Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics

In this paper, Hirota’s bilinear form has been employed to find novel lump waves solutions for the generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation. This equation is one of the most widely used equations in the field of fluid mechanics. Using the employed technique in the paper, several differ...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 29; p. 104689
Main Author Ghanbari, Behzad
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2211-3797
2211-3797
DOI10.1016/j.rinp.2021.104689

Cover

Loading…
Abstract In this paper, Hirota’s bilinear form has been employed to find novel lump waves solutions for the generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation. This equation is one of the most widely used equations in the field of fluid mechanics. Using the employed technique in the paper, several different categories of solutions to the equation are retrieved. Although these solutions have distinct structures, but all of them have emerged under the banner of the same method. This feature is one of the advantages of the method compared to other methods. 3D diagrams of some of the resulting solutions have also been added to the article. The techniques can be easily adopted in solving other partial differential equations. •A nonlinear partial differential equation in fluid mechanics is analyzed.•Analytical solutions for the model are obtained based on Hirota’s bilinear form.•Several types of solitary waves solutions for the equation is characterized.•The results demonstrate the reliability and efficiency of the developed approach.
AbstractList In this paper, Hirota’s bilinear form has been employed to find novel lump waves solutions for the generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation. This equation is one of the most widely used equations in the field of fluid mechanics. Using the employed technique in the paper, several different categories of solutions to the equation are retrieved. Although these solutions have distinct structures, but all of them have emerged under the banner of the same method. This feature is one of the advantages of the method compared to other methods. 3D diagrams of some of the resulting solutions have also been added to the article. The techniques can be easily adopted in solving other partial differential equations.
In this paper, Hirota’s bilinear form has been employed to find novel lump waves solutions for the generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation. This equation is one of the most widely used equations in the field of fluid mechanics. Using the employed technique in the paper, several different categories of solutions to the equation are retrieved. Although these solutions have distinct structures, but all of them have emerged under the banner of the same method. This feature is one of the advantages of the method compared to other methods. 3D diagrams of some of the resulting solutions have also been added to the article. The techniques can be easily adopted in solving other partial differential equations. •A nonlinear partial differential equation in fluid mechanics is analyzed.•Analytical solutions for the model are obtained based on Hirota’s bilinear form.•Several types of solitary waves solutions for the equation is characterized.•The results demonstrate the reliability and efficiency of the developed approach.
ArticleNumber 104689
Author Ghanbari, Behzad
Author_xml – sequence: 1
  givenname: Behzad
  surname: Ghanbari
  fullname: Ghanbari, Behzad
  email: b.ghanbary@yahoo.com
  organization: Department of Basic Science, Kermanshah University of Technology, Kermanshah, Iran
BookMark eNp9kU1uFDEQhS0UJELIBVj5AjP4pz3dltigKJBIkdhkb7ntcqiR227ZnoHsuAbX4yTpZoKEWGRVpdL7nqrqvSVnKScg5D1nW8747sN-WzDNW8EEXwbdbtCvyLkQnG9kr_uzf_o35LLWPWML1SnF-Tn5cT3NMT9ieqA3WHKzv3_-qnTEiAlsoSGXibZMAyZPUz5CpPEwzfS7PUKlNcdDw5zqKrGJ4jTn0mxqizQ9O0zZLxAmGuIBPZ3AfbMJXX1HXgcbK1w-1wty__n6_upmc_f1y-3Vp7uN6zhrGw2jZgDghBoHJUFqxb3kGrTl0rk-uKBEUJoLz731iu20DMxxBnoUA8gLcnuy9dnuzVxwsuXRZIvmzyCXB2NLQxfB6MFbxpwKrO86JtngRtBOCr5TeoC-X7yGk5crudYCwThsdn1AKxaj4cyseZi9WfMwax7mlMeCiv_Qv6u8CH08QbD854hQTHUIyYHHAq4tF-BL-BOwcak3
CitedBy_id crossref_primary_10_1016_j_rinp_2023_106792
crossref_primary_10_1038_s41598_023_47838_7
crossref_primary_10_1140_epjp_s13360_023_03902_9
crossref_primary_10_1016_j_rinp_2021_105084
crossref_primary_10_1007_s11082_023_06271_w
crossref_primary_10_1016_j_rinp_2022_105683
crossref_primary_10_1016_j_rinp_2022_106013
crossref_primary_10_3390_axioms12100969
crossref_primary_10_1016_j_rinp_2023_107143
crossref_primary_10_1016_j_rinp_2021_104929
crossref_primary_10_3390_sym15040850
crossref_primary_10_1016_j_rinp_2023_107183
crossref_primary_10_1016_j_physa_2023_128819
crossref_primary_10_1038_s41598_023_37757_y
crossref_primary_10_3390_math12131959
crossref_primary_10_1016_j_aej_2024_04_011
crossref_primary_10_1016_j_joes_2022_04_018
crossref_primary_10_1088_1402_4896_ad368f
crossref_primary_10_1016_j_rinp_2024_107601
crossref_primary_10_1016_j_rinp_2021_104951
crossref_primary_10_1016_j_rinp_2022_105589
crossref_primary_10_1038_s41598_024_75969_y
crossref_primary_10_1016_j_rinp_2023_107298
crossref_primary_10_1016_j_rinp_2023_106221
crossref_primary_10_1080_09205071_2024_2321280
crossref_primary_10_3390_math10142522
crossref_primary_10_1016_j_physleta_2023_128647
crossref_primary_10_1007_s11082_023_06053_4
crossref_primary_10_1016_j_rinp_2022_106200
crossref_primary_10_1007_s11071_023_08710_5
crossref_primary_10_3390_sym15111972
crossref_primary_10_1007_s11071_022_07568_3
crossref_primary_10_1016_j_rinp_2022_105738
crossref_primary_10_1155_2022_9942267
crossref_primary_10_1007_s11082_023_06208_3
crossref_primary_10_1007_s11071_022_07508_1
crossref_primary_10_1016_j_rinp_2021_104947
crossref_primary_10_1007_s11082_022_03535_9
crossref_primary_10_1016_j_rinp_2023_106943
crossref_primary_10_1016_j_heliyon_2023_e13511
crossref_primary_10_1016_j_rinp_2022_105475
crossref_primary_10_1016_j_rinp_2021_105036
crossref_primary_10_3934_math_20231383
crossref_primary_10_1016_j_rinp_2022_105316
crossref_primary_10_1142_S0218863523500789
crossref_primary_10_1016_j_rinp_2022_105259
crossref_primary_10_1016_j_rinp_2022_105457
Cites_doi 10.1007/s40819-020-00882-7
10.1016/j.rinp.2021.104128
10.1007/s11071-016-3216-0
10.1155/2013/380484
10.1016/j.cnsns.2017.11.015
10.1007/s12517-021-07792-y
10.1142/S0217984919500180
10.3390/sym12030478
10.1016/j.aml.2018.05.010
10.1007/s11071-020-06068-6
10.1007/s11071-015-2519-x
10.1103/PhysRevLett.27.1192
10.1186/s13662-020-02831-6
10.1016/j.aej.2020.03.032
10.1002/mma.7582
10.1109/JIOT.2020.3035415
10.1002/rnc.4856
10.1016/j.physleta.2019.02.031
10.1007/s11071-018-4292-0
10.1177/1077546314544514
10.1016/j.ijepes.2020.105961
10.1016/j.chaos.2020.109910
10.3934/math.2020432
10.1051/mmnp/2021001
10.1016/j.ceramint.2020.11.090
10.1016/j.engappai.2020.103680
10.1088/0305-4470/24/14/009
10.1155/2018/4942906
10.1016/j.camwa.2010.12.043
10.1016/j.rinp.2021.103919
10.3390/sym13010127
10.1080/14697680500149297
10.1088/1402-4896/ac108b
10.1016/j.chaos.2004.12.021
10.1186/s13662-020-02602-3
10.1063/1.528245
10.1140/epjp/s13360-021-01343-w
10.1143/PTP.51.1355
10.3934/math.2020447
10.1002/num.22526
10.1016/j.physleta.2015.06.061
10.1016/j.camwa.2017.10.037
10.1016/j.ijleo.2020.166247
10.1140/epjp/s13360-019-00054-7
10.1007/s12346-021-00449-x
10.1007/s11071-019-05328-4
10.1109/ACCESS.2020.3040779
10.1016/j.aej.2021.01.054
10.1051/mmnp/2018012
10.1016/0375-9601(93)90848-T
10.1016/j.jfranklin.2019.09.029
10.1023/A:1019194421221
10.1016/j.camwa.2016.06.008
10.1016/0375-9601(84)90442-0
10.1007/s00170-021-07272-3
ContentType Journal Article
Copyright 2021 The Author
Copyright_xml – notice: 2021 The Author
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2021.104689
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_98da00c5f07440308cbe9c3216598e77
10_1016_j_rinp_2021_104689
S2211379721007695
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-9eb90eeec25b853e3951d319e9a13cc7fcf52f5912d1dad50693f0c10e9b28e3
IEDL.DBID IXB
ISSN 2211-3797
IngestDate Wed Aug 27 01:31:54 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Tue Jul 01 02:27:41 EDT 2025
Tue Jul 25 21:01:03 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hirota’s bilinear form
Symbolic calculations
Partial differential equations
Lump wave solution
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-9eb90eeec25b853e3951d319e9a13cc7fcf52f5912d1dad50693f0c10e9b28e3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379721007695
ParticipantIDs doaj_primary_oai_doaj_org_article_98da00c5f07440308cbe9c3216598e77
crossref_citationtrail_10_1016_j_rinp_2021_104689
crossref_primary_10_1016_j_rinp_2021_104689
elsevier_sciencedirect_doi_10_1016_j_rinp_2021_104689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fan, Deng, Qiu, Zhao, Wu (b34) 2021; 14
Lou (b61) 1993; 175
Pashaev, Tanoğlu (b6) 2005; 26
Akgül, Danish, Imran, Waqas, Tahir, Asjad, Baleanu (b19) 2020
Sheng, Wang, Zhang, Yu, Cheng, Lyu, Xiong (b31) 2020; 8
Bielecki, Jeanblanc, Rutkowski (b21) 2005; 5
Yel, Cattani, Baskonus, Gao (b2) 2021; 16
Atangana, Kılıçman (b23) 2013; 2013
Peng, Tian, Zou, Zhang (b59) 2018; 93
Lu, Duan, Hong (b68) 2021; 24
Ma, Zhang, Tang, Tu (b5) 2012; 218
Ghalib, Zafar, Farman, Akgül, Ahmad, Ahmad (b13) 2021
Kumar, Kumar (b65) 2020; 6
Yépez-Martínez, Gómez-Aguilar, Atangana (b15) 2018; 13
Li, Gao, Du, Hong (b36) 2021; 73
Lü, Chen (b67) 2021; 103
Chen, Xu, Zhang, Rong, Jiang, Li (b33) 2021; 47
Hirota (b66) 1971; 27
Saha Ray (b63) 2019; 33
Glowinski, Neittaanmäki (b8) 2008
Ghanbari, Günerhan, Srivastava (b24) 2020; 138
Wang (b16) 2018; 85
Zhang, Kordestani, Masri, Wang, Sun (b38) 2021; e2821
Ma (b14) 2015; 379
Wang (b26) 2016; 84
Deng, Gao, Su, Ding, Jia (b56) 2020; 99
Ye, Liu, Shi, Yan (b37) 2020; 8
Wang, Liu, Zhao, Guo, Terzija (b40) 2020; 119
Ghanbari, Asadi (b55) 2021
Aliyu, Li (b71) 2020; 135
Wang, Wei, Wang, Huang, Peng, Song, Cabrera, Perez-Jimenez (b41) 2020; 92
Hu, Li (b60) 1991; 24
Chen, Wang, Ying, Cao (b39) 2021; 23
Gao, Veeresha, Prakasha, Baskonus (b12) 2021; 37
Ikram, Asjad, Akgül, Baleanu (b4) 2021; 60
Meng, Pang, Dong, Han, Sha (b30) 2018; 2018
Konopelchenko, Dubrovsky (b57) 1984; 102
Huang, Wang, Liu, Valencia-Cabrera, Pe’rez-Jime’nez, Li (b42) 2021; 2021
Li, Duan, Yu (b48) 2019; 383
Ma, Fan (b50) 2011; 61
Ullah, Ali, Roshid, Hoque (b53) 2021; 136
Xiao, Song, He, Wang, Zhang, Dai (b32) 2021; 115
Duffy (b3) 2013
Ghanbari, Raza (b29) 2019; 33
Hirota (b46) 2004
Sawada, Kotera (b58) 1974; 51
Inc, Rezazadeh, Vahidi, Eslami, Akinlar, Ali, Chu (b11) 2020; 5
Wang (b49) 2017; 87
Luo, Li, Liu, Tian, Zhong, Shi (b43) 2020; 375
Gao, Veeresha, Prakasha, Baskonus, Yel (b9) 2020; 12
Cui (b70) 2021; 22
Gao, Zhao, Zi, Yu, Lü (b51) 2016; 72
Hosseini, Sadri, Mirzazadeh, Ahmadian, Chu, Salahshour (b18) 2021
Fischer, Modersitzki (b10) 1999; 22
Khater, Ghanbari, Nisar, Kumar (b22) 2020; 59
Rezazadeh, Younis, Eslami, Bilal, Younas (b28) 2021; 16
Hosseini, Sadri, Mirzazadeh, Salahshour (b27) 2021; 229
Xie, Zhang, Zeng, Shi, Zhong (b44) 2020; 30
Atangana (b1) 2016; 22
Rui, Zhang (b47) 2020; 2020
Gao, Baskonus, Shi (b25) 2020; 2020
Leta, Liu, El Achab, Rezazadeh, Bekir (b17) 2021; 20
Dong, Tian, Yan, Zou (b54) 2018; 75
Baleanu, Inc, Yusuf, Aliyu (b64) 2018; 59
Wang (b20) 2017; 87
Chan, Zheng (b62) 1989; 30
Inc, Miah, Akher Chowdhury, Rezazadeh, Akinlar, Chu (b7) 2020; 5
Zhang, Chen, Wang, Li, Ji (b45) 2021; 13
Wazwaz (b52) 2007; 190
Li, Dai, Yu, Zhang (b35) 2021; 15
Kumar, Nisar, Kumar (b69) 2021
Wang (10.1016/j.rinp.2021.104689_b26) 2016; 84
Lü (10.1016/j.rinp.2021.104689_b67) 2021; 103
Yépez-Martínez (10.1016/j.rinp.2021.104689_b15) 2018; 13
Ghanbari (10.1016/j.rinp.2021.104689_b29) 2019; 33
Ghalib (10.1016/j.rinp.2021.104689_b13) 2021
Ghanbari (10.1016/j.rinp.2021.104689_b55) 2021
Duffy (10.1016/j.rinp.2021.104689_b3) 2013
Dong (10.1016/j.rinp.2021.104689_b54) 2018; 75
Peng (10.1016/j.rinp.2021.104689_b59) 2018; 93
Xiao (10.1016/j.rinp.2021.104689_b32) 2021; 115
Baleanu (10.1016/j.rinp.2021.104689_b64) 2018; 59
Saha Ray (10.1016/j.rinp.2021.104689_b63) 2019; 33
Sawada (10.1016/j.rinp.2021.104689_b58) 1974; 51
Ikram (10.1016/j.rinp.2021.104689_b4) 2021; 60
Aliyu (10.1016/j.rinp.2021.104689_b71) 2020; 135
Hosseini (10.1016/j.rinp.2021.104689_b27) 2021; 229
Inc (10.1016/j.rinp.2021.104689_b7) 2020; 5
Gao (10.1016/j.rinp.2021.104689_b25) 2020; 2020
Li (10.1016/j.rinp.2021.104689_b36) 2021; 73
Zhang (10.1016/j.rinp.2021.104689_b45) 2021; 13
Kumar (10.1016/j.rinp.2021.104689_b65) 2020; 6
Fan (10.1016/j.rinp.2021.104689_b34) 2021; 14
Wang (10.1016/j.rinp.2021.104689_b41) 2020; 92
Gao (10.1016/j.rinp.2021.104689_b51) 2016; 72
Hosseini (10.1016/j.rinp.2021.104689_b18) 2021
Li (10.1016/j.rinp.2021.104689_b48) 2019; 383
Gao (10.1016/j.rinp.2021.104689_b12) 2021; 37
Atangana (10.1016/j.rinp.2021.104689_b1) 2016; 22
Ma (10.1016/j.rinp.2021.104689_b14) 2015; 379
Ghanbari (10.1016/j.rinp.2021.104689_b24) 2020; 138
Lou (10.1016/j.rinp.2021.104689_b61) 1993; 175
Luo (10.1016/j.rinp.2021.104689_b43) 2020; 375
Ma (10.1016/j.rinp.2021.104689_b50) 2011; 61
Lu (10.1016/j.rinp.2021.104689_b68) 2021; 24
Hirota (10.1016/j.rinp.2021.104689_b46) 2004
Ma (10.1016/j.rinp.2021.104689_b5) 2012; 218
Chen (10.1016/j.rinp.2021.104689_b39) 2021; 23
Xie (10.1016/j.rinp.2021.104689_b44) 2020; 30
Kumar (10.1016/j.rinp.2021.104689_b69) 2021
Sheng (10.1016/j.rinp.2021.104689_b31) 2020; 8
Zhang (10.1016/j.rinp.2021.104689_b38) 2021; e2821
Rui (10.1016/j.rinp.2021.104689_b47) 2020; 2020
Chen (10.1016/j.rinp.2021.104689_b33) 2021; 47
Glowinski (10.1016/j.rinp.2021.104689_b8) 2008
Hu (10.1016/j.rinp.2021.104689_b60) 1991; 24
Ye (10.1016/j.rinp.2021.104689_b37) 2020; 8
Yel (10.1016/j.rinp.2021.104689_b2) 2021; 16
Atangana (10.1016/j.rinp.2021.104689_b23) 2013; 2013
Meng (10.1016/j.rinp.2021.104689_b30) 2018; 2018
Wang (10.1016/j.rinp.2021.104689_b16) 2018; 85
Bielecki (10.1016/j.rinp.2021.104689_b21) 2005; 5
Chan (10.1016/j.rinp.2021.104689_b62) 1989; 30
Leta (10.1016/j.rinp.2021.104689_b17) 2021; 20
Wang (10.1016/j.rinp.2021.104689_b40) 2020; 119
Ullah (10.1016/j.rinp.2021.104689_b53) 2021; 136
Cui (10.1016/j.rinp.2021.104689_b70) 2021; 22
Hirota (10.1016/j.rinp.2021.104689_b66) 1971; 27
Pashaev (10.1016/j.rinp.2021.104689_b6) 2005; 26
Khater (10.1016/j.rinp.2021.104689_b22) 2020; 59
Fischer (10.1016/j.rinp.2021.104689_b10) 1999; 22
Wazwaz (10.1016/j.rinp.2021.104689_b52) 2007; 190
Wang (10.1016/j.rinp.2021.104689_b20) 2017; 87
Li (10.1016/j.rinp.2021.104689_b35) 2021; 15
Inc (10.1016/j.rinp.2021.104689_b11) 2020; 5
Wang (10.1016/j.rinp.2021.104689_b49) 2017; 87
Huang (10.1016/j.rinp.2021.104689_b42) 2021; 2021
Konopelchenko (10.1016/j.rinp.2021.104689_b57) 1984; 102
Gao (10.1016/j.rinp.2021.104689_b9) 2020; 12
Rezazadeh (10.1016/j.rinp.2021.104689_b28) 2021; 16
Deng (10.1016/j.rinp.2021.104689_b56) 2020; 99
Akgül (10.1016/j.rinp.2021.104689_b19) 2020
References_xml – volume: 6
  start-page: 1
  year: 2020
  end-page: 11
  ident: b65
  article-title: Some more solutions of caudrey–dodd–gibbon equation using optimal system of lie symmetries
  publication-title: Int J Appl Comput Math
– volume: 190
  start-page: 633
  year: 2007
  end-page: 640
  ident: b52
  article-title: Multiple-soliton solutions for the kp equation by hirota’s bilinear method and by the tanh–coth method
  publication-title: Appl Math Comput
– start-page: 1
  year: 2021
  end-page: 10
  ident: b13
  article-title: Unsteady mhd flow of maxwell fluid with caputo–fabrizio non-integer derivative model having slip/non-slip fluid flow and newtonian heating at the boundary
  publication-title: Indian J Phys
– volume: 22
  start-page: 1
  year: 1999
  end-page: 11
  ident: b10
  article-title: Fast inversion of matrices arising in image processing
  publication-title: Numer Algorithms
– volume: 87
  start-page: 2635
  year: 2017
  end-page: 2642
  ident: b20
  article-title: Lump solution and integrability for the associated hirota bilinear equation
  publication-title: Nonlinear Dynam
– year: 2021
  ident: b69
  article-title: A (2+ 1)-dimensional generalized hirota–satsuma–ito equations: Lie symmetry analysis, invariant solutions and dynamics of soliton solutions
  publication-title: Results Phys
– year: 2020
  ident: b19
  article-title: Effects of non-linear thermal radiation and chemical reaction on time dependent flow of williamson nano fluid with combine electrical mhd and activation energy
  publication-title: J Appl Comput Mech
– volume: 5
  start-page: 257
  year: 2005
  end-page: 270
  ident: b21
  article-title: Pde approach to valuation and hedging of credit derivatives
  publication-title: Quant Finance
– volume: 175
  start-page: 23
  year: 1993
  end-page: 26
  ident: b61
  article-title: Twelve sets of symmetries of the caudrey-dodd-gibbon-sawada-kotera equation
  publication-title: Phys Lett A
– volume: 8
  start-page: 2193
  year: 2020
  end-page: 2207
  ident: b31
  article-title: Near-online tracking with co-occurrence constraints in blockchain-based edge computing
  publication-title: IEEE Internet of Things Journal
– volume: 22
  year: 2021
  ident: b70
  article-title: Bilinear form and exact solutions for a new extended (2+ 1)-dimensional boussinesq equation
  publication-title: Results Phys
– volume: 30
  start-page: 1956
  year: 2020
  end-page: 1978
  ident: b44
  article-title: Influence of mach number of main flow on film cooling characteristics under supersonic condition
  publication-title: Int. J. Robust Nonlinear Control
– volume: 85
  start-page: 27
  year: 2018
  end-page: 34
  ident: b16
  article-title: Lump and interaction solutions to the (2+ 1)-dimensional burgers equation
  publication-title: Appl Math Lett
– volume: 20
  start-page: 1
  year: 2021
  end-page: 22
  ident: b17
  article-title: Dynamical behavior of traveling wave solutions for a (2+ 1)-dimensional bogoyavlenskii coupled system
  publication-title: Qual Theory Dyn Syst
– volume: 115
  start-page: 1111
  year: 2021
  end-page: 1125
  ident: b32
  article-title: Prediction and experimental research of abrasive belt grinding residual stress for titanium alloy based on analytical method
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 37
  start-page: 210
  year: 2021
  end-page: 243
  ident: b12
  article-title: New numerical simulation for fractional benney–lin equation arising in falling film problems using two novel techniques
  publication-title: Numer Methods Partial Differential Equations
– volume: 15
  start-page: 549
  year: 2021
  end-page: 560
  ident: b35
  article-title: Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 24
  start-page: 3205
  year: 1991
  ident: b60
  article-title: Some results on the caudrey-dodd-gibbon-kotera-sawada equation
  publication-title: J Phys A: Math Gen
– volume: 33
  year: 2019
  ident: b63
  article-title: New soliton solutions of conformable time fractional caudrey–dodd–gibbon–sawada–kotera equation in modeling wave phenomena
  publication-title: Modern Phys Lett B
– volume: 16
  start-page: 38
  year: 2021
  ident: b28
  article-title: New exact traveling wave solutions to the (2+ 1)-dimensional chiral nonlinear schrödinger equation
  publication-title: Math Model Nat Phenom
– volume: 383
  start-page: 1578
  year: 2019
  end-page: 1582
  ident: b48
  article-title: An improved hirota bilinear method and new application for a nonlocal integrable complex modified korteweg-de vries (mkdv) equation
  publication-title: Phys Lett A
– volume: 59
  start-page: 2957
  year: 2020
  end-page: 2967
  ident: b22
  article-title: Novel exact solutions of the fractional bogoyavlensky–konopelchenko equation involving the atangana-baleanu-riemann derivative
  publication-title: Alexandria Eng J
– volume: 119
  year: 2020
  ident: b40
  article-title: A rough set-based bio-inspired fault diagnosis method for electrical substations
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 33
  year: 2019
  ident: b29
  article-title: An analytical method for soliton solutions of perturbed schrödinger’s equation with quadratic-cubic nonlinearity
  publication-title: Modern Phys Lett B
– volume: 103
  start-page: 947
  year: 2021
  end-page: 977
  ident: b67
  article-title: Interaction solutions to nonlinear partial differential equations via hirota bilinear forms: One-lump-multi-stripe and one-lump-multi-soliton types
  publication-title: Nonlinear Dynam
– year: 2008
  ident: b8
  article-title: Partial differential equations: Modelling and numerical simulation, Vol. 16
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 11
  ident: b25
  article-title: New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-ncov system
  publication-title: Adv Difference Equ
– volume: 84
  start-page: 697
  year: 2016
  end-page: 702
  ident: b26
  article-title: Spatiotemporal deformation of lump solution to (2+ 1)-dimensional kdv equation
  publication-title: Nonlinear Dynam
– volume: 16
  year: 2021
  ident: b2
  article-title: On the complex simulations with dark–bright to the hirota–maccari system
  publication-title: J Comput Nonlinear Dyn
– volume: 136
  start-page: 1
  year: 2021
  end-page: 9
  ident: b53
  article-title: Collision phenomena among lump, periodic and stripe soliton solutions to a (2+1)-dimensional benjamin–bona–mahony–burgers model
  publication-title: Eur Phys J Plus
– volume: 2021
  year: 2021
  ident: b42
  article-title: A fault analysis method for three-phase induction motors based on spiking neural p systems
  publication-title: Complexity
– volume: 379
  start-page: 1975
  year: 2015
  end-page: 1978
  ident: b14
  article-title: Lump solutions to the kadomtsev–petviashvili equation
  publication-title: Phys Lett A
– volume: 229
  year: 2021
  ident: b27
  article-title: An integrable (2+ 1)-dimensional nonlinear schrödinger system and its optical soliton solutions
  publication-title: Optik
– volume: 73
  year: 2021
  ident: b36
  article-title: Numerical study on swirl cooling flow, heat transfer and stress characteristics based on fluid-structure coupling method under different swirl chamber heights and reynolds numbers
  publication-title: Int. J. Heat Mass Transfer
– volume: 102
  start-page: 15
  year: 1984
  end-page: 17
  ident: b57
  article-title: Some new integrable nonlinear evolution equations in 2+ 1 dimensions
  publication-title: Phys Lett A
– volume: 13
  year: 2021
  ident: b45
  article-title: Influence of mach number of main flow on film cooling characteristics under supersonic condition
  publication-title: Symmetry
– volume: 51
  start-page: 1355
  year: 1974
  end-page: 1367
  ident: b58
  article-title: A method for finding n-soliton solutions of the kdv equation and kdv-like equation
  publication-title: Progr Theoret Phys
– volume: 218
  start-page: 7174
  year: 2012
  end-page: 7183
  ident: b5
  article-title: Hirota bilinear equations with linear subspaces of solutions
  publication-title: Appl Math Comput
– volume: 14
  year: 2021
  ident: b34
  article-title: Well logging curve reconstruction based on kernel ridge regression
  publication-title: Arabian J. Geosci.
– volume: 87
  start-page: 2635
  year: 2017
  end-page: 2642
  ident: b49
  article-title: Lump solution and integrability for the associated hirota bilinear equation
  publication-title: Nonlinear Dynam
– volume: 27
  start-page: 1192
  year: 1971
  ident: b66
  article-title: Exact solution of the korteweg—de vries equation for multiple collisions of solitons
  publication-title: Phys Rev Lett
– year: 2013
  ident: b3
  article-title: Finite difference methods in financial engineering: A partial differential equation approach
– year: 2021
  ident: b18
  article-title: Reliable methods to look for analytical and numerical solutions of a nonlinear differential equation arising in heat transfer with the conformable derivative
  publication-title: Math Methods Appl Sci
– volume: 60
  start-page: 3593
  year: 2021
  end-page: 3604
  ident: b4
  article-title: Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates
  publication-title: Alexandria Eng J
– volume: 26
  start-page: 95
  year: 2005
  end-page: 105
  ident: b6
  article-title: Vector shock soliton and the hirota bilinear method
  publication-title: Chaos Solitons Fractals
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 10
  ident: b30
  article-title: H
  publication-title: Complexity
– volume: 135
  start-page: 1
  year: 2020
  end-page: 10
  ident: b71
  article-title: Bell polynomials and lump-type solutions to the hirota–satsuma–ito equation under general and positive quadratic polynomial functions
  publication-title: Eur Phys J Plus
– volume: 8
  start-page: 214346
  year: 2020
  end-page: 214357
  ident: b37
  article-title: State damping control: A novel simple method of rotor UAV with high performance
  publication-title: IEEE Access
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 12
  ident: b47
  article-title: Soliton and lump-soliton solutions in the grammian form for the bogoyavlenskii–kadomtsev–petviashvili equation
  publication-title: Adv Difference Equ
– volume: 47
  start-page: 7511
  year: 2021
  end-page: 7520
  ident: b33
  article-title: Systematic study on mechanical and electronic properties of ternary VAlN, TiAlN and WAlN systems by first-principles calculations
  publication-title: Ceram. Int.
– volume: 61
  start-page: 950
  year: 2011
  end-page: 959
  ident: b50
  article-title: Linear superposition principle applying to hirota bilinear equations
  publication-title: Comput Math Appl
– volume: 375
  start-page: 39
  year: 2020
  end-page: 58
  ident: b43
  article-title: Stabilization analysis for fuzzy systems with a switched sampled-data control
  publication-title: J. Franklin Inst.
– volume: 99
  start-page: 1039
  year: 2020
  end-page: 1052
  ident: b56
  article-title: Solitons and periodic waves for the (2+ 1)-dimensional generalized caudrey–dodd–gibbon–kotera–sawada equation in fluid mechanics
  publication-title: Nonlinear Dynam
– volume: 72
  start-page: 1225
  year: 2016
  end-page: 1229
  ident: b51
  article-title: Resonant behavior of multiple wave solutions to a hirota bilinear equation
  publication-title: Comput Math Appl
– volume: e2821
  year: 2021
  ident: b38
  article-title: Data-driven system parameter change detection for a chain-like uncertainties embedded structure
  publication-title: Struct. Control Health Monit.
– volume: 30
  start-page: 2065
  year: 1989
  end-page: 2068
  ident: b62
  article-title: Bäcklund transformations for the caudrey–dodd–gibbon–sawada–kotera equation and its
  publication-title: J Math Phys
– volume: 23
  year: 2021
  ident: b39
  article-title: A fault diagnosis method considering meteorological factors for transmission networks based on p systems
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 5
  start-page: 6726
  year: 2020
  end-page: 6738
  ident: b7
  article-title: New exact solutions for the kaup-kupershmidt equation
  publication-title: AIMS Math
– volume: 24
  year: 2021
  ident: b68
  article-title: Explicit solutions for the coupled nonlinear drinfeld–sokolov–satsuma–hirota system
  publication-title: Results Phys
– volume: 93
  start-page: 1841
  year: 2018
  end-page: 1851
  ident: b59
  article-title: Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+ 1)-dimensional generalized caudrey–dodd–gibbon–kotera–sawada equation
  publication-title: Nonlinear Dynam
– volume: 92
  year: 2020
  ident: b41
  article-title: A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies
  publication-title: Eng. Appl. Artif. Intell.
– volume: 59
  start-page: 222
  year: 2018
  end-page: 234
  ident: b64
  article-title: Lie symmetry analysis, exact solutions and conservation laws for the time fractional caudrey–dodd–gibbon–sawada–kotera equation
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 75
  start-page: 957
  year: 2018
  end-page: 964
  ident: b54
  article-title: Solitary waves, homoclinic breather waves and rogue waves of the (3+ 1)-dimensional hirota bilinear equation
  publication-title: Comput Math Appl
– volume: 12
  start-page: 478
  year: 2020
  ident: b9
  article-title: New numerical results for the time-fractional phi-four equation using a novel analytical approach
  publication-title: Symmetry
– volume: 22
  start-page: 1749
  year: 2016
  end-page: 1756
  ident: b1
  article-title: Exact solution of the time-fractional groundwater flow equation within a leaky aquifer equation
  publication-title: J Vib Control
– volume: 5
  start-page: 6972
  year: 2020
  end-page: 6984
  ident: b11
  article-title: New solitary wave solutions for the conformable klein-gordon equation with quantic nonlinearity
  publication-title: AIMS Math
– volume: 2013
  year: 2013
  ident: b23
  article-title: Analytical solutions of boundary values problem of 2d and 3d Poisson and biharmonic equations by homotopy decomposition method
  publication-title: Abstr Appl Anal
– year: 2004
  ident: b46
  article-title: The direct method in soliton theory
– volume: 138
  year: 2020
  ident: b24
  article-title: An application of the atangana-baleanu fractional derivative in mathematical biology: A three-species predator–prey model
  publication-title: Chaos Solitons Fractals
– year: 2021
  ident: b55
  article-title: New solitary wave solutions of the sawada-kotera equation and its bidirectional form
  publication-title: Phys Scr
– volume: 13
  start-page: 14
  year: 2018
  ident: b15
  article-title: First integral method for non-linear differential equations with conformable derivative
  publication-title: Math Model Nat Phenom
– volume: 2021
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b42
  article-title: A fault analysis method for three-phase induction motors based on spiking neural p systems
  publication-title: Complexity
– volume: 6
  start-page: 1
  issue: 4
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b65
  article-title: Some more solutions of caudrey–dodd–gibbon equation using optimal system of lie symmetries
  publication-title: Int J Appl Comput Math
  doi: 10.1007/s40819-020-00882-7
– volume: 24
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b68
  article-title: Explicit solutions for the coupled nonlinear drinfeld–sokolov–satsuma–hirota system
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.104128
– volume: 87
  start-page: 2635
  issue: 4
  year: 2017
  ident: 10.1016/j.rinp.2021.104689_b49
  article-title: Lump solution and integrability for the associated hirota bilinear equation
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-016-3216-0
– volume: 2013
  year: 2013
  ident: 10.1016/j.rinp.2021.104689_b23
  article-title: Analytical solutions of boundary values problem of 2d and 3d Poisson and biharmonic equations by homotopy decomposition method
  publication-title: Abstr Appl Anal
  doi: 10.1155/2013/380484
– volume: 59
  start-page: 222
  year: 2018
  ident: 10.1016/j.rinp.2021.104689_b64
  article-title: Lie symmetry analysis, exact solutions and conservation laws for the time fractional caudrey–dodd–gibbon–sawada–kotera equation
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2017.11.015
– volume: 14
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b34
  article-title: Well logging curve reconstruction based on kernel ridge regression
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-021-07792-y
– volume: 33
  issue: 03
  year: 2019
  ident: 10.1016/j.rinp.2021.104689_b29
  article-title: An analytical method for soliton solutions of perturbed schrödinger’s equation with quadratic-cubic nonlinearity
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984919500180
– volume: 12
  start-page: 478
  issue: 3
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b9
  article-title: New numerical results for the time-fractional phi-four equation using a novel analytical approach
  publication-title: Symmetry
  doi: 10.3390/sym12030478
– volume: 85
  start-page: 27
  year: 2018
  ident: 10.1016/j.rinp.2021.104689_b16
  article-title: Lump and interaction solutions to the (2+ 1)-dimensional burgers equation
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2018.05.010
– volume: 103
  start-page: 947
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b67
  article-title: Interaction solutions to nonlinear partial differential equations via hirota bilinear forms: One-lump-multi-stripe and one-lump-multi-soliton types
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-020-06068-6
– volume: 84
  start-page: 697
  issue: 2
  year: 2016
  ident: 10.1016/j.rinp.2021.104689_b26
  article-title: Spatiotemporal deformation of lump solution to (2+ 1)-dimensional kdv equation
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-015-2519-x
– volume: 33
  issue: 18
  year: 2019
  ident: 10.1016/j.rinp.2021.104689_b63
  article-title: New soliton solutions of conformable time fractional caudrey–dodd–gibbon–sawada–kotera equation in modeling wave phenomena
  publication-title: Modern Phys Lett B
– volume: 27
  start-page: 1192
  issue: 18
  year: 1971
  ident: 10.1016/j.rinp.2021.104689_b66
  article-title: Exact solution of the korteweg—de vries equation for multiple collisions of solitons
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.27.1192
– volume: 2020
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b25
  article-title: New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-ncov system
  publication-title: Adv Difference Equ
  doi: 10.1186/s13662-020-02831-6
– volume: 59
  start-page: 2957
  issue: 5
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b22
  article-title: Novel exact solutions of the fractional bogoyavlensky–konopelchenko equation involving the atangana-baleanu-riemann derivative
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2020.03.032
– year: 2021
  ident: 10.1016/j.rinp.2021.104689_b18
  article-title: Reliable methods to look for analytical and numerical solutions of a nonlinear differential equation arising in heat transfer with the conformable derivative
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.7582
– volume: 8
  start-page: 2193
  issue: 4
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b31
  article-title: Near-online tracking with co-occurrence constraints in blockchain-based edge computing
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2020.3035415
– volume: 30
  start-page: 1956
  issue: 5
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b44
  article-title: Influence of mach number of main flow on film cooling characteristics under supersonic condition
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4856
– volume: 383
  start-page: 1578
  issue: 14
  year: 2019
  ident: 10.1016/j.rinp.2021.104689_b48
  article-title: An improved hirota bilinear method and new application for a nonlocal integrable complex modified korteweg-de vries (mkdv) equation
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2019.02.031
– volume: 93
  start-page: 1841
  issue: 4
  year: 2018
  ident: 10.1016/j.rinp.2021.104689_b59
  article-title: Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+ 1)-dimensional generalized caudrey–dodd–gibbon–kotera–sawada equation
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-018-4292-0
– volume: 22
  start-page: 1749
  issue: 7
  year: 2016
  ident: 10.1016/j.rinp.2021.104689_b1
  article-title: Exact solution of the time-fractional groundwater flow equation within a leaky aquifer equation
  publication-title: J Vib Control
  doi: 10.1177/1077546314544514
– volume: 23
  issue: 8
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b39
  article-title: A fault diagnosis method considering meteorological factors for transmission networks based on p systems
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 119
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b40
  article-title: A rough set-based bio-inspired fault diagnosis method for electrical substations
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.105961
– year: 2004
  ident: 10.1016/j.rinp.2021.104689_b46
– year: 2013
  ident: 10.1016/j.rinp.2021.104689_b3
– volume: 138
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b24
  article-title: An application of the atangana-baleanu fractional derivative in mathematical biology: A three-species predator–prey model
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109910
– volume: 5
  start-page: 6726
  issue: 6
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b7
  article-title: New exact solutions for the kaup-kupershmidt equation
  publication-title: AIMS Math
  doi: 10.3934/math.2020432
– volume: 16
  start-page: 38
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b28
  article-title: New exact traveling wave solutions to the (2+ 1)-dimensional chiral nonlinear schrödinger equation
  publication-title: Math Model Nat Phenom
  doi: 10.1051/mmnp/2021001
– volume: 47
  start-page: 7511
  issue: 6
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b33
  article-title: Systematic study on mechanical and electronic properties of ternary VAlN, TiAlN and WAlN systems by first-principles calculations
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.11.090
– volume: 92
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b41
  article-title: A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103680
– volume: 24
  start-page: 3205
  issue: 14
  year: 1991
  ident: 10.1016/j.rinp.2021.104689_b60
  article-title: Some results on the caudrey-dodd-gibbon-kotera-sawada equation
  publication-title: J Phys A: Math Gen
  doi: 10.1088/0305-4470/24/14/009
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.rinp.2021.104689_b30
  article-title: H∞ optimal performance design of an unstable plant under bode integral constraint
  publication-title: Complexity
  doi: 10.1155/2018/4942906
– volume: 61
  start-page: 950
  issue: 4
  year: 2011
  ident: 10.1016/j.rinp.2021.104689_b50
  article-title: Linear superposition principle applying to hirota bilinear equations
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2010.12.043
– volume: 22
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b70
  article-title: Bilinear form and exact solutions for a new extended (2+ 1)-dimensional boussinesq equation
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.103919
– volume: 13
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b45
  article-title: Influence of mach number of main flow on film cooling characteristics under supersonic condition
  publication-title: Symmetry
  doi: 10.3390/sym13010127
– start-page: 1
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b13
  article-title: Unsteady mhd flow of maxwell fluid with caputo–fabrizio non-integer derivative model having slip/non-slip fluid flow and newtonian heating at the boundary
  publication-title: Indian J Phys
– volume: 5
  start-page: 257
  issue: 3
  year: 2005
  ident: 10.1016/j.rinp.2021.104689_b21
  article-title: Pde approach to valuation and hedging of credit derivatives
  publication-title: Quant Finance
  doi: 10.1080/14697680500149297
– year: 2021
  ident: 10.1016/j.rinp.2021.104689_b55
  article-title: New solitary wave solutions of the sawada-kotera equation and its bidirectional form
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ac108b
– volume: 26
  start-page: 95
  issue: 1
  year: 2005
  ident: 10.1016/j.rinp.2021.104689_b6
  article-title: Vector shock soliton and the hirota bilinear method
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.12.021
– year: 2008
  ident: 10.1016/j.rinp.2021.104689_b8
– volume: 2020
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b47
  article-title: Soliton and lump-soliton solutions in the grammian form for the bogoyavlenskii–kadomtsev–petviashvili equation
  publication-title: Adv Difference Equ
  doi: 10.1186/s13662-020-02602-3
– volume: 30
  start-page: 2065
  issue: 9
  year: 1989
  ident: 10.1016/j.rinp.2021.104689_b62
  article-title: Bäcklund transformations for the caudrey–dodd–gibbon–sawada–kotera equation and its λ-modified equation
  publication-title: J Math Phys
  doi: 10.1063/1.528245
– volume: 136
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b53
  article-title: Collision phenomena among lump, periodic and stripe soliton solutions to a (2+1)-dimensional benjamin–bona–mahony–burgers model
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-021-01343-w
– volume: 51
  start-page: 1355
  issue: 5
  year: 1974
  ident: 10.1016/j.rinp.2021.104689_b58
  article-title: A method for finding n-soliton solutions of the kdv equation and kdv-like equation
  publication-title: Progr Theoret Phys
  doi: 10.1143/PTP.51.1355
– volume: 5
  start-page: 6972
  issue: 6
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b11
  article-title: New solitary wave solutions for the conformable klein-gordon equation with quantic nonlinearity
  publication-title: AIMS Math
  doi: 10.3934/math.2020447
– volume: 37
  start-page: 210
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b12
  article-title: New numerical simulation for fractional benney–lin equation arising in falling film problems using two novel techniques
  publication-title: Numer Methods Partial Differential Equations
  doi: 10.1002/num.22526
– volume: 16
  issue: 6
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b2
  article-title: On the complex simulations with dark–bright to the hirota–maccari system
  publication-title: J Comput Nonlinear Dyn
– volume: 379
  start-page: 1975
  issue: 36
  year: 2015
  ident: 10.1016/j.rinp.2021.104689_b14
  article-title: Lump solutions to the kadomtsev–petviashvili equation
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2015.06.061
– volume: 75
  start-page: 957
  issue: 3
  year: 2018
  ident: 10.1016/j.rinp.2021.104689_b54
  article-title: Solitary waves, homoclinic breather waves and rogue waves of the (3+ 1)-dimensional hirota bilinear equation
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2017.10.037
– volume: 229
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b27
  article-title: An integrable (2+ 1)-dimensional nonlinear schrödinger system and its optical soliton solutions
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.166247
– volume: 135
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b71
  article-title: Bell polynomials and lump-type solutions to the hirota–satsuma–ito equation under general and positive quadratic polynomial functions
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-019-00054-7
– volume: 20
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b17
  article-title: Dynamical behavior of traveling wave solutions for a (2+ 1)-dimensional bogoyavlenskii coupled system
  publication-title: Qual Theory Dyn Syst
  doi: 10.1007/s12346-021-00449-x
– volume: 73
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b36
  article-title: Numerical study on swirl cooling flow, heat transfer and stress characteristics based on fluid-structure coupling method under different swirl chamber heights and reynolds numbers
  publication-title: Int. J. Heat Mass Transfer
– volume: 99
  start-page: 1039
  issue: 2
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b56
  article-title: Solitons and periodic waves for the (2+ 1)-dimensional generalized caudrey–dodd–gibbon–kotera–sawada equation in fluid mechanics
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-019-05328-4
– volume: 87
  start-page: 2635
  issue: 4
  year: 2017
  ident: 10.1016/j.rinp.2021.104689_b20
  article-title: Lump solution and integrability for the associated hirota bilinear equation
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-016-3216-0
– volume: 8
  start-page: 214346
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b37
  article-title: State damping control: A novel simple method of rotor UAV with high performance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3040779
– volume: 60
  start-page: 3593
  issue: 4
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b4
  article-title: Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2021.01.054
– year: 2021
  ident: 10.1016/j.rinp.2021.104689_b69
  article-title: A (2+ 1)-dimensional generalized hirota–satsuma–ito equations: Lie symmetry analysis, invariant solutions and dynamics of soliton solutions
  publication-title: Results Phys
– volume: 190
  start-page: 633
  issue: 1
  year: 2007
  ident: 10.1016/j.rinp.2021.104689_b52
  article-title: Multiple-soliton solutions for the kp equation by hirota’s bilinear method and by the tanh–coth method
  publication-title: Appl Math Comput
– volume: 218
  start-page: 7174
  issue: 13
  year: 2012
  ident: 10.1016/j.rinp.2021.104689_b5
  article-title: Hirota bilinear equations with linear subspaces of solutions
  publication-title: Appl Math Comput
– volume: 13
  start-page: 14
  issue: 1
  year: 2018
  ident: 10.1016/j.rinp.2021.104689_b15
  article-title: First integral method for non-linear differential equations with conformable derivative
  publication-title: Math Model Nat Phenom
  doi: 10.1051/mmnp/2018012
– volume: 175
  start-page: 23
  issue: 1
  year: 1993
  ident: 10.1016/j.rinp.2021.104689_b61
  article-title: Twelve sets of symmetries of the caudrey-dodd-gibbon-sawada-kotera equation
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(93)90848-T
– volume: 15
  start-page: 549
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b35
  article-title: Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths
  publication-title: Eng. Appl. Comput. Fluid Mech.
– year: 2020
  ident: 10.1016/j.rinp.2021.104689_b19
  article-title: Effects of non-linear thermal radiation and chemical reaction on time dependent flow of williamson nano fluid with combine electrical mhd and activation energy
  publication-title: J Appl Comput Mech
– volume: e2821
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b38
  article-title: Data-driven system parameter change detection for a chain-like uncertainties embedded structure
  publication-title: Struct. Control Health Monit.
– volume: 375
  start-page: 39
  issue: 1
  year: 2020
  ident: 10.1016/j.rinp.2021.104689_b43
  article-title: Stabilization analysis for fuzzy systems with a switched sampled-data control
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2019.09.029
– volume: 22
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.rinp.2021.104689_b10
  article-title: Fast inversion of matrices arising in image processing
  publication-title: Numer Algorithms
  doi: 10.1023/A:1019194421221
– volume: 72
  start-page: 1225
  issue: 5
  year: 2016
  ident: 10.1016/j.rinp.2021.104689_b51
  article-title: Resonant behavior of multiple wave solutions to a hirota bilinear equation
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2016.06.008
– volume: 102
  start-page: 15
  issue: 1–2
  year: 1984
  ident: 10.1016/j.rinp.2021.104689_b57
  article-title: Some new integrable nonlinear evolution equations in 2+ 1 dimensions
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(84)90442-0
– volume: 115
  start-page: 1111
  year: 2021
  ident: 10.1016/j.rinp.2021.104689_b32
  article-title: Prediction and experimental research of abrasive belt grinding residual stress for titanium alloy based on analytical method
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-07272-3
SSID ssj0001645511
Score 2.4293358
Snippet In this paper, Hirota’s bilinear form has been employed to find novel lump waves solutions for the generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation. This...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 104689
SubjectTerms Hirota’s bilinear form
Lump wave solution
Partial differential equations
Symbolic calculations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYhUOglNP0h26ZFh96KiSRbsnVMQsNSaE8p5Gb0MwaXjTfsOmmPfY28Xp-kM5J38Sm99GrGM2Y09nyyZr5h7CMYI4LWscDUHYrKmK5ovKsLsKX0CFBi1VA38tdvZvm9-nKjb2ajvqgmLNMDZ8ed2SY6geo6QVR2pWiCBxtKJY22DdSpjxxz3mwzlf6umAqhAO22lCKevtrWU8dMLu7a9AORVSqZzjhpxvssKyXy_llymiWcqxfsaEKK_Dw_4TE7gOEle5YqNsP2FfuVZ_Vi5uHLfrMe3Z_fj1tOpa4DBi8nLMrHNaczaT6sH2DF8TN0x3-6B9jyfcCRiBt4f5tg-DCi6DBpSDNyeD_wbnXfR34L1COMpl-z66vP15fLYhqjUIRKirGw4K0AgKC0x-QMJYKqiG8eWCfLEOoudFp12koVZXRRC2PLTgQpwHrVQPmGHaJtOGE8OinBGaPR_8Rc76OqnZFedtFpRDYLJndebMNEMU6TLlbtrpbsR0ueb8nzbfb8gn3a33OXCTaelL6gxdlLEjl2uoAh004h0_4rZBZM75a2nXBGxg-oqn_C-Nv_Yfwde04qcz3gKTscN_fwHnHN6D-kEP4LBLD0qA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBZpSqCXkKYp3TYpOuRWXCTbkq1DKUloWArpKYHcjH7GxWXjTb3O3y2v0dfrk3TG1m5TCDn0aDOSzGjG3ydpNMPYPmgtvFIhQej2Sa51nZTOFgmYTDokKCEv6TbyyTc9Pcu_nqvzNbYsdxQVuHh0aUf1pM662cfbn3ef0eE__Y3V6pqWck-mcjiyLM0z9hyRqSBHPYl0f9hz0TkSBFqDpSll7ytMEe_RPN7NP1g1pPR_AFkPYOh4i21G_sgPxgl_ydag3WYbQxynX7xit2MFX8QjPm26eW9_3_9acAqAbdGkOTFU3s85nVTzdn4NM44_p0t-Y69hwVdmSCK25c3FoJe2R9E29jBUzuFNy-vZVRP4BdDNYRx6h50efzk9miaxuELicyn6xIAzAgB8qhxCNmRItQL6IxgrM--L2tcqrZWRaZDBBiW0yWrhpQDj0hKy12wdx4Y3jAcrJVitlUdylunShbSwWjpZB6uQ70yYXGqx8jHxONW_mFXLCLMfFWm-Is1Xo-Yn7MOqzeWYduNJ6UOanJUkpcweXsy771X0wMqUwQq0y1pQTsRMlN6BwU-WWpkSimLC1HJqq8g-RlaBXTVPDP72P9u9Yy_oaQwM3GXrfXcFe0hwevd-sNo_L5L5wA
  priority: 102
  providerName: Scholars Portal
Title Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics
URI https://dx.doi.org/10.1016/j.rinp.2021.104689
https://doaj.org/article/98da00c5f07440308cbe9c3216598e77
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkhcEOUhtrQrH7ihaOMkduJjW1GtWpUDFLG3yI8JCtpmV7tp4cjf4O_1lzDjeJfl0gOXSInGD40nM5_teTD2DpRKnZQ-QdPtkkKpJqmsKRPQubAIUHxRUTTy9Uc1_VJczuRsj51vYmHIrTLq_kGnB20dv0wiNyfLtp18znDvkpeUfYaukzQFmudFFYL4Zmd_z1lUgaCA9l1En1CDGDszuHmt2o7SVmYi3HZStfcd-xTS-O-YqR3Tc_GcPYuYkZ8O0zpke9C9YE-C76Zbv2Q_h6q9aIP4tF0tevPw6_eak9Nrh2LMCZXyfsHpdpp3i3uYc1RIS_7D3MOab0WPSEzH29sAyLseSbvYQ6iWw9uON_O71vNboGhhHPoVu7n4cHM-TWJBhcQVIu0TDVanAOAyadFMQ47wyuM_CNqI3LmycY3MGqlF5oU3XqZK503qRAraZhXkr9k-jg1vGPdGCDBKSYeALFeV9VlplLCi8UYixhkxseFi7WKycap5Ma83XmXfa-J8TZyvB86P2Pttm-WQauNR6jNanC0lpckOHxarb3WUk1pX3qQoi01KeRDztHIWNE5ZKKkrKMsRk5ulrf-ROuyqfWTwo_9s95Y9pbfBGfCY7ferOzhBUNPbMTs4vfr09WocDgXGQYbxeV1UfwDE0Plr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYJLxVMs5eEDNxStncROfKQV1RbaXlikvUV-TFDQNrvaTQvH_o3-PX4JM4l3WS49cHVm7Gg8mfkcz4Ox96C18EqFBF23T3Kt66R0tkjAZNIhQAl5SdnI5xd68i3_PFOzPXa8yYWhsMpo-web3lvrODKO0hwvm2b8NcWzS1ZQ9Rm6TjLqHruPaKCg_g2ns6O_P1p0jqiADl7EkBBHTJ4Z4rxWTUt1K1PZX3dSu_cdB9XX8d_xUzu-5-QxO4igkX8c3usJ24P2KXvQB2_69TP2a2jbi06IT5rVorO_b27XnKJeW9RjTrCUdwtO19O8XVzDnKNFWvKf9hrWfKt7RGJb3lz2iLztkLSNM_TtcnjT8np-1QR-CZQujEs_Z9OTT9PjSRI7KiQ-l6JLDDgjAMCnyqGfhgzxVcCPEIyVmfdF7WuV1srINMhggxLaZLXwUoBxaQnZC7aPa8NLxoOVEqzWyiMiy3TpQlpYLZ2sg1UIckZMbqRY-VhtnJpezKtNWNmPiiRfkeSrQfIj9mHLsxxqbdxJfUSbs6WkOtn9wGL1vYqKUpkyWIHKWAsqhJiJ0jsw-MpSK1NCUYyY2mxt9Y_a4VTNHYu_-k--d-zhZHp-Vp2dXnw5ZI_oyRAZ-Jrtd6sreIMIp3Nvew3-A8gx-Rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+Hirota%E2%80%99s+bilinear+form+to+find+novel+lump+waves+solutions+to+an+important+nonlinear+model+in+fluid+mechanics&rft.jtitle=Results+in+physics&rft.au=Ghanbari%2C+Behzad&rft.date=2021-10-01&rft.pub=Elsevier+B.V&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=29&rft_id=info:doi/10.1016%2Fj.rinp.2021.104689&rft.externalDocID=S2211379721007695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon