Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by aluminum-based drinking water treatment residuals
[Display omitted] •Aluminum-based water treatment residuals can irreversibly adsorb PFOA and PFOS.•PFOS adsorption on the residuals was greater than PFOA adsorption.•PFOA and PFOS adsorption was pH-dependent; adsorption was higher at lower pH.•Repurposing an industrial waste is a sustainable option...
Saved in:
Published in | Journal of hazardous materials letters Vol. 2; p. 100034 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Aluminum-based water treatment residuals can irreversibly adsorb PFOA and PFOS.•PFOS adsorption on the residuals was greater than PFOA adsorption.•PFOA and PFOS adsorption was pH-dependent; adsorption was higher at lower pH.•Repurposing an industrial waste is a sustainable option for PFOA/PFAS treatment.
Per- and polyfluoroalkyl substances (PFAS) represent a family of emerging persistent organic pollutants. Cost-effective remediation of PFAS contamination via chemical or biochemical degradation is challenging due to their extremely high stability. This study reports the removal of two representative PFAS species, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), from water by adsorption using aluminum-based water treatment residuals (Al-WTR), a non-hazardous waste generated during the process of drinking water treatment by alum salts. Rapid adsorption of PFOA and PFOS onto Al-WTR followed a pseudo 2nd order kinetic pattern. Lower pH facilitated the adsorption process with a faster adsorption rate and greater adsorption capacity. At pH 3.0 and an initial concentration of 1.0 mg/L, 97.4 % of PFOA and 99.5 % of PFOS were adsorbed onto Al-WTR. Adsorption isotherm modeling showed that the maximum adsorption capacities of PFOA and PFOS on Al-WTR at pH 3.0 were 0.232 and 0.316 mg/g, respectively. Desorption tests indicated that the adsorption by Al-WTR was irreversible, making Al-WTR an excellent candidate for treating PFOA and PFOS in solution. The highly encouraging results of this preliminary study indicate that Al-WTR may be a promising, viable, and cost-effective PFOA/PFOS treatment option for water reuse, industrial wastewater treatment, and groundwater remediation. |
---|---|
AbstractList | [Display omitted]
•Aluminum-based water treatment residuals can irreversibly adsorb PFOA and PFOS.•PFOS adsorption on the residuals was greater than PFOA adsorption.•PFOA and PFOS adsorption was pH-dependent; adsorption was higher at lower pH.•Repurposing an industrial waste is a sustainable option for PFOA/PFAS treatment.
Per- and polyfluoroalkyl substances (PFAS) represent a family of emerging persistent organic pollutants. Cost-effective remediation of PFAS contamination via chemical or biochemical degradation is challenging due to their extremely high stability. This study reports the removal of two representative PFAS species, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), from water by adsorption using aluminum-based water treatment residuals (Al-WTR), a non-hazardous waste generated during the process of drinking water treatment by alum salts. Rapid adsorption of PFOA and PFOS onto Al-WTR followed a pseudo 2nd order kinetic pattern. Lower pH facilitated the adsorption process with a faster adsorption rate and greater adsorption capacity. At pH 3.0 and an initial concentration of 1.0 mg/L, 97.4 % of PFOA and 99.5 % of PFOS were adsorbed onto Al-WTR. Adsorption isotherm modeling showed that the maximum adsorption capacities of PFOA and PFOS on Al-WTR at pH 3.0 were 0.232 and 0.316 mg/g, respectively. Desorption tests indicated that the adsorption by Al-WTR was irreversible, making Al-WTR an excellent candidate for treating PFOA and PFOS in solution. The highly encouraging results of this preliminary study indicate that Al-WTR may be a promising, viable, and cost-effective PFOA/PFOS treatment option for water reuse, industrial wastewater treatment, and groundwater remediation. Per- and polyfluoroalkyl substances (PFAS) represent a family of emerging persistent organic pollutants. Cost-effective remediation of PFAS contamination via chemical or biochemical degradation is challenging due to their extremely high stability. This study reports the removal of two representative PFAS species, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), from water by adsorption using aluminum-based water treatment residuals (Al-WTR), a non-hazardous waste generated during the process of drinking water treatment by alum salts. Rapid adsorption of PFOA and PFOS onto Al-WTR followed a pseudo 2nd order kinetic pattern. Lower pH facilitated the adsorption process with a faster adsorption rate and greater adsorption capacity. At pH 3.0 and an initial concentration of 1.0 mg/L, 97.4 % of PFOA and 99.5 % of PFOS were adsorbed onto Al-WTR. Adsorption isotherm modeling showed that the maximum adsorption capacities of PFOA and PFOS on Al-WTR at pH 3.0 were 0.232 and 0.316 mg/g, respectively. Desorption tests indicated that the adsorption by Al-WTR was irreversible, making Al-WTR an excellent candidate for treating PFOA and PFOS in solution. The highly encouraging results of this preliminary study indicate that Al-WTR may be a promising, viable, and cost-effective PFOA/PFOS treatment option for water reuse, industrial wastewater treatment, and groundwater remediation. |
ArticleNumber | 100034 |
Author | Zhang, Zhiming Datta, Rupali Deng, Yang Sarkar, Dibyendu |
Author_xml | – sequence: 1 givenname: Zhiming surname: Zhang fullname: Zhang, Zhiming organization: Department of Civil, Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States – sequence: 2 givenname: Dibyendu surname: Sarkar fullname: Sarkar, Dibyendu email: dsarkar@stevens.edu organization: Department of Civil, Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States – sequence: 3 givenname: Rupali surname: Datta fullname: Datta, Rupali organization: Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States – sequence: 4 givenname: Yang surname: Deng fullname: Deng, Yang email: dengy@montclair.edu organization: Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States |
BookMark | eNp9kcFqGzEQhkVIIWnqF8hJx-SwrrRarbXQiwl1GjCk0OQsZqVRImctGUnbkj5BHrvrupSQQ04jhv_7QfN9JMchBiTknLM5Z7z9vJk_wu9hXrOaTwvGRHNETuu2bauOc3b86n1CZjlvpkitOBeCnZKXpc0x7YqPgUZHd5jcMMYUoykQojcUjLf04vvqdnlJIdg3Cczj4GJ4nftxSftnCsO49WHcVj1ktNQmH558eKC_oGCiJSGULYZCE2ZvRxjyJ_LBTQNn_-YZuV99vbv6Vq1vr2-uluvKNJyVChY9tNgx2SojG2GZFG3XW15LAaKVwPoFgBSqh0ZyhMaoDrmrF84xazvZizNyc-i1ETZ6l_wW0rOO4PXfRUwPGlLxZkDNQDlk3UI2TDa1dGBAAVfGqa6xVqqpqz50mRRzTuj-93Gm92r0Ru_V6L0afVAzQeoNZHyBvYCSwA_vo18OKE4H-ukx6Ww8BoPWJzRl-oF_D_8DWXattA |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_119676 crossref_primary_10_1002_jeq2_20511 crossref_primary_10_1002_macp_202400012 crossref_primary_10_1021_acsestwater_3c00408 crossref_primary_10_3390_environments12010029 crossref_primary_10_1002_bio_70006 crossref_primary_10_1007_s10532_025_10109_5 crossref_primary_10_1016_j_biortech_2021_126223 crossref_primary_10_1021_acs_iecr_4c00541 crossref_primary_10_1016_j_envpol_2023_121241 crossref_primary_10_1038_s41467_022_29816_1 crossref_primary_10_1007_s42114_024_00867_w crossref_primary_10_1016_j_cej_2024_154366 crossref_primary_10_1016_j_cscee_2025_101127 crossref_primary_10_1016_j_envpol_2023_121138 crossref_primary_10_1016_j_ijbiomac_2025_140203 crossref_primary_10_1007_s13201_023_02014_0 crossref_primary_10_1021_acsami_3c13966 crossref_primary_10_3390_ma18061299 crossref_primary_10_3390_ma17153801 crossref_primary_10_1021_acsestengg_3c00515 crossref_primary_10_1002_jeq2_20520 crossref_primary_10_1021_jacs_4c00443 crossref_primary_10_1007_s40201_024_00930_0 crossref_primary_10_3390_pr10122700 crossref_primary_10_1039_D4EW00600C crossref_primary_10_1021_acsapm_2c01580 crossref_primary_10_32964_TJ22_9_559 crossref_primary_10_3390_su151713056 |
Cites_doi | 10.1016/j.jhazmat.2020.123892 10.2134/jeq2013.03.0082 10.1016/j.chemosphere.2012.06.071 10.1016/j.watres.2008.12.001 10.1016/j.colsurfa.2015.03.045 10.1002/j.1551-8833.1991.tb07129.x 10.1016/j.chemosphere.2020.126072 10.1016/j.biochi.2016.10.011 10.1016/j.watres.2011.03.007 10.1021/je060285g 10.1021/acs.est.5b02092 10.5942/jawwa.2018.110.0003 10.1002/ieam.258 10.1016/j.jhazmat.2005.12.013 10.1021/es0512475 10.2166/aqua.2007.005 10.2134/jeq2004.0230 10.1007/s11356-015-4145-z 10.1016/j.chemosphere.2016.12.057 10.1002/ppap.202000074 10.1016/j.chemosphere.2020.126384 10.1016/j.chemosphere.2010.08.009 10.1016/j.chemosphere.2016.01.014 10.1016/j.ijbiomac.2020.06.287 10.1016/j.chemosphere.2011.04.018 10.1016/j.cej.2020.126698 10.1021/ac00289a017 10.2134/jeq2010.0242 10.1371/journal.pone.0138305 10.1021/acs.est.7b00970 10.1016/j.scitotenv.2014.12.017 10.1071/EN11119 10.1021/acsomega.9b02296 10.1007/s11270-015-2631-z 10.1016/j.watres.2020.115913 10.1016/j.chemosphere.2005.11.054 10.1080/10643389.2019.1614848 10.1021/es001489z 10.1016/j.scitotenv.2019.133606 10.1016/j.chemosphere.2014.03.098 10.1021/es030371q 10.1016/j.watres.2020.115897 10.1002/etc.4950 10.1039/C5RA15853B 10.1016/j.chemosphere.2016.03.101 10.1016/j.watres.2021.117244 10.1016/j.jhazmat.2009.08.031 10.1016/j.watres.2020.116534 10.1016/j.jcis.2020.11.071 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.hazl.2021.100034 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-9110 |
ExternalDocumentID | oai_doaj_org_article_0a8fe0975405425faca8a18cf894dd58 10_1016_j_hazl_2021_100034 S2666911021000228 |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 AAFWJ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-a7ba6e90568c543d05369bd1253a365a0b7aa538ba451ea4c89e1f27ff0dd95b3 |
IEDL.DBID | DOA |
ISSN | 2666-9110 |
IngestDate | Wed Aug 27 01:32:31 EDT 2025 Tue Jul 01 01:31:44 EDT 2025 Thu Apr 24 23:01:09 EDT 2025 Fri Feb 23 02:42:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Al-WTR Water treatment Adsorption PFOA PFOS |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-a7ba6e90568c543d05369bd1253a365a0b7aa538ba451ea4c89e1f27ff0dd95b3 |
OpenAccessLink | https://doaj.org/article/0a8fe0975405425faca8a18cf894dd58 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a8fe0975405425faca8a18cf894dd58 crossref_primary_10_1016_j_hazl_2021_100034 crossref_citationtrail_10_1016_j_hazl_2021_100034 elsevier_sciencedirect_doi_10_1016_j_hazl_2021_100034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Askeland, Clarke, Cheema, Mendez, Gasco, Paz-Ferreiro (bib0010) 2020; 249 Johnson, Anschutz, Smolen, Simcik, Penn (bib0115) 2007; 52 Meroufel, Benali, Benyahia, Benmoussa, Zenasni (bib0140) 2013; 4 Anderson, Long, Porter, Anderson (bib0005) 2016; 150 Nagar, Sarkar, Punamiya, Datta (bib0150) 2015; 226 Ayub, Raza, Majeed, Tariq, Irfan (bib0015) 2020; 163 Prevedouros, Cousins, Buck, Korzeniowski (bib0170) 2006; 40 Hale, Arp, Slinde, Wade, Bjørseth, Breedveld (bib0100) 2017; 171 Yu, Zhang, Deng, Huang, Yu (bib0265) 2009; 43 Rattanaoudom, Visvanathan, Boontanon (bib0190) 2012; 2 Bulusu, Wandell, Zhang, Farahani, Tang, Locke (bib0050) 2020; 17 Xu, Liu, Zhou, Zheng, Jin, Chen (bib0260) 2021 Balintova, Holub, Singovszka (bib0020) 2012; 28 Milinovic, Lacorte, Vidal, Rigol (bib0145) 2015; 511 Dayton, Basta (bib0065) 2005; 34 Gao, Chorover (bib0085) 2012; 9 Soleimanifar, Deng, Wu, Sarkar (bib0200) 2016; 154 Zhu, Jia, Wu, Wang (bib0295) 2009; 172 Belkouteb, Franke, McCleaf, Köhler, Ahrens (bib0030) 2020; 182 Fujii, Polprasert, Tanaka, Hong Lien, Qiu (bib0080) 2007; 56 Punamiya, Sarkar, Rakshit, Datta (bib0180) 2015; 22 Bolan, Sarkar, Yan, Li, Wijesekara, Kannan (bib0035) 2021; 401 Leiva, Wilson, Albano, Nkedi-Kizza, O’Connor (bib0120) 2019; 4 Zhang, He, Wang, Zhang, Liang (bib0270) 2019 Fenton, Ducatman, Boobis, DeWitt, Lau, Ng (bib0075) 2020 Willemsen, Bourg (bib0240) 2021; 585 Schmitt, Pietrzyk (bib0195) 1985; 57 Grigorenko, Andreeva, Rubtsova, Deygen, Antipin, Majouga (bib0095) 2017; 132 Ippolito, Barbarick, Elliott (bib0110) 2011; 40 Xing, Chen, Zhu, Liu (bib0250) 2020; 251 Gao, Cui, Deng (bib0090) 2021; 405 Steigerwald, Ray (bib0205) 2021; 2 Chen, Xia, Wang, Qiao, Chen (bib0055) 2011; 83 Wang, Niu, Li, Zheng, Xu, Liu (bib0230) 2015; 5 Xiao, Ulrich, Chen, Higgins (bib0245) 2017; 51 Park, Daniels, Wu, Ziska, Snyder (bib0160) 2020; 181 Crone, Speth, Wahman, Smith, Abulikemu, Kleiner, Pressman (bib0060) 2019; 49 Rahmati, Sarkar, Na Nagara, Zhang, Datta (bib0185) 2020; 52 Wang, Orr, Jakubowski, Bird, Casey, Hearon (bib0235) 2021; 188 Zhang, Zhang, Liang (bib0275) 2019; 694 Buck, Franklin, Berger, Conder, Cousins, De Voogt (bib0045) 2011; 7 Zhou, Deng, Zhang, Fan, Huang, Yu (bib0285) 2010; 81 Lin, Wang, Niu, Yue, Huang (bib0125) 2015; 49 Makris, Sarkar, Datta (bib0130) 2006; 64 McNamara, Franco, Mimna, Zappa (bib0135) 2018; 110 Punamiya, Sarkar, Rakshit, Datta (bib0175) 2013; 42 Zhao, Bian, Zhang, Zhu, Liu (bib0280) 2014; 114 Prakash, SenGupta (bib0165) 2003; 37 Barden, Behnsen, Bergmann, Leng, Manning, Withers (bib0025) 2015; 10 Boyer, Fang, Ellis, Dietz, Choi, Schaefer (bib0040) 2021 USEPA (bib0215) 2016 Wang, Shih (bib0220) 2011; 45 Hansen, Clemen, Ellefson, Johnson (bib0105) 2001; 35 Painter, Starsinic, Coleman (bib0155) 2012; 4 Xu, Chen, Jiang (bib0255) 2015; 479 Ünlü, Ersoz (bib0210) 2006; 136 Elliott, Dempsey (bib0070) 1991; 83 Wang, Liu, Shih (bib0225) 2012; 89 Zhou, Wallace, Denslow, Gaillard, Meyer, Bonzongo (bib0290) 2021; 40 Elliott (10.1016/j.hazl.2021.100034_bib0070) 1991; 83 Wang (10.1016/j.hazl.2021.100034_bib0230) 2015; 5 Zhang (10.1016/j.hazl.2021.100034_bib0275) 2019; 694 Chen (10.1016/j.hazl.2021.100034_bib0055) 2011; 83 Gao (10.1016/j.hazl.2021.100034_bib0085) 2012; 9 Bulusu (10.1016/j.hazl.2021.100034_bib0050) 2020; 17 Hale (10.1016/j.hazl.2021.100034_bib0100) 2017; 171 Makris (10.1016/j.hazl.2021.100034_bib0130) 2006; 64 Schmitt (10.1016/j.hazl.2021.100034_bib0195) 1985; 57 Milinovic (10.1016/j.hazl.2021.100034_bib0145) 2015; 511 Zhu (10.1016/j.hazl.2021.100034_bib0295) 2009; 172 Zhang (10.1016/j.hazl.2021.100034_bib0270) 2019 Askeland (10.1016/j.hazl.2021.100034_bib0010) 2020; 249 Prevedouros (10.1016/j.hazl.2021.100034_bib0170) 2006; 40 Painter (10.1016/j.hazl.2021.100034_bib0155) 2012; 4 Punamiya (10.1016/j.hazl.2021.100034_bib0180) 2015; 22 Soleimanifar (10.1016/j.hazl.2021.100034_bib0200) 2016; 154 Ünlü (10.1016/j.hazl.2021.100034_bib0210) 2006; 136 Wang (10.1016/j.hazl.2021.100034_bib0220) 2011; 45 Nagar (10.1016/j.hazl.2021.100034_bib0150) 2015; 226 Crone (10.1016/j.hazl.2021.100034_bib0060) 2019; 49 Zhou (10.1016/j.hazl.2021.100034_bib0285) 2010; 81 Xu (10.1016/j.hazl.2021.100034_bib0260) 2021 McNamara (10.1016/j.hazl.2021.100034_bib0135) 2018; 110 Xu (10.1016/j.hazl.2021.100034_bib0255) 2015; 479 Hansen (10.1016/j.hazl.2021.100034_bib0105) 2001; 35 Punamiya (10.1016/j.hazl.2021.100034_bib0175) 2013; 42 Buck (10.1016/j.hazl.2021.100034_bib0045) 2011; 7 Fenton (10.1016/j.hazl.2021.100034_bib0075) 2020 Zhao (10.1016/j.hazl.2021.100034_bib0280) 2014; 114 Willemsen (10.1016/j.hazl.2021.100034_bib0240) 2021; 585 Anderson (10.1016/j.hazl.2021.100034_bib0005) 2016; 150 Rahmati (10.1016/j.hazl.2021.100034_bib0185) 2020; 52 Dayton (10.1016/j.hazl.2021.100034_bib0065) 2005; 34 Xing (10.1016/j.hazl.2021.100034_bib0250) 2020; 251 Leiva (10.1016/j.hazl.2021.100034_bib0120) 2019; 4 Xiao (10.1016/j.hazl.2021.100034_bib0245) 2017; 51 Fujii (10.1016/j.hazl.2021.100034_bib0080) 2007; 56 Balintova (10.1016/j.hazl.2021.100034_bib0020) 2012; 28 Steigerwald (10.1016/j.hazl.2021.100034_bib0205) 2021; 2 Prakash (10.1016/j.hazl.2021.100034_bib0165) 2003; 37 Johnson (10.1016/j.hazl.2021.100034_bib0115) 2007; 52 Wang (10.1016/j.hazl.2021.100034_bib0235) 2021; 188 Bolan (10.1016/j.hazl.2021.100034_bib0035) 2021; 401 Yu (10.1016/j.hazl.2021.100034_bib0265) 2009; 43 Rattanaoudom (10.1016/j.hazl.2021.100034_bib0190) 2012; 2 Ippolito (10.1016/j.hazl.2021.100034_bib0110) 2011; 40 Boyer (10.1016/j.hazl.2021.100034_bib0040) 2021 Meroufel (10.1016/j.hazl.2021.100034_bib0140) 2013; 4 USEPA (10.1016/j.hazl.2021.100034_bib0215) 2016 Wang (10.1016/j.hazl.2021.100034_bib0225) 2012; 89 Barden (10.1016/j.hazl.2021.100034_bib0025) 2015; 10 Zhou (10.1016/j.hazl.2021.100034_bib0290) 2021; 40 Belkouteb (10.1016/j.hazl.2021.100034_bib0030) 2020; 182 Ayub (10.1016/j.hazl.2021.100034_bib0015) 2020; 163 Grigorenko (10.1016/j.hazl.2021.100034_bib0095) 2017; 132 Lin (10.1016/j.hazl.2021.100034_bib0125) 2015; 49 Gao (10.1016/j.hazl.2021.100034_bib0090) 2021; 405 Park (10.1016/j.hazl.2021.100034_bib0160) 2020; 181 |
References_xml | – volume: 163 start-page: 603 year: 2020 end-page: 617 ident: bib0015 article-title: Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water publication-title: Int. J. Biol. Macromol. – volume: 251 year: 2020 ident: bib0250 article-title: Fabrication of hydrolytically stable magnetic core-shell aminosilane nanocomposite for the adsorption of PFOS and PFOA publication-title: Chemosphere – volume: 52 year: 2020 ident: bib0185 article-title: Removal of phosphorus by aluminum-based drinking water treatment residuals collected from various geographic locations in the United States publication-title: Geol. Soc. Am. Abstr. Program – volume: 89 start-page: 1009 year: 2012 end-page: 1014 ident: bib0225 article-title: Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite publication-title: Chemosphere – volume: 114 start-page: 51 year: 2014 end-page: 58 ident: bib0280 article-title: Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals publication-title: Chemosphere – volume: 17 year: 2020 ident: bib0050 article-title: Degradation of PFOA with a nanosecond‐pulsed plasma gas-liquid flowing film reactor publication-title: Plasma Processes Polym. – volume: 40 start-page: 1 year: 2011 end-page: 12 ident: bib0110 article-title: Drinking water treatment residuals: a review of recent uses publication-title: J. Environ. Qual. – volume: 4 start-page: 17782 year: 2019 end-page: 17790 ident: bib0120 article-title: Pesticide sorption to soilless media components used for ornamental plant production and aluminum water treatment residuals publication-title: ACS Omega – volume: 40 start-page: 32 year: 2006 end-page: 44 ident: bib0170 article-title: Sources, fate and transport of perfluorocarboxylates publication-title: Environ. Sci. Technol. – year: 2016 ident: bib0215 article-title: Drinking Water Health Advisories for PFOA and PFOS – volume: 56 start-page: 313 year: 2007 end-page: 326 ident: bib0080 article-title: New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds–a review paper publication-title: J. Water Supply Res. Technol. AQUA – volume: 34 start-page: 1112 year: 2005 end-page: 1118 ident: bib0065 article-title: A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum‐based drinking water treatment residuals publication-title: J. Environ. Qual. – volume: 4 start-page: 482 year: 2013 end-page: 491 ident: bib0140 article-title: Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: characteristics, isotherm, kinetic and thermodynamic studies publication-title: J. Mater. Environ. Sci. – volume: 182 year: 2020 ident: bib0030 article-title: Removal of per-and polyfluoroalkyl substances (PFASs) in a full-scale drinking water treatment plant: long-term performance of granular activated carbon (GAC) and influence of flow-rate publication-title: Water Res. – volume: 22 start-page: 7508 year: 2015 end-page: 7518 ident: bib0180 article-title: Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals publication-title: Environ. Sci. Pollut. Res. – volume: 57 start-page: 2247 year: 1985 end-page: 2253 ident: bib0195 article-title: Liquid chromatographic separation of inorganic anions on an alumina column publication-title: Anal. Chem. – volume: 28 start-page: 175 year: 2012 end-page: 180 ident: bib0020 article-title: Study of iron, copper and zinc removal from acidic solutions by sorption publication-title: Chem. Eng. Trans. – volume: 479 start-page: 60 year: 2015 end-page: 67 ident: bib0255 article-title: Adsorption of perflourooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) on polyaniline nanotubes publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 188 year: 2021 ident: bib0235 article-title: Enhanced adsorption of per-and polyfluoroalkyl substances (PFAS) by edible, nutrient-amended montmorillonite clays publication-title: Water Res. – volume: 2 start-page: 245 year: 2012 end-page: 258 ident: bib0190 article-title: Removal of concentrated PFOS and PFOA in synthetic industrial wastewater by powder activated carbon and hydrotalcite publication-title: J. Water Sustain. – volume: 45 start-page: 2925 year: 2011 end-page: 2930 ident: bib0220 article-title: Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations publication-title: Water Res. – volume: 9 start-page: 148 year: 2012 end-page: 157 ident: bib0085 article-title: Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy publication-title: Environ. Chem. – start-page: 1 year: 2019 end-page: 12 ident: bib0270 article-title: Sorption of perfluoroalkylated substances (PFASs) onto granular activated carbon and biochar publication-title: Environ. Technol. – volume: 64 start-page: 730 year: 2006 end-page: 741 ident: bib0130 article-title: Evaluating a drinking-water waste by-product as a novel sorbent for arsenic publication-title: Chemosphere – volume: 150 start-page: 678 year: 2016 end-page: 685 ident: bib0005 article-title: Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: field-validation of critical fate and transport properties publication-title: Chemosphere – volume: 585 start-page: 337 year: 2021 end-page: 346 ident: bib0240 article-title: Molecular dynamics simulation of the adsorption of per-and polyfluoroalkyl substances (PFASs) on smectite clay publication-title: J. Colloid Interface Sci. – volume: 49 start-page: 2359 year: 2019 end-page: 2396 ident: bib0060 article-title: Occurrence of per-and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 7 start-page: 513 year: 2011 end-page: 541 ident: bib0045 article-title: Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins publication-title: Integr. Environ. Assess. Manag. – volume: 4 start-page: 169 year: 2012 end-page: 240 ident: bib0155 article-title: Determination of functional groups in coal by Fourier transform interferometry publication-title: Fourier Transform Infrared Spectrosc. – year: 2021 ident: bib0040 article-title: Anion exchange resin removal of per-and polyfluoroalkyl substances (PFAS) from impacted water: a critical review publication-title: Water Res. – volume: 511 start-page: 63 year: 2015 end-page: 71 ident: bib0145 article-title: Sorption behaviour of perfluoroalkyl substances in soils publication-title: Sci. Total Environ. – volume: 401 year: 2021 ident: bib0035 article-title: Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soils–To mobilize or to immobilize or to degrade? publication-title: J. Hazard. Mater. – volume: 10 year: 2015 ident: bib0025 article-title: Geochemical evidence of the seasonality, affinity and pigmenation of Solenopora jurassica publication-title: PLoS One – volume: 136 start-page: 272 year: 2006 end-page: 280 ident: bib0210 article-title: Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions publication-title: J. Hazard. Mater. – volume: 405 year: 2021 ident: bib0090 article-title: Direct regeneration of ion exchange resins with sulfate radical-based advanced oxidation for enabling a cyclic adsorption–regeneration treatment approach to aqueous perfluorooctanoic acid (PFOA) publication-title: Chem. Eng. J. – volume: 132 start-page: 45 year: 2017 end-page: 53 ident: bib0095 article-title: Novel non-β-lactam inhibitor of β-lactamase TEM-171 based on acylated phenoxyaniline publication-title: Biochimie – volume: 694 year: 2019 ident: bib0275 article-title: Adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFASs) from aqueous solution - a review publication-title: Sci. Total Environ. – volume: 181 year: 2020 ident: bib0160 article-title: Magnetic ion-exchange (MIEX) resin for perfluorinated alkylsubstance (PFAS) removal in groundwater: roles of atomic charges for adsorption publication-title: Water Res. – volume: 42 start-page: 1449 year: 2013 end-page: 1459 ident: bib0175 article-title: Effectiveness of aluminum‐based drinking water treatment residuals as a novel sorbent to remove tetracyclines from aqueous medium publication-title: J. Environ. Qual. – volume: 154 start-page: 289 year: 2016 end-page: 292 ident: bib0200 article-title: Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff publication-title: Chemosphere – volume: 172 start-page: 1591 year: 2009 end-page: 1596 ident: bib0295 article-title: Removal of arsenic from water by supported nano zero-valent iron on activated carbon publication-title: J. Hazard. Mater. – year: 2021 ident: bib0260 article-title: PFAS and their substitutes in groundwater: occurrence, transformation and remediation publication-title: J. Hazard. Mater. – volume: 49 start-page: 10562 year: 2015 end-page: 10569 ident: bib0125 article-title: Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation publication-title: Environ. Sci. Technol. – volume: 5 start-page: 86927 year: 2015 end-page: 86933 ident: bib0230 article-title: Performance and mechanisms for removal of perfluorooctanoate (PFOA) from aqueous solution by activated carbon fiber publication-title: RSC Adv. – volume: 35 start-page: 766 year: 2001 end-page: 770 ident: bib0105 article-title: Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices publication-title: Environ. Sci. Technol. – volume: 226 start-page: 366 year: 2015 ident: bib0150 article-title: Drinking water treatment residual amendment lowers inorganic arsenic bioaccessibility in contaminated soils: a long-term study publication-title: Water Air Soil Pollut. – volume: 249 year: 2020 ident: bib0010 article-title: Biochar sorption of PFOS, PFOA, PFHxS and PFHxA in two soils with contrasting texture publication-title: Chemosphere – volume: 83 start-page: 1313 year: 2011 end-page: 1319 ident: bib0055 article-title: A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes publication-title: Chemosphere – volume: 52 start-page: 1165 year: 2007 end-page: 1170 ident: bib0115 article-title: The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces publication-title: J. Chem. Eng. Data – year: 2020 ident: bib0075 article-title: Per‐and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research publication-title: Environ. Toxicol. Chem. – volume: 37 start-page: 4468 year: 2003 end-page: 4474 ident: bib0165 article-title: Selective coagulant recovery from water treatment plant residuals using Donnan membrane process publication-title: Environ. Sci. Technol. – volume: 83 start-page: 126 year: 1991 end-page: 131 ident: bib0070 article-title: Agronomic effects of land application of water treatment sludges publication-title: J.‐Am. Water Works Assoc. – volume: 110 start-page: E2 year: 2018 end-page: E14 ident: bib0135 article-title: Comparison of activated carbons for removal of perfluorinated compounds from drinking water publication-title: J.‐Am. Water Works Assoc. – volume: 40 start-page: 1194 year: 2021 end-page: 1203 ident: bib0290 article-title: A screening approach for the selection of drinking water treatment residuals (DWTRs) for their introduction to marine systems publication-title: Environ. Toxicol. Chem. – volume: 51 start-page: 6342 year: 2017 end-page: 6351 ident: bib0245 article-title: Sorption of poly-and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon publication-title: Environ. Sci. Technol. – volume: 81 start-page: 453 year: 2010 end-page: 458 ident: bib0285 article-title: Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated sludge publication-title: Chemosphere – volume: 2 year: 2021 ident: bib0205 article-title: Adsorption behavior of perfluorooctanesulfonate (PFOS) onto activated spent coffee grounds biochar in synthetic wastewater effluent publication-title: J. Hazard. Mater. Lett. – volume: 43 start-page: 1150 year: 2009 end-page: 1158 ident: bib0265 article-title: Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study publication-title: Water Res. – volume: 171 start-page: 9 year: 2017 end-page: 18 ident: bib0100 article-title: Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility publication-title: Chemosphere – volume: 401 year: 2021 ident: 10.1016/j.hazl.2021.100034_bib0035 article-title: Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soils–To mobilize or to immobilize or to degrade? publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123892 – volume: 28 start-page: 175 year: 2012 ident: 10.1016/j.hazl.2021.100034_bib0020 article-title: Study of iron, copper and zinc removal from acidic solutions by sorption publication-title: Chem. Eng. Trans. – volume: 42 start-page: 1449 issue: 5 year: 2013 ident: 10.1016/j.hazl.2021.100034_bib0175 article-title: Effectiveness of aluminum‐based drinking water treatment residuals as a novel sorbent to remove tetracyclines from aqueous medium publication-title: J. Environ. Qual. doi: 10.2134/jeq2013.03.0082 – volume: 89 start-page: 1009 issue: 8 year: 2012 ident: 10.1016/j.hazl.2021.100034_bib0225 article-title: Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.06.071 – volume: 43 start-page: 1150 issue: 4 year: 2009 ident: 10.1016/j.hazl.2021.100034_bib0265 article-title: Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study publication-title: Water Res. doi: 10.1016/j.watres.2008.12.001 – volume: 479 start-page: 60 year: 2015 ident: 10.1016/j.hazl.2021.100034_bib0255 article-title: Adsorption of perflourooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) on polyaniline nanotubes publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2015.03.045 – volume: 83 start-page: 126 issue: 4 year: 1991 ident: 10.1016/j.hazl.2021.100034_bib0070 article-title: Agronomic effects of land application of water treatment sludges publication-title: J.‐Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1991.tb07129.x – volume: 249 year: 2020 ident: 10.1016/j.hazl.2021.100034_bib0010 article-title: Biochar sorption of PFOS, PFOA, PFHxS and PFHxA in two soils with contrasting texture publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126072 – volume: 132 start-page: 45 year: 2017 ident: 10.1016/j.hazl.2021.100034_bib0095 article-title: Novel non-β-lactam inhibitor of β-lactamase TEM-171 based on acylated phenoxyaniline publication-title: Biochimie doi: 10.1016/j.biochi.2016.10.011 – volume: 45 start-page: 2925 issue: 9 year: 2011 ident: 10.1016/j.hazl.2021.100034_bib0220 article-title: Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations publication-title: Water Res. doi: 10.1016/j.watres.2011.03.007 – start-page: 1 year: 2019 ident: 10.1016/j.hazl.2021.100034_bib0270 article-title: Sorption of perfluoroalkylated substances (PFASs) onto granular activated carbon and biochar publication-title: Environ. Technol. – volume: 52 start-page: 1165 issue: 4 year: 2007 ident: 10.1016/j.hazl.2021.100034_bib0115 article-title: The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces publication-title: J. Chem. Eng. Data doi: 10.1021/je060285g – volume: 2 year: 2021 ident: 10.1016/j.hazl.2021.100034_bib0205 article-title: Adsorption behavior of perfluorooctanesulfonate (PFOS) onto activated spent coffee grounds biochar in synthetic wastewater effluent publication-title: J. Hazard. Mater. Lett. – volume: 49 start-page: 10562 issue: 17 year: 2015 ident: 10.1016/j.hazl.2021.100034_bib0125 article-title: Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02092 – volume: 110 start-page: E2 issue: 1 year: 2018 ident: 10.1016/j.hazl.2021.100034_bib0135 article-title: Comparison of activated carbons for removal of perfluorinated compounds from drinking water publication-title: J.‐Am. Water Works Assoc. doi: 10.5942/jawwa.2018.110.0003 – volume: 7 start-page: 513 issue: 4 year: 2011 ident: 10.1016/j.hazl.2021.100034_bib0045 article-title: Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins publication-title: Integr. Environ. Assess. Manag. doi: 10.1002/ieam.258 – year: 2020 ident: 10.1016/j.hazl.2021.100034_bib0075 article-title: Per‐and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research publication-title: Environ. Toxicol. Chem. – volume: 136 start-page: 272 issue: 2 year: 2006 ident: 10.1016/j.hazl.2021.100034_bib0210 article-title: Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.12.013 – volume: 40 start-page: 32 issue: 1 year: 2006 ident: 10.1016/j.hazl.2021.100034_bib0170 article-title: Sources, fate and transport of perfluorocarboxylates publication-title: Environ. Sci. Technol. doi: 10.1021/es0512475 – volume: 56 start-page: 313 issue: 5 year: 2007 ident: 10.1016/j.hazl.2021.100034_bib0080 article-title: New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds–a review paper publication-title: J. Water Supply Res. Technol. AQUA doi: 10.2166/aqua.2007.005 – volume: 34 start-page: 1112 issue: 3 year: 2005 ident: 10.1016/j.hazl.2021.100034_bib0065 article-title: A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum‐based drinking water treatment residuals publication-title: J. Environ. Qual. doi: 10.2134/jeq2004.0230 – volume: 22 start-page: 7508 issue: 10 year: 2015 ident: 10.1016/j.hazl.2021.100034_bib0180 article-title: Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4145-z – volume: 171 start-page: 9 year: 2017 ident: 10.1016/j.hazl.2021.100034_bib0100 article-title: Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.057 – volume: 17 issue: 8 year: 2020 ident: 10.1016/j.hazl.2021.100034_bib0050 article-title: Degradation of PFOA with a nanosecond‐pulsed plasma gas-liquid flowing film reactor publication-title: Plasma Processes Polym. doi: 10.1002/ppap.202000074 – volume: 251 year: 2020 ident: 10.1016/j.hazl.2021.100034_bib0250 article-title: Fabrication of hydrolytically stable magnetic core-shell aminosilane nanocomposite for the adsorption of PFOS and PFOA publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126384 – volume: 81 start-page: 453 issue: 4 year: 2010 ident: 10.1016/j.hazl.2021.100034_bib0285 article-title: Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated sludge publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.08.009 – volume: 150 start-page: 678 year: 2016 ident: 10.1016/j.hazl.2021.100034_bib0005 article-title: Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: field-validation of critical fate and transport properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.014 – volume: 163 start-page: 603 year: 2020 ident: 10.1016/j.hazl.2021.100034_bib0015 article-title: Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.06.287 – volume: 83 start-page: 1313 issue: 10 year: 2011 ident: 10.1016/j.hazl.2021.100034_bib0055 article-title: A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.04.018 – volume: 4 start-page: 482 issue: 3 year: 2013 ident: 10.1016/j.hazl.2021.100034_bib0140 article-title: Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: characteristics, isotherm, kinetic and thermodynamic studies publication-title: J. Mater. Environ. Sci. – volume: 405 year: 2021 ident: 10.1016/j.hazl.2021.100034_bib0090 article-title: Direct regeneration of ion exchange resins with sulfate radical-based advanced oxidation for enabling a cyclic adsorption–regeneration treatment approach to aqueous perfluorooctanoic acid (PFOA) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126698 – volume: 57 start-page: 2247 issue: 12 year: 1985 ident: 10.1016/j.hazl.2021.100034_bib0195 article-title: Liquid chromatographic separation of inorganic anions on an alumina column publication-title: Anal. Chem. doi: 10.1021/ac00289a017 – volume: 40 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.hazl.2021.100034_bib0110 article-title: Drinking water treatment residuals: a review of recent uses publication-title: J. Environ. Qual. doi: 10.2134/jeq2010.0242 – volume: 10 issue: 9 year: 2015 ident: 10.1016/j.hazl.2021.100034_bib0025 article-title: Geochemical evidence of the seasonality, affinity and pigmenation of Solenopora jurassica publication-title: PLoS One doi: 10.1371/journal.pone.0138305 – volume: 51 start-page: 6342 issue: 11 year: 2017 ident: 10.1016/j.hazl.2021.100034_bib0245 article-title: Sorption of poly-and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00970 – volume: 511 start-page: 63 year: 2015 ident: 10.1016/j.hazl.2021.100034_bib0145 article-title: Sorption behaviour of perfluoroalkyl substances in soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.12.017 – volume: 9 start-page: 148 issue: 2 year: 2012 ident: 10.1016/j.hazl.2021.100034_bib0085 article-title: Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy publication-title: Environ. Chem. doi: 10.1071/EN11119 – year: 2016 ident: 10.1016/j.hazl.2021.100034_bib0215 – volume: 2 start-page: 245 issue: 4 year: 2012 ident: 10.1016/j.hazl.2021.100034_bib0190 article-title: Removal of concentrated PFOS and PFOA in synthetic industrial wastewater by powder activated carbon and hydrotalcite publication-title: J. Water Sustain. – volume: 4 start-page: 17782 issue: 18 year: 2019 ident: 10.1016/j.hazl.2021.100034_bib0120 article-title: Pesticide sorption to soilless media components used for ornamental plant production and aluminum water treatment residuals publication-title: ACS Omega doi: 10.1021/acsomega.9b02296 – volume: 226 start-page: 366 issue: 11 year: 2015 ident: 10.1016/j.hazl.2021.100034_bib0150 article-title: Drinking water treatment residual amendment lowers inorganic arsenic bioaccessibility in contaminated soils: a long-term study publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-015-2631-z – volume: 182 year: 2020 ident: 10.1016/j.hazl.2021.100034_bib0030 article-title: Removal of per-and polyfluoroalkyl substances (PFASs) in a full-scale drinking water treatment plant: long-term performance of granular activated carbon (GAC) and influence of flow-rate publication-title: Water Res. doi: 10.1016/j.watres.2020.115913 – volume: 64 start-page: 730 issue: 5 year: 2006 ident: 10.1016/j.hazl.2021.100034_bib0130 article-title: Evaluating a drinking-water waste by-product as a novel sorbent for arsenic publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.11.054 – volume: 49 start-page: 2359 issue: 24 year: 2019 ident: 10.1016/j.hazl.2021.100034_bib0060 article-title: Occurrence of per-and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2019.1614848 – volume: 35 start-page: 766 issue: 4 year: 2001 ident: 10.1016/j.hazl.2021.100034_bib0105 article-title: Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices publication-title: Environ. Sci. Technol. doi: 10.1021/es001489z – volume: 694 year: 2019 ident: 10.1016/j.hazl.2021.100034_bib0275 article-title: Adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFASs) from aqueous solution - a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133606 – volume: 114 start-page: 51 year: 2014 ident: 10.1016/j.hazl.2021.100034_bib0280 article-title: Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.03.098 – volume: 37 start-page: 4468 issue: 19 year: 2003 ident: 10.1016/j.hazl.2021.100034_bib0165 article-title: Selective coagulant recovery from water treatment plant residuals using Donnan membrane process publication-title: Environ. Sci. Technol. doi: 10.1021/es030371q – volume: 181 year: 2020 ident: 10.1016/j.hazl.2021.100034_bib0160 article-title: Magnetic ion-exchange (MIEX) resin for perfluorinated alkylsubstance (PFAS) removal in groundwater: roles of atomic charges for adsorption publication-title: Water Res. doi: 10.1016/j.watres.2020.115897 – volume: 4 start-page: 169 year: 2012 ident: 10.1016/j.hazl.2021.100034_bib0155 article-title: Determination of functional groups in coal by Fourier transform interferometry publication-title: Fourier Transform Infrared Spectrosc. – volume: 40 start-page: 1194 year: 2021 ident: 10.1016/j.hazl.2021.100034_bib0290 article-title: A screening approach for the selection of drinking water treatment residuals (DWTRs) for their introduction to marine systems publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.4950 – volume: 52 issue: 6 year: 2020 ident: 10.1016/j.hazl.2021.100034_bib0185 article-title: Removal of phosphorus by aluminum-based drinking water treatment residuals collected from various geographic locations in the United States publication-title: Geol. Soc. Am. Abstr. Program – year: 2021 ident: 10.1016/j.hazl.2021.100034_bib0260 article-title: PFAS and their substitutes in groundwater: occurrence, transformation and remediation publication-title: J. Hazard. Mater. – volume: 5 start-page: 86927 issue: 106 year: 2015 ident: 10.1016/j.hazl.2021.100034_bib0230 article-title: Performance and mechanisms for removal of perfluorooctanoate (PFOA) from aqueous solution by activated carbon fiber publication-title: RSC Adv. doi: 10.1039/C5RA15853B – volume: 154 start-page: 289 year: 2016 ident: 10.1016/j.hazl.2021.100034_bib0200 article-title: Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.03.101 – year: 2021 ident: 10.1016/j.hazl.2021.100034_bib0040 article-title: Anion exchange resin removal of per-and polyfluoroalkyl substances (PFAS) from impacted water: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2021.117244 – volume: 172 start-page: 1591 issue: 2 year: 2009 ident: 10.1016/j.hazl.2021.100034_bib0295 article-title: Removal of arsenic from water by supported nano zero-valent iron on activated carbon publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.08.031 – volume: 188 year: 2021 ident: 10.1016/j.hazl.2021.100034_bib0235 article-title: Enhanced adsorption of per-and polyfluoroalkyl substances (PFAS) by edible, nutrient-amended montmorillonite clays publication-title: Water Res. doi: 10.1016/j.watres.2020.116534 – volume: 585 start-page: 337 year: 2021 ident: 10.1016/j.hazl.2021.100034_bib0240 article-title: Molecular dynamics simulation of the adsorption of per-and polyfluoroalkyl substances (PFASs) on smectite clay publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.11.071 |
SSID | ssj0002811330 |
Score | 2.4173102 |
Snippet | [Display omitted]
•Aluminum-based water treatment residuals can irreversibly adsorb PFOA and PFOS.•PFOS adsorption on the residuals was greater than PFOA... Per- and polyfluoroalkyl substances (PFAS) represent a family of emerging persistent organic pollutants. Cost-effective remediation of PFAS contamination via... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100034 |
SubjectTerms | Adsorption Al-WTR PFOA PFOS Water treatment |
Title | Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by aluminum-based drinking water treatment residuals |
URI | https://dx.doi.org/10.1016/j.hazl.2021.100034 https://doaj.org/article/0a8fe0975405425faca8a18cf894dd58 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvCgSLFpkzY9ruIigg9QwVuZ5oEra7t0dxE9ePZnO2m66-pBL156CNOkZCb5vqTzIGRfYrNK4yyIYrAB14wFEIEMlBE8VRYBN3XxzpdXyfk9v3gQD3OlvpxPmE8P7CfuOARpTZiljlmgfVlQIIFJZWXGtRZNmC9i3txh6qm5MmJ4-HIXLAhAiVvRYRsx4527HuHN_XeImPMSCGP-DZWa5P1z4DQHOL0VstwyRdr1X7hKFky5Rj66elTVzTKnlaVDU9vBpEL2q5DkVX1FQfU1PbjpXXcPKZT6h4QZTQbWJcP9krs9pMUrBdyj-uXkOXCopqmufUkF-oJUtKYzb3SKh_Mmemu0Tu57Z3en50FbTCFQnIXjANICEpMh35FK8Fjj4kuyQiO_iSFOBIRFCoC7XwFcMANcycwwG6XWhlpnoog3yGJZlWaT0Cw1VsUiNMAUBw7SMEhkpEAjf9AaOoRNJzNXbaZxV_BikE9dyp5yp4DcKSD3CuiQo9k7Q59n41fpE6ejmaTLkd00oOXkreXkf1lOh4iphvOWbngagV31fxl86z8G3yZLrksf1bhDFsf1xOwivRkXe40l4_Py_ewTUp35yQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+perfluorooctanoic+acid+%28PFOA%29+and+perfluorooctanesulfonic+acid+%28PFOS%29+by+aluminum-based+drinking+water+treatment+residuals&rft.jtitle=Journal+of+hazardous+materials+letters&rft.au=Zhang%2C+Zhiming&rft.au=Sarkar%2C+Dibyendu&rft.au=Datta%2C+Rupali&rft.au=Deng%2C+Yang&rft.date=2021-11-01&rft.issn=2666-9110&rft.eissn=2666-9110&rft.volume=2&rft.spage=100034&rft_id=info:doi/10.1016%2Fj.hazl.2021.100034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_hazl_2021_100034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9110&client=summon |