process publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2169-5 – volume: 34 start-page: 749 issue: 7 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib103 article-title: Experimental investigation on machinability of DMLS Ti6Al4V under dry drilling process publication-title: Mater Manuf Process doi: 10.1080/10426914.2019.1594254 – volume: 11 start-page: 1213 issue: 3 year: 2021 ident: 10.1016/j.jmrt.2021.09.088_bib35 article-title: Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges publication-title: Appl Sci doi: 10.3390/app11031213 – volume: 227 start-page: 153 year: 2016 ident: 10.1016/j.jmrt.2021.09.088_bib24 article-title: Forming characteristics of thin-wall steel parts by double electrode GMAW based additive manufacturing publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2015.08.021 – volume: 4 start-page: 32 issue: 2 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib60 article-title: Effects of machining parameters on finishing additively manufactured nickel-based alloy Inconel 625 publication-title: J Manuf Mater Process – volume: 107 start-page: 2995 issue: 7 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib90 article-title: Hybrid manufacturing of titanium Ti-6Al-4V combining laser metal deposition and cryogenic milling publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05212-1 – volume: 278 start-page: 1 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib7 article-title: A review of metal additive manufacturing technologies publication-title: SSP doi: 10.4028/www.scientific.net/SSP.278.1 – volume: 71 start-page: 500 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib55 article-title: Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.05.013 – volume: vol. 17 start-page: 195 year: 2014 ident: 10.1016/j.jmrt.2021.09.088_bib4 – volume: 87 start-page: 333 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib62 article-title: Selection of machining condition on surface integrity of additive and conventional Inconel 718 publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.02.092 – volume: 107 start-page: 4191 issue: 9 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib95 article-title: Effect of temperature buildup on milling forces in additive/subtractive hybrid manufacturing of Ti-6Al-4V publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05309-7 – start-page: 1 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib45 article-title: Mechanism-based models for predicting the microstructure and stress–strain response of additively manufactured superalloy 718Plus publication-title: J Mater Eng Perform – start-page: 263 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib63 article-title: The effect of finish-milling operation on surface quality and wear resistance of Inconel 625 produced by selective laser melting additive manufacturing – volume: 12 start-page: 1144 issue: 7 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib46 article-title: Precipitates in additively manufactured Inconel 625 superalloy publication-title: Materials doi: 10.3390/ma12071144 – volume: 282 start-page: 116689 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib32 article-title: Hybrid manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2020.116689 – volume: 67 start-page: 301 year: 2021 ident: 10.1016/j.jmrt.2021.09.088_bib93 article-title: Anisotropy effect of additively manufactured Ti6Al4V titanium alloy on surface quality after milling publication-title: Precis Eng doi: 10.1016/j.precisioneng.2020.10.003 – volume: 12 start-page: 275 issue: 5 year: 2006 ident: 10.1016/j.jmrt.2021.09.088_bib34 article-title: Development of SLS fuel cell current collectors publication-title: Rapid Prototyp J doi: 10.1108/13552540610707031 – volume: 13 start-page: 4301 issue: 19 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib14 article-title: Mechanical properties of SLM-printed aluminium alloys: a review publication-title: Materials doi: 10.3390/ma13194301 – start-page: 351 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib33 article-title: Aerospace applications of laser additive manufacturing – volume: 87 start-page: 31 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib59 article-title: The effect of milling parameters on surface properties of additively manufactured Inconel 939 publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.02.072 – volume: 24 start-page: 20 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib81 article-title: Machining of functionally graded Ti6Al4V/WC produced by directed energy deposition publication-title: Addit Manuf – volume: vol. 872 start-page: 43 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib87 article-title: Machining finish of titanium alloy prepared by additive manufacturing – volume: 12 start-page: 196 issue: 3–4 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib61 article-title: Cutting force investigation in face milling of additively fabricated nickel alloy 625 via powder bed fusion publication-title: Int J Mechatron Manuf Syst – volume: 111 start-page: 1535 issue: 5 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib58 article-title: Mechanistic force modeling in finish face milling of additively manufactured Inconel 625 nickel-based alloy publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-06222-9 – volume: 2012 year: 2012 ident: 10.1016/j.jmrt.2021.09.088_bib5 article-title: A review of additive manufacturing publication-title: Int Sch Res Notices – volume: 28 start-page: 661 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib42 article-title: Microstructure, fatigue, and impact toughness properties of additively manufactured nickel alloy 718 publication-title: Addit Manuf – volume: 114 start-page: 871 issue: 3 year: 2021 ident: 10.1016/j.jmrt.2021.09.088_bib52 article-title: Machinability of the laser additively manufactured Inconel 718 superalloy in turning publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06940-8 – volume: 10 start-page: 1316 issue: 9–10 year: 2004 ident: 10.1016/j.jmrt.2021.09.088_bib37 article-title: Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography publication-title: Tissue Eng doi: 10.1089/ten.2004.10.1316 – volume: 10 start-page: 497 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib89 article-title: Micro-milling machinability of DED additive titanium Ti-6Al-4V publication-title: Procedia Manuf doi: 10.1016/j.promfg.2017.07.104 – volume: 9 start-page: 9506 issue: 5 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib13 article-title: Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2020.06.090 – volume: 5 start-page: 221 issue: 2 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib54 article-title: Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing publication-title: Prog Addit Manuf doi: 10.1007/s40964-019-00099-1 – volume: 69 start-page: 44 year: 2015 ident: 10.1016/j.jmrt.2021.09.088_bib39 article-title: Design and manufacture of high-performance hollow engine valves by additive layer manufacturing publication-title: Mater Des doi: 10.1016/j.matdes.2014.11.017 – volume: 47 start-page: 505 year: 2020 ident: 10.1016/j.jmrt.2021.09.088_bib85 article-title: Effect of AM-induced anisotropy on the surface integrity of laser powder bed fused Ti6Al4V machined parts publication-title: Procedia Manuf doi: 10.1016/j.promfg.2020.04.149 – volume: 12 start-page: 2159 issue: 13 year: 2019 ident: 10.1016/j.jmrt.2021.09.088_bib64 article-title: Analysis of the machining process of inconel 718 parts manufactured by laser metal deposition publication-title: Materials doi: 10.3390/ma12132159 – volume: 105 start-page: 264 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib74 article-title: On the tool wear mechanisms in dry and cryogenic turning additive manufactured titanium alloys publication-title: Tribol Int doi: 10.1016/j.triboint.2016.09.034 – volume: 243 start-page: 40 year: 2017 ident: 10.1016/j.jmrt.2021.09.088_bib22 article-title: Optimization of wire feed for GTAW based additive manufacturing publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2016.11.027 – volume: 258 start-page: 29 year: 2018 ident: 10.1016/j.jmrt.2021.09.088_bib21 article-title: Sensitivity of Ti-6Al-4V components to oxidation during out of chamber wire + arc additive manufacturing publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2018.03.014 |
SSID | ssj0001596081 |
Score | 2.5349863 |
SecondaryResourceType | review_article |
Snippet | The machining of nickel and titanium-based superalloy components is very expensive and involves unusually high lead times compared with other engineering... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 3192 |
SubjectTerms | Additive manufacturing Machining Nickel alloy Surface integrity analysis Titanium alloys Tool wear analysis |
SummonAdditionalLinks | – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaCntZD0W4dlq4ddNhtMGLZkiwdm6BFW6C7bAFyE_QsXCROkSWH_vuStvPYpYceTVCWQcokJfEjCfkpisSqUsWsCDLPOA8psz7nGVcucGa19BrByY-_5d2UP8zEbEAmWywMplX2tr-z6a217imjXpqjl7oe_QHHpiolOGxaYA9ToR1GVCmC-Gbj_TmLgBi97VWK_BkO6LEzXZrX82KFKZUFa8udtg1Y9v6pLeN_4KYOXM_tKTnpY0Z63X3WGRnE5jM5Pqgk-IXcd2f8dNnQRZseCVS6TBTThdCgzV-B3mwQxrBZxUCbGv7eObVNoIgya-rNguIV_Ou_czK9vfk7ucv6LgmZ5yxfZ9ZGWegqKiGtK1y0TssAQUdMwhcsspBU7iyWUdc8lIyVFjwQBCGOeQ-cqfxKjpplE78RqsuUvPQFV15z55wWeZSgTZghghr1kLCtbIzvS4hjJ4u52eaKPRuUp0F5mlwbkOeQ_NqNeekKaLzLPUaR7zix-HVLWK6eTK99o4Ivo7QiOoQRV7nyQWnY1ibLIRyTaUjEVmHmv7UEr6rfmfzig-O-k0_41CEUL8nRerWJVxCqrN2Pdi2-AeGY5x4 priority: 102 providerName: Elsevier |
Title | Review on machining of additively manufactured nickel and titanium alloys |
URI | https://dx.doi.org/10.1016/j.jmrt.2021.09.088 https://doaj.org/article/8dc3e6a5eb3348708cd89446fa41726f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWBDFnbiuPYICNQiwQRSN8tPqVWbotIO_HvOcQqZysKSwXJ80fni-y65-w6h66qIrF_KQAovKOHcR2Ic5YRL6zkzSjiVipNfXsXgnT-PqlGn1VfKCcv0wFlxt9K7MghTQdBXArim0nmpIIaJhoPvFTGdvlTRTjCV64MBmTcdSsH9SdKXFW8rZnJy12S2SImUBWtITpu2K79eqSHv7zinjsN52kd7LVLEd_kJD9BWqA_Rboc_8AgN85d9PK_xrEmKhFE8jzglCaVjbPoF4_UqFS-sFsHjegzv7BSb2uNUW1aPVzOcfrx_fR6j96fHt4cBaXsjEMcZXRJjgihUP8hKGFvYYKwSHqBGiJUrWGA-SmpNIk9X3JeMlQb8DkAPy5yDmbE8Qdv1vA6nCKsyRidcwaVT3FqrKhoE7CFICLB5qofYWjfatcThqX_FVK8zxCY66VMnfWqqNOizh25-7vnItBkbZ98nlf_MTJTXzQAYgm4NQf9lCD1UrTdMt-ghowJYarxB-Nl_CD9HO2nJXKR4gbaXi1W4BLSytFeNYcJ1OLr_BjZr53c |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQHHb3gNiXtgssPnBbRY0T27GPgEDt8rgAUm-Wn6ugNkXd9sC_ZyZJoVw47HXiiaMZZ2Zsz3xDyLEoEqtKFbMiyDzjPKTM-pxnXLnAmdXSayxOvr6Ro3v-ZyImW-RsXQuDaZW97e9semute8qwl-bwsa6Ht-DYVKUEh00L7GEqsMM7EA1IBNAfT05fD1oEBOlts1JkyJCjL57p8rweZgvMqSxYi3fadmB5dVAtjv-Gn9rwPRd7ZLcPGulJ912fyVZsvpBPG1CCX8m4O-Sn84bO2vxIoNJ5opgvhBZt-gT0ZoV1DKtFDLSp4fedUtsEimVmTb2aUbyDf_r3jdxfnN-djbK-TULmOcuXmbVRFrqKSkjrChet0zJA1BGT8AWLLCSVO4s46pqHkrHSgguCKMQx72FkKr-T7WbexB-E6jIlL33BldfcOadFHiWoE2aIoEc9IGwtG-N7DHFsZTE162SxB4PyNChPk2sD8hyQ3y88jx2CxrujT1HkLyMR_bolzBd_Ta9-o4Ivo7QiOqwjrnLlg9Kwr02WQzwm04CItcLMm8UEr6rfmfznf_IdkQ-ju-srczW-udwnH_FJV654QLaXi1U8hLhl6X616_IZlKHqQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+machining+of+additively+manufactured+nickel+and+titanium+alloys&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Navneet+Khanna&rft.au=Kishan+Zadafiya&rft.au=Tej+Patel&rft.au=Yusuf+Kaynak&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=2238-7854&rft.volume=15&rft.spage=3192&rft.epage=3221&rft_id=info:doi/10.1016%2Fj.jmrt.2021.09.088&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8dc3e6a5eb3348708cd89446fa41726f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon |