The exact solutions of the stochastic Ginzburg–Landau equation
The main goal of this paper is to obtain the exact solutions of the stochastic real-valued Ginzburg–Landau equation, which is forced by multiplicative noise in the Itô sense. It is necessary to get the exact solutions of this equation because it occurs in numerous fields of physics, mathematics and...
Saved in:
Published in | Results in physics Vol. 23; p. 103988 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main goal of this paper is to obtain the exact solutions of the stochastic real-valued Ginzburg–Landau equation, which is forced by multiplicative noise in the Itô sense. It is necessary to get the exact solutions of this equation because it occurs in numerous fields of physics, mathematics and chemistry. We use three different methods such as the tanh-coth, the Riccati-Bernoulli sub-ODE and the generalized G′G-expansion methods in order to obtain a new trigonometric and hyperbolic stochastic solutions. The main advantage of these three methods is their applicability in solving similar models. The novelty of the present paper is that the results obtained here extend and improve some results that were previously obtained. Moreover, we plot 3D surfaces of analytical solutions obtained in this paper by using Matlab to illustrate the impact of multiplicative noise on the solutions of the stochastic real-valued Ginzburg–Landau equation. |
---|---|
AbstractList | The main goal of this paper is to obtain the exact solutions of the stochastic real-valued Ginzburg–Landau equation, which is forced by multiplicative noise in the Itô sense. It is necessary to get the exact solutions of this equation because it occurs in numerous fields of physics, mathematics and chemistry. We use three different methods such as the tanh-coth, the Riccati-Bernoulli sub-ODE and the generalized G′G-expansion methods in order to obtain a new trigonometric and hyperbolic stochastic solutions. The main advantage of these three methods is their applicability in solving similar models. The novelty of the present paper is that the results obtained here extend and improve some results that were previously obtained. Moreover, we plot 3D surfaces of analytical solutions obtained in this paper by using Matlab to illustrate the impact of multiplicative noise on the solutions of the stochastic real-valued Ginzburg–Landau equation. |
ArticleNumber | 103988 |
Author | Mohammed, Wael W. El-Morshedy, M. Ahmad, Hijaz ALy, E.S. Elabbasy, E.M. Hamza, Amjad E. |
Author_xml | – sequence: 1 givenname: Wael W. surname: Mohammed fullname: Mohammed, Wael W. email: wael.mohammed@mans.edu.eg organization: Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 2440, Saudi Arabia – sequence: 2 givenname: Hijaz surname: Ahmad fullname: Ahmad, Hijaz email: hijaz555@gmail.com organization: Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Roma, Italy – sequence: 3 givenname: Amjad E. surname: Hamza fullname: Hamza, Amjad E. organization: Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 2440, Saudi Arabia – sequence: 4 givenname: E.S. surname: ALy fullname: ALy, E.S. email: elkhateeb@jazanu.edu.sa organization: Department of Mathematics, Faculty of science, Jazan University, P.O Box 218, Jazan, Saudi Arabia – sequence: 5 givenname: M. surname: El-Morshedy fullname: El-Morshedy, M. organization: Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia – sequence: 6 givenname: E.M. surname: Elabbasy fullname: Elabbasy, E.M. organization: Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt |
BookMark | eNp9kE1KBDEQRoMoqONcwFVfYMZUujvdAReK-AcDbnQdqpOKZhg7mmREXXkHb-hJ7HFExIWrCh95H1Vvl232oSfG9oFPgYM8mE-j7x-mggsYglK17QbbEQJgUjaq2fz13mbjlOacD1RV1wA77Oj6jgp6RpOLFBbL7EOfiuCKPMQpB3OHKXtTnPv-tVvG24-39xn2FpcFPS5x9XuPbTlcJBp_zxG7OTu9PrmYzK7OL0-OZxNTAc8TxAbRopAdUicFlI1sbOWMtKAEmk5KbHgJvK0kV6quDUClJBDUBpWtTTlil-teG3CuH6K_x_iiA3r9FYR4qzEOqy5I10KSapTrLFZV60znnCMnqSKQra27oUusu0wMKUVyP33A9UqpnuuVUr1SqtdKB6j9AxmfvxTkiH7xP3q4RmkQ9OQp6mQ89Yasj2TycIH_D_8EPx6VgQ |
CitedBy_id | crossref_primary_10_1007_s11071_024_10725_5 crossref_primary_10_1140_epjp_s13360_024_05731_w crossref_primary_10_1016_j_chaos_2023_113498 crossref_primary_10_1007_s12043_024_02848_6 crossref_primary_10_3390_math10010130 crossref_primary_10_1016_j_ijleo_2022_168847 crossref_primary_10_1142_S0217984924503767 crossref_primary_10_1088_1402_4896_ad6aa4 crossref_primary_10_1016_j_ijleo_2022_169262 crossref_primary_10_1515_phys_2022_0002 crossref_primary_10_3390_math10091458 crossref_primary_10_1016_j_ijleo_2023_170682 crossref_primary_10_1016_j_physleta_2024_130204 crossref_primary_10_1016_j_asej_2024_103117 crossref_primary_10_1016_j_rinp_2023_106950 crossref_primary_10_1016_j_rinp_2023_106952 crossref_primary_10_1016_j_rinp_2023_107205 crossref_primary_10_1080_17455030_2021_1905914 crossref_primary_10_1155_2023_1169597 crossref_primary_10_1515_phys_2023_0130 crossref_primary_10_1016_j_rinp_2022_106200 crossref_primary_10_1142_S0218348X24501056 crossref_primary_10_1016_j_chaos_2023_113186 crossref_primary_10_3390_electronics12030634 crossref_primary_10_1016_j_ijleo_2022_169667 crossref_primary_10_1007_s12596_023_01370_z crossref_primary_10_1007_s12596_022_01041_5 crossref_primary_10_1016_j_aej_2023_04_005 crossref_primary_10_1016_j_ijleo_2022_169233 crossref_primary_10_1016_j_ijleo_2022_169951 crossref_primary_10_1016_j_ijleo_2022_170131 crossref_primary_10_1016_j_rinp_2023_106349 crossref_primary_10_1007_s12596_024_01801_5 crossref_primary_10_1007_s12596_024_01888_w crossref_primary_10_1016_j_rinp_2021_104841 crossref_primary_10_1007_s43994_024_00155_9 crossref_primary_10_1016_j_chaos_2023_113946 crossref_primary_10_1142_S0217984924505080 crossref_primary_10_1007_s11082_023_04842_5 crossref_primary_10_1007_s42452_024_05759_8 crossref_primary_10_1177_14613484211028100 crossref_primary_10_1515_phys_2023_0104 crossref_primary_10_1007_s11082_023_05593_z crossref_primary_10_1016_j_ijleo_2022_169322 crossref_primary_10_1016_j_ijleo_2022_170069 crossref_primary_10_1007_s40808_024_02229_3 crossref_primary_10_1016_j_physleta_2025_130423 crossref_primary_10_3934_math_2023099 crossref_primary_10_33889_IJMEMS_2023_8_5_052 crossref_primary_10_1142_S0217984925501295 crossref_primary_10_1088_1402_4896_ad69d7 crossref_primary_10_1016_j_aej_2025_02_002 crossref_primary_10_1155_2022_2750322 crossref_primary_10_1016_j_rinp_2022_105371 crossref_primary_10_1088_1402_4896_ad9d02 crossref_primary_10_1007_s11082_022_04476_z crossref_primary_10_1142_S0218863523500066 crossref_primary_10_1007_s11082_023_06055_2 crossref_primary_10_1016_j_physleta_2022_128268 crossref_primary_10_1016_j_chaos_2022_112494 crossref_primary_10_1016_j_ijleo_2022_169204 crossref_primary_10_1016_j_ijleo_2022_169369 crossref_primary_10_1016_j_ijleo_2022_169800 crossref_primary_10_1142_S0217984924504347 crossref_primary_10_1007_s11082_023_05821_6 crossref_primary_10_3390_math10173197 crossref_primary_10_1140_epjp_s13360_024_05662_6 crossref_primary_10_1016_j_ijleo_2023_170736 crossref_primary_10_1016_j_matcom_2021_05_022 crossref_primary_10_1088_1402_4896_ad6940 crossref_primary_10_1016_j_rinp_2021_104583 crossref_primary_10_1016_j_rinp_2023_106723 crossref_primary_10_3934_math_2025086 crossref_primary_10_1142_S0217984924504748 crossref_primary_10_1007_s10773_024_05812_7 |
Cites_doi | 10.1080/16583655.2020.1741943 10.1016/j.amc.2003.08.136 10.1016/j.cjph.2019.01.005 10.1016/j.jksus.2017.06.010 10.1016/0022-247X(77)90051-8 10.1016/j.jmaa.2020.124808 10.1016/0167-2789(87)90020-0 10.1080/17442508.2011.624628 10.1016/j.physleta.2007.07.051 10.1016/j.rinp.2021.103830 10.1142/S021797921950351X 10.1103/PhysRevLett.27.1192 10.1016/j.rinp.2020.103385 10.1016/0167-2789(96)00055-3 10.1186/s13662-015-0452-4 10.1016/S1007-5704(98)90070-3 10.1088/0253-6102/71/11/1267 10.1063/1.5142796 10.1063/5.0024417 10.1088/0031-8949/54/6/003 10.1142/S0219493702000443 10.1155/2014/843714 10.22190/FUMI2002523Y 10.1002/mma.3402 10.1088/1751-8113/42/19/195202 10.1016/j.rinp.2020.103317 10.1007/s11071-017-3732-6 10.1002/mma.6925 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2021.103988 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_526e979fbda448fcbfffef6e4e168d5b 10_1016_j_rinp_2021_103988 S2211379721001583 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-aa7aada26baeb6213767d4fc6d192acb66a7031084609955c114961e15ca9d5c3 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:30:41 EDT 2025 Tue Jul 01 02:27:38 EDT 2025 Thu Apr 24 22:56:37 EDT 2025 Tue Jul 25 20:57:15 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Riccati-Bernoulli sub-ODE method G′G-expansion method 83C15 60H10 solitary wave solutions 35A20 tanh-coth method multiplicative noise 35Q51 60H15 Stochastic Ginzburg-Landau equation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-aa7aada26baeb6213767d4fc6d192acb66a7031084609955c114961e15ca9d5c3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379721001583 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_526e979fbda448fcbfffef6e4e168d5b crossref_primary_10_1016_j_rinp_2021_103988 crossref_citationtrail_10_1016_j_rinp_2021_103988 elsevier_sciencedirect_doi_10_1016_j_rinp_2021_103988 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ahmad, Khan, Ahmad, Stanimirovic, Chu (b0025) 2020; 103462 Hirota (b0055) 1971; 27 Khater, Attia, Park, Lu (b0060) 2020; 18 Yokus, Durur, Ahmad (b0020) 2020; 35 Akgül, Ahmad, Chu, Thounthong (b0080) 2020 El-Beltagy, Al-Mulla (b0160) 2014 Arnold (b0130) 1998 Qian L, Attia RAM, Qiu Y, Lu D, Khater MMA. The shock peakon wave solutions of the general Degasperis-Procesi equation. Int J Modern Phys B, 33(29), 1950351. Ghidaglia JM, He ron B, Dimension of the attractor associated to the Ginzburg–Landau equation, Physica D 28 (1987) 282–304. Mohammed (b0170) 2021; 44 Malfliet, Hereman (b0180) 1996; 54 Yang, Deng, Wei (b0185) 2015; 1 Alquran, Ali, Al-Khaled (b0085) 2012; 19 Alquran, Qawasmeh (b0070) 2013; 20 He (b0005) 1998; 3 Mohammed, Iqbal, Ali, El-Morshedy (b0015) 2021; 21 Wang, Li, Zhang (b0010) 2008; 372 Wazwaz (b0065) 2004; 159 Imkeller, Monahan (b0135) 2002; 2 Blömker, Mohammed (b0145) 2013; 85 Khater MMA, Lu D, Attia RAM, M. Inc.Analytical and approximate solutions for complex nonlinear Schrö dinger equation via generalized auxiliary equation and numerical schemes. Commun Theor Phys, 71(11), (2019) 1267. Jetschke, Manthey (b0155) 1986 Yue, Khater, Attia, Lu (b0105) 2020; 10 Temam (b0115) 1988 Ginibre, Velo (b0120) 1996; 95 Mohammed WW. Fast-Diffusion Limit for Reaction-Diffusion Equations with Degenerate Multiplicative and Additive Noise. Journal of Dynamics and Differential Equations. (To appear). Syam, Jaradat, Alquran (b0090) 2017; 90 Mohammed (b0150) 2015; 38 Khan, Akbar (b0030) 2014; 5 Alquran, Jarrah (b0100) 2019; 31 Zayed (b0190) 2009; 42 Inc, Khan, Ahmad, Yao, Ahmad, Thounthong (b0075) 2020; 19 Khater, Park, Lu (b0035) 2020; 10 Bēcus (b0140) 1977; 60 Ahmad, Seadawy, Khan, Thounthong (b0040) 2020; 14 Alquran, Jaradat, Baleanu (b0045) 2019; 58 Mohammed, Blömker (b0175) 2021; 496 Ivanov, Stanimirovic, Shaini, Ahmad, Wang (b0095) 2021; 30 Ahmad (10.1016/j.rinp.2021.103988_b0025) 2020; 103462 Mohammed (10.1016/j.rinp.2021.103988_b0150) 2015; 38 Malfliet (10.1016/j.rinp.2021.103988_b0180) 1996; 54 Hirota (10.1016/j.rinp.2021.103988_b0055) 1971; 27 Ivanov (10.1016/j.rinp.2021.103988_b0095) 2021; 30 Yue (10.1016/j.rinp.2021.103988_b0105) 2020; 10 Khan (10.1016/j.rinp.2021.103988_b0030) 2014; 5 Yang (10.1016/j.rinp.2021.103988_b0185) 2015; 1 Inc (10.1016/j.rinp.2021.103988_b0075) 2020; 19 Zayed (10.1016/j.rinp.2021.103988_b0190) 2009; 42 Alquran (10.1016/j.rinp.2021.103988_b0085) 2012; 19 10.1016/j.rinp.2021.103988_b0110 Mohammed (10.1016/j.rinp.2021.103988_b0170) 2021; 44 Syam (10.1016/j.rinp.2021.103988_b0090) 2017; 90 Temam (10.1016/j.rinp.2021.103988_b0115) 1988 Yokus (10.1016/j.rinp.2021.103988_b0020) 2020; 35 10.1016/j.rinp.2021.103988_b0050 Wang (10.1016/j.rinp.2021.103988_b0010) 2008; 372 Alquran (10.1016/j.rinp.2021.103988_b0070) 2013; 20 Ginibre (10.1016/j.rinp.2021.103988_b0120) 1996; 95 El-Beltagy (10.1016/j.rinp.2021.103988_b0160) 2014 Arnold (10.1016/j.rinp.2021.103988_b0130) 1998 Bēcus (10.1016/j.rinp.2021.103988_b0140) 1977; 60 Mohammed (10.1016/j.rinp.2021.103988_b0175) 2021; 496 Imkeller (10.1016/j.rinp.2021.103988_b0135) 2002; 2 Wazwaz (10.1016/j.rinp.2021.103988_b0065) 2004; 159 10.1016/j.rinp.2021.103988_b0125 Mohammed (10.1016/j.rinp.2021.103988_b0015) 2021; 21 Blömker (10.1016/j.rinp.2021.103988_b0145) 2013; 85 He (10.1016/j.rinp.2021.103988_b0005) 1998; 3 Ahmad (10.1016/j.rinp.2021.103988_b0040) 2020; 14 Jetschke (10.1016/j.rinp.2021.103988_b0155) 1986 Khater (10.1016/j.rinp.2021.103988_b0060) 2020; 18 Alquran (10.1016/j.rinp.2021.103988_b0045) 2019; 58 Akgül (10.1016/j.rinp.2021.103988_b0080) 2020 Khater (10.1016/j.rinp.2021.103988_b0035) 2020; 10 Alquran (10.1016/j.rinp.2021.103988_b0100) 2019; 31 10.1016/j.rinp.2021.103988_b0165 |
References_xml | – volume: 10 year: 2020 ident: b0035 article-title: Two effective computational schemes for a prototype of an excitable system publication-title: AIP Adv – volume: 95 start-page: 191 year: 1996 end-page: 228 ident: b0120 article-title: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, I publication-title: Compactness, methods, Physica D – volume: 42 year: 2009 ident: b0190 article-title: New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized publication-title: J Phys A: Math Theor – volume: 30 start-page: 2021 year: 2021 ident: b0095 article-title: A Novel Value for the Parameter in the Dai-Liao-Type Conjugate Gradient Method publication-title: J Function Spaces – volume: 18 year: 2020 ident: b0060 article-title: On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves publication-title: Results Phys – volume: 3 start-page: 92 year: 1998 end-page: 97 ident: b0005 article-title: An approximate solution technique depending on an artificial parameter: a special example publication-title: Commun Nonlinear Sci Numer Simul – volume: 1 start-page: 117 year: 2015 end-page: 133 ident: b0185 article-title: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application publication-title: Adv Diff Eq – volume: 372 start-page: 417 year: 2008 end-page: 423 ident: b0010 article-title: The publication-title: Phys Lett A – volume: 85 start-page: 181 year: 2013 end-page: 215 ident: b0145 article-title: Amplitude equations for SPDEs with cubic nonlinearities publication-title: Stochastics Int J Prob Stochastic Processes – reference: Mohammed WW. Fast-Diffusion Limit for Reaction-Diffusion Equations with Degenerate Multiplicative and Additive Noise. Journal of Dynamics and Differential Equations. (To appear). – year: 1998 ident: b0130 article-title: Random Dynamical Systems – year: 1986 ident: b0155 article-title: On a linear reaction diffusion equation with white noise on the whole real line, Forschungsergebnisse N/86/17 – volume: 159 start-page: 559 year: 2004 end-page: 576 ident: b0065 article-title: The sine-cosine method for obtaining solutions with compact and noncompact structures publication-title: Appl Math Comput – volume: 58 start-page: 49 year: 2019 end-page: 56 ident: b0045 article-title: Shapes and dynamics of dual-mode Hirota-Satsuma coupled KdV equations: Exact traveling wave solutions and analysis publication-title: Chinese J Phys – volume: 31 start-page: 485 year: 2019 end-page: 489 ident: b0100 article-title: Jacobi elliptic function solutions for a two-mode KdV equation publication-title: J King Saud University – Sci – volume: 54 start-page: 563 year: 1996 end-page: 568 ident: b0180 article-title: The tanh method. I. Exact solutions of nonlinear evolution and wave equations publication-title: Phys Scr – volume: 2 start-page: 311 year: 2002 end-page: 326 ident: b0135 article-title: Conceptual stochastic climate models publication-title: Stoch Dynam – reference: Khater MMA, Lu D, Attia RAM, M. Inc.Analytical and approximate solutions for complex nonlinear Schrö dinger equation via generalized auxiliary equation and numerical schemes. Commun Theor Phys, 71(11), (2019) 1267. – volume: 19 year: 2020 ident: b0075 article-title: Analysing time-fractional exotic options via efficient local meshless method publication-title: Results Phys – volume: 14 start-page: 346 year: 2020 end-page: 358 ident: b0040 article-title: Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations publication-title: J Taibah University Sci – year: 2020 ident: b0080 article-title: A novel method for nonlinear singular oscillators publication-title: J Low Frequency Noise, Vib Active Control – volume: 27 start-page: 1192 year: 1971 end-page: 1194 ident: b0055 article-title: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons publication-title: Phys Rev Lett – volume: 60 start-page: 93 year: 1977 end-page: 102 ident: b0140 article-title: Random generalized solutions to the heat equation publication-title: J Math Anal Appl – year: 1988 ident: b0115 article-title: Infinite-Dimensional Systems in Mechanics and Physics – reference: Qian L, Attia RAM, Qiu Y, Lu D, Khater MMA. The shock peakon wave solutions of the general Degasperis-Procesi equation. Int J Modern Phys B, 33(29), 1950351. – volume: 19 start-page: 555 year: 2012 end-page: 562 ident: b0085 article-title: Solitary wave solutions to shallow water waves arising in fluid dynamics publication-title: Nonlinear Stud – volume: 44 start-page: 2140 year: 2021 end-page: 2157 ident: b0170 article-title: Approximate solutions for stochastic time-fractional reaction–diffusion equations with multiplicative noise publication-title: Math Methods Appl Sci – volume: 35 start-page: 523 year: 2020 end-page: 531 ident: b0020 article-title: Hyperbolic type solutions for the couple Boiti-Leon-Pempinelli system publication-title: Facta Universitatis, Series: Math Inform – volume: 21 year: 2021 ident: b0015 article-title: Exact solutions of the stochastic new coupled Konno-Oono equation publication-title: Results Phys – volume: 10 year: 2020 ident: b0105 article-title: Computational simulations of the couple Boiti-Leon-Pempinelli (BLP) system and the (3+ 1)-dimensional Kadomtsev-Petviashvili (KP) equation publication-title: AIP Adv – volume: 496 year: 2021 ident: b0175 article-title: Fast-diffusion limit for reaction-diffusion equations with multiplicative noise publication-title: J Math Anal Appl – volume: 20 start-page: 263 year: 2013 end-page: 272 ident: b0070 article-title: Classifications of solutions to some generalized nonlinear evolution equations and systems by the sine-cosine method publication-title: Nonlinear Stud – start-page: 1 year: 2014 end-page: 9 ident: b0160 article-title: Solution of the stochastic heat equation with nonlinear losses using Wiener-Hermite Expansion publication-title: J Appl Math – volume: 90 start-page: 1363 year: 2017 end-page: 1371 ident: b0090 article-title: A study on the two-mode coupled modified Korteweg–de Vries using the simplified bilinear and the trigonometric-function methods publication-title: Nonlinear Dyn – volume: 38 start-page: 4867 year: 2015 end-page: 4878 ident: b0150 article-title: Amplitude equation for the stochastic reaction-diffusion equations with random Neumann boundary conditions publication-title: Math Methods Appl Sci – volume: 103462 year: 2020 ident: b0025 article-title: A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations publication-title: Results Phys – volume: 5 start-page: 72 year: 2014 end-page: 83 ident: b0030 article-title: The publication-title: Int J Dyn Syst Differ Eq – reference: Ghidaglia JM, He ron B, Dimension of the attractor associated to the Ginzburg–Landau equation, Physica D 28 (1987) 282–304. – volume: 5 start-page: 72 year: 2014 ident: 10.1016/j.rinp.2021.103988_b0030 article-title: The exp(-(ξ))-expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation publication-title: Int J Dyn Syst Differ Eq – volume: 14 start-page: 346 issue: 1 year: 2020 ident: 10.1016/j.rinp.2021.103988_b0040 article-title: Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations publication-title: J Taibah University Sci doi: 10.1080/16583655.2020.1741943 – volume: 159 start-page: 559 issue: 2 year: 2004 ident: 10.1016/j.rinp.2021.103988_b0065 article-title: The sine-cosine method for obtaining solutions with compact and noncompact structures publication-title: Appl Math Comput doi: 10.1016/j.amc.2003.08.136 – volume: 20 start-page: 263 issue: 2 year: 2013 ident: 10.1016/j.rinp.2021.103988_b0070 article-title: Classifications of solutions to some generalized nonlinear evolution equations and systems by the sine-cosine method publication-title: Nonlinear Stud – volume: 58 start-page: 49 year: 2019 ident: 10.1016/j.rinp.2021.103988_b0045 article-title: Shapes and dynamics of dual-mode Hirota-Satsuma coupled KdV equations: Exact traveling wave solutions and analysis publication-title: Chinese J Phys doi: 10.1016/j.cjph.2019.01.005 – volume: 31 start-page: 485 issue: 4 year: 2019 ident: 10.1016/j.rinp.2021.103988_b0100 article-title: Jacobi elliptic function solutions for a two-mode KdV equation publication-title: J King Saud University – Sci doi: 10.1016/j.jksus.2017.06.010 – volume: 60 start-page: 93 issue: 1 year: 1977 ident: 10.1016/j.rinp.2021.103988_b0140 article-title: Random generalized solutions to the heat equation publication-title: J Math Anal Appl doi: 10.1016/0022-247X(77)90051-8 – volume: 496 issue: 2 year: 2021 ident: 10.1016/j.rinp.2021.103988_b0175 article-title: Fast-diffusion limit for reaction-diffusion equations with multiplicative noise publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2020.124808 – ident: 10.1016/j.rinp.2021.103988_b0125 doi: 10.1016/0167-2789(87)90020-0 – ident: 10.1016/j.rinp.2021.103988_b0165 – volume: 85 start-page: 181 issue: 2 year: 2013 ident: 10.1016/j.rinp.2021.103988_b0145 article-title: Amplitude equations for SPDEs with cubic nonlinearities publication-title: Stochastics Int J Prob Stochastic Processes doi: 10.1080/17442508.2011.624628 – volume: 372 start-page: 417 year: 2008 ident: 10.1016/j.rinp.2021.103988_b0010 article-title: The (G′G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics publication-title: Phys Lett A doi: 10.1016/j.physleta.2007.07.051 – volume: 21 year: 2021 ident: 10.1016/j.rinp.2021.103988_b0015 article-title: Exact solutions of the stochastic new coupled Konno-Oono equation publication-title: Results Phys doi: 10.1016/j.rinp.2021.103830 – ident: 10.1016/j.rinp.2021.103988_b0050 doi: 10.1142/S021797921950351X – volume: 19 start-page: 555 issue: 4 year: 2012 ident: 10.1016/j.rinp.2021.103988_b0085 article-title: Solitary wave solutions to shallow water waves arising in fluid dynamics publication-title: Nonlinear Stud – volume: 27 start-page: 1192 year: 1971 ident: 10.1016/j.rinp.2021.103988_b0055 article-title: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.27.1192 – volume: 19 year: 2020 ident: 10.1016/j.rinp.2021.103988_b0075 article-title: Analysing time-fractional exotic options via efficient local meshless method publication-title: Results Phys doi: 10.1016/j.rinp.2020.103385 – volume: 95 start-page: 191 year: 1996 ident: 10.1016/j.rinp.2021.103988_b0120 article-title: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, I publication-title: Compactness, methods, Physica D doi: 10.1016/0167-2789(96)00055-3 – volume: 1 start-page: 117 year: 2015 ident: 10.1016/j.rinp.2021.103988_b0185 article-title: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application publication-title: Adv Diff Eq doi: 10.1186/s13662-015-0452-4 – volume: 3 start-page: 92 year: 1998 ident: 10.1016/j.rinp.2021.103988_b0005 article-title: An approximate solution technique depending on an artificial parameter: a special example publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/S1007-5704(98)90070-3 – year: 2020 ident: 10.1016/j.rinp.2021.103988_b0080 article-title: A novel method for nonlinear singular oscillators publication-title: J Low Frequency Noise, Vib Active Control – year: 1998 ident: 10.1016/j.rinp.2021.103988_b0130 – ident: 10.1016/j.rinp.2021.103988_b0110 doi: 10.1088/0253-6102/71/11/1267 – volume: 10 issue: 4 year: 2020 ident: 10.1016/j.rinp.2021.103988_b0105 article-title: Computational simulations of the couple Boiti-Leon-Pempinelli (BLP) system and the (3+ 1)-dimensional Kadomtsev-Petviashvili (KP) equation publication-title: AIP Adv doi: 10.1063/1.5142796 – year: 1986 ident: 10.1016/j.rinp.2021.103988_b0155 – volume: 10 issue: 10 year: 2020 ident: 10.1016/j.rinp.2021.103988_b0035 article-title: Two effective computational schemes for a prototype of an excitable system publication-title: AIP Adv doi: 10.1063/5.0024417 – volume: 54 start-page: 563 year: 1996 ident: 10.1016/j.rinp.2021.103988_b0180 article-title: The tanh method. I. Exact solutions of nonlinear evolution and wave equations publication-title: Phys Scr doi: 10.1088/0031-8949/54/6/003 – year: 1988 ident: 10.1016/j.rinp.2021.103988_b0115 – volume: 2 start-page: 311 year: 2002 ident: 10.1016/j.rinp.2021.103988_b0135 article-title: Conceptual stochastic climate models publication-title: Stoch Dynam doi: 10.1142/S0219493702000443 – start-page: 1 year: 2014 ident: 10.1016/j.rinp.2021.103988_b0160 article-title: Solution of the stochastic heat equation with nonlinear losses using Wiener-Hermite Expansion publication-title: J Appl Math doi: 10.1155/2014/843714 – volume: 35 start-page: 523 issue: 2 year: 2020 ident: 10.1016/j.rinp.2021.103988_b0020 article-title: Hyperbolic type solutions for the couple Boiti-Leon-Pempinelli system publication-title: Facta Universitatis, Series: Math Inform doi: 10.22190/FUMI2002523Y – volume: 30 start-page: 2021 year: 2021 ident: 10.1016/j.rinp.2021.103988_b0095 article-title: A Novel Value for the Parameter in the Dai-Liao-Type Conjugate Gradient Method publication-title: J Function Spaces – volume: 38 start-page: 4867 issue: 18 year: 2015 ident: 10.1016/j.rinp.2021.103988_b0150 article-title: Amplitude equation for the stochastic reaction-diffusion equations with random Neumann boundary conditions publication-title: Math Methods Appl Sci doi: 10.1002/mma.3402 – volume: 42 year: 2009 ident: 10.1016/j.rinp.2021.103988_b0190 article-title: New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized G′G-expansion method publication-title: J Phys A: Math Theor doi: 10.1088/1751-8113/42/19/195202 – volume: 103462 year: 2020 ident: 10.1016/j.rinp.2021.103988_b0025 article-title: A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations publication-title: Results Phys – volume: 18 year: 2020 ident: 10.1016/j.rinp.2021.103988_b0060 article-title: On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves publication-title: Results Phys doi: 10.1016/j.rinp.2020.103317 – volume: 90 start-page: 1363 issue: 2 year: 2017 ident: 10.1016/j.rinp.2021.103988_b0090 article-title: A study on the two-mode coupled modified Korteweg–de Vries using the simplified bilinear and the trigonometric-function methods publication-title: Nonlinear Dyn doi: 10.1007/s11071-017-3732-6 – volume: 44 start-page: 2140 issue: 2 year: 2021 ident: 10.1016/j.rinp.2021.103988_b0170 article-title: Approximate solutions for stochastic time-fractional reaction–diffusion equations with multiplicative noise publication-title: Math Methods Appl Sci doi: 10.1002/mma.6925 |
SSID | ssj0001645511 |
Score | 2.491069 |
Snippet | The main goal of this paper is to obtain the exact solutions of the stochastic real-valued Ginzburg–Landau equation, which is forced by multiplicative noise in... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 103988 |
SubjectTerms | 35A20 35Q51 60H10 60H15 83C15 [formula omitted]-expansion method multiplicative noise Riccati-Bernoulli sub-ODE method solitary wave solutions Stochastic Ginzburg-Landau equation tanh-coth method |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wvcvAmi02aZDc3H1iLqCcLvYU8sSJbrVsQT_4H_6G_xMxmW3vSi9clO1m-CTvfJJNvEDqigUrhfScDra6MWcbgfLfIArHBB-a9rvchb-9Ef8Cuh3y40OoLasKSPHAC7oRT4WUug3E6ZhLBmhCiEeGZJ6Jw3MDfN8a8hWSq3l0RLFIByLYoBZ2-XObNjZlU3DUZlSBWSQlcOpd125WfqFSL9y8Ep4WA01tDqw1TxGfpC9fRki830HJdsWlfN9FpdDD2b9pWeL588DjgSOhwJHT2QYMCM74ale9wkvL18XkDmwZT7F-SuvcWGvQu7y_6WdMOIbOMdKpM61xrp6kw2htBCeiwOBascJGlaWuE0CBG34mMItI-zm1MdaQgnnCrpeO2u41a5bj0OwhTS3mhKXXUS0ac0SaHRn0FN7nuUmnaiMzgULbRCoeWFU9qVhT2qABCBRCqBGEbHc_feU5KGb-OPgeU5yNB5bp-EH2vGt-rv3zfRnzmI9UQhkQEoqnRL5Pv_sfke2gFTKYqnn3UqiZTfxAJSmUO67X4DeyS5CQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEA5FELyIv1j_yMGbLG3SJLt70xZrEfWihd6WJJvoimxr3YJ48h18Q5_ETHa3rZcePG5IsmEyZL5JZr5B6IxaGgtj2gFwdQVMMwbvu1FgibbGMmOkv4e8uxeDIbsZ8VED9epcGAirrM7-8kz3p3XV0qqk2ZpkWeuBOt-lEwL7DBj-CBg_OyzySXyj7uKeRTAHCsDvgv4BDKhyZ8owr2mWA20lJZB-HvsCLAv75Gn8l8zUkunpb6HNCjPiy3JZ26hh8h207mM39fsuunBbjc2H1AWeKxIeW-ygHXbQTj9L4GLG11n-CW8qP1_ft3B9MMPmreT53kPD_tVjbxBUhRECzUi7CKQMpUwlFUoaJSgBRpaUWS1Sh9ekVkJIoKVvO2zhACDn2jk9sSCGcC3jlOvOPlrLx7k5QJhqyiNJaUpNzEiqpAqhZF_EVSg7NFZNRGpxJLpiDYfiFa9JHR72koAIExBhUoqwic7nYyYlZ8bK3l2Q8rwn8F37hvH0Kak2POFUmDiMrUql8yetVtY6VRKGGSKilLtl8nqPkj_q46bKVvz88J_jjtAGfJUhPMdorZjOzIlDJ4U69er3C6LS4kI priority: 102 providerName: Elsevier |
Title | The exact solutions of the stochastic Ginzburg–Landau equation |
URI | https://dx.doi.org/10.1016/j.rinp.2021.103988 https://doaj.org/article/526e979fbda448fcbfffef6e4e168d5b |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-ELyIT6yPkoM3WWlikt0cRFvx_TiIxd6WJJtoRba6bUE9-R_8h_4SM_uoCiJ4WdglyYaZhPlmMvkGoQ3qqBTWNgLg6gqYYQzOd6PAEeOsY9aqPA55cSmO2-y0wztjqCp3VAqw_6trB_Wk2tnD1vPTy67f8DtfuVpZNwXuSUrgDrmMonE06S1TCBUNLkq4n8dcBPMAAXwwSoG9L5RheY_m92F-2Kqc0v-byfpmhg5n0UyJH3GzUPgcGrPpPJrK8zhNfwHtebVj-6zMAI8WFe457GEe9jDP3CngZcZH3fQVzlc-3t7PIZQwxPap4PxeRO3Dg-v946AskhAYRhqDQKlQqURRoZXVghJgZ0mYMyLx2E0ZLYQCivqGxxkeDHJuvAMkBbGEGyUTbraX0ETaS-0ywtRQHilKE2olI4lWOoTyfRHXodqmUtcQqcQRm5JBHApZPMRVqth9DCKMQYRxIcIa2hz1eSz4M_5s3QIpj1oC93X-oZfdxuVWijkVVobS6UR539IZ7ZxfVsIyS0SUcD9NXukoLmFEAQ_8UN0_fr7yr6muoml4K5J41tDEIBvadY9PBrqOJptnVzdn9dy_98-TTqueL8RPPjLlww |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKCMGCeIo3HthQ1Nq1nWTjIUqBtgtF6mbZjg1BKIVSJMTEf-Af8kvwJemDpQOr40us88X3nX3-DqFj6mgsrK0FwNUVMMMYnO9GgSPGWcesVfk-ZLsjmvfspsd7FXQxugsDaZXl2l-s6flqXbZUS21WX9K0ekd97FIPgX0GHH9Un0MLHg2E8Hde984nGy2CeVQAgRcIBCBRXp4p8rwGaQa8lZTA_fM4r8AycVA5j_-Un5ryPY1VtFKCRnxWjGsNVWy2jhbz5E3ztoFO_Vxj-6HMEI8tCfcd9tgOe2xnHhWQMeOrNPuEQ5Wfr-8W7B-8Y_taEH1vovvGZfeiGZSVEQLDSG0YKBUqlSgqtLJaUAKULAlzRiQesCmjhVDAS1_z4MIjQM6Nj3piQSzhRsUJN_UtNJ_1M7uNMDWUR4rShNqYkUQrHULNvojrUNVprHcQGalDmpI2HKpXPMtRftiTBBVKUKEsVLiDTsYyLwVpxsze56DlcU8gvM4b-oMHWc645FTYOIydTpQPKJ3RznlbEpZZIqKE-2Hy0RzJP_bjX5XO-PjuP-WO0FKz227J1nXndg8tw5Min2cfzQ8H7_bAQ5WhPsxN8RcOOuVi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+exact+solutions+of+the+stochastic+Ginzburg%E2%80%93Landau+equation&rft.jtitle=Results+in+physics&rft.au=Mohammed%2C+Wael+W.&rft.au=Ahmad%2C+Hijaz&rft.au=Hamza%2C+Amjad+E.&rft.au=ALy%2C+E.S.&rft.date=2021-04-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=23&rft.spage=103988&rft_id=info:doi/10.1016%2Fj.rinp.2021.103988&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2021_103988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |