The exact solutions of the stochastic Ginzburg–Landau equation

The main goal of this paper is to obtain the exact solutions of the stochastic real-valued Ginzburg–Landau equation, which is forced by multiplicative noise in the Itô sense. It is necessary to get the exact solutions of this equation because it occurs in numerous fields of physics, mathematics and...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 23; p. 103988
Main Authors Mohammed, Wael W., Ahmad, Hijaz, Hamza, Amjad E., ALy, E.S., El-Morshedy, M., Elabbasy, E.M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main goal of this paper is to obtain the exact solutions of the stochastic real-valued Ginzburg–Landau equation, which is forced by multiplicative noise in the Itô sense. It is necessary to get the exact solutions of this equation because it occurs in numerous fields of physics, mathematics and chemistry. We use three different methods such as the tanh-coth, the Riccati-Bernoulli sub-ODE and the generalized G′G-expansion methods in order to obtain a new trigonometric and hyperbolic stochastic solutions. The main advantage of these three methods is their applicability in solving similar models. The novelty of the present paper is that the results obtained here extend and improve some results that were previously obtained. Moreover, we plot 3D surfaces of analytical solutions obtained in this paper by using Matlab to illustrate the impact of multiplicative noise on the solutions of the stochastic real-valued Ginzburg–Landau equation.
AbstractList The main goal of this paper is to obtain the exact solutions of the stochastic real-valued Ginzburg–Landau equation, which is forced by multiplicative noise in the Itô sense. It is necessary to get the exact solutions of this equation because it occurs in numerous fields of physics, mathematics and chemistry. We use three different methods such as the tanh-coth, the Riccati-Bernoulli sub-ODE and the generalized G′G-expansion methods in order to obtain a new trigonometric and hyperbolic stochastic solutions. The main advantage of these three methods is their applicability in solving similar models. The novelty of the present paper is that the results obtained here extend and improve some results that were previously obtained. Moreover, we plot 3D surfaces of analytical solutions obtained in this paper by using Matlab to illustrate the impact of multiplicative noise on the solutions of the stochastic real-valued Ginzburg–Landau equation.
ArticleNumber 103988
Author Mohammed, Wael W.
El-Morshedy, M.
Ahmad, Hijaz
ALy, E.S.
Elabbasy, E.M.
Hamza, Amjad E.
Author_xml – sequence: 1
  givenname: Wael W.
  surname: Mohammed
  fullname: Mohammed, Wael W.
  email: wael.mohammed@mans.edu.eg
  organization: Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
– sequence: 2
  givenname: Hijaz
  surname: Ahmad
  fullname: Ahmad, Hijaz
  email: hijaz555@gmail.com
  organization: Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Roma, Italy
– sequence: 3
  givenname: Amjad E.
  surname: Hamza
  fullname: Hamza, Amjad E.
  organization: Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
– sequence: 4
  givenname: E.S.
  surname: ALy
  fullname: ALy, E.S.
  email: elkhateeb@jazanu.edu.sa
  organization: Department of Mathematics, Faculty of science, Jazan University, P.O Box 218, Jazan, Saudi Arabia
– sequence: 5
  givenname: M.
  surname: El-Morshedy
  fullname: El-Morshedy, M.
  organization: Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
– sequence: 6
  givenname: E.M.
  surname: Elabbasy
  fullname: Elabbasy, E.M.
  organization: Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
BookMark eNp9kE1KBDEQRoMoqONcwFVfYMZUujvdAReK-AcDbnQdqpOKZhg7mmREXXkHb-hJ7HFExIWrCh95H1Vvl232oSfG9oFPgYM8mE-j7x-mggsYglK17QbbEQJgUjaq2fz13mbjlOacD1RV1wA77Oj6jgp6RpOLFBbL7EOfiuCKPMQpB3OHKXtTnPv-tVvG24-39xn2FpcFPS5x9XuPbTlcJBp_zxG7OTu9PrmYzK7OL0-OZxNTAc8TxAbRopAdUicFlI1sbOWMtKAEmk5KbHgJvK0kV6quDUClJBDUBpWtTTlil-teG3CuH6K_x_iiA3r9FYR4qzEOqy5I10KSapTrLFZV60znnCMnqSKQra27oUusu0wMKUVyP33A9UqpnuuVUr1SqtdKB6j9AxmfvxTkiH7xP3q4RmkQ9OQp6mQ89Yasj2TycIH_D_8EPx6VgQ
CitedBy_id crossref_primary_10_1007_s11071_024_10725_5
crossref_primary_10_1140_epjp_s13360_024_05731_w
crossref_primary_10_1016_j_chaos_2023_113498
crossref_primary_10_1007_s12043_024_02848_6
crossref_primary_10_3390_math10010130
crossref_primary_10_1016_j_ijleo_2022_168847
crossref_primary_10_1142_S0217984924503767
crossref_primary_10_1088_1402_4896_ad6aa4
crossref_primary_10_1016_j_ijleo_2022_169262
crossref_primary_10_1515_phys_2022_0002
crossref_primary_10_3390_math10091458
crossref_primary_10_1016_j_ijleo_2023_170682
crossref_primary_10_1016_j_physleta_2024_130204
crossref_primary_10_1016_j_asej_2024_103117
crossref_primary_10_1016_j_rinp_2023_106950
crossref_primary_10_1016_j_rinp_2023_106952
crossref_primary_10_1016_j_rinp_2023_107205
crossref_primary_10_1080_17455030_2021_1905914
crossref_primary_10_1155_2023_1169597
crossref_primary_10_1515_phys_2023_0130
crossref_primary_10_1016_j_rinp_2022_106200
crossref_primary_10_1142_S0218348X24501056
crossref_primary_10_1016_j_chaos_2023_113186
crossref_primary_10_3390_electronics12030634
crossref_primary_10_1016_j_ijleo_2022_169667
crossref_primary_10_1007_s12596_023_01370_z
crossref_primary_10_1007_s12596_022_01041_5
crossref_primary_10_1016_j_aej_2023_04_005
crossref_primary_10_1016_j_ijleo_2022_169233
crossref_primary_10_1016_j_ijleo_2022_169951
crossref_primary_10_1016_j_ijleo_2022_170131
crossref_primary_10_1016_j_rinp_2023_106349
crossref_primary_10_1007_s12596_024_01801_5
crossref_primary_10_1007_s12596_024_01888_w
crossref_primary_10_1016_j_rinp_2021_104841
crossref_primary_10_1007_s43994_024_00155_9
crossref_primary_10_1016_j_chaos_2023_113946
crossref_primary_10_1142_S0217984924505080
crossref_primary_10_1007_s11082_023_04842_5
crossref_primary_10_1007_s42452_024_05759_8
crossref_primary_10_1177_14613484211028100
crossref_primary_10_1515_phys_2023_0104
crossref_primary_10_1007_s11082_023_05593_z
crossref_primary_10_1016_j_ijleo_2022_169322
crossref_primary_10_1016_j_ijleo_2022_170069
crossref_primary_10_1007_s40808_024_02229_3
crossref_primary_10_1016_j_physleta_2025_130423
crossref_primary_10_3934_math_2023099
crossref_primary_10_33889_IJMEMS_2023_8_5_052
crossref_primary_10_1142_S0217984925501295
crossref_primary_10_1088_1402_4896_ad69d7
crossref_primary_10_1016_j_aej_2025_02_002
crossref_primary_10_1155_2022_2750322
crossref_primary_10_1016_j_rinp_2022_105371
crossref_primary_10_1088_1402_4896_ad9d02
crossref_primary_10_1007_s11082_022_04476_z
crossref_primary_10_1142_S0218863523500066
crossref_primary_10_1007_s11082_023_06055_2
crossref_primary_10_1016_j_physleta_2022_128268
crossref_primary_10_1016_j_chaos_2022_112494
crossref_primary_10_1016_j_ijleo_2022_169204
crossref_primary_10_1016_j_ijleo_2022_169369
crossref_primary_10_1016_j_ijleo_2022_169800
crossref_primary_10_1142_S0217984924504347
crossref_primary_10_1007_s11082_023_05821_6
crossref_primary_10_3390_math10173197
crossref_primary_10_1140_epjp_s13360_024_05662_6
crossref_primary_10_1016_j_ijleo_2023_170736
crossref_primary_10_1016_j_matcom_2021_05_022
crossref_primary_10_1088_1402_4896_ad6940
crossref_primary_10_1016_j_rinp_2021_104583
crossref_primary_10_1016_j_rinp_2023_106723
crossref_primary_10_3934_math_2025086
crossref_primary_10_1142_S0217984924504748
crossref_primary_10_1007_s10773_024_05812_7
Cites_doi 10.1080/16583655.2020.1741943
10.1016/j.amc.2003.08.136
10.1016/j.cjph.2019.01.005
10.1016/j.jksus.2017.06.010
10.1016/0022-247X(77)90051-8
10.1016/j.jmaa.2020.124808
10.1016/0167-2789(87)90020-0
10.1080/17442508.2011.624628
10.1016/j.physleta.2007.07.051
10.1016/j.rinp.2021.103830
10.1142/S021797921950351X
10.1103/PhysRevLett.27.1192
10.1016/j.rinp.2020.103385
10.1016/0167-2789(96)00055-3
10.1186/s13662-015-0452-4
10.1016/S1007-5704(98)90070-3
10.1088/0253-6102/71/11/1267
10.1063/1.5142796
10.1063/5.0024417
10.1088/0031-8949/54/6/003
10.1142/S0219493702000443
10.1155/2014/843714
10.22190/FUMI2002523Y
10.1002/mma.3402
10.1088/1751-8113/42/19/195202
10.1016/j.rinp.2020.103317
10.1007/s11071-017-3732-6
10.1002/mma.6925
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2021.103988
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_526e979fbda448fcbfffef6e4e168d5b
10_1016_j_rinp_2021_103988
S2211379721001583
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-aa7aada26baeb6213767d4fc6d192acb66a7031084609955c114961e15ca9d5c3
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:30:41 EDT 2025
Tue Jul 01 02:27:38 EDT 2025
Thu Apr 24 22:56:37 EDT 2025
Tue Jul 25 20:57:15 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Riccati-Bernoulli sub-ODE method
G′G-expansion method
83C15
60H10
solitary wave solutions
35A20
tanh-coth method
multiplicative noise
35Q51
60H15
Stochastic Ginzburg-Landau equation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-aa7aada26baeb6213767d4fc6d192acb66a7031084609955c114961e15ca9d5c3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379721001583
ParticipantIDs doaj_primary_oai_doaj_org_article_526e979fbda448fcbfffef6e4e168d5b
crossref_primary_10_1016_j_rinp_2021_103988
crossref_citationtrail_10_1016_j_rinp_2021_103988
elsevier_sciencedirect_doi_10_1016_j_rinp_2021_103988
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ahmad, Khan, Ahmad, Stanimirovic, Chu (b0025) 2020; 103462
Hirota (b0055) 1971; 27
Khater, Attia, Park, Lu (b0060) 2020; 18
Yokus, Durur, Ahmad (b0020) 2020; 35
Akgül, Ahmad, Chu, Thounthong (b0080) 2020
El-Beltagy, Al-Mulla (b0160) 2014
Arnold (b0130) 1998
Qian L, Attia RAM, Qiu Y, Lu D, Khater MMA. The shock peakon wave solutions of the general Degasperis-Procesi equation. Int J Modern Phys B, 33(29), 1950351.
Ghidaglia JM, He ron B, Dimension of the attractor associated to the Ginzburg–Landau equation, Physica D 28 (1987) 282–304.
Mohammed (b0170) 2021; 44
Malfliet, Hereman (b0180) 1996; 54
Yang, Deng, Wei (b0185) 2015; 1
Alquran, Ali, Al-Khaled (b0085) 2012; 19
Alquran, Qawasmeh (b0070) 2013; 20
He (b0005) 1998; 3
Mohammed, Iqbal, Ali, El-Morshedy (b0015) 2021; 21
Wang, Li, Zhang (b0010) 2008; 372
Wazwaz (b0065) 2004; 159
Imkeller, Monahan (b0135) 2002; 2
Blömker, Mohammed (b0145) 2013; 85
Khater MMA, Lu D, Attia RAM, M. Inc.Analytical and approximate solutions for complex nonlinear Schrö dinger equation via generalized auxiliary equation and numerical schemes. Commun Theor Phys, 71(11), (2019) 1267.
Jetschke, Manthey (b0155) 1986
Yue, Khater, Attia, Lu (b0105) 2020; 10
Temam (b0115) 1988
Ginibre, Velo (b0120) 1996; 95
Mohammed WW. Fast-Diffusion Limit for Reaction-Diffusion Equations with Degenerate Multiplicative and Additive Noise. Journal of Dynamics and Differential Equations. (To appear).
Syam, Jaradat, Alquran (b0090) 2017; 90
Mohammed (b0150) 2015; 38
Khan, Akbar (b0030) 2014; 5
Alquran, Jarrah (b0100) 2019; 31
Zayed (b0190) 2009; 42
Inc, Khan, Ahmad, Yao, Ahmad, Thounthong (b0075) 2020; 19
Khater, Park, Lu (b0035) 2020; 10
Bēcus (b0140) 1977; 60
Ahmad, Seadawy, Khan, Thounthong (b0040) 2020; 14
Alquran, Jaradat, Baleanu (b0045) 2019; 58
Mohammed, Blömker (b0175) 2021; 496
Ivanov, Stanimirovic, Shaini, Ahmad, Wang (b0095) 2021; 30
Ahmad (10.1016/j.rinp.2021.103988_b0025) 2020; 103462
Mohammed (10.1016/j.rinp.2021.103988_b0150) 2015; 38
Malfliet (10.1016/j.rinp.2021.103988_b0180) 1996; 54
Hirota (10.1016/j.rinp.2021.103988_b0055) 1971; 27
Ivanov (10.1016/j.rinp.2021.103988_b0095) 2021; 30
Yue (10.1016/j.rinp.2021.103988_b0105) 2020; 10
Khan (10.1016/j.rinp.2021.103988_b0030) 2014; 5
Yang (10.1016/j.rinp.2021.103988_b0185) 2015; 1
Inc (10.1016/j.rinp.2021.103988_b0075) 2020; 19
Zayed (10.1016/j.rinp.2021.103988_b0190) 2009; 42
Alquran (10.1016/j.rinp.2021.103988_b0085) 2012; 19
10.1016/j.rinp.2021.103988_b0110
Mohammed (10.1016/j.rinp.2021.103988_b0170) 2021; 44
Syam (10.1016/j.rinp.2021.103988_b0090) 2017; 90
Temam (10.1016/j.rinp.2021.103988_b0115) 1988
Yokus (10.1016/j.rinp.2021.103988_b0020) 2020; 35
10.1016/j.rinp.2021.103988_b0050
Wang (10.1016/j.rinp.2021.103988_b0010) 2008; 372
Alquran (10.1016/j.rinp.2021.103988_b0070) 2013; 20
Ginibre (10.1016/j.rinp.2021.103988_b0120) 1996; 95
El-Beltagy (10.1016/j.rinp.2021.103988_b0160) 2014
Arnold (10.1016/j.rinp.2021.103988_b0130) 1998
Bēcus (10.1016/j.rinp.2021.103988_b0140) 1977; 60
Mohammed (10.1016/j.rinp.2021.103988_b0175) 2021; 496
Imkeller (10.1016/j.rinp.2021.103988_b0135) 2002; 2
Wazwaz (10.1016/j.rinp.2021.103988_b0065) 2004; 159
10.1016/j.rinp.2021.103988_b0125
Mohammed (10.1016/j.rinp.2021.103988_b0015) 2021; 21
Blömker (10.1016/j.rinp.2021.103988_b0145) 2013; 85
He (10.1016/j.rinp.2021.103988_b0005) 1998; 3
Ahmad (10.1016/j.rinp.2021.103988_b0040) 2020; 14
Jetschke (10.1016/j.rinp.2021.103988_b0155) 1986
Khater (10.1016/j.rinp.2021.103988_b0060) 2020; 18
Alquran (10.1016/j.rinp.2021.103988_b0045) 2019; 58
Akgül (10.1016/j.rinp.2021.103988_b0080) 2020
Khater (10.1016/j.rinp.2021.103988_b0035) 2020; 10
Alquran (10.1016/j.rinp.2021.103988_b0100) 2019; 31
10.1016/j.rinp.2021.103988_b0165
References_xml – volume: 10
  year: 2020
  ident: b0035
  article-title: Two effective computational schemes for a prototype of an excitable system
  publication-title: AIP Adv
– volume: 95
  start-page: 191
  year: 1996
  end-page: 228
  ident: b0120
  article-title: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, I
  publication-title: Compactness, methods, Physica D
– volume: 42
  year: 2009
  ident: b0190
  article-title: New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized
  publication-title: J Phys A: Math Theor
– volume: 30
  start-page: 2021
  year: 2021
  ident: b0095
  article-title: A Novel Value for the Parameter in the Dai-Liao-Type Conjugate Gradient Method
  publication-title: J Function Spaces
– volume: 18
  year: 2020
  ident: b0060
  article-title: On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves
  publication-title: Results Phys
– volume: 3
  start-page: 92
  year: 1998
  end-page: 97
  ident: b0005
  article-title: An approximate solution technique depending on an artificial parameter: a special example
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 1
  start-page: 117
  year: 2015
  end-page: 133
  ident: b0185
  article-title: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application
  publication-title: Adv Diff Eq
– volume: 372
  start-page: 417
  year: 2008
  end-page: 423
  ident: b0010
  article-title: The
  publication-title: Phys Lett A
– volume: 85
  start-page: 181
  year: 2013
  end-page: 215
  ident: b0145
  article-title: Amplitude equations for SPDEs with cubic nonlinearities
  publication-title: Stochastics Int J Prob Stochastic Processes
– reference: Mohammed WW. Fast-Diffusion Limit for Reaction-Diffusion Equations with Degenerate Multiplicative and Additive Noise. Journal of Dynamics and Differential Equations. (To appear).
– year: 1998
  ident: b0130
  article-title: Random Dynamical Systems
– year: 1986
  ident: b0155
  article-title: On a linear reaction diffusion equation with white noise on the whole real line, Forschungsergebnisse N/86/17
– volume: 159
  start-page: 559
  year: 2004
  end-page: 576
  ident: b0065
  article-title: The sine-cosine method for obtaining solutions with compact and noncompact structures
  publication-title: Appl Math Comput
– volume: 58
  start-page: 49
  year: 2019
  end-page: 56
  ident: b0045
  article-title: Shapes and dynamics of dual-mode Hirota-Satsuma coupled KdV equations: Exact traveling wave solutions and analysis
  publication-title: Chinese J Phys
– volume: 31
  start-page: 485
  year: 2019
  end-page: 489
  ident: b0100
  article-title: Jacobi elliptic function solutions for a two-mode KdV equation
  publication-title: J King Saud University – Sci
– volume: 54
  start-page: 563
  year: 1996
  end-page: 568
  ident: b0180
  article-title: The tanh method. I. Exact solutions of nonlinear evolution and wave equations
  publication-title: Phys Scr
– volume: 2
  start-page: 311
  year: 2002
  end-page: 326
  ident: b0135
  article-title: Conceptual stochastic climate models
  publication-title: Stoch Dynam
– reference: Khater MMA, Lu D, Attia RAM, M. Inc.Analytical and approximate solutions for complex nonlinear Schrö dinger equation via generalized auxiliary equation and numerical schemes. Commun Theor Phys, 71(11), (2019) 1267.
– volume: 19
  year: 2020
  ident: b0075
  article-title: Analysing time-fractional exotic options via efficient local meshless method
  publication-title: Results Phys
– volume: 14
  start-page: 346
  year: 2020
  end-page: 358
  ident: b0040
  article-title: Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations
  publication-title: J Taibah University Sci
– year: 2020
  ident: b0080
  article-title: A novel method for nonlinear singular oscillators
  publication-title: J Low Frequency Noise, Vib Active Control
– volume: 27
  start-page: 1192
  year: 1971
  end-page: 1194
  ident: b0055
  article-title: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons
  publication-title: Phys Rev Lett
– volume: 60
  start-page: 93
  year: 1977
  end-page: 102
  ident: b0140
  article-title: Random generalized solutions to the heat equation
  publication-title: J Math Anal Appl
– year: 1988
  ident: b0115
  article-title: Infinite-Dimensional Systems in Mechanics and Physics
– reference: Qian L, Attia RAM, Qiu Y, Lu D, Khater MMA. The shock peakon wave solutions of the general Degasperis-Procesi equation. Int J Modern Phys B, 33(29), 1950351.
– volume: 19
  start-page: 555
  year: 2012
  end-page: 562
  ident: b0085
  article-title: Solitary wave solutions to shallow water waves arising in fluid dynamics
  publication-title: Nonlinear Stud
– volume: 44
  start-page: 2140
  year: 2021
  end-page: 2157
  ident: b0170
  article-title: Approximate solutions for stochastic time-fractional reaction–diffusion equations with multiplicative noise
  publication-title: Math Methods Appl Sci
– volume: 35
  start-page: 523
  year: 2020
  end-page: 531
  ident: b0020
  article-title: Hyperbolic type solutions for the couple Boiti-Leon-Pempinelli system
  publication-title: Facta Universitatis, Series: Math Inform
– volume: 21
  year: 2021
  ident: b0015
  article-title: Exact solutions of the stochastic new coupled Konno-Oono equation
  publication-title: Results Phys
– volume: 10
  year: 2020
  ident: b0105
  article-title: Computational simulations of the couple Boiti-Leon-Pempinelli (BLP) system and the (3+ 1)-dimensional Kadomtsev-Petviashvili (KP) equation
  publication-title: AIP Adv
– volume: 496
  year: 2021
  ident: b0175
  article-title: Fast-diffusion limit for reaction-diffusion equations with multiplicative noise
  publication-title: J Math Anal Appl
– volume: 20
  start-page: 263
  year: 2013
  end-page: 272
  ident: b0070
  article-title: Classifications of solutions to some generalized nonlinear evolution equations and systems by the sine-cosine method
  publication-title: Nonlinear Stud
– start-page: 1
  year: 2014
  end-page: 9
  ident: b0160
  article-title: Solution of the stochastic heat equation with nonlinear losses using Wiener-Hermite Expansion
  publication-title: J Appl Math
– volume: 90
  start-page: 1363
  year: 2017
  end-page: 1371
  ident: b0090
  article-title: A study on the two-mode coupled modified Korteweg–de Vries using the simplified bilinear and the trigonometric-function methods
  publication-title: Nonlinear Dyn
– volume: 38
  start-page: 4867
  year: 2015
  end-page: 4878
  ident: b0150
  article-title: Amplitude equation for the stochastic reaction-diffusion equations with random Neumann boundary conditions
  publication-title: Math Methods Appl Sci
– volume: 103462
  year: 2020
  ident: b0025
  article-title: A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations
  publication-title: Results Phys
– volume: 5
  start-page: 72
  year: 2014
  end-page: 83
  ident: b0030
  article-title: The
  publication-title: Int J Dyn Syst Differ Eq
– reference: Ghidaglia JM, He ron B, Dimension of the attractor associated to the Ginzburg–Landau equation, Physica D 28 (1987) 282–304.
– volume: 5
  start-page: 72
  year: 2014
  ident: 10.1016/j.rinp.2021.103988_b0030
  article-title: The exp(-(ξ))-expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation
  publication-title: Int J Dyn Syst Differ Eq
– volume: 14
  start-page: 346
  issue: 1
  year: 2020
  ident: 10.1016/j.rinp.2021.103988_b0040
  article-title: Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations
  publication-title: J Taibah University Sci
  doi: 10.1080/16583655.2020.1741943
– volume: 159
  start-page: 559
  issue: 2
  year: 2004
  ident: 10.1016/j.rinp.2021.103988_b0065
  article-title: The sine-cosine method for obtaining solutions with compact and noncompact structures
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2003.08.136
– volume: 20
  start-page: 263
  issue: 2
  year: 2013
  ident: 10.1016/j.rinp.2021.103988_b0070
  article-title: Classifications of solutions to some generalized nonlinear evolution equations and systems by the sine-cosine method
  publication-title: Nonlinear Stud
– volume: 58
  start-page: 49
  year: 2019
  ident: 10.1016/j.rinp.2021.103988_b0045
  article-title: Shapes and dynamics of dual-mode Hirota-Satsuma coupled KdV equations: Exact traveling wave solutions and analysis
  publication-title: Chinese J Phys
  doi: 10.1016/j.cjph.2019.01.005
– volume: 31
  start-page: 485
  issue: 4
  year: 2019
  ident: 10.1016/j.rinp.2021.103988_b0100
  article-title: Jacobi elliptic function solutions for a two-mode KdV equation
  publication-title: J King Saud University – Sci
  doi: 10.1016/j.jksus.2017.06.010
– volume: 60
  start-page: 93
  issue: 1
  year: 1977
  ident: 10.1016/j.rinp.2021.103988_b0140
  article-title: Random generalized solutions to the heat equation
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(77)90051-8
– volume: 496
  issue: 2
  year: 2021
  ident: 10.1016/j.rinp.2021.103988_b0175
  article-title: Fast-diffusion limit for reaction-diffusion equations with multiplicative noise
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2020.124808
– ident: 10.1016/j.rinp.2021.103988_b0125
  doi: 10.1016/0167-2789(87)90020-0
– ident: 10.1016/j.rinp.2021.103988_b0165
– volume: 85
  start-page: 181
  issue: 2
  year: 2013
  ident: 10.1016/j.rinp.2021.103988_b0145
  article-title: Amplitude equations for SPDEs with cubic nonlinearities
  publication-title: Stochastics Int J Prob Stochastic Processes
  doi: 10.1080/17442508.2011.624628
– volume: 372
  start-page: 417
  year: 2008
  ident: 10.1016/j.rinp.2021.103988_b0010
  article-title: The (G′G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2007.07.051
– volume: 21
  year: 2021
  ident: 10.1016/j.rinp.2021.103988_b0015
  article-title: Exact solutions of the stochastic new coupled Konno-Oono equation
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.103830
– ident: 10.1016/j.rinp.2021.103988_b0050
  doi: 10.1142/S021797921950351X
– volume: 19
  start-page: 555
  issue: 4
  year: 2012
  ident: 10.1016/j.rinp.2021.103988_b0085
  article-title: Solitary wave solutions to shallow water waves arising in fluid dynamics
  publication-title: Nonlinear Stud
– volume: 27
  start-page: 1192
  year: 1971
  ident: 10.1016/j.rinp.2021.103988_b0055
  article-title: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.27.1192
– volume: 19
  year: 2020
  ident: 10.1016/j.rinp.2021.103988_b0075
  article-title: Analysing time-fractional exotic options via efficient local meshless method
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2020.103385
– volume: 95
  start-page: 191
  year: 1996
  ident: 10.1016/j.rinp.2021.103988_b0120
  article-title: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, I
  publication-title: Compactness, methods, Physica D
  doi: 10.1016/0167-2789(96)00055-3
– volume: 1
  start-page: 117
  year: 2015
  ident: 10.1016/j.rinp.2021.103988_b0185
  article-title: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application
  publication-title: Adv Diff Eq
  doi: 10.1186/s13662-015-0452-4
– volume: 3
  start-page: 92
  year: 1998
  ident: 10.1016/j.rinp.2021.103988_b0005
  article-title: An approximate solution technique depending on an artificial parameter: a special example
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/S1007-5704(98)90070-3
– year: 2020
  ident: 10.1016/j.rinp.2021.103988_b0080
  article-title: A novel method for nonlinear singular oscillators
  publication-title: J Low Frequency Noise, Vib Active Control
– year: 1998
  ident: 10.1016/j.rinp.2021.103988_b0130
– ident: 10.1016/j.rinp.2021.103988_b0110
  doi: 10.1088/0253-6102/71/11/1267
– volume: 10
  issue: 4
  year: 2020
  ident: 10.1016/j.rinp.2021.103988_b0105
  article-title: Computational simulations of the couple Boiti-Leon-Pempinelli (BLP) system and the (3+ 1)-dimensional Kadomtsev-Petviashvili (KP) equation
  publication-title: AIP Adv
  doi: 10.1063/1.5142796
– year: 1986
  ident: 10.1016/j.rinp.2021.103988_b0155
– volume: 10
  issue: 10
  year: 2020
  ident: 10.1016/j.rinp.2021.103988_b0035
  article-title: Two effective computational schemes for a prototype of an excitable system
  publication-title: AIP Adv
  doi: 10.1063/5.0024417
– volume: 54
  start-page: 563
  year: 1996
  ident: 10.1016/j.rinp.2021.103988_b0180
  article-title: The tanh method. I. Exact solutions of nonlinear evolution and wave equations
  publication-title: Phys Scr
  doi: 10.1088/0031-8949/54/6/003
– year: 1988
  ident: 10.1016/j.rinp.2021.103988_b0115
– volume: 2
  start-page: 311
  year: 2002
  ident: 10.1016/j.rinp.2021.103988_b0135
  article-title: Conceptual stochastic climate models
  publication-title: Stoch Dynam
  doi: 10.1142/S0219493702000443
– start-page: 1
  year: 2014
  ident: 10.1016/j.rinp.2021.103988_b0160
  article-title: Solution of the stochastic heat equation with nonlinear losses using Wiener-Hermite Expansion
  publication-title: J Appl Math
  doi: 10.1155/2014/843714
– volume: 35
  start-page: 523
  issue: 2
  year: 2020
  ident: 10.1016/j.rinp.2021.103988_b0020
  article-title: Hyperbolic type solutions for the couple Boiti-Leon-Pempinelli system
  publication-title: Facta Universitatis, Series: Math Inform
  doi: 10.22190/FUMI2002523Y
– volume: 30
  start-page: 2021
  year: 2021
  ident: 10.1016/j.rinp.2021.103988_b0095
  article-title: A Novel Value for the Parameter in the Dai-Liao-Type Conjugate Gradient Method
  publication-title: J Function Spaces
– volume: 38
  start-page: 4867
  issue: 18
  year: 2015
  ident: 10.1016/j.rinp.2021.103988_b0150
  article-title: Amplitude equation for the stochastic reaction-diffusion equations with random Neumann boundary conditions
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.3402
– volume: 42
  year: 2009
  ident: 10.1016/j.rinp.2021.103988_b0190
  article-title: New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized G′G-expansion method
  publication-title: J Phys A: Math Theor
  doi: 10.1088/1751-8113/42/19/195202
– volume: 103462
  year: 2020
  ident: 10.1016/j.rinp.2021.103988_b0025
  article-title: A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations
  publication-title: Results Phys
– volume: 18
  year: 2020
  ident: 10.1016/j.rinp.2021.103988_b0060
  article-title: On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2020.103317
– volume: 90
  start-page: 1363
  issue: 2
  year: 2017
  ident: 10.1016/j.rinp.2021.103988_b0090
  article-title: A study on the two-mode coupled modified Korteweg–de Vries using the simplified bilinear and the trigonometric-function methods
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-017-3732-6
– volume: 44
  start-page: 2140
  issue: 2
  year: 2021
  ident: 10.1016/j.rinp.2021.103988_b0170
  article-title: Approximate solutions for stochastic time-fractional reaction–diffusion equations with multiplicative noise
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.6925
SSID ssj0001645511
Score 2.491069
Snippet The main goal of this paper is to obtain the exact solutions of the stochastic real-valued Ginzburg–Landau equation, which is forced by multiplicative noise in...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 103988
SubjectTerms 35A20
35Q51
60H10
60H15
83C15
[formula omitted]-expansion method
multiplicative noise
Riccati-Bernoulli sub-ODE method
solitary wave solutions
Stochastic Ginzburg-Landau equation
tanh-coth method
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wvcvAmi02aZDc3H1iLqCcLvYU8sSJbrVsQT_4H_6G_xMxmW3vSi9clO1m-CTvfJJNvEDqigUrhfScDra6MWcbgfLfIArHBB-a9rvchb-9Ef8Cuh3y40OoLasKSPHAC7oRT4WUug3E6ZhLBmhCiEeGZJ6Jw3MDfN8a8hWSq3l0RLFIByLYoBZ2-XObNjZlU3DUZlSBWSQlcOpd125WfqFSL9y8Ep4WA01tDqw1TxGfpC9fRki830HJdsWlfN9FpdDD2b9pWeL588DjgSOhwJHT2QYMCM74ale9wkvL18XkDmwZT7F-SuvcWGvQu7y_6WdMOIbOMdKpM61xrp6kw2htBCeiwOBascJGlaWuE0CBG34mMItI-zm1MdaQgnnCrpeO2u41a5bj0OwhTS3mhKXXUS0ac0SaHRn0FN7nuUmnaiMzgULbRCoeWFU9qVhT2qABCBRCqBGEbHc_feU5KGb-OPgeU5yNB5bp-EH2vGt-rv3zfRnzmI9UQhkQEoqnRL5Pv_sfke2gFTKYqnn3UqiZTfxAJSmUO67X4DeyS5CQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEA5FELyIv1j_yMGbLG3SJLt70xZrEfWihd6WJJvoimxr3YJ48h18Q5_ETHa3rZcePG5IsmEyZL5JZr5B6IxaGgtj2gFwdQVMMwbvu1FgibbGMmOkv4e8uxeDIbsZ8VED9epcGAirrM7-8kz3p3XV0qqk2ZpkWeuBOt-lEwL7DBj-CBg_OyzySXyj7uKeRTAHCsDvgv4BDKhyZ8owr2mWA20lJZB-HvsCLAv75Gn8l8zUkunpb6HNCjPiy3JZ26hh8h207mM39fsuunBbjc2H1AWeKxIeW-ygHXbQTj9L4GLG11n-CW8qP1_ft3B9MMPmreT53kPD_tVjbxBUhRECzUi7CKQMpUwlFUoaJSgBRpaUWS1Sh9ekVkJIoKVvO2zhACDn2jk9sSCGcC3jlOvOPlrLx7k5QJhqyiNJaUpNzEiqpAqhZF_EVSg7NFZNRGpxJLpiDYfiFa9JHR72koAIExBhUoqwic7nYyYlZ8bK3l2Q8rwn8F37hvH0Kak2POFUmDiMrUql8yetVtY6VRKGGSKilLtl8nqPkj_q46bKVvz88J_jjtAGfJUhPMdorZjOzIlDJ4U69er3C6LS4kI
  priority: 102
  providerName: Elsevier
Title The exact solutions of the stochastic Ginzburg–Landau equation
URI https://dx.doi.org/10.1016/j.rinp.2021.103988
https://doaj.org/article/526e979fbda448fcbfffef6e4e168d5b
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-ELyIT6yPkoM3WWlikt0cRFvx_TiIxd6WJJtoRba6bUE9-R_8h_4SM_uoCiJ4WdglyYaZhPlmMvkGoQ3qqBTWNgLg6gqYYQzOd6PAEeOsY9aqPA55cSmO2-y0wztjqCp3VAqw_6trB_Wk2tnD1vPTy67f8DtfuVpZNwXuSUrgDrmMonE06S1TCBUNLkq4n8dcBPMAAXwwSoG9L5RheY_m92F-2Kqc0v-byfpmhg5n0UyJH3GzUPgcGrPpPJrK8zhNfwHtebVj-6zMAI8WFe457GEe9jDP3CngZcZH3fQVzlc-3t7PIZQwxPap4PxeRO3Dg-v946AskhAYRhqDQKlQqURRoZXVghJgZ0mYMyLx2E0ZLYQCivqGxxkeDHJuvAMkBbGEGyUTbraX0ETaS-0ywtRQHilKE2olI4lWOoTyfRHXodqmUtcQqcQRm5JBHApZPMRVqth9DCKMQYRxIcIa2hz1eSz4M_5s3QIpj1oC93X-oZfdxuVWijkVVobS6UR539IZ7ZxfVsIyS0SUcD9NXukoLmFEAQ_8UN0_fr7yr6muoml4K5J41tDEIBvadY9PBrqOJptnVzdn9dy_98-TTqueL8RPPjLlww
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKCMGCeIo3HthQ1Nq1nWTjIUqBtgtF6mbZjg1BKIVSJMTEf-Af8kvwJemDpQOr40us88X3nX3-DqFj6mgsrK0FwNUVMMMYnO9GgSPGWcesVfk-ZLsjmvfspsd7FXQxugsDaZXl2l-s6flqXbZUS21WX9K0ekd97FIPgX0GHH9Un0MLHg2E8Hde984nGy2CeVQAgRcIBCBRXp4p8rwGaQa8lZTA_fM4r8AycVA5j_-Un5ryPY1VtFKCRnxWjGsNVWy2jhbz5E3ztoFO_Vxj-6HMEI8tCfcd9tgOe2xnHhWQMeOrNPuEQ5Wfr-8W7B-8Y_taEH1vovvGZfeiGZSVEQLDSG0YKBUqlSgqtLJaUAKULAlzRiQesCmjhVDAS1_z4MIjQM6Nj3piQSzhRsUJN_UtNJ_1M7uNMDWUR4rShNqYkUQrHULNvojrUNVprHcQGalDmpI2HKpXPMtRftiTBBVKUKEsVLiDTsYyLwVpxsze56DlcU8gvM4b-oMHWc645FTYOIydTpQPKJ3RznlbEpZZIqKE-2Hy0RzJP_bjX5XO-PjuP-WO0FKz227J1nXndg8tw5Min2cfzQ8H7_bAQ5WhPsxN8RcOOuVi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+exact+solutions+of+the+stochastic+Ginzburg%E2%80%93Landau+equation&rft.jtitle=Results+in+physics&rft.au=Mohammed%2C+Wael+W.&rft.au=Ahmad%2C+Hijaz&rft.au=Hamza%2C+Amjad+E.&rft.au=ALy%2C+E.S.&rft.date=2021-04-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=23&rft.spage=103988&rft_id=info:doi/10.1016%2Fj.rinp.2021.103988&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2021_103988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon